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ABSTRACT:
Passive acoustic monitoring is widely used for detection and localization of marine mammals. Typically, pressure
sensors are used, although several studies utilized acoustic vector sensors (AVSs), that measure acoustic pressure
and particle velocity and can estimate azimuths to acoustic sources. The AVSs can localize sources using a reduced
number of sensors and do not require precise time synchronization between sensors. However, when multiple
animals are calling concurrently, automated tracking of individual sources still poses a challenge, and manual
methods are typically employed to link together sequences of measurements from a given source. This paper extends
the method previously reported by Tenorio-Hall"e, Thode, Lammers, Conrad, and Kim [J. Acoust. Soc. Am. 151(1),
126–137 (2022)] by employing and comparing two fully-automated approaches for azimuthal tracking based on the
AVS data. One approach is based on random finite set statistics and the other on message passing algorithms, but
both approaches utilize the underlying Bayesian statistical framework. The proposed methods are tested on several
days of AVS data obtained off the coast of Maui and results show that both approaches successfully and efficiently
track multiple singing humpback whales. The proposed methods thus made it possible to develop a fully-automated
AVS tracking approach applicable to all species of baleen whales. VC 2023 Acoustical Society of America.
https://doi.org/10.1121/10.0021972
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I. INTRODUCTION

Passive acoustic monitoring (PAM) has become a stan-
dard technology for detecting the presence of marine mam-
mals for both research and mitigation purposes. The
majority of current applications use non-directional single
hydrophones (underwater acoustic pressure sensors) to
detect the presence of marine mammal sounds within a
defined “detection range” of the sensor. There are also, how-
ever, increasing numbers of PAM deployments that attempt
more precise sound localization by combining measure-
ments from multiple spatially-distributed sensors to provide
one-dimensional (1D), two-dimensional (2D), or even three-
dimensional estimates of a call’s location, to aid population
density estimation and behavioral studies.1–4

Most localization methods are based on measurements
of the time difference of arrival (TDOA) of the same sound
between various pairs of hydrophones.5–8 More specifically,
most acoustic tracking of baleen whales in two or three
dimensions measures the relative arrival time of a specific
call on multiple hydrophones spaced anywhere from

hundreds of meters to kilometers apart, typically via cross
correlation methods. If one assumes that waterborne sound
speed is spatially homogeneous, the TDOA between each
sensor pair defines a locus of geometric points that fits a
hyperbola in case of two dimensions or a hyperboloid in
case of three dimensions. The intersection of all resulting
hyperbolas/hyperboloids identifies the position of sound ori-
gin. This approach requires precise time-synchronization
between monitoring hydrophones, which is a common issue
with these widely-spaced arrays.

Over the past two decades, an alternative localization
strategy using directional sensors has been demonstrated on
bowhead,9,10 fin,11 and most recently, humpback whales.12

Directional acoustic sensors, also known as “acoustic vector
sensors” (AVS), can estimate the azimuth of an acoustic sig-
nal by measuring both acoustic pressure and particle veloc-
ity at a single point. They typically have one or more
directional particle velocity channels that are orthogonal to
each other, so that the relative signal amplitudes on the
directional channels can yield an azimuthal estimate. Sets of
azimuthal measurements between at least two AVS can then
triangulate a source position, an advantage compared to
localization with hydrophones where at least three sensorsa)Electronic mail: pgruden@hawaii.edu
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are required. This approach does not require that acoustic
data be precisely time-synchronized between hydrophones
to the degree that TDOA methods do.

Regardless of which localization approach is used,
when relatively few animals are acoustically active, it is
straightforward to match measurements between sensors
that are associated with the same sound and produce a local-
ization estimate directly from a single call. A sequence of
localizations can then be linked together across time to form
a continuous track of an animal’s two or three-dimensional
path (localize-then-track).3 Unfortunately, as the number of
animals calling concurrently increases, this “data
association” problem of assigning distributed measurements
to specific sources becomes much more difficult. Under
these circumstances it can be more convenient to link a tem-
poral sequence of measurements (e.g., TDOAs or azimuthal
estimates) together to form a “measurement trajectory” or
“track,” and then link measurement tracks between sensors
that are identified as belonging to the same source, by identi-
fying similar features between the measurement trajectories
(track-then-localize).6,8,12,13 These features can include the
time-evolution of the measurements or the time-frequency
structure of the signals. The challenge with the track-then-
localize approach is devising an algorithm that correctly
links sequences of measurements together and then matches
the resulting measurement trajectories between sensors.
Additional challenges arise from false alarms due to clutter
(measurements not originating from target signals) and
missed detections (signals from an animal present, but no
measurement collected).

Several track-then-localize methods have been pro-
posed for addressing the data association challenges of
multiple calling animals, where calls are difficult to clas-
sify or associate.6,8,12–14 Reference 12, in particular
describes a compact and straightforward algorithm for gen-
erating azimuthal measurement trajectories from multiple
concurrently-singing humpback whales using AVSs. The
algorithm also demonstrated how azimuthal measurement
tracks, or “azitracks,” between vector sensors could be
associated together correctly over time. An appealing fea-
ture of the vector sensor approach is that most steps, from
pre-processing raw data to final localization, are easily
automated and require relatively few parameters and only
relatively crude time-synchronization between sensors.
However, in Ref. 12, the azitracks of the singing humpback
whales needed to be manually traced before applying the
final automated step that links these tracks across
instruments.

This paper demonstrates and compares two fully-
automated approaches for azimuthal tracking, thus making
possible a fully-automated vector sensor tracking algorithm
based on Ref. 12 that can be applied to all known species of
baleen whales. One approach is a “set-type” approach based
on random finite sets (RFSs) and the probability hypothesis
density (PHD) filter;8 the other graph-based approach is
based on a “vector-type” formulation, specifically on mes-
sage passing or belief propagation (BP) algorithms.15

Section II provides essential background on two track-
ing approaches, and Sec. III discusses the specific dataset,
data pre-processing, parameter selection, and evaluation
metrics used to apply and compare the methods, the results
of which are shown in Sec. IV. Finally, Secs. V and VI pro-
vide discussion and conclusions about the relative perfor-
mance of the tracking approaches, along with other PAM
scenarios where these tracking algorithms are applicable.

II. TRACKING APPROACH

Target tracking approaches are typically model based
and rely on the following key elements: a model that gov-
erns the system dynamics (state-transition model), a model
that relates measurements to target states (measurement
model), models for the noise processes (probabilistic
description of the disturbances on both state-transition and
measurement models), prior information, and track mainte-
nance procedures.16,17

In this work, two tracking approaches for extracting
whale azimuthal trajectories from vector sensor data are
considered. Both approaches use the same underlying
Bayesian statistical modeling framework, which is outlined
in Sec. II A. Briefly, the vector sensor data are processed
into sets of measurements (azimuths), which are due to the
sound emitted by an unknown and time-varying number of
humpback whales and other compact sources (such as
boats), as well as spurious measurements (clutter). Both
approaches then proceed through a series of evenly-spaced
time steps. At each time step a predicted probability density
function (pdf) is formed, based on both prior knowledge
(i.e., posterior pdf from a previous time step) and informa-
tion from the state-transition model (which statistically
describes how whale azimuths develop). Then this pdf is
updated to form the posterior target pdf, based on both the
azimuthal measurements received at that time step and a
measurement model that statistically describes the measure-
ment generating process. This posterior target distribution is
the fundamental quantity that allows computing an estimate
for the number of whales and their location in azimuth. In
addition, the posterior target distribution makes it possible
to extract uncertainty information for estimates. Further
details of the fundamental models underpinning the two
approaches are given in Sec. II A.

