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Abstract

Premise: Dioecy (separate sexes) has independently evolved numerous times across
the angiosperm phylogeny and is recently derived in many lineages. However, our
understanding is limited regarding the evolutionary mechanisms that drive the origins
of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms
offers an opportunity to make strong inferences about the ecological, developmental,
and molecular factors influencing the evolution of dioecy, and thus sex chromosomes.
The genus Asparagus (Asparagaceae) is an emerging model taxon for studying dioecy
and sex chromosome evolution, yet estimates for the age and origin of dioecy in the
genus are lacking.

Methods: We use plastome sequences and fossil time calibrations in phylogenetic
analyses to investigate the age and origin of dioecy in the genus Asparagus. We also
review the diversity of sexual systems present across the genus to address
contradicting reports in the literature.

Results: We estimate that dioecy evolved once or twice approximately 2.78-3.78
million years ago in Asparagus, of which roughly 27% of the species are dioecious and
the remaining are hermaphroditic with monoclinous flowers.

Conclusions: Our findings support previous work implicating a young age and the
possibility of two origins of dioecy in Asparagus, which appear to be associated
with rapid radiations and range expansion out of Africa. Lastly, we speculate that
paleoclimatic oscillations throughout northern Africa may have helped set the
stage for the origin(s) of dioecy in Asparagus approximately 2.78—3.78 million
years ago.
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monoclinous (Ming et al,, 2011; Carey et al., 2022). Theory suggests that

flowers—stamens and pistils within the same flower—
functioning as hermaphroditic individuals. However,
approximately 6% of angiosperm species evolved separate
sexes (dioecy) producing strictly pistillate or staminate
flowers, functioning as either female or male individuals,
respectively (Renner, 2014). Interestingly, dioecy has
independently evolved numerous times in ancestrally
hermaphroditic clades across the angiosperm phylogeny

dioecy is adaptive in that it precludes inbreeding through
self-pollination (Charlesworth and Charlesworth, 1978;
Thomson and Barrett, 1981) and can improve fertility
through focused resource allocation for production of
pollen (males) or ovules and seeds (females) (Darwin, 1877;
Barrett, 1992; Ramsey et al, 2006). Both factors may
contribute to the origins of dioecy in small populations
occupying resource-limited environments.
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EVOLUTION OF DIOECY IN ASPARAGUS

The two most prominent theories for the evolutionary
transition from hermaphroditism to dioecy predict that
dioecy evolves via (1) selection for distinct male and female
genotypes in a monoecious population wherein the
developmental pathway for unisexual flowers should already
exist (Lewis, 1942; Renner and Ricklefs, 1995; Boualem
et al,, 2015) or (2) the origin of a female-sterilizing mutation
in a gynodioecious (i.e., female and hermaphroditic
individuals) population wherein a male-sterilizing mutation
is already established (Darwin, 1877; Charlesworth and
Charlesworth, 1978). It is also theoretically possible for
dioecy to arise via androdioecy (i.e., population with male
and hermaphroditic individuals) (Charlesworth and
Charlesworth, 1978). However, androdioecy is rare in
nature since males are less likely to invade hermaphroditic
populations, due to the inherent pollen competition
between selfing bisexual flowers and unisexual staminate
flowers (Lloyd, 1975). Nonetheless, our understanding of
the pathways to dioecy is limited for flowering plants and
across the tree of life (Renner and Ricklefs, 1995; Abbott
et al., 2017). The recent and repeated evolution of dioecy in
flowering plants offers an opportunity to make strong
inferences about the ecological, developmental, and molec-
ular mechanisms influencing the early stages of dioecy and
sex chromosome evolution (Charlesworth, 2019; Renner
and Miiller, 2021).

