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A BP Method for Track-Before-Detect
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Abstract—Tracking an unknown number of low-observable ob-
jects is notoriously challenging. This letter proposes a sequen-
tial Bayesian estimation method based on the track-before-detect
(TBD) approach. In TBD, raw sensor measurements are directly
used by the tracking algorithm without any preprocessing. Our
proposed method is based on a new statistical model that introduces
a new object hypothesis for each data cell of the raw sensor mea-
surements. It allows objects to interact and contribute to more than
one data cell. Based on the factor graph representing our statistical
model, we derive the message passing equations of the proposed
belief propagation (BP) method for TBD. Approximations are
applied to certain BP messages to reduce computational complexity
and improve scalability. In a simulation experiment, our proposed
BP-based TBD method outperforms two other state-of-the-art TBD
methods.

Index Terms—Belief propagation, factor graph, multi-object
tracking, track-before-detect.

I. INTRODUCTION

MULTI-OBJECT tracking (MOT) [1], [2], [3], [4], [5],
[6] aims at estimating the number and states of a time-

varying number of objects from noisy sensor measurements.
Possible applications of MOT include applied ocean science [7],
indoor localization [8], and autonomous driving [9]. In the
conventional detect-then-track approach, a detection stage pre-
processes the raw sensor data in order to reduce data flow and
computational complexity. The resulting “point measurements”
are then the input to the tracking stage. However, this prepro-
cessing leads to a loss of relevant information and thus to a
reduced tracking performance, especially in low signal-to-noise
ratio (SNR) scenarios.

In Track-before-detect (TBD) methods, raw sensor data is
passed directly to the tracking stage without any preprocessing.
State-of-the-art TBD methods may be distinguished between
batch processing approaches and sequential Bayesian estima-
tion methods. Batch processing approaches include methods
based on maximum likelihood estimation [10], the Hough trans-
form [11], and dynamic programming [12]. On the other hand,
sequential Bayesian estimation methods perform estimation of
object states represented either by random vectors [13], [14],
[15], [16], [17] or random finite sets (RFS) [18], [19], [20],
[21], [22], [23], [24]. While vector-based approaches often rely
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on particle filtering methods [13], [14], [15], [16], set-based
methods are mostly based on the Bernoulli filter for single
object tracking [18], [19] or its generalizations for multi-object
tracking [20], [21], [22], [23], [24]. Recently introduced TBD
methods that are suitable for tracking an unknown number of
objects (i) assume non-interacting objects, i.e., regions of mea-
surements influenced by different objects do not overlap [20];
(ii) rely on heuristics to introduce newborn objects [22], [23],
[24]; or (iii) assume that every object can contribute to at most
one measurement [21].

Belief propagation (BP) [25], [26], [27], [28], also known as
the sum-product algorithm, is a versatile and efficient method
for performing inference in Bayesian estimation problems. More
precisely, BP has already been used very successfully in detect-
then-track MOT problems [4], [5]. Here, the statistical model
underlying the MOT problem is represented by a so-called factor
graph. By computing local messages and sending them along the
edges through the graph, the structure of the MOT model can
be exploited in order to reduce computational complexity and
increase scalability [4], [5].

In this letter, we propose a BP method for TBD. More pre-
cisely, we propose a new statistical model for the TBD problem,
develop the corresponding factor graph, and perform inference
by applying BP on that graph. Our statistical model includes
a new measurement model, in which interacting objects can
contribute to more than one data cell. In fact, this new measure-
ment model can be considered a generalization of other models
used in existing TBD methods. Furthermore, a new object hy-
pothesis, referred to as potential object (PO), is introduced for
every cell measurement. To reduce computational complexity,
certain BP messages are approximated by Gaussian probability
density functions (PDFs) using moment matching. This ap-
proximation is similar to the one performed within the RFS-
based TBD method with heuristic track initialization in [23].
The main contributions of this letter can be summarized as
follows:! We propose a new statistical model for TBD MOT consist-

ing of a new measurement model for interacting objects
and a new model for object birth.! We derive a scalable BP inference method and demonstrate
its improved performance compared to two other state-of-
the-art TBD algorithms.

To the best of the author’s knowledge, the presented approach
is the first TBD method based on BP.

II. SYSTEM MODEL

We model the multi-object state at discrete time k by Nk

POs [4], [5], where the existence of each PO n ∈ {1, . . . , Nk}
is described by the binary random variable rk,n ∈ {0, 1}. Here,
rk,n = 1 indicates that PO n exists. The kinematic state of PO
n is modeled by the random vector xk,n whose entries describe
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the object’s position, the object’s intensity, and possibly further
kinematic properties of the object. We define the state of PO n
by yk,n = [xT

k,n rk,n]T and the joint state of all POs by yk =

[yT
k,1 · · ·yT

k,Nk
]T.