An exact computation of the posterior target distribu-
tion is impractical because it would require integrating mul-
tidimensional functions; an enormous computational burden
since the computational complexity would scale exponen-
tially with time. The two tracking approaches in this work
differ in the exact strategy they take in approximating the
posterior target distributions. At each time step, the RFS
approach and the corresponding PHD filter (outlined in Sec.
II B) computes an approximation of the joint posterior multi-
target pdf, while the graph-based approach and the corre-
sponding BP algorithm (outlined in Sec. II C) provide
approximations of the marginal posterior pdfs for the indi-
vidual targets. Additionally, the RFS approach operates on
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sets of unordered target states and measurements, and the
graph-based approach uses ordered target states and
measurements.

A. Fundamental models and assumptions

We formulate the problem based on the following
assumptions. At each time step k, the sensor data has been
pre-processed into a set of points (measurements, zk) by
thresholding.16 Targets (entities to be tracked, in this case,
baleen whales) are represented by target states (xk), vectors
that embed all information about the targets at time k. What
we can observe about the targets that are present is encap-
sulated in the measurements, and each target can produce
only a single measurement at a given time. The relation-
ship between targets and measurements is not one-to-one:
targets might be present, but due to detection uncertainty
no measurement is collected for a variety of reasons, rang-
ing from low signal-to-noise ratio (SNR) to changes in
acoustic behavior. Conversely, measurements might arise
from random fluctuations or other processes unrelated to
any target, defined here as “clutter” or “false alarms.”
Therefore, the multi-target tracker receives a random num-
ber of measurements at each time k due to the combined
effects of detection uncertainty and false alarms.16

Moreover, it is not known which measurement originates
from which target, or whether the received measurement is
a false alarm; a problem known as measurement origin
uncertainty.15,16 Therefore, at each time step, the multi-
target state Xk and the multi-target measurement Zk consist
of a random number of unordered single target states (xk)
and measurements (zk).

Most target tracking approaches are formulated within
the Bayesian filtering framework and consist of prediction
and update steps.16 As such, they require the definition of
four underlying models, which will be discussed in more
detail shortly. Briefly, one of these is a state-transition
model, which models the evolution of azimuthal trajectories
resulting from whales. Another is a measurement model,
which defines the relationship between predicted whale azi-
muthal trajectories and its associated azimuthal measure-
ments. Moreover, a clutter model, which specifies the
generation of false alarms (i.e., azimuthal measurements
that do not originate from whales) is required. Finally, one
is required to know how and how often new azimuthal tra-
jectories are formed, specified with a birth model. Further
details on these models are as follows.

This work defines the target state as consisting of two
variables: azimuth u and azimuth rate _u:

x ¼ u; _u½ #T ; (1)

where ½$#T denotes the transpose. As will be seen shortly, the
azimuth is the only directly observable variable, while the
azimuth rate is a “hidden” variable.

The target states evolve independently and follow a
nearly-constant velocity state-transition model,

xk ¼ Fxk%1 þ nk ¼
1 D
0 1

! "
xk%1 þ nk; (2)

where subscripts k and k – 1 denote the current and previous
time steps, and D denotes the time interval between consec-
utive time steps. For the humpback whale dataset studied
here, D ¼ 60 s. The system noise, nk, is a Gaussian white
noise with a covariance matrix Q, which is typically defined
as17

Q ¼

1

3
D3 1

2
D2

1

2
D2 D

2

6664

3

7775r2
v; (3)

where rv is the standard deviation of the system noise.
Each existing target has survival probability pS, i.e., a

probability of target surviving from one step to another, and
pS is assumed to be independent of the state. For the hump-
back whale dataset studied here, pS is set high (pS ¼ 0:95),
since humpback whales tend to sing for prolonged periods
of time.18

At each time step, new targets can also be generated
based on the measurements, a process defined by the
birth rate parameter !b. Newborn targets become persis-
tent targets in the next time step. Note that new targets
can arise from new animals swimming into the area,
existing ones starting/resuming singing after a prolonged
silence, or a previously-singing whale increasing the
SNR of its song.

Azimuthal measurements are related to the target states
through the following measurement model:

zk ¼ Hxk þ gk ¼ 1 0
# $

xk þ gk; (4)

where gk is the measurement noise assumed to be indepen-
dent Gaussian white noise with a standard deviation rr.
Note, we assume that the azimuthal rate cannot be measured
from the data. Also, note, in the RFS approach the amplitude
of the track measurement is also incorporated (Sec. II B).

Each measurement either originates from a target or
from clutter. A target is detected (and thus generates a mea-
surement) with a probability of detection pD. The number of
clutter measurements at time k is Poisson distributed with
clutter rate rc. It is independent across the sensors and of the
number of targets, as well as target-generated measure-
ments. Clutter azimuths are assumed to be uniformly distrib-
uted across the surveillance region (i.e., between 0' and
360') at each time k,

ck ¼ U 0; 360½ #; (5)

with U½a; b# denoting a uniform distribution between param-
eters a and b.

Section III D explains how the parameters for these
models are determined from a subset of the measurement
data.
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B. RFS-based multi-target tracking: The PHD filter

In this approach, the multi-target states and multi-target
measurements are described as RFS, i.e., sets with a random
number of unordered elements. The sources’ appearance
and disappearance, as well as clutter and missed detections,
are incorporated in the problem formulation and cast into
the Bayesian framework.19 A detailed overview of this
approach can be found in Refs. 16 and 19.

One of the filters within the RFS framework is the PHD
filter, which propagates the first-order moment (also known as
the PHD) of the multi-target posterior distribution at each time
step and is a tractable approximation of the multi-target Bayes
filter.20 Under the linear Gaussian assumptions for the underly-
ing models and noise processes, a closed form solution to the
PHD filter, the Gaussian mixture probability hypothesis density
(GM-PHD),21 can be derived. The PHD function in the GM-
PHD filter is approximated with a mixture of weighted
Gaussian components that are recursively propagated through
time via a two stage prediction and update process. At every
time step, new targets are introduced through the birth model,
target states are estimated from the posterior PHD, and pruning
and merging techniques are employed to reduce computational
cost.21 Improvements to the PHD filter have been proposed
that extend the measurement model to incorporate additional
features for better distinction between targets and clutter while
reducing the bias in the number of estimated targets whenever
new targets are initiated based on measurements.8,22,23

This work employs an extended version of the GM-
PHD filter (GM-PHD-SA) filter developed from Ref. 8,
which uses separate updates for persistent and newborn tar-
gets (S), and measured signal amplitude (A) as an additional
feature in the measurements. Therefore, in addition to the
measured azimuth [Eq. (4)] the associated amplitude from
the thresholded azimuthal histogram display (AHD) is also
noted and incorporated into the models, as detailed in Secs.
III B and III C in Ref. 8.