The genus Asparagus Tourn. ex L. (Asparagaceae) is an
ideal system for studying the evolution of dioecy because it
encompasses a mixture of hermaphroditic (exhibiting mono-
clinous flowers) and dioecious lineages (e.g., garden asparagus
[Asparagus officinalis L.]) and dioecy is thought to have
evolved recently in the genus (Galli et al, 1993; Norup
et al,, 2015; Harkess et al., 2016). The age and origin of dioecy
in Asparagus should directly coincide with the evolution of
sex chromosomes because dioecious phenotypes in A.
officinalis and close relatives are controlled by the presence/
absence of a 1-Mb segment on the Y chromosome (Harkess
et al, 2017, 2020). Asparagus (215 species) is one of two
genera in the Asparagaceae subfamily Asparagoideae, along
with Hemiphylacus S. Watson (5 species) (Pires et al., 2006;
Chase et al., 2009; Seberg et al., 2012). The biodiversity
hotspot for Asparagus is southern Africa, but the genus is
widespread across temperate, semiarid, and tropical regions of
Africa, Europe, and Asia (POWO, 2023). Interestingly, the
sister genus, Hemiphylacus, is endemic to Mexico and mostly
grows in limestone or rhyolitic areas (Hernandez, 1995).
Whereas Asparagus species exhibit a variety of aboveground
forms that are upright, self-supporting/sprawling, or climbing,
but are characterized by their non-photosynthetic modified
leaves that are reduced to bracts apically and spurs or spines
basally (Obermeyer et al, 1992), and cladodes (or phylo-
clades), which are modified axillary shoots that function as
leaves (Nakayama et al, 2012) (Figure 1), all species of
Hemiphylacus exhibit true leaves that form a rosette growth
habit (e.g., Figure 10) (Hernandez, 1995). Like most
Asparagaceae lineages, both Asparagoideae genera produce
storage roots (e.g, Figure 1K) with a wide array of

interspecific morphological diversity. Most Asparagus and
all Hemiphylacus species are hermaphroditic with strictly
monoclinous flowers (Hernandez, 1995; Kanno and
Yokoyama, 2011), which is the hypothesized ancestral state
of Asparagoideae and Asparagus (Obermeyer, 1983; Fukuda
et al., 2005; Norup et al., 2015). However, a minority of
Asparagus species exhibit sexual dimorphism and are almost
always described as dioecious with unisexual flowers (Kanno
and Yokoyama, 2011), though contradicting claims have been
made of monoecy (Renner and Miiller, 2021) and gynodioecy
(Norup et al, 2015) in Asparagus. To resolve such
discrepancies in the literature and better understand how
dioecy evolved in Asparagus, a comprehensive review of the
total diversity of sexual systems present in the genus is
required.

Phylogenetic analysis of three plastid genome (plas-
tome) loci (trnH-psbA, trnD-trnT, and 3'ndhF) and one
nuclear gene (phytochrome C) suggests that Asparagus
species cluster into six major clades (with varying
bootstrap support): Asparagus (89%), Racemose (65%),
Lignosus (71%), Africani-Capenses (93%), Myrsiphyllum
(81%), and Setaceus (67%) (Norup et al., 2015). Although
relationships amongst these clades were weakly supported
(all <65% bootstrap support), Norup et al. (2015)
discussed morphological evidence and past taxonomical
work supporting their veracity. Nonetheless, the weakly
supported inferences asserted by Norup et al. (2015) need
to be tested through phylogenomic analyses. Of particular
relevance for the utility of Asparagus as a model for the
evolution of dioecy and sex chromosomes, published
phylogenetic and biogeographic analyses have suggested
that the genus arose and radiated in southern Africa, and
dioecy evolved as ancestral species dispersed into
northern Africa, Europe, and Asia (Fukuda et al., 2005;
Kubota et al., 2012; Norup et al,, 2015). Most extant
dioecious species are distributed in the Mediterranean
Basin and across Eurasia, while most hermaphroditic
species occur in Sub-Saharan Africa, thus transitions from
hermaphroditism to sexual dimorphism in Asparagus
appear to be associated with long-distance dispersal out of
southern Africa (Norup et al., 2015). This geographic
distribution supports predictions that dioecy may evolve
in response to selection for reduced inbreeding in small
populations founded through long-distance dispersal and
colonization of new habitats (Charlesworth and
Charlesworth, 1978; Thomson and Barrett, 1981). Addi-
tionally, previous work suggests that dioecy may have
either (1) independently evolved twice in Asparagus, once
in a clade with A. officinalis and again in a clade with
Asparagus horridus L. or (2) only once followed by a loss
in at least one hermaphroditic lineage including Aspara-
gus pauli-guilelmi Solms ([syn. Asparagus flagellaris
(Kunth) Baker] and Asparagus petersianus Kunth (Norup
et al, 2015). However, support for nesting these
hermaphroditic lineages within an otherwise dioecious
clade was generally low (Norup et al., 2015). Results from
a different analysis of five noncoding plastome loci (rpl32-
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FIGURE 1 Photographs illustrating morphological diversity found in the Asparagoideae genera Asparagus and Hemiphylacus. (A) Asparagus acutifolius
showing staminate flowers with rudimentary pistil development and glabrous, spiney cladodes. (B) A. cochinchinensis with staminate flowers and flattened
cladodes. (C) A. officinalis with red berries and subterete cladodes. (D) A. asparagoides showing bisexual, axillary flowers, and broad, leaf-like cladodes.
(E) A. alopercurus showing bisexual flowers and hairy cladodes. (F, K, L) A. exuvialis bisexual (F) flower, (K) tuberous roots, and (L) peeling stem.