A. Superpositional Measurement Model

Our measurement model consists of J data cells, where
each cell j can be associated with a time-varying intensity
measurement zk,j . We stack all measurements zk,j into the
joint measurement vector zk = [zTk,1 · · · zTk,J ]T. Note that the
positional information of zk,j is encoded by its index j. We now
model zk,j , according to

zk,j =
Nk∑

n=1

rk,n hj,k,n + εk,j . (1)

Here, hj,k,n ∈Rd is the contribution of PO n to measurement
zk,j if PO n exists, i.e., if rk,n = 1. We model hj,k,n by the
Gaussian PDFf(hj,k,n |xk,n)=N (hj,k,n;µj(xk,n),Cj(xk,n))
whose mean µj(xk,n) and covariance matrix Cj(xk,n) define
a point spread function [19], [20], [21], [22]. We assume
that hj,k,n is statistically independent for all k, j, and n, and
also independent of εk,j . Note that for rk,n = 0, PO n does
not exist and hence does not contribute to any measurement.
Furthermore, the additive noise component εk,j is modeled
as Gaussian with zero mean and covariance Cε. It is further
assumed statistically independent across all k and j.

From measurement (1), we can directly infer the conditional
PDFs f(zk,j |yk) by using the fact that the sum of statistically
independent Gaussian variables, i.e., in our case all the hj,k,n

and εk,j , is again a Gaussian variable. Furthermore, since hj,k,n

and εk,j are also conditionally independent for all j given yk,
all the measurements zk,j are in turn conditionally independent
given yk. This leads to the joint likelihood function given
by f(zk|yk) =

∏J
j=1 f(zk,j |yk). Note that for some types of

objects, e.g., objects with plane surfaces, the assumption of inde-
pendent measurements zk,j does not hold because the intensity
values of neighboring data cells are usually correlated. However,
most TBD algorithms rely on this independence assumption,
which is required for efficient estimation [19], [20], [21], [22],
[23].

Note that our superpositional model in (1) generalizes many
TBD measurement models in the literature. In particular, by
setting Cj(xk,n) = 0, our model reduces to the model used
in [20], [23], by setting d = 2,µj(xk,n) = 0, andCε = σ2

εId, it
is equivalent to the Rayleigh model in [21], and by additionally
assuming that σ2

ε is Gamma distributed, it is equal to the model
in [19], [22].

B. State-Transition and Birth Model

It is assumed that the legacy PO states yk−1,n, n ∈
{1, . . . , Nk−1} evolve independently in time [1]. Thus, the
joint state transition function can be factored according to [5,
Sec. VIII-C] f(yk|yk−1) =

∏Nk−1
n=1 f(yk,n|yk−1,n), where we

have introduced yk = [yT
k,1 · · ·yT

k,Nk−1
]T.

To account for newly appearing objects, we introduce, at each
time k, J new POs with states yk,n, n∈ {Nk−1 + 1, . . . , Nk},
one new PO for each data cell j. Thus, Nk = Nk−1+ J . We
define yk = [yT

k,Nk−1+1 · · ·yT
k,Nk

]T and assume that new PO

states are independent, i.e., f(yk) =
∏Nk

n=Nk−1+1 f(yk,n). We
furthermore assume that the statistics of yk,n is based on a
Poisson point process with mean µB and spatial PDF fB(xk,n)
[6]. More precisely, we define fB,j(xk,n) being the birth PDF
of new PO n in data cell j as equal to, up to a normalization
constant, fB(xk,n) ifxk,n is in cell j and zero otherwise. In order
to define the birth probability, we first note that the expected
number of new objects in cell j is µB,j = µB

∫
Xj

fB(xk,n)dxk,n

with Xj being the volume of cell j. By assuming that there is at
most one new object in cell j, we obtain pB,j = µB,j/(µB,j + 1).
Finally, our model for f(yk,n) reads

f(yk,n) = f(xk,n, rk,n) =

{
(1− pB,j)fD(xk,n), rk,n = 0
pB,j fB,j(xk,n), rk,n = 1

where fD(xk,n) is an arbitrary “dummy” PDF.

