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Abstract—This paper introduces a statistical model and cor-
responding sequential Bayesian estimation method for terrain-
based navigation using sidescan sonar (SSS) data. The presented
approach relies on slant range measurements extracted from
the received ping of a SSS. In particular, incorporating slant
range measurements to landmarks for navigation constrains the
location and altitude error of an autonomous platform in GPS-
denied environments. The proposed navigation filter consists of
a prediction step based on the unscented transform and an
update step that relies on particle filtering. The SSS measurement
model aims to capture the highly nonlinear nature of SSS data
while maintaining reasonable computational requirements in the
particle-based update step. For our numerical results, we assume
a scenario with a surface vehicle that performs SSS and compass
measurements. The simulated scenario is consistent with our
current hardware platform. We also discuss how the proposed
method can be extended to autonomous underwater vehicles
(AUVs) in a straightforward way and why the combination of SSS
sensor and compass is particularly suitable for small autonomous
platforms.

Index Terms—Side-scan sonar, Bayesian estimation, au-
tonomous vehicles, navigation, marine robotics, particle filtering.

I. INTRODUCTION

Autonomous platforms have the potential to enable inex-
pensive and safe data collection at sea with high resolution
in time and space. New approaches for determining position
underwater will form the basis for longer and more complex
unmanned navigation tasks in GPS-denied environments. Of
particular interest are localization methods that can be de-
ployed on small autonomous underwater vehicles (sAUVs),
i.e., methods that are inexpensive, lightweight, and efficient.
SSS is a common payload on sAUVs as it is often used for
hydro-geologic surveys and mapping of the seabed [1]-[4].
Due to its ability to generate large, high-resolution images of
the seabed and its small form factor, SSS is a promising sensor
for SAUV navigation. While navigation using SSS has been
attempted several times, algorithmic solutions for efficient
sAUV navigation remain unavailable.

In scenarios where the global positioning system (GPS) can-
not be used, accurate navigation typically relies on dedicated
sensors for dead reckoning, such as an inertial measurement
unit (IMU) or a Doppler velocity log (DVL), both of which can
be cost and size-prohibitive [1], [4]. There also exist a variety
of active acoustic ranging techniques such as long baseline
(LBL) and short baseline (SBL) [5], [6], which require the
deployment of transponders in the form of moorings.

If a map of relevant features at the seabed is available,
SSS sensors have the potential to provide accurate position
information. However, computing position from SSS data
is challenged by the highly nonlinear nature of the SSS
measurement model and a substantial variability of sensor
performance due to platform motion and background noise.

A. sAUV Navigation

When navigating autonomously in the ocean, SAUVs often
localize themselves by surfacing to receive GPS signals or by
triangulating using active acoustic ranging techniques. In the
time between these types of absolute position updates, SAUVs
perform relative position updates by dead reckoning [1], [7].
Unfortunately, dead reckoning is always subject to position
errors that grow over time, leading to time and depth-limited
missions. In addition, using active ranging for sAUV naviga-
tion requires the deployment of a transponder infrastructure in
a small predefined area of interest and consequently limits the
overall scope of the mission to that area [1]. To overcome these
limitations, there is a need for new sAUV navigation strategies
that rely on a combination of small and inexpensive onboard
sensors and sophisticated signal processing and parameter
estimation methods.

Terrain-based navigation is an emerging research area in
underwater robotics that aims to develop approaches that
bound position errors without relying on the deployment of
transponder infrastructure. Here, identifiable seabed features
are used as landmarks for absolute positioning [2]. Terrain-
based navigation assumes that the area of interest has been
surveyed at least once, i.e., either the SAUV has performed a
first pass while on the surface, the mission of the sAUV is
supported by a lead vehicle [4], or previously generated maps
are available. A significant ongoing research effort on sonar
image segmentation and object classification aims at finding
landmarks in SSS surveys [8]-[10].