(G, H) Contrasting growth habits between (G) the sprawling habit of A. densiflorus cv. Sprengeri, compared to (H) the climbing habit of A. aethiopicus
(I) A. horridus extremely spiny, glaucous cladodes and dried staminate flowers. (J) A. falcatus exhibiting bisexual flowers and broader, more leaf-like
cladodes. (M, N) Lower stem spine morphology differences between (M) A. aethiopicus and (N) A. densiflorus. (O) Rosette-forming growth habit and true
leaves of Hemiphylacus hintoniorum. Image credits: (A) Philip C. Bentz. (B) Shin-Ming Ku (https://www.inaturalist.org/observations/109812909).

(C) iNaturalist user Igorpysh (legal name unavailable) (https://www.inaturalist.org/observations/150112770). (D-H, J-N) John and Sandra Burrows.

(I) Mason McNair. (O) Joey Santore (https://www.inaturalist.org/observations/110933573). iNaturalist photographs (licensed under http://creativecommons.
org/licenses/by-nc/4.0/) were cropped to fit the figure with no other adjustments.

trnL, trnQ-5'rps16, ndhF-rpl32, psbD-trnT, and 3'rps16-5’
trnK) weakly suggests a single origin of dioecy in the
genus (Kubota et al., 2012), though none of the
hermaphroditic taxa nested in the putative dioecious
clade from Norup et al. (2015) were included in that
analysis. To elucidate the number of putatively

independent origins of dioecy in Asparagus, a significant
increase of sequence data may be required for phyloge-
nomic analysis of strategically chosen taxa.

In a separate analysis based on four plastid genes (matK,
rbcL, atpB, and ndhF), the stem age of Asparagus was
estimated at 8.6-25 million years ago (Ma) (Chen

QSUIIT suowwo)) dANea1)) [qearjdde ay) £q pautaA0 a1k s3[ONIE Y LaSN JO SN 10J AIRIQIT AUIUQ AS[TAN UO (SUOTIIPUOI-PUB-SULIAY/ WO AAIM" AIRIqI[aul[uo//:sdNY) SUonIpuo) pue swId I, 3y 39S ‘[$70z/c0/c7] uo Areiqry auruQ L3I ‘9£791°2qM/Z001°01/10p/wod Kaopim  Krexqijautjuosqndesq,/:sdny woiy papeojumo( ‘z ‘¢70T ‘L61TLEST


https://www.inaturalist.org/observations/109812909
https://www.inaturalist.org/observations/150112770
https://www.inaturalist.org/observations/110933573
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

4 of 21 |

EVOLUTION OF DIOECY IN ASPARAGUS

et al.,, 2013). This analysis included one hermaphroditic and
three dioecious species of Asparagus, which allowed for
inference of the age of dioecy in the genus (Renner and
Miiller, 2021), though the main objective of the Chen et al.
(2013) study was to date the origins of family-level clades
across Asparagales. Molecular dating experiments may be
sensitive to undersampling of the focal clade, in extreme cases
(i.e., when <10% of species are sampled) exacerbating age
underestimation (Linder et al, 2005). Additionally, A.
officinalis and other branches/clades crucial for investigating
dioecy evolution in Asparagus were missing in analyses from
Chen et al. (2013) (e.g, A. horridus, A. flagellaris, A.
petersianus, and close relatives) and the resulting topology is
incongruent with that of Asparagus-centered analyses (e.g.,
Kubota et al., 2012; Norup et al,, 2015). Investigation of dioecy
in the genus Asparagus requires a robust phylogenetic
framework with increased sampling of dioecious lineages.

In this study, we investigate the diversity of sexual
systems in Asparagus by comprehensively reviewing the
literature and explore the evolution of dioecy in the genus
through plastome-based phylogenomic analysis. Plastid
gene and genome sequences are widely used to investigate
species diversification (e.g., Steele et al, 2012; Ross
et al., 2016) and divergence time estimates across angios-
perms (e.g., Chen et al,, 2013; McKain et al., 2016; Givnish
et al., 2018) because (1) they are thought to evolve relatively
clocklike (i.e., low to moderate evolutionary rate), (2) are
conserved across the majority of flowering plant lineages,
and (3) do not typically recombine in a way that is
phylogenetically relevant (Doyle, 2022). We assembled
38 complete plastomes for strategically targeted species of
Asparagus to generate a plastome phylogeny with repre-
sentatives from all six major clades in the genus, including
focused sampling of taxa pertinent to the investigation of
dioecy and sex chromosome evolution. We then use the
resulting phylogenomic inference to investigate the origin(s)
of dioecy in Asparagus and apply fossil time calibrations
from across the monocots to estimate the evolutionary age
of dioecy in the genus. Asparagus has emerged as a model
system for studying the evolution of dioecy and sex
chromosomes in plants and has already contributed to
our broad understanding of molecular dynamics related to
the dioecy evolution in angiosperms (Charlesworth, 2019;
Andreuzza, 2020; Harkess et al., 2016, 2017, 2020; Carey
et al., 2021; Renner and Miiller, 2021). The phylogeny and
divergence time estimations we report in this study are
foundational for future investigation of dioecy and sex
chromosome evolution across the genus Asparagus.