C. Object Declaration and State Estimation

For each time step k, our ultimate goal is (i) to declare
whether PO n∈ {1, . . . , Nk} exists and (ii) to estimate the
state of existing POs. In our Bayesian setting, this necessitates
the computation of the posterior distributions f(rk,n = 1|z1:k)
and f(xk,n|rk,n = 1, z1:k). In fact, PO n is declared to exist
if its existence probability f(rk,n = 1|z1:k) is larger than a
chosen threshold Tdec [29, Ch. 2]. For existing POs, we per-
form minimum mean-square error (MMSE) state estimation
according to x̂k,n =

∫
xk,nf(xk,n|rk,n = 1, z1:k)dxk,n. Both

f(rk,n = 1|z1:k) and f(xk,n|rk,n = 1, z1:k) can be obtained
from the marginal posterior state PDFs f(yk,n|z1:k). Thus, the
remaining problem is to find an efficient method for calculating
f(yk,n|z1:k).

III. BELIEF PROPAGATION FOR TBD

Based on the system model introduced in Section II, com-
mon assumptions [5], and Bayes’ rule, the joint posterior PDF
f(y0:k|z1:k) can be factorized as

f(y0:k|z1:k) ∝
(

N0∏

n=1

f(y0,n)

)
k∏

k′=1




Nk′−1∏

n=1

f(yk′ n|yk′−1,n)





×




Nk′∏

n′=Nk′−1+1

f(yk′,n′)




J∏

j=1

f (zk′,j |yk′) .

(2)

Given factorization (2), a factor graph [25], [28] representing
the joint posterior PDF f(y0:k|z1:k) can be constructed. Fig. 1
shows a single time step of this graph.

BP [25], [26], [27], [28] performs local operations on factor
graphs to compute representations of marginal posterior PDFs,
called “beliefs”. Since the factor graph in Fig. 1 has loops, the
beliefs f̃(yk,n) provided by BP are approximations of the true
marginal posteriors f(yk,n|z1:k), and there are many possible
message passing orders [25]. We only send BP messages forward
in time and perform iterative message passing at each time step
individually [5]. Next, we will present the specific BP messages
passed on the graph in Fig. 1.
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Fig. 1. Factor graph representing a single time step k of the joint posterior
PDF in (2). We use the following short notation: N =Nk−1, N =Nk , yn =
yk,n, pj = f(zk,j |yk), fn = f(yk,n|yk−1,n) for n∈ {1, . . . ,Nk−1},
and fn = f(yk,n) for n∈ {Nk−1+1, . . . ,Nk}. Furthermore, αn =

αk,n(yk,n), βn,j = β
(!)
k,n,j(yk,n), and κn,j = κ

(!)
k,n,j(yk,n; zk,j).

A. Prediction and Birth Messages

First, for each legacy PO n ∈ {1, . . . , Nk−1}, a prediction
step is performed to compute the messages αk,n(yk,n) =
αn(xk,n, rk,n) that are passed from the factor nodes
“f(yk,n|yk−1,n)” to the variable nodes “yk,n”, i.e.,

αk,n(xk,n, 1) =

∫
psf(xk,n|xk−1,n)f̃(xk−1,n, 1)dxk−1,n

(3)
where ps is the survival probability and αk,n(xk,n, 0) =
αk,nfD(xk,n). Here, αk,n is the predicted probability of object
non-existence [5]. For new POs n∈ {Nk−1+1, . . . , Nk}, the
messages from factor nodes “f(yk,n)” to variable nodes “yk,n”
are simply [25] αk,n(yk,n) = f(yk,n). In order to ease the
notation, we omit the time index k in the following and, e.g.,
simply write yn instead of yk,n.

B. Iterative Message Passing and Belief Calculation

We now perform iterative message passing between the
variable nodes “yn”, n∈ {1, . . . , N}, and the factor nodes
“f(zj |y)”, j ∈ {1, . . . , J}. More precisely, at message passing
iteration #∈ {1, . . . , L}, the messages β(!)

n,j(yn) are passed from
the variable nodes “yn” to the factor nodes “f(zj |y)”. For # > 1,
these messages can be computed according to

β(!)
n,j(yn) =

1

Cn,j
αn(yn)

J∏

j′=1
j′ &=j

κ(!−1)
n,j′ (yn; zj′) , (4)

and for #= 1, we set them to β(1)
n,j(yn) = αn(yn). The normal-

ization factor Cn,j ensures that
∑

yn
β(!)
n,j(yn) = 1. Note that∑

yn
denotes integration for continuous random vector xn and

summation for binary random variable rn.
The messages κ(!)

n,j(yn; zj) passed from the factor nodes
“f(zj |y)” to the variable nodes “yn” are obtained for # ∈