Early approaches to navigation with SSS, such as in [1], [2],
rely on mosaicing of SSS measurements and stochastic maps
to track the vehicle state and landmark locations. Smoothing,
i.e., the combination of a forward and backward filter, is
used to refine current and past position estimates by using
SSS data. Here, SSS data is accumulated to an image before
being used for navigation. This results in an update rate of
the navigation method that is much lower than the rate at
which SSS measurements are acquired [1], [2]. The method
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in [3] fuses onboard inertial sensors of an AUV and SSS
data to correct current and past position estimates. It assumes
the presence of a support vehicle that performs ranging with
respect to the AUV and has access to GPS position. In [4],
in-situ feature maps are generated using SSS and matched
against a detailed previously generated map. The discrepancy
between the two maps is used to refine the position estimate
of the vehicle. All the methods listed above have a limited
update rate due to the use of entire sonar images or a limited
range by dependence on transponder infrastructure.

B. Contributions

The fundamental question addressed in this paper is the
feasibility of developing a navigation filter for sAUVs that
relies on SSS data. We aim to develop models capturing
the high-dimensional nature of SSS images while remaining
simple enough to be used in a resource-efficient navigation
filter. Much of the existing research in this area employs
scan-matching and batch processing. In another example, [3]
implements a fusion of measurements extracted from SSS with
the internal sensors of an AUV by extended Kalman filtering.
We aim to improve the vehicle’s positioning relative to known
landmark locations by developing a particle-based navigation
filter that more accurately captures the nonlinearity inherent
to SSS measurements. Contrary to existing work, each line
of pixels in an SSS image (i.e., each received sonar ping)
is considered a separate measurement. Compared to state-of-
the-art methods for AUV navigation based on SSS data, this
processing approach significantly increases the update rate of
the navigation filter. In particular, it makes it possible to obtain
an updated position estimate at the ping rate of the SSS.

In this paper, we develop a statistical model and corre-
sponding sequential Bayesian estimation method for terrain-
based navigation using SSS data. The presented approach
relies on slant range measurements extracted from a SSS ping.
Incorporating slant range measurements relative to landmarks
for navigation constrains an autonomous platform’s location
and altitude error in GPS-denied environments. The proposed
navigation filter consists of a prediction step based on the un-
scented transform and an update step that relies on particle fil-
tering. The SSS measurement model aims to capture the highly
nonlinear nature of SSS data while maintaining reasonable
computational requirements in a particle-based update step.
We also introduce a model that can generate synthetic sonar
images based on a vehicle trajectory and known landmarks.

The key contributions of this paper are summarized as

follows.
e We establish a new model for SSS measurements that
describes individual returns rather than entire images.

o We develop a sequential Bayesian estimation method for
terrain-based navigation using SSS.

The remaining sections are organized as follows. Section II
describes the state transition and measurement models. Section
IIT discusses the generation of simulated images and image
preprocessing. Section IV presents the proposed navigation

filter. Finally, Section V presents numerical results from our
simulation that demonstrate localization accuracy and imple-
mentation feasibility. The conclusion of the paper can be found
in Section VI along with a discussion of future work.

II. SYSTEM MODEL

This section will establish the statistical model for terrain-
based navigation using SSS.

A. State Transition Model

At discrete time step k, the 4-D state of the vehicle, xy,
is defined as =y = [zx yr O v&]T where [z yi]T is the 2-D
position in a Cartesian coordinate system, 6 is the heading
in radians, and ~; is altitude above the seafloor. The control
input to the platform is denoted as wy = [ug x us k)T, where
U 1, 18 the speed and wy i is the turn rate. The transition from
the state at time £ —1 to time k, is described by a transition
model x; = g(xk_1, Nk, uy) that includes the driving noise
vector ny = [n&k. Ny k 09,k Ty, k}T. The elements of the driving
noise vector my are statistically independent and Gaussian
distributed with variances 03, UE, 03, and a?Y, Furthermore,
driving noise vectors mj are statistically independent across
time k. The functional form of g(zy_1, Ny, uy) is given by

(% (%

T Tp_1 — Ut: sin(fx_1) + Utz sin(0x—1 + ve,x Ag)
Uk | | ye—1+ 2 cos(Ok—1) — 52 cos(Br—1 + ver Ak)
0| Or—1 + Ve ks Ak + 10,1 Ag

Yk V-1 + Ny k

(D

where we introduce the short notation v j, = us,j + N 1 and
Uy | = Ug,k + N k. Note that Ay is the time duration between
time steps k—1 and k. The model for the first three elements
of xy is developed in [11]. At each step, the control inputs
for speed and turn rate that determine the new position and
heading are corrupted by additive Gaussian noise. The vehicle
altitude is simply the altitude from the previous time step cor-
rupted by additive noise. A potential limitation of the current
model is that it does not consider ocean currents. Developing a
more sophisticated state transition model incorporating ocean
currents is subject to future work.