1. Prediction step

Briefly, in the prediction step of the GM-PHD-SA, the
predicted PHDs for persistent, vkjk%1;pð$Þ, and newborn,
vkjk%1;bð$Þ, targets at time k consist of weighted Gaussian
components, Jk%1 persistent components surviving from the
previous time step, and Nb newborn components. Note, the
subscripts kjk % 1 and kjk denote predicted and updated
quantities. The prediction step is thus8,21,23

vkjk%1;pðxÞ ¼
XJk%1

i¼1

wðiÞkjk%1N x; m
ðiÞ
kjk%1;P

ðiÞ
kjk%1

% &
; (6)

vkjk%1;bðxÞ ¼
XNb

i¼1

wðiÞk;bN x; mðiÞk;b;P
ðiÞ
k;b

% &
; (7)

where N ð$; m;PÞ denotes a Gaussian density with mean m
and covariance P. The weights of the persistent targets,

wðiÞkjk%1, depend on the probability that the target survived

from the previous time step: wðiÞkjk%1 ¼ pSwðiÞk%1 and sum to

the number of the targets present at time k. The means

m
ðiÞ
kjk%1 and covariances P

ðiÞ
kjk%1 of persistent targets are

predicted with a Kalman filter.21,24

The weights of the newborn targets, wðiÞk;b, are propor-
tional to the measured amplitudes and sum to the expected
number of newborn targets (i.e., birth rate), !b. The means

of the newborn targets, mðiÞk;b, are based on the measurements,

and their covariances P
ðiÞ
k;b are proportional to Q in Eq. (3).

See Sec. III B 5 in Ref. 8 for more details on newborn target
generation.

The identity of Gaussian components (and thus target
identity) is maintained by appending a label to each newborn
Gaussian component and propagating it through time.25,26

2. Update step

In the update step for the GM-PHD-SA filter, the persis-
tent and newborn targets are updated separately. The
updated PHDs for persistent, vkjk;pð$Þ, and newborn, vkjk;bð$Þ,
targets also consist of weighted Gaussian components,8

vkjk;pðxÞ ¼ 1% pD½ #vkjk%1;pðxÞ

þ
X

~z2~Zk

XJk%1

j¼1

wðjÞkjkð~zÞN x; m
ðjÞ
kjkð~zÞ;P

ðjÞ
kjk

% &
;

vkjk;bðxÞ ¼
X

~z2~Zk

XNb

i¼1

wðiÞkjk;bð~zÞN x; mðiÞkjk;bð~zÞ;P
ðiÞ
kjk;b

% &
;

(8)

where ½1% pD# represents a probability of a missed detec-
tion, and ~z denotes a measurement with the added amplitude

feature a, in a multi-target measurement set ~Zk. The means

m
ðjÞ
kjk and covariances P

ðjÞ
kjk of the updated mixture for persis-

tent targets are calculated from vkjk%1;pðxÞ with the Kalman

filter update,21,24 and the updated weights wðjÞkjkð~zÞ are calcu-

lated according to Ref. 8,

wðjÞkjkð~zÞ ¼
wðjÞkjk%1gaðaÞgðjÞp ðzjxÞ

Lð~zÞ
; (9)

Lð~zÞ ¼ rcckcaðaÞ þ gaðaÞ
XNb

l¼1

wðlÞk;bgðlÞb ðzjxÞ

þ gaðaÞ
XJk%1

l¼1

wðlÞkjk%1gðlÞp ðzjxÞ; (10)

where gaðaÞ is the target amplitude likelihood function,
caðaÞ is the clutter amplitude likelihood function, and gpð$Þ
and gbð$Þ are the persistent and newborn target likelihood
functions based on azimuthal measurements, respectively.

The means mðiÞkjk;bð~zÞ and covariances PðiÞkjk;b of the new-
born targets are updated from vkjk%1;bðxÞ with the Kalman

2582 J. Acoust. Soc. Am. 154 (4), October 2023 Gruden et al.

https://doi.org/10.1121/10.0021972

 21 M
arch 2024 17:04:22

https://doi.org/10.1121/10.0021972


filter update,24 and the updated newborn weights wðiÞkjk;b are

calculated according to Ref. 8,

wðiÞkjk;bð~zÞ ¼
wðiÞk;bgaðaÞgðjÞb ðzjxÞ

Lð~zÞ
: (11)

To maintain computational efficiency, additional
parameters are defined to limit the number of Gaussian com-
ponents (potential targets): the pruning threshold Tr, merg-
ing threshold U, and maximum allowed number of Gaussian
components Jmax.21 At the end of each iteration the target
states are estimated from the updated PHDs, by taking all
components whose weights exceeded the weight threshold
wth.21 In this study, we set Tr ¼ 0:001, U¼ 4, Jmax ¼ 100,
and wth ¼ 0:1. In addition, some of the parameters for the
GM-PHD-SA filter were determined based on the training
data and are listed in Table II.

C. Graph-based multi-target tracking

In what follows, we present the graph-based multi-tar-
get tracking approach.15 Here, the target states and measure-
ments are described as random vectors, i.e., they are
ordered. Probabilistic data association is used to associate
measurements to target states and a binary existence vari-
able introduced for each target state indicates whether a par-
ticular target exists. A graphical model makes it possible to
exploit statistical independence assumptions, which lead
to factored forms of posterior probability distributions, to
reduce the computational complexity of filtering and proba-
bilistic data association. A detailed overview of this
approach can be found in Refs. 15, 27, and 28.

1. Object state model and factor graph

The time-varying number of targets is taken into
account by the introduction of potential targets (PT). Each
of the j 2 f1;…; jkg PTs is represented by a PT state defined

as y
ðjÞ
k ¢½xðjÞTk rðjÞk #

T, where x
ðjÞ
k is the kinematic single-target

state introduced in Eq. (2) and rðjÞk 2 f0; 1g is the existence

variable modeling the existence/nonexistence of the PT j.