MATERIALS AND METHODS
Review of sexual systems in Asparagus
Sexual systems for all species were scored based on a review of

the literature and original species descriptions (e.g., Barker-
Webb et al, 1836; Hooker, 1894; Baker, 1875, 1898;

Wildeman, 1913; Engler, 1922; Hutchinson and Dalziel, 1954;
Andrews, 1956; Oi, 1965; Valdés, 1980; Mill and Tan, 1984;
Obermeyer, 1983, 1984; Rechinger, 1964, 1990; Obermeyer
etal., 1992; Malcomber and Demissew, 1993; Zhengyi et al., 2000;
Thulin, 2002; Demissew, 1995, 2008; Norup et al, 2015;
Boubetra et al, 2017; Regalado et al, 2017; Kottaimuthu
et al,, 2019) and personal observations in the field. Species with
diclinous flowers of only one sex type per plant (ie., male or
female) were scored as dioecious, while species bearing solely
monoclinous flowers were scored as hermaphroditic. We also
reviewed the literature on Asparagus for all other possible
sexual systems (e.g., gynodioecy, androdioecy, and monoecy)
as defined by Renner (2014). If there was no documentation
of mating types for a species, then they were scored as
unknown. When reports of a species’” sexual system conflicted
previous reports, unless direct evidence was presented in the
more recent study, the original species description took
precedence.

Review of species geographical distributions

Biogeographical distributions were compiled for all species
of Asparagus according to the International Plant Names
Index (IPNIL; https://www.ipni.org) using the Royal Botanic
Gardens, Kew's Plants of the World Online (POWO, 2023).
We defined species’ geographical distribution according to
Biodiversity Information Standards (https://www.tdwg.org/
standards/), also known as Taxonomic Databases Working
Group's (TDWG) World Geographical Scheme for Record-
ing Plant Distributions Standard (Brummitt, 2001). Distri-
butions were recorded at the second level of TDWG's
recording scheme, which divides continents into biologi-
cally informative regions/subcontinents (Brummitt, 2001).

Taxon sampling for phylogenetic analysis

We focused sampling on the Asparagaceae subfamily
Asparagoideae, including 42 accessions from Asparagus and
one Hemiphylacus alatostylus L. Hern. The 42 Asparagus
accessions represent 39 distinct species that were strategically
selected to include at least two representative species from
each of the six major clades described by Norup et al. (2015),
encompassing the full geographic range and morphological
diversity of the genus. The sample included 19 accessions
representing 16 hermaphroditic species with monoclinous
flowers and 23 dioecious species of Asparagus. Voucher
information, along with additional details regarding clade,
geography, and sexual system for each Asparagus accession
used in this study can be found in Table 1. Some samples
originated from DNAs or published sequences that were used
in earlier studies (i.e., Kubota et al., 2012; Steele et al., 2012;
Norup et al.,, 2015; Harkess et al., 2017; Li et al., 2019; Wong
et al,, 2022). After reviewing the voucher specimen for these
samples, we identified a subset with questionable species
identifications. As such, in this study we reclassified and
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updated species names for the following voucher specimens
from Norup et al. (2015): M.V. Norup 56 (previously
Asparagus cf. juniperoides Engl.) as Asparagus alopecurus
(Oberm.) Malcomber & Sebsebe; M.V. Norup 110 [previously
Asparagus cf. concinnus (Baker) Kies] as Asparagus retro-
fractus L.; Burrows & Burrows 9428 [previously Asparagus
“karooicus” as Asparagus recurvispinus (Oberm.) Fellingham
& N.L. Mey.]; and Burrows & Burrows 7817 (previously
Asparagus sp. indetermined) as Asparagus cf. setaceus (Kunth)
Jessop. Further, we identified K.H. Wong 109 (previously
Asparagus aethiopicus L.) from Wong et al. (2022) as
Asparagus densiflorus (Kunth) Baker cv. Sprengeri.

