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ABSTRACT
Passive acoustic monitoring (PAM) is a nonintrusive approach to
studying behaviors of vocalizing marine organisms underwater that
otherwise would remain unexplored. In this paper, we propose a data
processing chain that can detect and track multiple whales in 3-D
from passively recorded underwater acoustic signals. In particular,
time-difference-of-arrival (TDOA) measurements of echolocation
clicks are extracted from a volumetric hydrophone array’s acoustic
data by using a noise-whitening cross-correlation. For multi-target
tracking, the TDOA measurements are then processed by a Bayesian
inference engine consisting of two stages that is based on the sum-
product algorithm (SPA). Particle flow is embedded in the SPA to
make tracking computationally feasible in the considered nonlinear
and high-dimensional scenario. The capability to track multiple
whales without human intervention is demonstrated in scenarios
with simulated and real data.

Index Terms— Array processing, Bayesian estimation, high-
dimensional estimation, multi-target tracking.

1. INTRODUCTION

Bioacoustic signals from marine organisms provide valuable infor-
mation for understanding and surveying marine ecosystems. Passive
acoustic monitoring (PAM) is a nonintrusive and efficient method
for acquiring bioacoustic signals that can potentially be used to
detect, localize, and track vocalizing marine organisms. Among
these organisms, odontocetes (toothed whales) generate directional
acoustical pulses called echolocation clicks for foraging and navi-
gating underwater [1]. Echolocation clicks acquired by volumetric
hydrophone arrays can be used to compute TDOA measurements of
potential whale locations. However, tracking of echolocating whales
is challenged by the presence of noise, echoes, and simultaneously
vocalized signals by other marine organisms, which give rise to false
positive TDOA measurements. Moreover, long periods of missed
detections can occur due to the aspect dependence of echolocation
click transmissions with respect to the receivers. Therefore, most ap-
proaches for tracking whales from acoustic signals rely on a human
operator or heuristics to combine the correct TDOA measurements
from the same source and initialize tracks accordingly [2–7].

Bayesian tracking of multiple sources in 3-D based on TDOA
measurements is challenging because of the highly nonlinear mea-
surement model and the high-dimensional object states. Existing
Bayesian multi-target tracking (MTT) methods for marine mam-
mals tracking include [8] and [9]. In [8], multi-hypothesis tracking
(MHT) is applied to tracking echolocating whales in 3-D. MHT,
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Data

Fig. 1: Block diagram of the proposed data processing chain for tracking
whales in 3-D. The signal processing module extracts time-difference-of-
arrival (TDOA) measurements of echolocation clicks. The parameter estima-
tion module then estimates tracks from TDOA measurements in two stages.
The first stage relies on a linear model and performs tracking in the TDOA
domain for each hydrophone pair in parallel. The second stage relies on a
high-dimensional nonlinear model and forms tracks in 3-D.

however, is limited to linear measurement models or mildly nonlin-
ear measurement models and faces high computational complexity
and memory requirements [10]. In [9], a Gaussian mixture prob-
ability hypothesis density (GM-PHD) filter [11] is extended to
incorporate amplitude information for tracking whales in the TDOA
domain. The GM-PHD is similarly limited to measurement models
that are linear or mildly nonlinear and is thus unsuitable for tracking
in 3-D from TDOA measurements. Additionally, localization and
tracking in 2-D based on TDOA measurements using Bayesian MTT
methods have been introduced in [12, 13].

To address these challenges, we propose a data processing chain
that extracts TDOA measurements of echolocation clicks acquired
by volumetric hydrophone arrays and tracks whales in 3-D. First,
TDOA measurements are computed based on a generalized cross-
correlation (GCC) [14] that whitens the instrument noise. Then,
two stages of an MTT method based on factor graphs and the sum-
product algorithm (SPA) [15] are applied. Whales are first tracked
individually for each hydrophone pair in the TDOA domain to close
gaps of missed detections and reject false positive measurements.
A second tracking stage fuses the resulting TDOA estimates in the
3-D domain. To cope with the nonlinear measurement model and
high-dimensional state space, particle flow [16] is embedded in the
SPA [17]. Simulation and real data application results show that the
proposed data processing chain successfully tracks whales from their
echolocation clicks in a fully automated and tractable manner.