B. Measurement Model

SSS instruments transmit acoustic pulses (“pings”) and
generate an image from the signal returns that are backscat-
tered by features on the seafloor. Features that are rough
backscatter more power compared to features that are soft
[12]. Each ping is associated with a new line of pixels in the
image. The sonar transducers are mounted or towed such that
they provide ‘“cross-track” measurements, i.e., measurements
that are perpendicular to the direction of motion. Typically,
there are two sonar transducers so that measurements can be
performed on the port and starboard side of the platform.
Fig. 1 shows the geometry of transducers, water column, and
seafloor. Each pixel in a SSS image corresponds to the total
intensity reflected within a particular area of the seafloor. The
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size of the area corresponding to each pixel and the effective
range of the SSS depends on the hardware configuration
(e.g., transmit frequency) and altitude above the seafloor.
The random variability of acoustic propagation, including a
change in the sea state or the bottom topography [12], affect
the quality of SSS measurements. The sensor generates an
image by stitching measurements from each time step k in
the direction of motion. Each time step is one line of pixels
in this image [12]. Each pixel corresponds to the range from
the vehicle to the ocean bottom through the water column.
As shown in Fig. 1, this “slant range” is the hypotenuse of a
triangle [13].

R
\ o
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Fig. 1: The SSS takes measurements perpendicular to the direction
of motion of the sensing platform. The maximum range of the sonar
Sensor, rmax, defines the hypotenuse of the triangle formed between
the vehicle and the farthest detection point of the SSS. When a
landmark is present, its respective slant range, rs, can be extracted
from the sonar image. This slant range corresponds to a horizontal
range, 7. The vehicle altitude above the seafloor, ~y, is needed to
obtain 7y from 7.

4

Fig. 2 shows a SSS image that combines returns from a port
and starboard transducer. The dark section at the center of the
image is called the nadir and is proportional to the time of the
first acoustic return, often referred to as the first bottom return.
The size of the nadir can be used to measure the altitude above
the seafloor [14]. Assuming that a map of the features at the
seafloor has been established, features in SSS images can be
used as landmarks for terrain-based navigation.

Each landmark with index d € {1,..., D} is represented by
a rectangle described by the vector mg = [z ya 04 la wa]™
Here, [z4 ya|T denotes the 2-D position of the center of the
landmark, and 6, is the landmark orientation. 8, is in radians
and is O when the vehicle points directly east and 5 when the
vehicle points north. In addition, [I; wg|T denotes the length
and width of the landmark.

As further discussed in Section III, each landmark can
generate two distances measurements in the slant range,
Zhd = [z,ilzl z,(f;}T When landmark d € {1,...,D} is
detected by the SSS, these distances are extracted from the
image and comprise the landmark measurement. If landmark
with index d € {1,..., D} is not detected at time step k, the
corresponding measurement is set t0 2, 4 = Zmax. Here, we
have introduced z,,x = [rmax rmax] T. Using extracted slant
ranges instead of the entire set of pixels as measurements
significantly reduces the computational complexity of the
navigation filter discussed in Section V.

Time (s)

-20 -10 0 10 20
Distance (m)

Fig. 2: SSS image with two landmarks. The horizontal axis is a
slant range perpendicular to the vehicle track. The negative distance
represents the port side, and the positive distance represents the
starboard side of the vehicle. This image shows approximately 30
seconds of data, and the maximum slant range at each side is 20
m. The center frequency of the transmitted pulse is 1800 kHz, and
the ping rate is 20 Hz, meaning that each line of pixels is 50 ms
apart. The illumination of each pixel represents the intensity of the
acoustic signal reflected by the seafloor. This data was collected at
the Scripps Institute of Oceanography using the sensing platform and
artificial landmark shown in Fig. 3.