{1, . . . , L} as

κ(!)
n,j(yn; zj) =

∑

y\yn

f(zj |y)
N∏

n′=1
n′ &=n

β(!)
n′,j(yn′). (5)

Here,
∑

y\yn
denotes marginalization for all y except yn. Note

that our notation κ(!)
n,j(yn; zj) indicates that at this point the

measurement zj is already observed and thus fixed.
After the last iteration # = L, the beliefs f̃(yn) for all POs

can be calculated as the normalized product of all incoming
messages according to

f̃(yn) =
1

Cn
αn(yn)

J∏

j=1

κ(L)
n,j (yn; zj). (6)

Here, Cn again ensures
∑

yn
f̃(yn) = 1. The obtained beliefs

can then be used for object declaration and state estimation as
discussed in Section II-C.

C. Approximate Computation of κ(!)
n,j(yn; zj) and Complexity

The computation of κ(!)
n,j(yn; zj) in (5), relies on a

high-dimensional marginalization whose complexity scales
exponentially with the number of POs N . To improve
this complexity scaling, we approximate κ(!)

n,j(yn; zj)

as follows. We interpret κ(!)
n,j(yn; zj) as the PDF of

zj and approximate it by a Gaussian PDF via moment
matching [23], i.e., κ(!)

n,j(yn; zj) ≈ κ̃(!)
n,j(yn; zj), where

κ̃(!)
n,j(yn; zj) = N

(
zj ;µ

(!)
κ,j(yn),C

(!)
κ,j(yn)

)
. Here, µ(!)

κ,j(yn)

and C(!)
κ,j(yn) are the matched mean and covariance matrix that

are equal to the mean and covariance matrix of κ(!)
n,j(yn; zj).

As derived in [30], µ(!)
κ,j(yn) and C(!)

κ,j(yn) are given by

µ(!)
κ,j(yn) = rnµj(xn) +

N∑

n′=1
n′ &=n

µ(!)
n′,j (7)

C(!)
κ,j(yn) = rnCj(xn) +Cε

+
N∑

n′=1
n′ &=n

(
R(!)

n′,j − µ(!)
n′,jµ

(!)T
n′,j

)
(8)

where we have introduced µ(!)
n,j !

∫
µj(xn)β

(!)
n,j(xn, 1)dxn

and R(!)
n,j !

∫ (
Cj(xn) + µj(xn)µT

j (xn)
)
β(!)
n,j(xn, 1)dxn.

In summary, our BP-based TBD algorithm consists of execut-
ing the following steps for each time step: First, we perform state
prediction according to (3) for n∈ {1, . . . , N}. We then run the
iterative message passing scheme by iteratively computing (4)
and (7)–(8) for #∈ {1, . . . , L}. Finally, after computing the PO
beliefs according to (6), object declaration and state estimation
are performed as described in Section II-C. An inspection of all
these computations shows that the operations with the highest
complexity are the summations in (7) and (8), whose complexity
scales according to O(NJ). We can therefore conclude that
the computational complexity of the proposed algorithm also
exhibits this scaling behavior.
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IV. NUMERICAL RESULTS

We consider a two-dimensional (2D) simulation scenario
with a region of interest (ROI) of [0 m, 32 m]× [0 m, 32 m].
We simulated five objects and 50 time steps. The object states
are modeled by random vectors xk,n = [pT

k,n vT
k,n γk,n]T con-

sisting of 2D position pk,n, 2D velocity vk,n, and the ob-
ject’s intensity γk,n. The objects appear at time steps k ∈
{1, 5, 10, 15, 20} at positions randomly chosen in the region
[8 m, 24 m]× [8 m, 24 m]. The object’s initial velocity is drawn
from N (v·,n;0, 10−2I2) and the object’s initial intensity is
γ0. The object’s position pk,n and velocity vk,n evolve ac-
cording to a constant velocity model [31, Ch. 4] with inde-
pendent and identically distributed (IID) zero-mean Gaussian
noise with variance 10−3 [31, Ch. 4]. The object’s intensity γk,n
evolves according to a random walk model with IID zero-mean
Gaussian noise with variance 10−4. The objects disappear at
k ∈ {31, 36, 41, 46,+∞} or when they leave the ROI.