For each PT state y
ðjÞ
k%1; j 2 f1;…; jk%1g at time k – 1, there

is one “legacy” PT state y
ðjÞ
k at time k. In addition, at time k,

mk new PT states are introduced, i.e., #yðmÞk ¢½#xðmÞTk #rðmÞk #
T;

m 2 f1;…;mkg. The total number of (legacy and new) PT
states at time k is jk ¼ jk%1 þ mk and the joint PT state at

time k is denoted as yk¢½y
ð1ÞT
k $ $ $ yðjkÞTk #T. Since the measure-

ments are subject to data association (DA) uncertainty, it is
unknown which measurement originated from which PT, and
a measurement may also arise from clutter. The DA in the
graph-based approach is modeled by the “object-oriented”

DA vector ak ¼ ½að1Þk $ $ $ a
ðjk%1Þ
k #T and the “measurement-

oriented” DA vector bk ¼ ½bð1Þk $ $ $ b
ðmkÞ
k #T. Here, the quantities

aðjÞk 2 f0;…;mkg and bðmÞk 2 f0;…; jk%1g describe the poten-

tial associations between PTs and measurements, and thus

quantity the strength of the links between targets and measure-
ments. Note that the description of the DA in terms of ak and
bk is redundant, but this symmetric arrangement of the links
enables more efficient graph-based multi-target tracking, as
seen in the following.

Given the state-transition model described in Eq. (2)
and the definition of the PT target state noted previously,
the joint posterior pdf of y0:k; a1:k, and b1:k can be arranged
as15

f ðy0:k; a1:k; b1:kjz1:kÞ

/
'Yj0

j00¼1

f ðyðj
00Þ

0 Þ
(Yk

k0¼1

'Yjk0%1

j0¼1

f ðyðj0Þ
k0
jyðj

0Þ
k0%1Þ

(

*
Ymk0

m¼1

vð#xðmÞk0 ; #r
ðmÞ
k0 ; b

ðmÞ
k0 ; z

ðmÞ
k0 Þ

*
'Yjk0%1

j¼1

qðxðjÞk0 ; r
ðjÞ
k0 ; a

ðjÞ
k0 ; zk0Þ

Ymk0

m0¼1

Wj;m0ðaðjÞk0 ; b
ðm0Þ
k0 Þ

(
:

(12)

Here, f ðyðjÞ0 Þ is the prior distribution of PT j 2 f1;
…; j0g; f ðyðjÞk jy

ðjÞ
k%1Þ describes the temporal evolution of PT

j 2 f1;…; jk%1g from time step k % 1 to time step k and is
based on the state transition model in Eq. (2). Functions

vð#xðmÞk ; #rðmÞk ; bðmÞk ; zðmÞk0 Þ and qðxðjÞk ; r
ðjÞ
k ; a

ðjÞ
k ; zkÞ describe the

detection process of newborn targets m 2 f1;…;mkg and
legacy targets j 2 f1;…; jk%1g, respectively, as discussed in

Sec. II A. In addition, function Wj;mðaðjÞk ; b
ðmÞ
k Þ checks if mea-

surement m was originated by PT j.29 Further explanations
and exact definitions of these functions can be found in Sec.
VIII G of Ref. 15.

The direct evaluation of the joint posterior in Eq. (12) is
computationally intractable; however, note that the posterior
is the product of numerous factors. It can thus be repre-
sented by the “factor graph” in Fig. 1, which is a graphical
model that represents the factorization structures of proba-
bility distributions.30,31 More precisely, in Fig. 1, the ran-
dom variables and the pdfs/ probability mass functions
(pmfs) involved in f ðy0:k; a1:k; b1:kjz1:kÞ are represented by
circles and squares, respectively. A circle is connected with
a square if the random variable represented by that circle is
involved in the corresponding pdf/pmf represented by the
corresponding square.

2. Problem formulation and selected message
passing operations

In the following, we utilize the factorization structure of
the joint posterior pdf f ðy0:k; a1:k; b1:kjz1:kÞ in Eq. (12), which
is visualized in the factor graph of Fig. 1, to perform object
detection and state estimation at time k + 1 based on all
measurements z1:k collected up to time k. More precisely,
object detection is performed by comparing the posterior
existence probability of PT j 2 f1;…; jkg, i.e., pðrðjÞk
¼ 1jz1:kÞ, with a threshold Pth. All PTs with posterior
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existence probabilities that exceed this threshold are declared
to exist. For existent PTs, state estimation is performed by cal-
culating the minimum-mean squared errors estimate32 as

x̂
ðjÞ
k ¢

ð
x
ðjÞ
k f ðxðjÞk jr

ðjÞ
k ¼ 1; z1:kÞdx

ðjÞ
k ; (13)

where f ðxðjÞk jr
ðjÞ
k ¼1;z1:kÞ¼ f ðxðjÞk ;r

ðjÞ
k ¼1jz1:kÞ=pðrðjÞk ¼1jz1:kÞ

¼ f ðxðjÞk ;r
ðjÞ
k ¼1jz1:kÞ=

Ð
f ðxðjÞk ;r

ðjÞ
k ¼1jz1:kÞdx

ðjÞ
k .

Object detection and state estimation require the marginal

posterior pdfs f ðxðjÞk ; r
ðjÞ
k jz1:kÞ¢f ðyðjÞk jz1:kÞ; j 2 f1;…; jkg.

However, calculating f ðxðjÞk ; r
ðjÞ
k jz1:kÞ by direct marginalization

(integration) of Eq. (12) is infeasible due to the high dimension-
ality of y1:k; a1:k, and b1:k. As in Refs. 15 and 27, we consider
an approximate calculation by performing “message passing,”
also known as “BP,” on the factor graph in Fig. 1. More pre-
cisely, in the BP approach local operations at the individual
graph nodes are performed and their results—called mes-
sages—are exchanged along the graph edges. This makes it

possible to efficiently calculate so-called beliefs ~f ðxðjÞk ; r
ðjÞ
k Þ;

j 2 f1;…; jkg that accurately approximate the marginal poste-

rior pdfs f ðxðjÞk ; r
ðjÞ
k jz1:kÞ; j 2 f1;…; jkg required for the object

detection and state estimation formulas [e.g., Eq. (13)].
In the final implementation of our graph-based

tracking algorithm, each spatial pdf f ðxðjÞk jr
ðjÞ
k ¼ 1; z1:kÞ; j

2 f1;…; jkg is represented by 300 particles (see Ref. 27 for
details). To keep computational complexity low, at each
time k, a suboptimal pruning step has to be performed: any
PT with a probability of existence pðrðjÞk ¼ 1jzð1:nÞÞ below a
threshold Ppr is removed from the state space. In this work,
we set Pth ¼ 0:75 and Ppr ¼ 10%5. The values of further sys-
tem parameters are obtained by training from annotated data
and are summarized in Table II.

III. METHODS

A. Equipment, deployment geometry, and timelines

The dataset used to test these automated tracking algo-
rithms is an expanded version of the one used in Ref. 12.
Between March and July 2020, three Directional Autonomous
Seafloor Acoustic Recorders (DASARs)9 were deployed along
the south-facing coast of western Maui, approximately 3 km
apart, to detect and track singing humpback whales within the
Hawaiian Islands Humpback Whale National Marine
Sanctuary. The northernmost DASAR was designated “A,”
the middle DASAR “B,” and southernmost DASAR “C.”

