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We investigate theoretically the influence of a temperature-dependent viscosity on the pressure
drop versus flow rate relationship in pipe flows for cases where the Reynolds number is small, as
expected for printing and other flows of highly viscous fluids. By applying different temperature
boundary conditions at the wall, the viscosity field is altered under the same flow conditions and
thus we can compare how this external heating affects the pressure drop along the length of the
pipe. We use analytical and similarity-solution methods to solve for the temperature distribution
under constant temperature and constant heat flux boundary conditions, as well as assumed linear
and other imposed polynomial temperature versus distance (along the flow) boundary conditions at
the wall. Also, for the momentum and energy equations we use the lubrication and boundary-layer
approximations, respectively, which we expect to be typically appropriate for flows where the pipe
radius is much less than the pipe length. The reciprocal theorem is used to derive an expression for
the pressure drop across the channel for a viscosity field that depends on temperature and spatially
varies across and along the flow. Assuming the fractional change in viscosity with temperature
is small, we arrive at an analytical expression for the pressure drop for a given flow rate. The
results are reported as a function of the effective Peclet number for each boundary condition and
the numerical results are compared with analytical predictions in the low- and high-Peclet-number
limits.

I. INTRODUCTION

Viscosity gradients due to applied temperature fields in fluid flows are relevant to many natural, environmental, and
industrial applications. One example is the flow of magma on a cooler surface, along which the average temperature
of the fluid decreases and eventually affects the overall propagation of the current [1–6]. Additionally, extracting
heavy oils from offshore sites involves pumping through the vast depths of the ocean where temperature-induced
viscosity changes are inevitable [7]. In colloidal science, it has been documented that introducing temperature-
induced viscosity variations in the neighborhood of the particle in a viscous fluid affects the diffusion coefficient,
force, and torque experienced by the particle [8–12]. Furthermore, heat exchangers, glass fabrication, and injection
molding are all examples where the working fluid experiences temperature and viscosity gradients that influence the
flow behavior [13–15]. In Table I we provide a selective chronological list of previous work on pressure-driven flows in
heated and/or cooled axisymmetric and two-dimensional channels. Some of the studies itemized in Table I focused on
the pressure drop-flow rate relationship in channels with heated and/or cooled walls [1, 2, 15–18]. Perhaps surprisingly,
no studies pertaining to the effect of the type of applied heating (i.e., boundary conditions at the wall) on the total
pressure drop have been reported in the literature. In this work, we report the pressure drop as a function of an
effective Peclet number for different applied temperature boundary conditions for cases where the relative change in
viscosity is small.

Various pressure drop-flow rate relations have been reported over the years. For example, for small variations in
viscosity with temperature and pressure in axisymmetric channel flows with isothermal and adiabatic boundaries, the
effects of viscous heating were derived in [16]. Also, steady flows in heated and cooled channels driven by a constant
mass flux were studied with a focus on the temperature and velocity fields in the high viscosity variation limits, for
exponential and algebraic viscosity dependence with temperature [17]. The study was extended to polymer melts
flowing through ducts with heated walls, where viscous heating effects were included [18]. Geophysical applications
involving magma motivate some work, such as the case where viscosity varied linearly with temperature [1]. Also, the
flow of hot viscous fluid on a cooled constant temperature wall was studied by Wylie and Lister [2], who employed
numerical techniques to determine the pressure drop-flow rate relationship in the limit where viscosity variations are
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Year Authors Source of heat considered Geometry Reported µ(T ) effect on

1975 Galili et al. [16] Isothermally heated walls Pipe Pressure drop-flow rate relation
and viscous heating

1977 Ockendon and Ockendon [17] Isothermally heated 2-D channel Velocity and pressure fields
and cooled walls

1977 Pearson [19] Viscous heating 2-D channel Temperature, velocity,
and pressure drop

1978 Ockendon [20] Viscous heating 2-D channel Velocity, pressure fields
and boundary layer

1981 Denn [21] Viscous heating Pipe Pressure drop-flow rate relation
1986 Richardson [15] Isothermally heated walls 2-D channel, Pressure drop-flow rate relation

pipe and disk
1987 Richardson [18] Isothermally heated walls 2-D channel, Pressure drop-flow rate relation

pipe, and disk and thermal boundary layer
1988 Sun [22] Isothermally heated 2-D channel Temperature and velocity fields

and cooled walls
with viscous heating

1991 Whitehead and Helfrich [1] Isothermally heated walls 1-D and 2-D channel Pressure drop
and flow stability

1993 Schäfer and Herwig [23] Constant flux at walls 2-D channel Poisieulle flow stability
1995 Wylie and Lister [2] Isothermally heated walls 2-D channel Pressure drop-flow rate relation

and flow stability
2002 Costa and Macedonio [4] Viscous heating 2-D channel Flow stability
2005 Costa and Macedonio [5] Viscous heating 2-D channel Flow stability