At time k, the SSS measurement covers a line segment on
the seafloor that has port and starboard end points defined by

b — [xk] . |:COS(9k + 2))} 2 2

Yk sin(0p + 5
s _ |zk]|  |cos(Or + ) 2 2
Ty = [yk] |:sin(9k + g) Tmax — Yk 2)

where Tmax 1S the maximum slant range of the SSS. Line
segments s € {1,2,3,4} represent the sides of a rectangular
landmark d € {1,...,D} on the seafloor. The sides s €
{1,2,3,4} correspond to the landmark’s south, west, north,
and east sides. They are defined by the beginning and end
points

x4 1| la(sin(0q) — cos(b4))
= (o] 05t o)

28 — Tq (2)1 ld(Sin(Qd)+COS(0d))
ds = [y ] +b; 2 Lud(sin(Gd) — cos(Hd))] 3

with by = [ 6], s € {1,2,3,4} given by by = [11]%,
by =[1 —1]% b3 = [-1 —1]T, and by = [-1 1]T.

Let hi(mg,xi) be the binary function that is equal to
1 if the line segments defined in (2) intersect with the line
segments defined in (3), and zero otherwise. Whenever there
is any intersection, there will always be two intersection
points. For the case hi(mg, ;) =1, let ho(mg, xy) be the
function that provides the resulting two intersection points
on the seafloor, [} #*)]" The measurement model for 2-
D range and width measurements of landmark d can now be
written as 2z g = h(xg, Mg, Ny q), Where ny 4 is zero-mean
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Gaussian measurements noise with covariance matrix o2 I,
and h(xy, mg, Ny q) is given by

hMzxg, mq, ng q)

hi(mg, i)

hs(hao(ma, @), ) + g g =1
hl(md, :Bk) =0.

“4)

Zmax

Here, we have introduced the function [r,(:()i r,(j()i]T =
hg(ac,(cl’zl,sc,(f()i,mk), that provides the distances of the two

intersection points with respect to vehicle state xj in slant
range, i.e.,

7 [Vl — e el | + 2

Tl = )
V22, — o || + 72

(2)
L

The measurement noise ny, 4 is assumed statistically indepen-
dent across k and d. In summary, hq(mg, xx) indicates the
presence of a landmark, ho(myg, ) provides the points of
intersection with said landmark, and hg(a:,(clgl,wf;,ack) pro-
vides the slant range to the landmark based on the 6utput from
ho. The likelihood function corresponding to the measurement
model in (5) is given by

p(zk,dlT)
_ N (hs(ha(mg, @i), @r); 0%L2)  hi(mg, xp) =1
3(Zk,d — Zmax) hi(mg,xr) =0

(6)

Here, 6(-) is the unit pulse that is one for 6(2k,a — Zmax)
equal to zero, and zero otherwise. Note that in (6), the case
hi(myg, x) = 0 can provide information on the vehicle state if
the true measurement does indicate that a landmark is present.
In other words, the presence and absence of a landmark are
both informative.

In addition to the D measurements performed with respect
to landmarks, the altitude above the seafloor and the heading
are measured as zx o = Y + Nk,a and 2 o = 0 + ny .. Here,
Ny, and ng . are zero-mean measurements noises with vari-
ances o2 and o2. The measurement noises Nk, and ny . are
statistically independent with respect to each other and across
time k. They are also statistically independent of measurement
noises ny g for all & and d. The joint measurement of length
2D + 2 at time k, is given by zx = [2k.1 ... 2k.D 2ka Zkc)
The corresponding joint likelihood function factorizes as

D

) p(2kalme) [ p(zhal@r). (D)
=1

p(zk|ﬁﬂk) = p(zk,c

This likelihood function will be used in the navigation filter
developed in Section IV.
III. SYNTHETIC SONAR DATA AND PROCESSING

We developed a forward model for simulation that gener-
ates sonar data given a vehicle track, sonar parameters, and

landmark locations. For each vehicle position on the track, we
create a line of pixels representing one received sonar ping.
Pixel values are binary, i.e., pixels with no landmark are 0’s
while pixels containing a landmark are 1’s. Similarly to related
work [10], we assume a relatively flat sea bottom. While the
flight height can change, the cross-track profile is assumed flat
(i.e., the depth on the left and right sides of the vehicle are the
same) at all times. Lines of pixels can be concatenated into
a synthetic sonar image for visualization purposes. However,
each line is used individually to extract measurements for the
proposed navigation filter. The synthetically generated sonar
data represents a real sonar image preprocessed by an image
classifier that detects relevant landmarks. As further discussed
in Section II, potential errors in the preprocessing stage are
modeled by additive noise.