Each DASAR is equipped with a vector sensor, similar to
those used in disposable 53-series Directional Frequency
Analysis and Recording (DIFAR) sonobuoys.33 DASARs con-
tain an omnidirectional acoustic pressure sensor (sensitivity of
%149 dB re V/ 1 lPa) and two horizontal directional sensors
capable of measuring the north-south and east-west compo-
nents of acoustic particle velocity.9,12 The DASARs were
deployed by rope from a small vessel in about 20 m of water.
Accurate triangulated distances up to 9 km range were
expected (i.e., about three times the baseline distance between
DASARs). The orientation of the DIFAR sensor on each
DASAR was determined after deployment by having the small
vessel trace a 100-m radius circle six times around each
DASAR location: three clockwise and three counterclockwise.
A brute-force inversion then yielded both the DIFAR orienta-
tion and the clock offset between the internal DASAR clock
and GPS-UTM time. Additional descriptions of the equipment
and deployment are provided in Ref. 12.

In this study thirteen days in April were used to train
and test the proposed tracking schemes (Table I), including
April 18, the original 24-h dataset used by Ref. 12.

B. Computing azimuthal tracks

The Ref. 12 provides a detailed procedure for generat-
ing azimuthal tracks, or azitracks, from the AVS data, but
the process is summarized here. Estimating the azimuth of

FIG. 1. (Color online) Factor graph representing the joint posterior pdf
f ðx0:k; r0:k , a1:k; b1:kjz1:kÞ in Eq. (12) for one time step k.

TABLE I. Dataset used in this study. Each Encounter comprises a full 24 h

period. The number of annotated azitracks are reported for each DASAR
(C/B/A) respectively. Days used for testing are indicated by *.

Encounter Date Encounter ID N annotated azitracks

04042020* 1 82 / 73 / 74

04062020 2 97 / 99 / 106

04102020 3 84 / 71/ 84

04142020 4 69 / 68 / 87

04152020 5 35 / 23 / 28

04162020 6 42 / 46 / 55

04182020* 7 24 / 20 / 17

04232020* 8 20 / 24 / 28

04242020 9 13 / 13/ 22

04262020 10 12 / 11/ 10

04282020 11 20 / 17 / 15

04292020 12 21 / 19 / 21

04302020 13 24 / 21/ 19
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sounds measured on each individual DASAR begins by
computing an estimate of the acoustic vector active inten-
sity. During the deployment, each of the three channels
(pressure, north-south velocity, and east-west velocity) is
low-pass filtered and sampled at 1 kHz before being stored
on disk. During post-recovery analysis, each digital time
series is then converted into a complex spectrogram using
the short-time Fast Fourier Transform (SFFT) with a 1024-
point analysis window (,1 s). For each time-frequency bin
in the SFFT output, the in-phase product of the acoustic
pressure and particle velocity is computed along each axis.
This quantity, called the “active intensity” in the literature,34

measures the component of the acoustic field that is actively
transporting energy through the measurement point. The
ratio of the active intensity components along both axes
yields the four-quadrant tangent of the azimuth of the domi-
nant signal present at that time-frequency bin. A surface that
displays the estimated azimuth for every time-frequency bin
of the SFFT has been dubbed an “azigram” in previous
work.35 Azigrams produce a convenient time-frequency
visualization of the dominant directionality of the ambient
sound field. Furthermore, a histogram of the azigram values,
constructed from a 60-s window and sampled across fre-
quencies between 10 and 450 Hz, provides a means for esti-
mating the number of sources and their azimuths by
identifying local peaks in the histogram. When subsequent
60-s azigram histograms are stacked against each other, the
resulting 24-h image, dubbed an AHD, creates ridges that
identify persistent sources over time. Tracing these ridges
generates the azitracks for individual sources on that
DASAR. A metric called the normalized transport velocity
(NTV)36 can be used to retain only those time-frequency
estimates that arise from azimuthally compact sources like
whales and boats. The azitracks in this paper were generated
over 24-h intervals using 1024-point FFT windows, 60-s his-
tograms with 2' resolution, and filtered using a 0.75 mini-
mum threshold for the acoustic transport velocity.

C. Ground truth data

Two trained analysts manually traced all visible azi-
tracks for each of the three DASARs over each 24-h period
from midnight to midnight local standard time using AHDs
and a custom MATLAB script.12 Tracing was done conserva-
tively; unless they could be unambiguously separated, azi-
tracks were logged as separate events whenever two or more
tracks crossed, or individual tracks showed large gaps.

On days with large numbers of singing whales, it was
often convenient to trace azitracks viewing only three hours
of data at a time. The resulting manually-traced azitracks
were then “stitched” together to make continuous tracks
over the 24 h window. Tracks that existed within 15 min of
either the beginning or end of the three-hour window are
extrapolated to the start or end time of the window. They
were then assigned to the extrapolated tracks from other
contiguous segments from earlier and later three-hour win-
dows using the Hungarian algorithm.37

Noise signals from nearby ships and boats sometimes
dominated the acoustic signal, masking the presence of
humpback song. Azitracks were flagged as arising from ves-
sels if their azimuthal change exceeded 10' min%1 and were
removed from evaluation. Azitracks shorter than 20 min
were also eliminated, resulting in a finalized manually-
annotated “ground truth” azitrack database (Table I).

1. Reducing azitrack biases

Despite the use of an inversion to estimate the DASAR ori-
entation on the ocean floor, biases in the DASAR orientations
still potentially existed. Here, we briefly review the process in
which 2D tracks are generated from azitracks following Ref.
12, and then present a method for correcting potential biases in
the DASAR orientation by localizing a subset of azitracks.

Azitracks between a pair of DASARs are matched
based on the similarity of the time-frequency structure of
the songs they are tracking. Only the pairs that overlap for at
least 15 min in time are considered for matching. At each
DASAR, a binary spectrogram image of a tracked hump-
back song is created by applying a directional threshold to a
60-s azigram. The similarity of two potentially linked azi-
tracks is scored based on the maximum value of the cross
correlation between two binary images between DASARs.
The cross correlation scores were computed for every 60 s
long time segments using an azimuthal threshold of 158
degrees. Correctly associated tracks from each pair of
DASARs would yield a high median score, as illustrated by
the confusion matrix in Fig. 2. In particular, the azitracks
between each pair of DASARs with the highest score in
each column of the confusion matrix is considered to have
originated from the same humpback whale, i.e., a match.
However, if the matched azitrack score was below a thresh-
old of 5, the matched azitracks are discarded.

Azitracks from two pairs of DASARs, i.e., DASARs A,
B and DASARs B, C, are associated and scored. Three azi-
tracks are considered to be from the same whale if its track
in DASAR B yields high median scores in both confusion
matrices. More technical details of the matching process can
be found in Sec. IV E of Ref. 12.