Taxon sampling was extended across Asparagales (59
total samples) including all other Asparagaceae subfamilies
except for Aphyllanthoideae: Agavoideae (6 samples),
Nolinoideae (2), Brodiaeoideae (1), Lomandroideae (1),
Scilloideae (3). Aphyllanthoideae is a monotypic subfamily
that, when included in phylogenetic analysis, tends to
decrease support values of multiple neighboring branches
(Graham et al., 2006; Givnish et al., 2018). Sampling was
further extended across select monocot orders to include
Acorales (1 sample), Alismatales (1), Poales (1), Zingiberales
(2), Petrosaviales (1), Liliales (2), Arecales (1), and
Pandanales (2) to provide nodes for fossil time calibrations
in divergence time analyses since no reliable calibration
time points exist for Asparagus. Magnolia grandiflora was
included as an outgroup to the monocot clade. Additional
sample details and source information can be found in
Appendix SI.

DNA-sequencing data generation

Plastome sequences were extracted from either whole-
genome sequencing (WGS) or mining off-target Hyb-Seq
reads from experiments with Angiosperms353 (Johnson
et al, 2018) or Asparagaceael726—a recently developed
probe set for Hyb-Seq and phylogenomics in Asparagaceae
(P. C. Bentz and J. Leebens-Mack, University of Georgia,
unpublished data). Mining off-target reads from target-
enriched sequencing data is possible due to the high copy
number of organellar genomes in sequencing data (Graham
et al., 2006; Bratzel et al., 2023). In sum, DNA was isolated
from silica-dried or flash-frozen leaf tissue using Quick-
DNA Plant/Seed Miniprep Kit (Zymo Research, Irvine, CA,
USA), DNeasy Plant Mini Kit (Qiagen, Nordic, Copenha-
gen, Denmark), or Biomarker Plant DNA Kit (Beijing
Biomarker Biotechnology, Beijing, China) according to the
manufacturer's protocol. DNA-sequencing (DNA-Seq) li-
braries were prepared with KAPA HyperPlus Kit (Roche,
Basel, Switzerland) with custom adapters and iTru primers
from Adapterama I (Glenn et al., 2019) or NEBNext Ultra II
DNA PCR-free Library Prep Kit (New England Biolabs,
Ipswich, MA, USA). Libraries used in Hyb-Seq experiments
were pooled before hybridization reactions using standard
manufacturer recommendations with myBaits Custom
DNA-Seq Kit v.4. Libraries (Daicel Arbor Biosciences,

Ann Arbor, MI, USA), and pools were checked for quality
using Bioanalyzer High Sensitivity DNA Kit (Agilent
Technologies, Santa Clara, CA, USA) and quantified using
real-time PCR (qPCR) with KAPA Library Quantification
Kit and KAPA SYBR Fast qPCR Master Mix. DNA-Seq
libraries were sequenced using Illumina NovaSeq. 6000,
NextSeq. 500, or NextSeq. 2000 flow cells at the Hudso-
nAlpha Institute for Biotechnology (Huntsville, AL, USA),
Georgia Genomics and Bioinformatics Core (Athens, GA,
USA), or Beijing Biomarker (Beijing, China). See Appen-
dix S1 for DNA preparation details for each sample.

Plastome assembly and annotation

We removed sequencing adapters from the reads, corrected
mismatched base pairs, and removed reads shorter than 21
bases using fastp v.0.23.2 (Chen et al., 2018). Plastid sequence
assemblies were generated de novo using GetOrganelle
v.1.7.5.2 (Jin et al,, 2020) with default parameters for circular
plastome assembly and annotated using a reference-based
approach with PGA, which uses a reverse query-subject
BLAST search approach to accurately identify gene and intron
boundaries (Qu et al., 2019). We used PGA with default
parameters and the following references obtained from
GenBank: Asparagus cochinchinensis (NC_060472), Asparagus
filicinus (NC_046783), Asparagus setaceus (NC_047458),
Zamia furfuracea (JX416857), and Amborella trichopoda
(AJ506156). Zamia furfuracea and A. trichopoda are default
reference plastomes in PGA, since they contain some of the
highest gene numbers across seed producing plants (Qu
etal, 2019), and we added the Asparagus references to aid the
BLAST homology search. All plastome sequence assemblies
and annotations were visually inspected in Geneious Prime
v.2021.2.2 (Biomatters, Aukland, New Zealand).