TABLE I. Chronological selection of previous experimental, numerical, and theoretical works on the low-Reynolds-number
pressure-driven flows in heated and/or cooled two-dimensional and axisymmetric geometries for Newtonian and non-Newtonian
fluids.

high and confirmed the bifurcations previously reported by Whitehead and Helfrich [1]. Additionally, they investigated
flow stability and found that fingering-like structures develop at high viscosity variations.

In this work, we present an analytical expression for the total pressure drop for a given flow rate across an axisym-
metric channel for various prescribed temperature boundary conditions at the wall. Utilizing the Lorentz reciprocal
theorem, we circumvent the coupled hydrodynamic-heat transfer problem in the lubrication limit. Specifically, we lin-
earize the viscosity distribution and obtain the first-order correction to the total pressure drop. Previous studies have
approached this problem by applying isothermal heating or cooling conditions at the wall and solving the resultant
total pressure drop. However, in practice, wall temperatures never truly conform to isothermal conditions. Therefore,
we extend this approach by applying constant flux and linear boundary conditions (i.e., temperature as a function of
downstream position) to the classical Graetz equation from which we obtain analytical solutions for the temperature
field. By re-scaling the velocity field with the average velocity thereby keeping the mass flux fixed, we elucidate the
influence of the effective Peclet number (defined in Sec. V) on the average temperature in the fluid domain. Further-
more, we study the effect of the applied temperature conditions at the wall on the first-order pressure drop correction
as a function of effective Peclet number. When analyzing the high-Peclet-number limit, we take advantage of the
Lévêque equation to approximate the temperature field for different boundary conditions and show that our results
for the pressure drop obtained from the Lévêque approach are in excellent agreement with the Graetz approximation.
To our knowledge, we are not aware of any approach that encapsulates the effect the nature of the applied heating
has on the total pressure drop in the form of a comparison as we aim to report in this study.

II. LUBRICATION SCALING OF MASS AND MOMENTUM EQUATIONS

We consider an incompressible steady flow of a Newtonian fluid in an axisymmetric channel of radius r0 and length
ℓ, where r0 ≪ ℓ, as shown in Fig. 1. A temperature boundary condition is applied at the walls of the channel (r = r0),
which induces a viscosity distribution throughout the fluid domain since viscosity is a function of temperature. The
fluid motion is assumed to remain laminar and is described by a velocity u = (uz, ur) and a pressure distribution
p due to an applied flow rate q. Our main goal is to determine the overall pressure drop ∆p and how the thermal
boundary condition influences the results.

We start by outlining a lubrication-style description of the governing equations in the low-Reynolds-number limit
but allowing for convective effects in the thermal energy equation. In our analysis, we neglect buoyancy-driven
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FIG. 1. A fluid enters an axisymmetric channel with temperature T0 and viscosity µ0; ρ is the fluid density. The temperature
at the wall, Tw(z), is different from T0 and may vary along the length of the channel, resulting in temperature and viscosity
gradients throughout the fluid domain.

contributions, which may arise from density variations with temperature, and thus change the flow field. Comparing
the ratio of the characteristic velocity due to buoyancy forces, O(∆ρgr20/µ0), to the characteristic velocity that drives
the flow, O(q/r20), we find the ratio ∆ρgr40/qµ0 representing the relative importance of buoyancy effects, where ∆ρ is
the magnitude of density changes from the mean density ρ and g is the acceleration of gravity in the axial direction.
When this ratio is small, ∆ρgr40/qµ0 ≪ 1, the buoyancy has a negligible influence on the flow field, and the temperature
variations are incorporated only through the variation of the viscosity. Under the above condition, the fluid motion
is described by the continuity and Cauchy momentum equations:

∇ · u = 0, ∇ · σ = 0, (1)

where σ is the stress tensor for a Newtonian fluid, which takes the form:

σ = −pI+ 2µ(T )E. (2)