The 2D whale tracks are then generated by triangulating
the matched azitracks from at least two DASARs.38 Each
2D track is a link of a whale’s position in terms of latitude
and longitude localized by triangulating every minute. It
starts when there are at least two matched azitracks to trian-
gulate from and stops when there are less than two matched
azitracks. When three DASARs are used to triangulate a
position, a localization confidence ellipse with 90% confi-
dence can be drawn following Ref. 9.

The size of the 90% confidence ellipse can be used to
correct potential misaligned orientation biases of the
DASARs. First, a normalized “uncertainty metric” is defined
as the ratio of the equivalent spherical radius of the confi-
dence ellipse of 2D localization to the distance of the whale
from DASAR B. Twenty spatial 2D whale tracks from
encounter 7 (Table I) were then selected for optimization.
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The reference orientation of each DASAR was systemati-
cally adjusted in 0.1' increments, and the error ellipses and
corresponding uncertainty metrics for all 20 tracks were
recomputed. The combination of orientation adjustments for
all three DASARs that minimized the mean uncertainty met-
ric for the 20 tracks was determined to be the optimal orien-
tation adjustment, and these values were used when
computing the final azitrack traces.

D. Learning filters’ parameters

The models used by the tracking filters (in Sec. II A)
require specification of parameters which are typically either
known a priori or learned from training data. In this work, fil-
tering parameters learned from training data include the proba-
bility of detection (pD), clutter rate (rc), birth rate (!b), system,
and measurement noise deviations (rv and rr, respectively).

In order to learn these parameters, the ground truth data
(see Sec. III C) were divided into training and test sets. Out
of 13 days (encounters) of the ground truth data that con-
tained singing humpback whales, three encounters were ran-
domly selected to be the test data (one encounter with
higher numbers of whale azitracks, and two with lower num-
bers, Table I), and the rest were used as the training data to
learn the tracking parameters.

Since each DASAR was deployed at a different location
that had different noise characteristics (e.g., DASAR A was
close to a local harbor), it was decided to compute parame-
ters for each DASAR separately.

To compute the parameter values from the training set,
the manually-annotated azitracks were first associated with
the measurements obtained from the AHDs in the training
data. Measurements were then extracted from an AHD for
each time step by selecting local peaks in that AHD above a
threshold of 0.1. The association was performed using the
Munkres Hungarian algorithm and a 5' cutoff distance
between measured and annotated azimuthal angles.

Extracted measurements that were not assigned to any
hand annotated azitrack were considered false alarms. Thus, the
number of false alarms could be obtained per time step, and the
clutter rate (rc) was computed for each DASAR as the mean or
the variance of the number of false alarms (whichever was big-
ger) across the time steps. Note the number of false alarms is
dependent on the selected threshold used to extract peaks from
AHD: if a lower threshold is used, the clutter rate is higher.

The birth rate (i.e., the expected number of the newborn
target in a given time step, !b) was computed as the mean or
the variance of the number of newborn azitracks (whichever
was bigger) across the time steps.

The probability of detection per time step, pD, was com-
puted for each time step as the number of associated mea-
surements (i.e., detections) divided by the number of
annotated azitracks in that time step. The overall probability
of detection was taken as the mean across time steps.

The measurement noise deviation, rr [Eq. (4)], was
computed as the mean difference between annotated azi-
tracks and measurements across all time steps. The system
noise deviation, rv [Eq. (3)], was computed as a median of
the maximum second order derivatives of azimuth (which
can be interpreted as source acceleration in the azimuthal
space) across the annotated azitracks.

The derived parameter values varied, depending on the
days used in the training data (Fig. 3), and some parameters
seemed correlated with the number of azitracks in that
encounter (e.g., birth rate), a result that is expected.
However, when testing the algorithms on the test data, the
final values for each parameter were computed as a mean
value across the training dataset and are shown in Table II.

E. Performance evaluation using the generalized
optimum subpattern assignment metric (GOSPA)

This study conducts two types of comparisons between
the manually-annotated and automatically extracted

FIG. 2. (Color online) The confusion matrix from matching DASAR BC (left) and DASAR AB (right). The color represents the median scores of the compared azi-
tracks over a six-hour window from the manually tracked data in April 18th, 2020. The azitracks from a pair of DASARs are considered a match if they yielded the
highest score in a column of the confusion matrix and a score above a threshold score of 5. By inspecting the track number of DASAR B with high score in both
score boards, one can determine whether azitracks in all three DASARs have matched. For example, Track No. 2 in DASAR B matches to Track No. 3 and 2 on
DASARs C and A, respectively. Azitracks that are matched between at least two DASARs are triangulated to generate the 2D whale track.
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azitracks. A qualitative comparison simply derives the full
two-dimensional tracks of singing whales and compares the
resulting maps side by side. A more quantitative metric is
also used to rigorously evaluate the performance.

Evaluating and comparing the performance of multi-
target tracking methods is complicated by the fact that the
number of estimated target states can be larger or smaller
than true number of targets. Often performance assessment
is based on practically relevant concepts such as localization
error for correctly detected targets, and the number of
missed or erroneously estimated targets. This approach is
appealing, but the resulting errors are typically defined in a
rather ad hoc manner, which makes it hard to reproduce or
compare performance results.

An alternative approach for defining estimation errors
in a target tracking scenario is to consider both ground truth
and estimates as two sets with potentially different numbers

of elements. The estimation error can then be seen as the
“distance” between these sets, with distance being defined
by a metric that satisfies the properties of non-negativity,
definiteness, symmetry, and triangle inequality. A particu-
larly appealing metric within this framework is the
GOSPA,39 which merges localization errors for properly
detected targets with penalties for false and missed targets,
creating a single performance metric. In addition to satisfy-
ing all the fundamental requirements of a metric, the
GOSPA can be subdivided into separate error contributions
from localization errors and mislabeled tracks, an important
consideration for practical applications.

Before defining the GOSPA metric, we need to intro-
duce the notion of an “assignment set” #. An assignment set
# 2 f1;…; Ig* f1;…; Jg between two sets with I and J
elements has the property that ði; jÞ; ði; j0Þ 2 # implies j ¼ j0

and that ði; jÞ; ði0; jÞ 2 # implies i ¼ i0. The assignment #
introduces a generalized intersection of the two sets. For a
certain choice of parameters (see Ref. 39 for details), the
GOSPA for true target states X ¼ fxigI

i¼1 and estimated tar-
get states Y ¼ fyjg

J
j¼1, can now be expressed as

DðX ;YÞ ¼min#2HjXjjYj
X

ði;jÞ2#
dðxi;yjÞþ

c

2
ðjXjþ jYj% 2j#jÞ

" #
;

(14)

where HjXjjYj is the set of all possible combinations of
indexes, c> 0 is a cut-off parameter, and dðxi; yjÞ is an

FIG. 3. (Color online) Trained parameters per encounter. Note that encounters 1, 7, and 8 are used for testing, and are thus not displayed. For each encounter
a given parameter value is shown as a box-plot of all three DASAR values with the median value indicated as a solid line. The bottom and top edges of the
box indicate 25th and 75th percentiles, respectively, and the whiskers extend to most extreme data points not considered outliers.