Gene sampling for phylogenetic analysis

Plastid gene sequences were compiled for a total of 70 monocots
and the outgroup M. grandiflora. We used gene sequences from
77 protein-coding genes, rather than complete plastome
sequences, to account for missing data across samples. Notably,
ycfl, yef2, accD, and infA were not included in phylogenetic
analysis due to high sequence variability and alignment difficulty
(Givnish et al.,, 2018; H.-T. Li et al., 2019). The complete list of
sampled genes is in Appendix S2.

Phylogenetic analysis

We used MAFFT v.7.487 (Katoh and Standley, 2013) to
produce separate multiple sequence alignments (MSAs) for
each of the 77 plastome genes by employing MAFFT's L-INS-i
alignment strategy, an iterative refinement approach that
incorporates local pairwise alignment information and
typically results in a more accurate alignment (Katoh and
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Standley, 2013). Separate gene alignments were concatenated
into a supermatrix using SequenceMatrix v.1.9 (Vaidya
et al, 2011). The supermatrix was analyzed by maximum
likelihood (ML) using IQ-TREE v.2.2.0 (Minh et al., 2020)
with 1000 wultrafast bootstrap approximations (UFBoot)
(Hoang et al, 2018) and again with 100 standard non-
parametric bootstraps (SBS) for comparison. UFBoot is an
IQ-TREE function that helps reduce the use of computational
resources compared to SBS and still provides relatively
unbiased branch support (Minh et al., 2013). We partitioned
genes in the supermatrix and determined substitution models
according to IQ-TREE's ModelFinder (Kalyaanamoorthy
et al., 2017), allowing each partition to evolve under its own
evolutionary model (Chernomor et al, 2016). To remain
consistent with downstream divergence time estimation
analyses, we employed the TESTMERGE option in IQ-
TREE, which instructs ModelFinder to only consider the
invariable site and gamma rate heterogeneity models.

We then used Phycas v.2.2.0 to evaluate fully bifurcating
trees and tree topologies with polytomies in a Bayesian
framework (Lewis et al, 2015). The concatenated gene set
used for Phycas was the same as that used in the ML
analysis, but only Asparagoideae taxa were included. We
compared results from two independent runs of Phycas (with
different random number seeds) for each of the two search
strategies: one that invokes a polytomy prior with the flag
mcmc.topo_prior_C = 1, thus evaluating trees with polytomous
branching, and another that did not invoke the polytomy prior,
which directs the Markov chain Monte Carlo (MCMC) search
to only evaluate the likelihoods of fully bifurcating trees. All
Phycas runs used GTR+I" substitution models with four rate
categories and allowed for invariable sites. The MCMC for each
run was repeated for 100,000 cycles with a 10% burn-in,
sampling every 100 cycles. Fewer MCMC cycles are needed in
Phycas, compared to other Bayesian phylogenetic software,
since Phycas attempts to update most parameters at least once
every cycle (Phycas v.2.2.0; Lewis et al, 2015). Posterior
probabilities were compared for each branch between the two
Phycas search strategies (i.e., with and without assessment of
topologies with polytomous branches) to assess whether
bifurcating or polytomous branching patterns had greater
support and whether well-supported polytomies might be a
consequence of insufficient data or truly polytomous branch-
ing. Comparison of the two replicate runs for each Phycas
search strategy was performed to test for convergence.
Resulting trees from all ML and Phycas analyses were initially
plotted using R v4.22 (R Core Team, 2020) with a
combination of the following packages: ape (Paradis and
Schliep, 2018), treeio (Wang et al, 2019), phytools
(Revell, 2012), ggplot2 (Wickham, 2016), and ggtree (Yu
et al,, 2017).

Divergence time estimation

Divergence times were estimated on all nine data
partitions from the ML analysis using BEAST v.2.7.2

(Bouckaert et al.,, 2019) and BEAUti v.2.7.3 (Bouckaert
et al., 2019) to setup the BEAST input XML file. We
arbitrarily chose the UFBoot ML tree, rooted with the
outgroup M. grandiflora, to constrain tree topology in
BEAST, which restricted the MCMC to estimate diver-
gence times and not sequence relationships. Tree topology
constraints were applied in BEAUti by setting the weight
of the operators Bacterian Subtree Slide, Exchange
(Narrow), Exchange (Wide), and Wilson Balding to zero.
Using BEAUti, we scaled the input branch lengths of the
tree by a factor of 1100x, effectively scaling branches to
units of time in millions of years.