2. THE PROPOSED DATA PROCESSING CHAIN

The data processing chain for detecting and tracking echolocating
whales is in two parts (Fig. 1). First, the signal processing stage
detects echolocation clicks and computes potential TDOA measure-
ments from pairs of hydrophones. These measurements are used in
the parameter estimation stage, where the whales are first tracked in
the TDOA domain and then in the 3-D domain.IC
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2.1. GCC-WIN
The time delay of a coherent signal is often detected and estimated
using a GCC [14]. The cross-power spectral density (PSD) between
two signals is normalized with a frequency weighting optimal for
time-delay estimation for the given signals. We adopt GCC to whiten
the instrument noise, thereby enhancing the TDOA detection rate in
the presence of a coherent instrument noise signal. We refer to this
method as GCC-WIN.

Consider a spatially separated receiver pair (s1, s2), which forms
a TDOA sensor s 2 {1, . . . , ns} with ns being the number of pairs
of receivers. A GCC of length ng samples is performed at each
discrete tracking time step. The discrete received signals at time n
from a remote source that generated a signal xs[n] in the presence of
noise, ns[n], for sensor s are given by

ys1 [n] = xs1 [n] + ns1 [n] (1)

ys2 [n] = ↵xs1 [n+ d] + ns2 [n]
(2)

where x s1 [n], ns1 [n], and ns2 [n] are real, stationary, and ergodic
random processes, ↵ is a scaling factor, and d is the TDOA.

The GCC is performed in the frequency domain, where the
discrete frequency is represented by l. Let the discrete Fourier
transform pairs of ys1 [n] and ys2 [n] be Ys1 [l] and Ys2 [l], re-
spectively, and the cross-PSD estimate of the received signals be
Rs[l] = Ys1 [l]Y

⇤
s2 [l]. The corresponding GCC as a function of

discrete time delay, m, is given by [14]

ĥs[m] =
1
ng

ng�1X

l=0

 [l]Rs[l]e
j2⇡ml/N (3)

with  [l] being the frequency weighting. In GCC-WIN, the fre-
quency weighting is  s[l] = 1/(Gs1,s1 [l]Gs2,s2 [l])

1/2, where
Gs1,s1 [l] and Gs2,s2 [l] are the auto PSD estimates of the noise at
the respective receivers. In this work, the instrument introduced a
coherent noise signal with time-varying but periodic statistics that
dominated the background noise. Hence, a sequence of time-varying
noise PSD was estimated from spectrograms of the noise signals and
applied as the frequency weighting.

2.2. Review of Graph-Based MTT
At the discrete time k, we assume there are ik targets. However,
since ik is unknown and time-varying, we introduce potential target
(PT) states, which are denoted by index j 2 {1, . . . , jk} with jk be-
ing the maximum number of PTs given the available measurements
at time k. The existence of the PT j is represented by a binary vari-
able, r(j)k 2 {0, 1}, where r(j)k = 1 if and only if PT j exists. The
state of PT j is then denoted as y(j)

k = [x(j)T
k r(j)k ]T, where x(j)

k is
the position and motion-related parameters of the target.

We are interested in estimating the state of PTs, x(j)
k , if they

exist, based on the measurements up to time k. Let there be ns sen-
sors, and each sensor s 2 {1, . . . , ns} generates mk,s measurements
zk,s =

⇥
z(1)
k,s, . . . , z

(mk,s)

k,s

⇤T. There can be at most one measure-
ment at each sensor from each target, and the rest are false positives
(FPs). The probability of detecting a measurement originating from
PT j at sensor s is modeled as p(s)d (x(j)

k ) and follows a Bernoulli
distribution. The mth measurement, where m 2 {1, ...,mk,s}, is
distributed according to f(z(m)

k,s |x(j)
k ). The number of FPs is Pois-

son distributed with a mean µ(s)
fp . Each FP is iid according to pdf

f (s)
fp (z(m)

k,s ) and independent of the measurements from the targets.
Two types of PTs are possible: new PTs and legacy PTs. The

new PTs have generated the measurement for the first time, while

the legacy PTs have made at least one measurement at a previous
time step or sensor. A PT j at time k�1 continues to exist at time k
with survival probability psu(x

(j)
k ), and all PTs at time k�1 become

legacy PTs at time k. States of the new and legacy PTs are denoted
by y(j)

k,s = [x(j)T
k,s r(j)k,s]

T and y(j)

k,s
= [x(j)T

k,s r(j)k,s]
T, respectively.