For each line of pixels of a synthetic or real sonar image,
a slant range and the length measurement is extracted for
each landmark that is present. Measurements are extracted by
traversing the line of pixels until an edge is detected. This edge
is marked as the near side of a landmark. The landmark’s far
side is further obtained by detecting the following edge. Since
we get range and length measurements directly from the pixel
indexes related to edges, the obtained measurements are in
the slant range. This process generates between 0 and D SSS
measurements, depending on how many landmarks are present
in the line of pixels. The remaining landmark measurements
are set to zp,,x to indicate that the corresponding landmark was
not present in the line of pixels. Measurements of landmarks
that are not present in the line of pixels are set to Zy,ax. The
vector that consists of the resulting D landmark measurements,
zy, is the result of this processing stage and will be used at
each update step of the navigation filter as discussed in IV-B.
Future work will be focused on processing real data collected
from a surface vehicle, which was developed in collaboration
with Seafloor Systems, Inc. A picture of this platform taken at
the Scripps Institution of Oceanography is shown in Fig. 3.

IV. THE NAVIGATION FILTER
At time k, we aim to estimate the state, xy, of the AUV
from all measurements z;.;. Given the conditional probability
density function (PDF) of the state, p(x|21.x), the minimum
mean-squared error (MMSE) estimate [15] of the state can be
obtained as

ileSE = /ackp(wk|z1;k)da:k. (8)

A Bayes filter [16], which consists of a prediction and
update steps, is applied to compute an approximation of
the conditional PDF p(xy|z1.k). The prediction step uses
the Chapman-Kolmorogov equation, which involves the state-
transition function in (1). The update step is based on Baye’s
rule and the likelihood function in (7). Due to the nonlin-
earities in our state-transition and measurement models, we
use sigma points [17], [18] in the prediction step and random
samples “particles” [16] in the update step for the computa-
tion of an approximate mean gz and covariance matrix C}
of p(xk|z1.x). Using particle-based instead of sigma points
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Fig. 3: Hydrone surface vehicle with integrated Ark Scout Mk II
SSS transducers shown next to an artificial landmark. Two of these
landmarks were used to generate the data in Fig. 2. This picture was
taken at the Ellen Browning Scripps Memorial Pier in La Jolla, CA.
Data collection was conducted close to the pier.

requires more computational resources but makes it possible
to obtain accurate results even if the underlying model is
strongly nonlinear. In the considered problem, the nonlinearity
in the state-transition model is moderate. The more efficient
computation based on sigma points can thus also provide
accurate results and is preferred. Due to (8), the approximate
mean computed by the filter, py, is at the same time an
approximation of the MMSE estimate, i.e., YM5F ~ ;.
The flow chart in Fig. 4 shows the overall filter architecture.

The prediction and update steps are described next.

A. Prediction Step

We use sigma points in the prediction step of the navi-
gation filter because the state transition model is nonlinear.
Let, N(w}c_l;uk,l,ck,l) be a Gaussian approximation of
the marginal posterior PDF p(x}_,|z1.x—1) that has been
computed at the previous time step k& — 1. First, we introduce
the 8-D augmented mean ;1 = [pp_; 0 0 0 0]" and the
corresponding covariance matrix

| Cra 0
L1 = [ 0 diag(oﬂ)}

where diag(o?) denotes the diagonal matrix with diagonal
elements given by the vector o? = [0Z of oF o2|T.
Note that this mean vector and covariance matrix have been
augmented by the means and variances of n. This augmenta-
tion makes using sigma points in the prediction step possible
despite the nonlinear relationship between ny and x;_;. The
length of the new state vector is N = 8. Sigma points are
computed from the mean state according to [17] and [18]. In
effect, 2N sigma points are evenly spaced around one sigma
point at the current augmented state estimate. The augmented
sigma points, :c}'cfl, are defined as

xh =1+ (V/NZp_1)

)

ie{l,...,N}

ot = — (VN
The weights corresponding to these sigma points are set as
w' =, ie{l,...,2N}.
Next, 8-D sigma points are passed through the state transi-
tion model in (1), i.e.,

ic{N+1,...,2N}

Q;: = g(@;fl,ﬁcfl, ug) i1€{1,...,2N}.