TABLE II. Summary of trained parameters used in BP and GM-PHD-SA
filters for azimuthal tracking. rc denotes the clutter rate; !b denotes the birth

rate (expected number of newborn targets); pD denotes the probability of
detection; rr and rv denote measurement and system noise deviations,

respectively.

DASAR rc !b pD rr ['] rv ['/s2]

A 2.99 0.04 0.64 1.30 8.6 * 10–4

B 3.06 0.03 0.67 1.15 8.9 * 10–4

C 3.78 0.04 0.68 1.16 10 * 10–4
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arbitrary “inner metric” defined for vectors, e.g., the 2-
norm. The GOSPA thus includes a component that repre-
sents the localization error between true target states and
estimated target states. In the considered tracking sce-
nario—without ground truth information and in the azimuth
domain—this component represents the angular error
between manually annotated and automatically estimated
1D azimuth values. As an inner metric, we use the 1D
Euclidean distance, i.e., jxi % yjj.

From expression in Eq. (14), it can be seen how the
GOSPA combines angular errors for properly detected targets
with the penalty for false and missed targets. The localization
error is represented by the first term. Here, the properly
detected targets and their estimates are assigned according to
#. Targets that remain unassigned are either false or missed tar-
gets and are penalized by c/2. In particular, jXj% j#j and jYj%
j#j represent the number of missed and false targets, respec-
tively. Thus, according to the term cðjXjþ jYj% 2j#Þ=2, any
missed or false target results in a cost of c/2. In the results that
follow c is set to 5'.

Note that GOSPA in Eq. (14) is computed per each
time step, and total GOSPA for each encounter is computed
as a mean across all time steps.

IV. RESULTS

The two tracking approaches discussed in Secs. II B and
II C were applied to the test data (Table I) that contained
two days with smaller numbers of azitracks (singing
whales), and one day with a larger number of azitracks. The
GOSPA metric was computed for all encounters (Figs. 4–6),
and run times noted for both approaches (Table III).

The performance of the algorithms varied depending on
the encounter. The total GOSPA error was higher for both
filters when the number of annotated azitracks was higher:
encounter 1 had on average 76 azitracks across the DASARs
(Table I) and had higher total GOSPA error (Fig. 4) com-
pared to encounters 7 and 8 where there were on average 20
and 24 azitracks (Table I), respectively, and the total error
was lower (Figs. 5 and 6). The total GOSPA error was com-
parable between the two filters in encounters 1 and 7 (Figs.
4 and 5), but was higher for the PHD filter in encounter
8 compared to the BP filter (Fig. 6). A closer examination of
the automated tracks revealed that a couple of vessels with a
slower rate of change in azimuths were present in the course
of 2-h period. While both methods detected parts of these
vessel tracks, the PHD detected more of the vessel tracks in
small fragments resulting in a higher average false target
error which in turn resulted in a higher average overall error.
Individual contributions of localization errors, missed tar-
gets, and false alarms to the overall total GOSPA error met-
ric were also examined.

Individual components of GOSPA reflected the trend
observed for total GOSPA metric: the errors were higher in
encounter 1 where the number of azitracks was higher, com-
pared to encounters 7 and 8 which had a smaller number of
azitracks. For all encounters, the biggest contribution to the
overall GOSPA error for both filters came from the missed
target error component of the GOSPA metric (bottom left
subplot on Figs. 4–6). Note, for example, a missed target
error of 2.5' signifies that on average 1 target was missed
across all time steps [Eq. (14)]. When the numbers of azi-
tracks were lower in encounters 7 and 8 there was on aver-
age about 1 missed target (i.e., the average error of about

FIG. 4. (Color online) GOSPA error metric and its components for encounter 1, a day with larger numbers of annotated azitracks.
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2.5') for that 24-h time period (Figs. 5 and 6), and when
numbers of azitracks were higher there were on average
about two missed targets (Fig. 4). False target error was low,
on average there was less than 1 false alarm (i.e., average
error less than 2.5') in encounters 7 and 8 (Figs. 5 and 6),
and less than two false alarms in encounter 1 (Fig. 4). The
sum of all localization errors averaged over time was about

5' in encounter 1 (Fig. 4), less than 2.5' in encounter 7 (Fig.
5) and less than 1.5' in encounter 8 (Fig. 6).

The run times of both filters for each 24-h encounter in
the test data were noted (Table III), and run times of the
PHD filter were faster compared to the run times of the BP
filter. The number of azitracks in the encounter did not
appear to influence the run times in the PHD filter whereas

FIG. 5. (Color online) GOSPA error metric and its components for encounter 7, a day with lower numbers of annotated azitracks.

FIG. 6. (Color online) GOSPA error metric and its components for encounter 8, a day with lower numbers of annotated azitracks.
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BP run times were longer when more azitracks were present
in a given encounter (Table III). The difference in the run
times is due to the BP filter using computationally more
intensive particle-based implementation, whereas the PHD
filter uses computationally less intensive Gaussian mixture
implementation.

Examples of automatically extracted azitracks, based
on a 3-h long excerpt from a day with lower (encounter 7)
and a day with higher (encounter 1) numbers of annotated
azitracks, are shown in Fig. 7. Additionally, a 2-h long
period with higher boat activity is shown in Fig. 8. The boat
tracks are typically characterized by a fast rate of change of
azimuth over a short period of time, and the filters do not
extract the tracks when the rate of change is fast (Fig. 8).
However, when the rate of change of azimuth in the boat
track is low (e.g., boat track between 15:30 and 16:00 on
Fig. 8), then the filters track those parts of the track. Further
examples of extracted tracks for all days in the test data are
given in the supplementary material.

Next, to further evaluate the automatically extracted
azitracks from the test data (Table I), 2D spatial tracks were
generated from both the manually annotated and automati-
cally extracted azimuthal tracks following the method
described in Sec. III C 1. Figure 9 presents examples of 3 h-
long 2D tracks using the data measured on April 18th

(encounter 7), the sample example used in Ref. 12. The bias
corrections of 6.5', –4.7', and %7.68 for DASAR A, B, and
C were applied, respectively. Since the biases were not
applied in Ref. 12, the tracks in Ref. 12 are different from
our tracking results [Fig. 9(a)].

V. DISCUSSION

Two methods to fully automate the tracking of multiple
animals with vector sensors were proposed and investigated
in this work. Both methods successfully and accurately
tracked multiple singing humpback whales with an array of
three-vector sensors.

The biggest contribution to the error metric came from
the missed target error, which occurred due to track frag-
mentation in the automated methods. Track fragmentation is
a common challenge in automated bio-acoustic tracking8

where mobile sources emit intermittent vocalizations.
GOSPA metric measures error on an individual time step
basis, and a missed target is counted every time step during
which an estimate of the target is not made compared to a
ground truth. The manual analyst (ground truth) connected
all parts of the track, even through periods of prolonged
silence (when no measurements were available to the fil-
ters). On the other hand, both of the automated approaches
tracked through shorter periods of silence during the time

TABLE III. Run times of the PHD and BP filters for each 24-h encounter in the test data (implemented in MATLAB, Release R2022a, on a Mac, Os X, proces-

sor 2.7 GHz and 8 GB RAM). The run times and number of annotated azitracks are reported for each DASAR (C/B/A), respectively.