Then, yk = [y
k
yk]

T is the vector that consists of all PT state at
time k, where yk and y

k
denote the vectors that consist of all new

and legacy PT states, respectively.
A latent random vector ak,s =

⇥
a(1)
k,s, . . . , a

(jk)
k,s

⇤T is used to
model the unknown association between measurements and targets
[18]. The random variable a(j)

k,s is equal to m 2 {1, ...,mk,s} if
PT j generates measurement m and 0 otherwise. The indicator
function  (ak,s) 2 {0, 1} ensures that at most one measurement
is generated by a target at every time step, where  (ak,s) = 0 if
9j, j0 2 {1, . . . , nt} such that j 6= j0 and a(j)

k,s = a(j0)
k,s 6= 0

Let yk =
⇥
y(1)
k , . . . ,y(jk)

k

⇤T, ak =
⇥
ak,1, . . . , ak,ns

⇤T, and
zk =

⇥
zk,1, . . . , zk,ns

⇤T be the joint vectors. The joint posterior
pdf of y1:k and a1:k given z1:k is given by [15]

f(y1:k,a1:k|z1:k) /
kY

k0=1

⇣ jk0�1Y

j0=1

f(y(j0)
k0 |y(j0)

k0�1
)
⌘ nsY

s=1

 (ak0,s)

⇥
⇣ jk0,sY

j=1

q(x(j)
k0,s, r

(j)
k0,s, a

(j)
k0,s; zk0,s)

⌘

⇥
mk0,sY

m=1

v(x(m)
k0,s, r

(m)
k0,s, a

m
k0,s). (4)

Here, f(y(j0)
k0 |y(j0)

k0�1
) represents the motion model of the targets, and

the remaining factors represent the measurement model. In particu-
lar, the factors q(x(j)

k,s, r
(j)
k,s, a

(j)
k,s; zk,s) and v(x(m)

k,s , r(m)
k,s , am

k,s) are
functions of p(s)d (x(j)

k ), µ(s)
fp , f (s)

fp (z(m)
k,s ), and f(z(m)

k,s |x(j)
k ).

With the joint posterior pdf in (4), one can marginalize and com-
pute the MMSE estimate of the PTs with rk(j) = 1 [19] following

x̂(j)
k ,

Z
x(j)

k f
�
x(j)

k

��r(j)k =1, z1:k

�
dx(j)

k (5)

where f
�
x(j)

k

��r(j)k = 1, z1:k

�
= f

�
x(j)

k , r(j)k = 1
��z1:k

�
/p
�
r(j)k

=1
��z1:k

�
. An efficient marginalization is performed with the frame-

work employing factor graphs and SPA [20]. The complete details
on the joint posterior pdf, system model, and the SPA for MTT can
be found in [15].

2.3. Particle Flow
A key challenge of performing the SPA for the considered MTT
problem is the combination of high-dimensional state space and non-
linear measurement model for which a conventional particle imple-
mentation of the SPA for MTT based on bootstrap importance sam-
pling [21] is unsuitable. Hence, we make use of invertible particle
flow for importance sampling. Particle flow actively migrates par-
ticles x(j,i)

k , i 2 {1, . . . , np} drawn from the predicted posterior
pdf f

�
x(j)

k

��r(j)k = 1, z1:k�1

�
towards high-likelihood regions [16].