Here I is the identity tensor and E = (1/2)(∇u + (∇u)T ) is the rate-of-strain tensor. The stress tensor involves a
temperature-dependent viscosity, µ(T ), where the temperature field is a function of r and z. Hence, we have

−∇p+∇ ·
[
µ(r, z)(∇u+∇uT )

]
= 0, (3)

where we have neglected buoyancy-driven contributions as mentioned above.
To solve the mass and momentum equations, we impose no-slip and no-penetration boundary conditions at r = r0

and apply an integral constraint for the flow rate, 2π
r0∫
0

uzrdr = q, where we have neglected volumetric variations due

to density changes with temperature. For convenience, we choose the characteristic velocity scale as Ū = q/(2πr20),
which ensures that the non-dimensional integral constraint for volume flux is equal to 1.

Therefore, we nondimensionalize the governing equations by applying lubrication theory and using the dimensionless
variables:

Z =
z

ℓ
, R =

r

r0
, Ur =

ur

ϵq/2πr20
, Uz =

uz

q/2πr20
, P =

p

µ0qℓ/2πr40
, M =

µ(r, z)

µ0
, (4)

where ϵ = r0/ℓ is the aspect ratio, which we assume to be small, ϵ ≪ 1, and M(r, z) is the dimensionless viscosity.
Applying the rescaling to Eqs. (1) and (2), we arrive at

1

R

∂(RUr)

∂R
+

∂Uz

∂Z
= 0,

∂P

∂Z
=

1

R

∂

∂R

(
RM(R,Z)

∂Uz

∂R

)
+O(ϵ2),

∂P

∂R
= O(ϵ2). (5)

From Eq. (5), it follows that P = P (Z) + O(ϵ2), i.e., the pressure is independent of R up to O(ϵ2), consistent with
the classical lubrication approximation. We note that in the next sections, we bypass using the lubrication equations
(5) to solve the hydrodynamic and heat transfer problems and use instead the reciprocal theorem.

III. RECIPROCAL THEOREM FOR FLOWS WITH NON-UNIFORM VISCOSITY IN
AXISYMMETRIC NARROW CHANNELS

The Lorentz reciprocal theorem is a useful tool that can be applied to fluid dynamics and transport phenomenon
problems to calculate integral quantities, such as force, torque, pressure drop, and flow rate, while bypassing detailed
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calculations of primary quantities [24]. We outline a model problem by defining û and σ̂ as the velocity and stress
fields that correspond to the case in which there are no temperature variations in the system. In this model, the
entrance viscosity, µ0, remains constant over the entire fluid domain. Therefore, the respective mass and momentum
equations are

∇ · û = 0, ∇ · σ̂ = 0 where σ̂ = −p̂I+ 2µ0Ê. (6)

Following standard steps, we arrive at the reciprocal theorem in the form:∫
S0

n · σ · û dS +

∫
Sℓ

n · σ · û dS −
∫
S0

n · σ̂ · u dS −
∫
Sℓ

n · σ̂ · u dS = 2

∫
V

(µ(T )− µ0)E : Ê dV, (7)

where V is the fluid volume and n is the unit outward normal corresponding to the cross-sectional surfaces at the
beginning and end of the channel S0,ℓ. We also take advantage of the no-slip boundary conditions at the walls so
that the surface integrals vanish there. Recently, a similar approach has been used to calculate the pressure drop of
non-Newtonian fluid flow in narrow geometries [25, 26].
Next, we rescale the variables in the surface and volume integrals according to Eq. (4), using similar definitions for

the hat variables, and find

2(µ(T )− µ0)E : Ê =
q2µ0

4π2r60

[
(M− 1)

∂Uz

∂R

∂Ûz

∂R
+O(ϵ2)

]
, (8a)

n · σ · û = ∓µ0q
2ℓ

4π2r60
[−PÛz +O(ϵ2)], (8b)

n · σ̂ · u = ∓µ0q
2ℓ

4π2r60
[−P̂Uz +O(ϵ2)], (8c)

where the minus and plus signs correspond to S0 and Sℓ, respectively; recall that M is the dimensionless viscosity.
Combining terms and simplifying Eq. (7), we obtain:

1∫
0

(PÛz)R|Z=0dR−
1∫

0

(PÛz)R|Z=1dR−
1∫

0

(P̂Uz)R|Z=0dR+

1∫
0

(P̂Uz)R|Z=1dR =

1∫
0

1∫
0

(M−1)R
∂Uz

∂R

∂Ûz

∂R
dRdZ+O(ϵ2).