Encounter Encounter ID N annotated azitracks PHD run time (s) BP run time (s)

04042020 1 82 / 73 / 74 4.8 / 5.2 / 5.2 54.1 / 104.1 / 111.2

04182020 7 24 / 20 / 17 3.6 / 3.3 / 3.3 14.4 / 16.8 / 17.6

04232020 8 20 / 24 / 28 3.2 / 3.2 / 3.1 10.7 / 13.8 / 8.5

FIG. 7. (Color online) 3-h excerpts from a day with (a) lower and (b) higher numbers of annotated azitracks. On each, azigrams with overlayed manually
extracted tracks [top], automatically extracted tracks with BP [middle] and PHD [bottom] filters are shown. Tracks are shown as solid lines.
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FIG. 8. (Color online) 2-h long exam-
ple with 3 boat tracks present in addi-
tion to humpback whales. Boat tracks
show as dark lines with a fast rate of
change of azimuth on the azigram. The
annotated and automatically extracted
tracks of humpback whales are shown
as solid lines.

FIG. 9. (Color online) 2D tracks generated from the computed azitracks with (a) hand annotation presented in Ref. 12, (b) hand annotation from another
operator, (c) BP and (d) PHD. The triangle, square, and diamond indicate the beginning, median, and end of each track, respectively.
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periods when the animal was singing but stopped tracking
when longer periods of silence occurred (e.g., when the ani-
mal stopped to breathe).

The error was bigger when there was a higher animal
track density compared to when there were fewer tracks in
the encounter. In the present work, the parameter values
were trained as a mean across encounters in the training
data; however, it was seen that certain parameters that
model clutter (false alarm rate) and new target generation
(birth rate) were different between encounters that had
higher and lower numbers of tracks. In future work two sets
of parameters could be considered- parameters trained for
the height of the humpback whale season when many
whales sing concurrently, and parameters trained for the
beginning/end of the whale season when fewer animals are
singing.

Boat tracks sometimes resulted in false tracks, espe-
cially when the azimuthal rate of change was low, and thus
these tracks resembled those produced by singing whales
(Fig. 8). Azimuthal tracking is species-agnostic, i.e., the
expected target movement is determined by the state-
transition model, and thus any acoustic source with azi-
muthal changes (i.e., swimming speeds and distances to the
sensor) similar to humpback whales would be tracked. A
possible solution would be to incorporate additional features
or a classifier to resolve this.

While both filters had similar performance, it should be
noted that the PHD filter used an amplitude feature while
BP did not. Previous research showed a significant improve-
ment in PHD filter’s performance when using an amplitude
feature compared to the filter without it.8,22 Using the ampli-
tude feature in the PHD filter helps to improve the cardinal-
ity estimates of the filter (i.e., the information about the
number of targets in the observation region), which are
known to have high variance when number of targets
increases.22 It is likely that addition of the amplitude feature
to BP filter would improve its performance,40 and future
studies should consider the development of the BP filter
with an amplitude feature for the azigram tracking applica-
tion. Moreover, since the amplitude model used in the PHD
filter was developed based on a different application, a
development of a new model that better fits the current data
would likely improve the performance of both filters.

In this study, the track-then-localize scheme was used,
and although it was not the focus of this study, the 2D spa-
tial tracks were computed and visually compared between
manually annotated and automatically extracted tracks.
Since the 2D track construction used DASAR B as the main
instrument and imposed a minimum 15 min criteria for the
tracks to match between the sensor pairs before being con-
sidered for the 2D track construction, the results are differ-
ent when obtained from manually extracted tracks compared
to automatically extracted tracks.

The applied 2D track extraction approach is not
designed for fragmented tracks of a single whale track. In
automatically extracted tracks, fragmentation of individual
whale tracks occurs during longer periods of silence. If the

fragments are shorter than the 15 min threshold or do not
have a concurrent at least 15 min long track on at least two
sensors, the track is not considered for 2D spatial track con-
struction. For example, whales 1 and 5 in Fig. 9(a) and 2
and 3 in Fig. 9(b), which were produced from manually
annotated tracks, are detected in short fragments by both
automated methods [Fig. 7(a)], and, thus do not result in 2D
spatial tracks in Figs. 9(c) and 9(d). Furthermore, when there
are multiple fragments of the same track automatically
extracted, the resulting spatial 2D tracks show as two sepa-
rate whales in the automated methods—e.g., whale 2 and 4
in Fig. 9(c) and whale 2 and 7 as well as whale 6 and 8 in
Fig. 9(d). Finally, fragments of a longer track are matched
with a false positive track, yielding a false positive 2D
track—e.g., whale 5 and 7 in Fig. 9(c) and whale 4 in Fig.
9(d). Note also that the whale tracks towards the endfire of
the linearly arranged vector sensors are less reliable since a
small shift in azimuthal tracks will lead to a substantial
change in the 2D tracks.

Therefore, future studies should consider a different
approach to extracting 2D spatial tracks that would allow
for track fragmentation or a second step where 2D tracks
would be joined. An alternative approach for matching azi-
muthal tracks from the same source across multiple
DASARs would be to treat the automated azimuthal track-
ing discussed in this paper as a de-clutter step, then apply
either of the two methods again to track in the 2D space.

The run-time of both methods was fast (typically
under a minute for 24-h period), with the PHD having
shorter run-times compared to BP. The significantly higher
run times of BP compared to PHD are related to the fact
that we are using a particle-based implementation of BP
while PHD relies on a computationally less intensive
Gaussian mixture implementation. The particle-based
implementation of BP has been developed for multi-target
tracking problems with highly nonlinear state-transition
models,27 whereas for humpback whale azitracks a much
simpler state-transition model can be used, which the PHD
filter takes advantage of.

With some further improvements, the automated track-
ing methods could lead to a new way of enumerating acous-
tically humpback whales in high density areas. Being able to
accurately count and localize singing humpback whales
when chorusing levels are high would lead to new insights
into how singing whales distribute themselves and how den-
sity dependent singing behavior is among humpback whales.
In turn, this would help further advance efforts to establish
the relationship between chorusing behavior and overall
whale abundance.41

VI. CONCLUSIONS

In this work, two methods to fully automate the tracking
of baleen whales with an array of vector sensors were pro-
posed. Both methods are based on the Bayesian statistical
framework, but take different approaches to how the poste-
rior distributions are approximated. Both methods were
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applied to a dataset in Maui and successfully tracked multi-
ple singing humpback whales.

SUPPLEMENTARY MATERIAL

See the supplementary material for manually and auto-
matically extracted tracks for all days in test data.
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