Here, @};_1 and E};_l denote the first four and last four
elements of sigma point = . Finally, an updated 4-D mean,
and covariance are computed according to

2N
- i i—
B = E :w@k
i=1
2N
C, = E 'w (),
i=1

This mean g, and covariance matrix C, represent the
predicted posterior PDF p(xy|21.5—1) = N (xk; py, , Cy, ).

) (@ — )"

B. Update Step

We use a particle filter to compute the updated posterior
PDF p(xy|z1.x) = N(xk; px, Ck) that takes all available
measurements into account. Due to the highly nonlinear mea-
surement model defined in (4), a sigma point-based computa-
tion is unsuitable for the update step. Importance sampling
is performed by directly using the Gaussian representation
N(xy; py ,Cp ) of the predicted posterior PDF computed
in the Section IV-A as a proposal PDF [16], [19]. In other
words, we sample I particles denoted as {i’}c}le from
N (xk; py , Cy, ). Corresponding particle weights are obtained
by evaluating the joint likelihood function provided in (7) for
each particle, i.e.,

5]

Wi = P2kl @) p(2k 0l H (2k,al®},)- (10)

Note that the evaluation of (10) can also provide position
information if no landmark is detected, i.e., if 2 g = Zmax for
all d € {1,..., D}. According to the second line in (6), for a
particle corresponding to a detected landmark, the computed
weight according to (10) will be zero, and the particle will
be discarded. For numerical stability, the evaluation of the
individual factors in (10) is performed in the log domain.
Consequently, in the log domain, the product of factors in (10)
is computed as a sum. After a normalization step, weights are
converted to the linear domain and normalized to one. Finally,
a new state estimate and covariance matrix are obtained as

[16], [19]
I
Ky = Z@Z"Bi
i=1

I
=Y
=1

b — @) (), — &)"
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Fig. 4: Flow diagram describing the processes of the proposed navigation filter. Blocks shown in blue depict the main processing steps and
their results. The sub-process in red shows details of the proposed particle-based update step.

where {Wk}f:l are the weights that have been normalized,
ie., wi = wi/ Y} _ wi. This mean and covariance matrix
define a Gaussian approximation of the updated marginal
posterior PDF, p(zi|z1.x) = N(xi;py, Ck). This PDF is
then used in the prediction step at time &+ 1. To avoid particle
degeneracy, a resampling step has to be performed at certain
time steps [16], [19]. The mean, pg, is at the same time an

approximation of the MMSE state estimate &}™5E in (8).

V. NUMERICAL RESULTS

We evaluate algorithm performance in a simulated scenario
with different landmark spacings. As a reference method, we
use a navigation filter that does not use SSS measurements. In
the state transition model, we set the driving noise variances
as 02 = 1.5m?/s%, 62 = 0.5rad?/s?, 07 = 0.2rad?, and
02 = 0.1m®. The measurement model is characterized by
02 = 25m?, 02 = 0.5m? o2 = 0.2rad’. At time k =
0, we set o equal to the true vehicle position and Cy =
diag([c? o2 02 02]"). The time duration between time
steps is Ap = 0.1s. Each simulation run consists of 12000
time steps corresponding to a total duration of 20 minutes.

In the considered scenario, landmarks are located on an
evenly-spaced grid. An example scenario is shown in Fig. 5(a).
As a performance metric, we use the root mean-square error
(RMSE) of the 3-dimensional vehicle location. Fig. 5(a) shows
true and estimated vehicle tracks for a single simulation run. A
landmark spacing of 50 meters was used. It can be seen that
the RMSE related to the position estimates provided by the
reference methods keeps growing as time evolves. This is be-
cause the reference method relies solely on integrating heading
measurements over time and has, thus, no access to absolute
position information. At the end of the simulated scenario,
the RMSE related to the reference methods is typically more
than 10 meters. On the other hand, when landmark spacing
is reasonable, the RMSE of the position estimate provided
by the proposed method remains bounded. Fig. 5(b) shows a

close-up of the very end of the track from Fig. 5(a). It can
be seen that the estimation error of the reference method is
significant, while the estimated error of the proposed method
is quite small.