(9)

Because of our choice for the velocity scale, then
1∫
0

UzR dR =
1∫
0

ÛzR dR = 1. Additionally, we define the pressure

drops ∆P = P (0) − P (1) and ∆P̂ = P̂ (0) − P̂ (1) so that, upon further simplification, we obtain the expression for
the pressure drop

∆P −∆P̂ =

1∫
0

1∫
0

(M− 1)R
∂Uz

∂R

∂Ûz

∂R
dRdZ +O(ϵ2). (10)

IV. LINEARIZATION OF THE VISCOSITY FIELD AND PERTURBATION ANALYSIS

In order to characterize an approximate variation in the viscosity, we expand the viscosity into a Taylor series
around the inlet temperature T0, corresponding to the viscosity µ0. We also introduce a dimensionless variable for
temperature, Θ(R,Z) = (T (r, z)−T0)/∆T , where ∆T is determined by the boundary conditions. The corresponding
expansion for the viscosity is

M =
µ(T )

µ0
= 1 +

∆T

µ0

∂µ

∂T

∣∣∣∣
T0

Θ(R,Z) +
(∆T )2

2µ0

∂2µ

∂T 2

∣∣∣∣
T0

[Θ(R,Z)]2 + · · · (11)
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We expect that ∂µ/∂T < 0 and so define the parameter β that represents the fractional change of viscosity,

β = −∆T

µ0

∂µ

∂T

∣∣∣∣
T0

. (12)

For β ≪ 1, Eq. (11) becomes

M(Θ) ≈ 1− βΘ+O(β2). (13)

Substituting Eq. (13) into Eq. (10), we obtain

∆P = ∆P̂ − β

1∫
0

1∫
0

ΘR
∂Uz

∂R

∂Ûz

∂R
dRdZ +O(ϵ2, β2). (14)

To simplify further, we expand the pressure drop and velocity into perturbation series in the dimensionless parameter
β ≪ 1 by defining Uz = Uz,0+βUz,1+O(β2) and ∆P = ∆P0+β∆P1+O(β2). Using the latter expansions and noting

that ∆P̂ = ∆P0 and Ûz = Uz,0 = 4(1−R2), we obtain the expression for the first-order pressure drop correction

∆P1 = −
1∫

0

1∫
0

ΘR

(
∂Ûz

∂R

)2

dRdZ = −64

1∫
0

1∫
0

Θ(R,Z)R3dRdZ. (15)

Equation (15) is the central result of this work, which allows the determination of the first-order correction to the
pressure drop of the heated channel, provided the temperature distribution Θ(R,Z) is known. Particularly, Eq.
(15) highlights that small changes in viscosity allow us to bypass the coupled hydrodynamic heat transfer problem
to calculate the leading-order pressure drop correction. Instead, we can find the temperature distribution from the
energy equation using the constant viscosity velocity field and then use it to calculate the pressure drop using Eq. (15).

V. ENERGY EQUATION: LUBRICATION RESCALING AND SOLUTIONS

Next, we rescale the energy equation. At the leading order in β, the flow is unidirectional and not a function of the
axial direction. Thus, the vertical velocity is zero, i.e., Ur,0 ≡ 0. Similar to the velocity and pressure drop, we expand
the temperature as Θ = Θ0 + βΘ1 +O(β2) and obtain the dimensionless energy equation at leading order:

ϵPe

(
Uz,0

∂Θ0

∂Z

)
=

1

R

∂

∂R

(
R
∂Θ0

∂R

)
+ ϵ2

∂2Θ0

∂Z2
, (16)

where we define the Peclet number Pe = Ūr0/α with Ū = q/(2πr20) the characteristic velocity as previously defined
in Sec. II, and α the thermal diffusivity. We can neglect axial conduction, which is O(ϵ2), as long as Pe ≫ ϵ,
consistent with the lubrication limit (ϵ ≪ 1). We also introduce the effective Peclet number, Peeff = ϵPe. Noting
that Uz,0 = 4(1−R2) and dropping the subscript 0 for convenience, we thus consider the Graetz equation in the form:

4Peeff(1−R2)
∂Θ

∂Z
=

1

R

∂

∂R

(
R
∂Θ

∂R

)
, (17)

which was originally solved by Graetz [27, 28] and later extended to include axial conduction and viscous dissipation
effects [29–31]. In this section, we solve Eq. (17) by applying boundary conditions at the wall for constant temperature,
constant thermal flux, and a linear temperature variation in the axial direction. We obtain results for the temperature
field for different effective Peclet numbers. In Sec. VD, we will show how the Lévêque approximation [32] simplifies
Eq. (17) to yield a self-similar solution, which allows an analytical expression for the pressure drop for a range of
effective Peclet numbers.