The measurement zk is an image of 32× 32 pixels or bins,
i.e., J = 1024. Each bin has a square size with 1 m length, cov-
ering the total ROI. Pixel j ∈ {1, . . . , J} is represented by the
2D vector zk,j with center position pz

j . We use the measurement
model defined by (1) and set the mean and the covariance of the
Gaussian random vector hj,k,n to µj(xk,n) = 0 and

Cj(xk,n) =
γk,n
2πσ2

S

exp

(
−
‖pk,n − pz

j‖2

2σ2
S

)
I2, (9)

respectively. Note that the variance σ2
S defines the shape of

f(hj,k,n|xk,n) and thus the number of pixels illuminated by
object n. Furthermore, the covariance of the noise vector εk,j
in (1) is set to Cε = σ2

εI2 with σ2
ε = 1. These settings lead to a

measurement process in which the contribution of object n on
pixel j is large if the intensity γk,n of object n is large and the
position pk,n of object n is close to pixel j.

We employ a particle implementation of our proposed BP-
based TBD algorithm denoted by TBD-BP [4], [32]. The spatial
PDF of each PO state’s belief is represented by 300 particles.
The generation of new POs is based on the measurement zk, in
particular on ‖zk,j‖. To keep the computational complexity low,
we initialize a new POn ∈ Nn ⊆ {Nk−1 + 1, . . . , Nk} only for
those pixels whose intensity ‖zk,j‖ is larger than the predefined
threshold 1.5

√
γ0/(2πσ2

S) + σ2
ε . The spatial PDF of new PO

n ∈ Nn is modeled by fB,j(xk,n) = fj(pk,n)f(vk,n)f(γk,n).
Here, fj(pk,n) is uniform over the area of pixel j, f(vk,n) is
N (vk,n;0, 10−2 I2), and f(γk,n) is uniform from 0 to γmax =
2γ0. The birth probability of each new PO is set to pB,j = 10−5.
An object is declared to exist if its existence probability is larger
than Tdec = 0.5. We prune POs whose existence probability is
below Tpru = 10−3 [5]. The survival probability is set to ps =
0.999.

To evaluate the performance of our proposed algorithm,
we compute the Euclidean distance based generalized optimal
sub-pattern assignment (GOSPA) metric [33] averaged over
400 simulation runs, with cutoff parameter c = 1, order p = 2,
and α= 2. In our first experiment, we compare the proposed
TBD-BP with a particle implementation of the multi-Bernoulli
(MB) filter in [20], referred to as TBD-MB, and the information
exchange multi-Bernoulli (IEMB) filter in [23]. The TBD-IEMB
models spatial distributions by Gaussian PDFs. The GOSPA
results are displayed in Fig. 2. As the figure shows, TBD-BP with
L = 2 message passing iterations performs slightly better than

Fig. 2. GOSPA error of TBD-MB, TBD-IEMB and the proposed TBD-BP
versus time k for γ0 = 60, (a) σ2

S = 0.5 and (b) σ2
S = 1.

Fig. 3. GOSPA error of the proposed TBD-BP (L = 2) with (a) γ0 = 60 and
different σ2

S ; (b) σ2
S = 0.5 and different γ0.

TBD-BP withL = 1, followed by TBD-IEMB, and significantly
better than TBD-MB. The lower performance of TBD-MB is due
to the fact that it does not model the interaction of objects and
tracks them independently. Furthermore, the track initialization
scheme of TBD-MB leads to a high number of false tracks
resulting in an almost linear increase in GOSPA for k < 30.

In the second experiment, we investigated the GOSPA perfor-
mance of TBD-BP for different intensity values γ0 and variances
σ2
S . As Fig. 3(a) shows, the GOSPA error increases for larger σ2

S .
This is due to the fact that for larger σ2

S , an object illuminates
a larger number of neighboring pixels, which in turn leads to
more false tracks caused by the now larger number of pixels of
higher intensity. Fig. 3(b) additionally shows that the GOSPA
error decreases as γ0 increases.

V. CONCLUSION

In this letter, we propose a BP method for tracking an unknown
number of low-observable objects based on the TBD approach.
We introduced a new object birth model and a new measurement
model that allows interacting objects to contribute to more than
one data cell. To reduce computational complexity and improve
scalability, certain BP messages are approximated by Gaussian
distributions. Experiments conducted on image data show that
the proposed TBD-BP method outperforms two state-of-the-art
TBD-MB filtering methods [20], [23]. However, the proposed
method is limited to measurements that are independent condi-
tioned on the object states. An interesting possibility for future
research is the design of a more general measurement model and
an application to real data. Other promising directions for future
research are the development of TBD approaches for extended
object tracking [9] or based on particle flow [34], [35], [36],
[37] and an extension to hybrid model-based and data-driven
TBD [38].
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