As in the ML analysis, we allowed each partition to evolve
separately in BEAST by unlinking site and clock models.
However, trees were linked between partitions because
plastomes do not recombine in a way that is phylogenetically
significant (Doyle, 2022). Substitution rates and proportion of
invariant sites were also estimated during the BEAST run.
GTR+T nucleotide substitution models with four gamma rate
categories were applied to each partition. We used a Yule tree
prior and estimated clock rates using an optimized relaxed
clock (Douglas et al., 2021) for all partitions. An initial clock
rate of le-3 was set, to help scale clock estimates (i.e., branch
lengths) to million years ago. To constrain branching time
estimations, we used age estimates for five monocot fossils
based on confidence of fossil age/taxonomy (see review of
these fossils by Iles et al., 2015) and availability of plastome
sequences for clades with representative fossils. Fossil time
calibrations were applied using a lognormal distribution with
a mean of 1.0, standard deviation (SD) of 2.0, and a minimum
age for the following nodes: offset (or min.) of 14.5 Ma
(Perkins et al, 1998) for the crown group of Agavoideae
(Asparagaceae) (Tidwell and Parker, 1990); offset of 22 Ma
(Giret et al., 1989) for the crown group of Lomandroideae
(Asparagaceae) (Conran, 1997); offset of 47 Ma
(Franzen, 2005; Mertz and Renne, 2005) for the crown group
of Cyclanthaceae (Smith et al., 2008); offset of 52 Ma
(Carpenter et al., 2007) for the stem group of Ripogonaceae
(Conran et al., 2009); and offset of 81.13 Ma (Hicks, 1993) for
the stem group of Aponogetonaceae (Grimsson et al., 2014).
To constrain total tree height, we also applied one secondary
calibration with a normal distribution on the stem node of all
included monocot taxa with a mean of 1.0, SD of 1.0, and
offset of 133 Ma (Magallon et al, 2015 Givnish
et al, 2015, 2018). Seven independent BEAST runs were
implemented with different starting seeds, with the same data
set and parameters. Resulting log and tree files were combined
using LogCombiner v2.7.1 (Bouckaert et al., 2019). After 10%
burn-in, all BEAST runs were continued until effective sample
sizes (ESS) were equal to or greater than 200 for each
parameter. To reach an ESS > 200, all independent BEAST
runs were combined for a total of 671,039,000 MCMC
generations with sampling every 1000 generations. The
MCMC ESS and convergence were assessed using Tracer
v.1.7.2 (Rambaut et al., 2018). A maximum clade credibility
tree with mean node heights using a sample of 477,185 post
burn-in trees (after 60% burn-in), to avoid unnecessary usage
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of computational resources, was produced using TreeAnno-
tator v.2.7.1 (Bouckaert et al., 2019).

Since much uncertainty exists when assessing correla-
tion between fossil age and the age of the most recent
common ancestor (MRCA) of a clade, best practice may be
to apply vague prior densities (Barido-Sottani et al., 2018).
To test whether prior densities had a significant effect on
divergence time estimates, we replicated the above BEAST
analysis, but instead of using a lognormal prior for each
fossil calibration, we applied a uniform distribution using
the offset value as the minimum age with no maximum.
Using these priors, we again implemented seven indepen-
dent BEAST runs and used the same tools and criteria for
assessing MCMC ESS and convergence. All together, these
supplemental BEAST runs summed to 674,345,000 MCMC
generations (after 10% burn-in) and a resulting maximum
clade credibility tree estimated using a sample of 472,043
trees (after 60% burn-in). The maximum clade credibility
trees from each BEAST run were plotted and polished using
the same methods as we did for the ML trees, along with the
R package rBt (Sinchez-Ramirez, 2018) to plot the 95%
highest posterior density (HPD) intervals.

RESULTS

Geographic distribution of monocliny and
dicliny in Asparagus

Of the 215 accepted species of Asparagus, 58 (or 26.98%)
were scored as dioecious with diclinous flowers, 142
(66.05%) as hermaphroditic with monoclinous flowers,
and 15 (6.97%) with unknown sexual systems and flower
types. We found no supporting evidence in the literature
for gynodioecious, androdioecious, nor monoecious
species of Asparagus. Of the 142 hermaphroditic species,
111 (78.2%) are native only to regions south of the Sahara
Desert in Africa, including nine Madagascar endemics,
and do not overlap geographically with dioecious species.
However, a small number of hermaphroditic species
overlap with dioecious species in the Mediterranean
Basin of northern Africa (3 species, one of which extends
into southern Europe [Asparagus albus L.]), Macaronesia
(8), Arabian Peninsula (6), and India (19). In Macar-
onesia, all species but Asparagus pastorianus Webb &
Berthel., which also occurs in the Mediterranean Basin,
are endemic to the region. Of the Indian species, 15 are
endemic, and the remaining four also occur in the
Arabian Peninsula. Three hermaphroditic species from
India have the widest geographic ranges in the genus:
Asparagus africanus Lam., Asparagus racemosus Willd.,
and Asparagus falcatus L. Altogether, the range of these
three species extends across the African continent
(excluding north of the Sahara Desert), Arabian Penin-
sula, and India. Asparagus racemosus is the most wide-
spread species in the genus, with a reported range
extending from Africa to China and Australia.