A. Temperature field with Dirichlet boundary conditions applied at the wall

First, we solve Eq. (17) using Dirichlet boundary conditions at the wall, where T = Tw > T0 and choose ∆T =
Tw − T0. In dimensionless variables, the boundary conditions are Θ(R = 1, Z) = 1, Θ(R = 0, Z) = finite and
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FIG. 2. Contour plot of the temperature distribution due to applied boundary condition Θ(R = 1, Z) = 1: (a) Peeff = 1 and
(b) Peeff = 25.

Θ(R,Z = 0) = 0 and we solve Eq. (17) for Θ, which leads to:

Θ(R,Z) = 1−
∞∑

n=1

An exp

[
− λ2

nZ

4Peeff

]
exp

[
−λnR

2

2

]
1F1

[
1

2
− λn

4
, 1, λnR

2

]
, (18a)

Eigenvalue condition: 1F1

[
1

2
− λn

4
, 1, λn

]
= 0, (18b)

An =

1∫
0

R(1−R2) exp
[
−λnR

2

2

]
1F1

[
1
2 − λn

4 , 1, λnR
2
]
dR

1∫
0

R(1−R2)
(
exp

[
−λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
])2

dR

. (18c)

Here 1F1[a, b, c] is the confluent hypergeometric function and λn are the eigenvalues that are found by finding the zeros
of Eq. (18b). The corresponding constants {An} are found using the boundary condition at the inlet and orthogonality
of the eigenfunctions, as shown in Eq. (18c).

Typical results for the temperature distribution, presented as contour plots of Θ(R,Z), for Peeff = 1 and Peeff = 25,
are shown in Fig. 2. When Peeff ≪ 1, we approach the limit where the temperature at the wall has time to conduct
throughout much of the fluid domain relative to the advective timescale, which leaves only a small region at the
inlet with a temperature different from unity. In contrast, when Peeff ≫ 1, the lower temperature fluid at the inlet
is advected effectively throughout the channel. Subsequently, a boundary layer develops near the wall where the
temperature varies from the bulk temperature. In this limit, the bulk fluid has a temperature, Θ = 0 as shown in Fig
2(b). As expected, the thickness of this boundary layer decreases as Peeff increases.

B. Temperature field with a constant flux condition applied at the wall

Next, we apply a constant heat flux q0 as the boundary condition at the wall to solve Eq. (17). In dimensionless
terms, the boundary conditions become ∂Θ/∂R(R = 1, Z) = 1, Θ(R = 0) = finite, and Θ(Z = 0) = 0. In this
case, ∆T = q0r0/k, where k is the thermal conductivity. Solving Eq. (17) using similar techniques as in the previous
subsection, we obtain:

Θ(R,Z) =
∞∑

n=1

Bn exp

[
− λ2

nZ

4Peeff

]
exp

[
−λnR

2

2

]
1F1

[
1

2
− λn

4
, 1, λnR

2

]
+

Z

Peeff
+

(
R2 − R4

4

)
, (19a)
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FIG. 3. Contour plot of the temperature distribution due to applied boundary condition ∂Θ
∂R

(R = 1, Z) = 1: (a) Peeff = 1 and
(b) Peeff = 25.

Eigenvalue condition: 2

(
1

2
− λn

4

)
1F1

[
3

2
− λn

4
, 2, λn

]
− 1F1

[
1

2
− λn

4
, 1, λn

]
= 0, (19b)

Bn =

1∫
0

(
1
4R

4 −R2
)
R(1−R2) exp

[
−λnR

2

2

]
1F1

[
1
2 − λn

4 , 1, λnR
2
]
dR

1∫
0

R(1−R2)
(
exp

[
−λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
])2

dR

, (19c)

where the eigenvalues were found by calculating the zeros of Eq. (19b) and the corresponding constants {Bn} are
found by using the boundary condition at the inlet by applying the orthogonality of the eigenfunctions, as shown in
Eq. (19c).