This migration is performed sequentially and at each time step k
across pseudo time steps l 2 {1, . . . , nf}. The particle flow map-
ping x(j,i)

k ! ~x(j,i)
k from pseudo time step l= 1 to l= nf is proven

to be invertible, i.e., there exists a mapping of the particles after the
flow to the particle before the flow [22]. By exploiting this invertible
mapping, the particle-flow proposal pdf can be evaluated as [22]
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q(~x(j,i)
k |z) =

f
�
x(j,i)

k

��r(j)k =1, z1:k�1

�

✓(j,i)
(6)

where the “mapping factor” ✓(j,i) is computed based on a first-order
Taylor series expansion of the TDOA measurement in (10). Per-
forming importance sampling by using the particles after the flow,�
x(j,i)

k

 np

i=1
, and by evaluating the corresponding proposal pdf in

(6) is asymptotically optimal and enables MTT in the considered
nonlinear and high-dimensional problems [17].

3. TRACKING OF ECHOLOCATING WHALES

First, MTT is applied in the TDOA domain to each hydrophone pair
separately. Next, the tracking algorithm combines the TDOA track-
ing results from the first stage to track the whales in the 3-D.

3.1. MTT in TDOA Domain
In the TDOA domain, the state of the whale j is denoted as d(j)

k,s =

[d(j)k,s ḋ(j)k,s]
T, where d(j)k,s is the true TDOA and ḋ(j)k,s is its rate of

change at time step k and sensor s. The state transition model fol-
lows a linear constant velocity motion model [18],

d(j)
k,s =


1 tm
0 1

� "
d(j)k�1,s

ḋ(j)k�1,s

#
+ u(j)

k,s (7)

where tm is the length of each time step, and the driving noise
u(j)

k,s 2 R2 is a zero-mean multivariate Gaussian random vector with
a driving noise standard deviation (STD) �u and a covariance matrix

⌃u =

"
t3m
3

t2m
2

t2m
2 tm

#
�2
u. (8)

The measurement model is given by z(m)
k,s = d(j)k,s+v(m)

k,s , where
z(m)
k,s is the TDOA originated from the whale j at sensor s, and v(m)

k,s
is a zero-mean Gaussian measurement noise with STD �v. The pdf
of the false positives, f (s)

fp

�
z(m)
k,s

�
, is uniformly distributed over in-

terval [�tmax
s tmax

s ], where tmax
s is the maximum time delay at sensor

s corresponding to an arbitrary hydrophone pair (s1, s2). In partic-
ular, given the speed of sound, c, and the positions qs1 2 R3 and
qs2 2 R3 of the hydrophone pair, tmax

s is equal to kqs1 �qs2k/c.
The SPA-based MTT method (Sec. 2.2) is used since there is

measurement-origin uncertainty (MOU), and the number of whales
is unknown and time-varying. The tracking results of this stage are
sets of TDOA estimates d̂(j)k,s, j 2 {1, . . . , jk,s} for each time step k
and sensor s. In the next section, they are used as measurements in
the 3-D MTT stage, denoted as d̂(m)

k,s , m 2 {1, . . . ,mk,s}.
In this work, we also preprocess the TDOA measurements by

accumulating and clustering them over a time period to reduce the
processing time and be robust against the time-varying nature of the
inter-click-interval (ICI) [23] of the echolocation clicks.

3.2. MTT in 3-D
The whales are tracked in 3-D with the TDOA measurements, where
multisensor data association and track initialization are performed
[21, 24]. At time k, the state of the whale j is denoted as p(j)

k =⇥
p(j)k,x p(j)k,y p(j)k,z ṗ(j)k,x ṗ(j)k,y ṗ(j)k,z

⇤T, where p(j)k,x, p(j)k,y , and p(j)k,z are
the position of the whale in the 3-D Cartesian coordinate system and
ṗ(j)k,x, ṗ(j)k,y and ṗ(j)k,z are the respective velocities. The motion model
again follows the linear constant velocity model

p(j)
k =


I3 tmI3
03 I3

�
p(j)
k�1 +

"
t2m
2 I3
tmI3

#
w(j)

k (9)
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Fig. 2: Average RMSE across 200 Monte Carlo simulations versus the num-
ber of simultaneously tracked whales. Three different 3-D whale tracking
approaches are considered: a nonsequential tracker (NST), a single Bernoulli
tracker (SBT), and the proposed MTT approach (MTT). Unlike (NST) and
(SBT) which rely on perfect data association, (MTT) performs data associ-
ation in the presence of false positive measurements. The error bars denote
the 75th percentile of the measured RMSE.

where w(j)
k 2 R3 is a zero-mean Gaussian driving noise with STD

�w and covariance I3�
2
w.