Fig. 6 shows the RMSE related to the reference method and
the proposed navigation filter averaged over 300 simulation
runs. Scenarios with 50-meter and 100-meter landmark spac-
ing are considered for the proposed navigation filter. For the
reference method, which can not use position information of
the landmarks, the average RMSE of a 20-minute trajectory is
8.12 meters. For the proposed navigation filter, the average
RMSE decreases to 2.99 meters and 1.56 meters for 100-
meter and 50-meter landmark spacing, respectively. Fig. 6
also confirms that when no landmarks are used, the RMSE
continues to grow with time while SSS measurements of
landmarks can bound the position error. As expected, increased
spacing between landmarks results in a more significant esti-
mation error. In this simulation, the probability of the vehicle
measuring a landmark at any given time step, k, was 1.4%
for a landmark spacing of 100 meters. On the other hand, in
the scenario with 50 meters spacing, the probability of the
vehicle measuring a landmark was 5.7%. As can also be seen
in Fig. 6, a 4.3% increase in the probability of measuring a
landmark led to a significantly reduced localization error.

VI. CONCLUSION AND FUTURE WORK

We developed a method that has the potential to increase
navigation accuracy for sAUVs with SSS. In particular, the
error of position estimates can be reduced by using detections
of landmarks in sonar pings as measurements. Our simulation
results showed an improved navigation performance compared
to a reference method that relies on dead reckoning. In
particular, the position error related to the proposed navigation
strategy can be bounded if landmarks detections become
available regularly. For example, in the scenario with a regular
grid of landmarks spaced 50 m appart, the probability of seeing
a landmark at any given time was 5.7%. In the scenario with
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Fig. 5: True and estimated vehicle tracks resulting from a single simulation run. The proposed navigation filter and a reference method that
does not use landmark measurements are considered. Landmarks, spaced evenly at 50-meter intervals in the x and y directions, are also
shown. The duration of the simulation is 20 minutes. The entire tracks are shown in Fig. 5(a) while a zoom-in is provided in Fig. 5(b).
The location error associated with the estimated track obtained by the proposed navigation filter is approximately the same at the end of the
track as at the beginning. The location error obtained by the reference method does increase over time.
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Fig. 6: Average RMSE versus time for position estimates provided by
the proposed navigation filter. Two scenarios with different landmark
spacings are considered. The RMSE of the reference method that does
not use landmark information is also shown. RMSE curves have been
averaged over 300 simulation runs.

100 m landmark spacing, this probability dropped to 1.4%. In
practice, a higher probability can be obtained by identifying
small features as landmarks or deploying artificial landmarks.
Finally, the method is computationally efficient, making it
possible to use in real-time. The computational load can be
adjusted by processing received sonar pings less frequently
or using fewer particles. For example, if the state estimate
variance is small and the vehicle location is far from known
landmarks, received sonar pings can be processed less often.

Results based on real data will allow us to assess the

assumed state transition model’s accuracy and help quantify
the positioning error in realistic scenarios. Real data processing
will also provide insights into the frequency of landmark
detections necessary to keep the error of position estimates
below a desired threshold. Another important consideration is
the standard deviation of the range and length measurements,
which in practice will depend on the underlying landmark
detection algorithm. It will also be essential to determine a
robust estimate for these standard deviations for real-world
application of the proposed navigation filter. The next steps of
this research consist of (1) collecting a large-scale dataset at
sea, (2) developing a more realistic state-transition model that
also takes ocean current into account, (3) designing a robust
proposal distribution for the case where the interval between
landmarks is long, and the location information of the vehicle’s
position has become uninformative. The third task is important
in scenarios where a landmark is detected in the current
received sonar ping, but the posterior distribution of the vehicle
state is so uninformative that no generated particle corresponds
to a vehicle position with landmark detection. Instead of using
the predicted posterior as the proposal distribution in the
update step, an alternative proposal is developed based on
current measurements. Promising directions for future research
include extending a probabilistic association of slant ranges to
landmarks [20]-[22] and embedding deep neural networks for
landmark detection [23].
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