Typical results for Θ(R,Z) are shown in Fig. 3 in the form of a contour plot for Peeff = 1 and Peeff = 25. Unlike
the constant temperature boundary condition case, the constant flux boundary condition does not constrain a fixed
temperature at the wall. In this case, Peeff affects both the wall temperature (where the temperature in the fluid
is maximum), and the boundary layer thickness, which both influence the average temperature in the flow. When
Peeff ≫ 1, the maximum temperature in the fluid domain is approximately zero, whereas when Peeff ≪ 1, a constant
wall heat flux increases the average temperature in the flow field (and along the wall), as shown by the second term
in Eq. (19a). For example in Fig. 3, the maximum temperature for Peeff = 25 is less than Peeff = 1, in addition to
the aforementioned boundary layer thickness-effective Peclet number relationship. This unique coupling suggests a
stronger correlation between the pressure drop correction term and Peeff in the low and high-Peeff limit compared to
other applied boundary conditions (see Fig. 7(a)).

C. Temperature field with linear boundary condition applied at the wall

We study yet another configuration by imposing a linear temperature variation at the wall: T (r = r0, z) = Bz+T0.
We rescale Θ such that ∆T = Bℓ where ℓ is the length of the tube and B is the slope of the linear profile. The rescaled
boundary conditions are Θ(R = 1, Z) = Z, Θ(0, Z) = finite and Θ(R,Z = 0) = 0. Using these boundary conditions,
the solution of Eq. (17) for Θ(R,Z) is

Θ(R,Z) =
∞∑

n=1

Cn exp

[
− λ2

nZ

4Peeff

]
exp

[
−λnR

2

2

]
1F1

[
1

2
− λn

4
, 1, λnR

2

]
+ Z +

Peeff
4

(R4 − 4R2 + 3), (20a)

Cn =

(
Peeff
4

) 1∫
0

(
4R2 −R4 − 3

)
R(1−R2) exp

[
−λnR

2

2

]
1F1

[
1
2 − λn

4 , 1, λnR
2
]
dR

1∫
0

R(1−R2)
(
exp

[
−λnR2

2

]
1F1

[
1
2 − λn

4 , 1, λnR2
])2

dR

. (20b)
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FIG. 4. Contour plot of the temperature distribution due to applied boundary condition Θ(R = 1) = Z: (a) Peeff = 1 and (b)
Peeff = 25.

𝜃! = 𝑓(𝑧)

Z

R

𝐻𝑖𝑔ℎ	𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦	𝑓𝑙𝑢𝑖𝑑	

𝐿𝑜𝑤	𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦	𝑓𝑙𝑢𝑖𝑑	

𝑈 𝑌 ~

𝑈
𝜃! = 0

𝑌

FIG. 5. In the Peeff ≫ 1 limit, a cooler fluid with higher viscosity is advected across the channel length, leaving a small region
of warmer-lower-viscosity fluid near the wall.

The eigenvalues were found by calculating the zeros of Eq. (18b) shown previously and the corresponding constants
{Cn} are found by using the boundary condition at the inlet by applying the orthogonality of the eigenfunctions, as
shown in Eq. (20b).

In Figs. 4(a,b), we show the contours of the dimensionless temperature distribution Θ(R,Z) for (a) Peeff = 1 and
(b) Peeff = 25. When conduction is dominant, Peeff ≪ 1, there is approximately a linear increase in temperature as a
function of axial direction for all R, mimicking the wall temperature. Therefore, the average temperature in the fluid
domain will always be less than the applied Dirichlet-boundary-condition case for a given Peeff . When Peeff ≫ 1, the
temperature in the boundary layer monotonically increases with Z in accordance to the wall temperature; while its
thickness decreases with Peeff , as shown previously. Such a decreasing boundary-layer thickness with increasing Peeff
is consistent among the three boundary conditions we considered, motivating us to investigate an approximation to
Eq. (17) in the limit where the effective Peclet number is sufficiently high.