The TDOA measurement model for the whale j is given by

d̂(m)
k,s =

�
kp(j)

k � qs1k � kp(j)
k � qs2k

�
/c+ b(m)

k,s (10)

where b(m)
k,s 2 R is a zero-mean Gaussian measurement noise with

STD �b. Since multiple sensors involve acoustic recordings from
the same hydrophone, b(m)

k,s is not statistically independent across
sensors. However, for simplicity, it is assumed independent to facili-
tate MTT in 3-D. The pdf of the false positives, f (s)

fp

�
z(m)
k,s

�
, is again

uniform on the interval [�tmax
s tmax

s ].
The nonlinear measurement model in (10) is underdetermined

and yields a potential whale location on a hyperboloid. To estimate
the 3-D location, the TDOAs from multiple sensors have to be fused.
Due to the presence of MOU, noise, and an unknown number of
whales, no accurate intersection can be found, and thus, reliable state
estimation can only be performed sequentially. We again apply the
MTT approach from Sec. 2.2 with a particle-based implementation.
To avoid particle degeneracy [25] and curse of dimensionality [26],
we use particle flow recently proposed in [17].

3.3. Simulation
PAM data often lacks ground truth to verify the tracking outcomes.
Thus, the estimated tracks are compared with those from manually
annotated approaches, which are subjective and imperfect. To mo-
tivate the use of the proposed tracking method, we compare the
root-mean-square error (RMSE) of 3-D tracking results from sim-
ulated data using three different methods: nonsequential tracking
(NST) using a combination of DOAs [6], a single Bernoulli tracker
(SBT) [27], and the proposed MTT approach described in Sec. 3.2
(MTT). Note that (MTT) is required to solve the data association
problem given the MOU, while (NST) and (SBT) are genie-aided in
that the association is known.

Four sets of 200 Monte Carlo simulations of whale tracks are
generated and tracked using the approaches (NST), (SBT), and
(MTT). Each set of simulations is 85 discrete time steps long and
has an increasing number of simultaneously present whales from
1 to 4. Each whale is present for 50 time steps, and a whale is
introduced every 10 time steps when multiple whales are simulated.
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Hyperparameters TDOA 3-D

Detection Probability, pd 0.80 0.80

Survival Probability, psu 0.90 0.99

Mean Number of False Positives, µfp 10 1

Mean Number of Whale Birth, µb 1.0⇥10�4 1

Measurement Noise STD, �u &�w 1.0⇥10�5 3.0⇥10�5

Driving Noise STD, �v &�b 1.5⇥10�7 1.0⇥10�2

Number of Particles 30, 000 100, 000

Minimum Track Length 20 5

Table 1: Hyperparameters for tracking whales in TDOA domain and in 3-D.

The whales’ initial positions are uniformly distributed on a circle of
radius 1000 m on a xy-plane and at a fixed depth of 1000 m. Using
the hyperparameters in Table. 1 and the array geometry in Sec. 4,
TDOA data from assumed echolocation clicks of those whales are
simulated following the model in (10). In (NST) and (SBT), we use
the true but noisy TDOAs generated from the corresponding whales.
In case of missed detections, (NST) uses the interpolated data, and
(SBT) takes the missed detections into account. When the whale is
not detected or there is a large error due to false positives or missed
detections, the error value of 110 m is applied for (SBT) and (MTT).
This penalty is roughly twice the average RMSE of (NST).