D. Lévêque approximations in the high-effective-Peclet-number limit

For Peeff ≫ 1, we identify a narrow boundary-layer region of thickness Y , where the temperature is non-zero and
the fluid has a lower viscosity, as shown in Fig 5. Outside this narrow region, the fluid has a temperature Θ = 0 and
a higher viscosity. By letting R = 1 − Y where Y ≪ 1, the velocity within the boundary layer can be expressed as
Uz,0 = 4Y (2 + Y ) ≈ 8Y , so that the velocity profile is approximately linear. Applying the latter result to Eq. (17),
we obtain the well-known Lévêque equation [32]

8PeeffY
∂Θ

∂Z
=

∂2Θ

∂Y 2
, (21)
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which has a known similarity solution for Dirichlet boundary conditions. Here we apply the boundary condition:

Θ(R = 1) = Zα. Next, we seek a solution of the form: Θ(η) = Zαf(η), where η = 2Pe
1
3

effY/Z
1
3 . Substituting this

ansatz into Eq. (21) yields the ordinary differential equation (ODE):

3f ′′(η) + η2f ′(η)− 3αηf(η) = 0. (22)

Equation (22) has a solution for different values of α as long as α ≥ 0 subject to the conditions f(η → ∞) = 0 and
f(η = 0) = 1. For example, when α = 0 we find the following solution for f(η):

f(η) =
Γ[ 13 ,

η3

9 ]

Γ[ 13 ]
=

1

Γ[ 13 ]

∞∫
η3/9

t−
2
3 exp (−t)dt, (23)

where Γ[.] is the Gamma function and Γ[., .] is the incomplete Gamma function.

We also extend this approach by applying the constant flux condition, for which we substitute Θ(η) = 1
2Pe

− 1
3

eff Z
1
3 f(η)

into Eq. (21), leading to the ODE:

3f ′′(η) + η2f ′(η)− ηf(η) = 0, (24)

subject to f ′(η = 0) = −1 and f(η → ∞) = 0. The corresponding solution in this case is

f(η) =
ηΓ[− 1

3 ,
η3

9 ]

3Γ[ 23 ]
=

η

3Γ[ 23 ]

∞∫
η3/9

t−
4
3 exp (−t)dt. (25)

From Eq. (25), we find the asymptotic expression for wall temperature distribution for Peeff ≫ 1:

lim
η→0

[Θ(η)] =
3

2
3Pe

− 1
3

eff Z
1
3

2Γ[ 23 ]
. (26)

Having the solutions for Θ with the respective boundary conditions, we substitute them into Eq. (15) and calculate
the first-order correction to the pressure drop. In the next section, we compare the first-order correction to the
pressure drop obtained from the Lévêque approach to the predictions for ∆P1 based on the numerical results for the
temperature distribution found in the previous section.

VI. FIRST-ORDER PRESSURE DROP CORRECTION FOR DIFFERENT BOUNDARY CONDITIONS

Temperature and viscosity in our problem are both scaled with reference to the entrance temperature T0 and
viscosity µ0. We consider that the entrance temperature at Z = 0, T0, is lower than the temperature at the wall, Tw.
Consequently, the average viscosity of the fluid is highest at the inlet and decreases as the fluid flows through the
pipe. Therefore, we expect that any applied heating will cause a decrease in fluid viscosity resulting in a reduction in
the overall pressure drop. Recall that the total pressure drop ∆P = ∆P0(1+ β∆P1....) where β is a positive constant
less than 1. We observe that ∆P1, shown in Fig. 6, is negative, thus confirming a decrease in total pressure drop
regardless of the nature of the applied heating investigated in this work. At small values of effective Peclet number,
radial conduction dominates, leading to higher average temperatures, which correspond to lower average viscosities.
In this regime, we observe the most significant decrease in the pressure drop. For Peeff ≪ 1, we have Θ ≈ 1 and
Θ ≈ Z in the case of constant and linear applied boundary conditions, respectively. Therefore, in this limit, from
Eq. (15), we expect the solution for ∆P1 to approach −1 and −1/2 asymptotes, as the Graetz solution curves show
in Fig. 6(a). Increasing the effective Peclet number corresponds to decreasing the thickness of a thermal boundary
layer as cooler fluid rapidly advects through the channel. As a result, the average fluid temperature is lower and the
average fluid viscosity is higher as compared to the small effective Peclet number limit. This provides insight into
why we observe that the reduction in the total pressure drop is less at higher Peeff .
The applied linear boundary condition produces a lower average temperature field than that of the corresponding

Dirichlet boundary condition at the wall for a given Peeff . Thus, in Fig. 6(a), we observe a smaller reduction in
pressure drop for the linear boundary condition as compared to the constant temperature boundary condition for the
entire range of Peeff . Also, from Fig. 6(a), we can ascertain that the Lévêque approximation converges well with the
Graetz solution curves at high values of Peeff , as expected. In particular, for Peeff ≥ 25, the error is less than 7%,
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FIG. 6. (a) Normalized first-order pressure drop correction versus effective Peclet number curves for constant and linear applied
boundary conditions. Dotted curves represent the results obtained from the Graetz solution to the temperature field whereas
circles represent the results obtained from the Lévêque approximation. Gray dashed lines represent the low-Peeff asymptotes.
(b) Normalized first-order pressure drop correction versus effective Peclet number curves for different powers α of Zα obtained

from the Lévêque approximation. The black dashed line represents the high-Peeff scaling Pe
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FIG. 7. (a) Normalized first-order pressure drop versus effective Peclet number curves for constant flux boundary condition at
the wall. The solid curve represents the results obtained from the Graetz solution to the temperature field, the circles represent

the Lévêque approximation and the black dashed line represents the high-Peeff scaling Pe
− 2

3
eff . (b) Wall temperature distribution

for different effective Peclet numbers: Peeff = 1, 10, 100. Solid curves represent the results obtained from the Graetz solution
to the wall temperature whereas circles represent the Lévêque solution to the wall temperature from Eq. (26).

which provides further validation to this simplified method. In Fig. 6(b), we present our results of the normalized
first-order pressure drop correction as a function of effective Peclet number for different powers α of Zα using the
Lévêque approach for constant, linear, quadratic, and cubic applied boundary conditions at the wall. Consistent with
our previous results, we observe that as α increases, the average temperature in the flow field decreases, leading to
a reduction in the normalized first-order pressure drop correction for a given Peeff . Furthermore, it is evident from
Fig. 6 that in the Peeff ≫ 1 limit, for all prescribed wall temperature conditions, the normalized first-order pressure

drop correction scales as ∆P1 = O
(
Pe

− 1
3

eff

)
. Since Eq. (15) implies ∆P1 = O(ΘY ), and Θ = O(1) at most near

the wall which gives, ∆P1 = O(Y ) = O
(
Pe

− 1
3

eff

)
. This result is consistent with the aforementioned idea that the

boundary layer thickness, Y , sets the average temperature in the fluid, which is directly related to the reduction in
the pressure drop for the boundary conditions considered in Fig. 6.
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Moreover, for a constant flux boundary condition at the wall, the average temperature distribution strongly depends
on the value of the effective Peclet number since the wall temperature is not prescribed but determined from the balance
between axial advection and radial conduction, as explained in Sec. VB. In Fig. 7(b) we show the wall temperature
(where the temperature in the fluid is maximum), as a function of wall position for different effective Peclet numbers.
We see that lower effective Peclet numbers yield higher wall temperatures and as Peeff is increased, the Graetz solution
for the wall temperature matches the Lévêque curve, Eq. (26), more closely, as shown in Fig. 7(b). Accordingly, in
Fig. 7(a), we observe that ∆P1 has a stronger dependence on the effective Peclet number at lower values compared
to the previously discussed cases of constant and linear applied boundary conditions. In the high-Peeff limit, it is

evident from Fig. 7(a) that the normalized first-order pressure drop correction scales as ∆P1 = O
(
Pe

− 2
3

eff

)
. From

Eq. (26), we can ascertain that Θ = O(Y ), while from Eq. (15) it follows that ∆P1 = O(ΘY ). Thus, we obtain that

∆P1 = O(Y 2) = O
(
Pe

− 2
3

eff

)
for Peeff ≫ 1.

VII. CONCLUDING REMARKS

In this work, we provided a general method that relies on the Lorentz reciprocal theorem to calculate the leading-
order correction to the pressure drop for an axisymmetric channel flow with viscosity gradients produced by heating
along the boundary. Assuming the fractional change in viscosity with temperature is small, we linearized the viscosity
field and bypassed the complexity of solving the coupled interaction between velocity and temperature fields. Specif-
ically, we found the temperature distribution and used it to find the leading-order correction to the pressure drop.
The presented results provide insight into how the nature of the applied boundary condition affects the temperature-
induced viscosity dependence on the pressure drop since, in many applications, the temperature at a channel wall
may be non-uniform.

Our theoretical approach is not limited to the case of axisymmetric configurations and can be applied to rectangular
geometries as well. As a future direction, it would be interesting to combine the present approach with the work of
Boyko and Stone [25] to calculate the pressure drop dependence on effective Peclet number in heated, narrow channels
of arbitrary shape. Finally, while we considered Newtonian fluids, it would be interesting to extend this work to
complex fluids, such as polymer solutions and melts, where the interplay between viscous heating and non-Newtonian
rheology may bring forth new insights.
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