Based on the results in Fig. 2, the performance of (MTT) is be-
tween those of (SBT) and (NST). Since (NST) does not apply a filter
to the interpolated data, the high RMSE is expected. (SBT), how-
ever, filters the tracks and also incorporates missed detections into
its statistical model, yielding the lowest RMSE. (MTT) employs the
Bernoulli filter but faces the data association problem, causing an
RMSE between those from (NST) and (SBT).

4. REAL DATA APPLICATION

Echolocation clicks of beaked whales were passively recorded on
two high-frequency acoustic recording packages (HARPs) [28].
Each HARP is equipped with four hydrophones that are 1m apart
and arranged in a tetrahedral shape (see Fig. 2 in [4]), forming a
small-aperture volumetric array. They were deployed off the coast
of California at a depth of ⇠1300 m from March 2018 to July 2018.
The two arrays were approximately 1km apart, establishing a large-
aperture array, and we refer to the arrays located east and west as
HARP EE and HARP EW, respectively. The encounters of Cuvier’s
beaked whales were detected using the long-term spectral average
(LTSA) with a software package Triton [28].

The details of the tracking setup are as follows. Since the TDOA
is computed for every pair of hydrophones in each of the two ar-
rays with four hydrophones, there are ns = 12 TDOA sensors total.
TDOA measurements are accumulated over tm = 7 s. We employ
the east-north-up (ENU) system, where the x-, y-, and z-axes are
positive along the east, north, and up directions. The origin is set
between the two arrays and at the sea surface. Additionally, since
the beaked whales are detected below the thermocline, we assume
that they are in an isovelocity medium with the speed of sound of
c = 1490 ms-1. The hyperparameters for tracking in TDOA and 3-D
domains are shown in Table. 1.

Two whales were detected and tracked from the acoustic data
recorded on July 1st, 2018. Their tracks in the TDOA and 3-D do-
mains are compared to the results using (NST) in [6] with the hand-
annotated data (Fig. 3). The diving behaviors of the two whales

Time (min)

TD
O

A
(m

s)

0 5 10 15 20

�0.5

0

0.5

(a)

EW

EE

x (m) y (m)

z
(m

)

�500
0

500
�500

0

500

�1500

�1000

�500

(b)

Fig. 3: MTT results using real acoustic data collected on the coast of South-
ern California. Two whales are simultaneously dive into deeper waters. In
(a), TDOA measurements (blue dots) and resultant TDOA tracks (red dots)
from one sensor of HARP EE are shown. In (b), MTT results (blue and red
lines) are compared with results that rely on hand annotation (dashed lines).
Diamonds and crosses indicate the start and end of tracks.

were detected at relatively shallow depths of approximately 450 m.
The proposed MTT approach was able to track the two whales that
started close to each other. By using GCC-WIN, more echolocation
clicks were detected such that longer 3-D tracks (approximately by
five more minutes) were generated.

In addition, the accumulated runtime of the data processing
chain is measured to be approximately 39 min using a MacBook Pro
with an Apple M1 Pro chip and 32 GB memory. Of the 39 min, the
TDOA tracking across all sensors and the 3-D tracking took 5 and
20 min, respectively.

5. CONCLUSION AND FUTURE WORK

We propose an algorithmic solution for automatically detecting and
tracking whales in 3-D based on their echolocation clicks. Acous-
tic measurements are provided by a volumetric hydrophone array.
For each pair of hydrophones, TDOA measurements of echoloca-
tion clicks are extracted using a noise-whitening cross-correlation.
Tracking is performed in two stages based on an MTT framework
using factor graphs and the SPA. In the second stage, particle flow
is embedded into the SPA to make tracking computationally feasi-
ble in the considered nonlinear and high-dimensional scenario. The
presented results based on synthetic and real data demonstrate that
the proposed processing chain can detect and track multiple whales
in a fully automated way. To enhance tracking performance, espe-
cially in scenarios with closely spaced whales, ICIs could be incor-
porated as random parameters to be estimated. In addition, future
work could extend 3-D tracking to an interacting multiple models
(IMM) approach where the best model for whale motion is automat-
ically selected during runtime. Finally, the proposed data processing
chain will facilitate scientific studies of echolocating whales based
on PAM.
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