Of the 58 dioecious species of Asparagus, 29 (50%) are
native to China, 13 of which have broader ranges extending
from eastern Europe to India, Siberia, and eastern Asia.
Seven total dioecious species occur in eastern Asia, two of
which are endemic to Japan (i.e., Asparagus kiusianus
Makino and Asparagus pygmaeus Makino). Seven dioecious
species extend into India, though none are endemic there.
The remaining dioecious species are distributed across
western Asia (10), middle Asia (5), and Europe (12). Of the
European dioecious species, only one extends into northern
Europe (ie., Asparagus prostratus Dumort.), while three
extend into Asia (i.e., Asparagus verticillatus L., Asparagus
inderiensis Blume ex Ledeb., and Asparagus tenuifolius
Lam.). Asparagus tenuifolius also occurs in the Mediterra-
nean Basin along with three other taxa from Europe:
Asparagus horridus L., Asparagus acutifolius L., and
Asparagus aphyllus L. Unlike A. tenuifolius, these three
species are concentrated in the Mediterranean Basin,
inhabiting countries from all three continents that border
the Mediterranean Sea (i.e., Africa, Asia, and Europe).
Asparagus horridus is also reported in Macaronesia. A
summary of species distributions with monoclinous versus
diclinous flowers is illustrated in Figure 2. Additional details
regarding taxa included in this study can be found in
Table 1, and the full matrix for all 215 species of Asparagus
is in Appendix S3.

Plastome assembly and annotation

Complete circularized plastome assemblies were gener-
ated for 37 of the 38 samples of Asparagus collected for
this study. A complete plastome did not assemble from
the Angiosperms353 off-target reads for A. cf. setaceus
(Burrows & Burrows 7817); however, we were able to
assemble 75 of the 77 genes used in phylogenetic analyses
(Appendix S4). Plastome assemblies for the other 37
samples resulted in relatively similar lengths, ranging
from 155,655 bases in Asparagus angulofractus Iljin
(08¢s299) to 157,164 bases in Asparagus cooperi Baker
(P.C. Bentz 10). Overall, there were no major outliers
amongst the 37 complete plastome assemblies, in terms of
gene content, order, and organization, compared to the
common angiosperm plastome (i.e., quadripartite struc-
ture with two copies of a large inverted repeat that are
separated by one large and one small single-copy region)
(Guisinger et al., 2010).

Phylogenetic analyses

According to Bayesian information criterion (BIC), the
best-fit partition model for these data used a total of nine
partitions, each using their own substitution model
(Appendix S2). Branch support in the ML analyses was
at least 98% for relationships among all included monocot
taxonomic orders, except for the relationship between
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Arecales, Poales, and Zingiberales (UFBoot = 65; SBS = 40)
(Appendix S5, Figures S2, S4). The UFBoot and SBS were
100% for the family Asparagaceae as a monophyletic clade.
Within the subfamily Asparagoideae, both ML analyses
yielded 100% support for Hemiphylacus as sister to
Asparagus in ML analyses and 100% bootstrap support
for six major clades of Asparagus (Figure 3). Support for
relationships among these clades were as follows: Setaceus
clade sister to all other clades (UFBoot =100; SBS = 100);
Myrsiphyllum sister to Africani-Capenses clade (UFBoot =
84; SBS =70); Myrsiphyllum and Africani-Capenses clade
sister to Lignosus, Racemose, and Asparagus clade
(UFBoot = 100; SBS =100); Lignosus sister to Racemose
clade (UFBoot=95; SBS=82); Lignosus and Racemose
clade sister to Asparagus clade (UFBoot = 100; SBS = 100)
(left panel in Figure 4). Further, ML analyses showed 100%

@ Dioecious
@ Hermaphroditic

@ Both

support for Asparagus exuvialis Burch. as sister to all other
taxa in the Asparagus clade, including all dioecious and
two hermaphroditic species (A. petersianus and A.
flagellaris) (left panel in Figure 4). Support for a single
dioecious clade was lacking in the SBS analysis (UFBoot =
86; SBS =58) (left panel in Figure 4). However, there was
100% UFBoot and SBS support for monophyly of the
Mediterranean Basin dioecious clade (A. horridus and A.
acutifolius) and mixed support for monophyly of the
Eurasia dioecious clade (UFBoot = 84; SBS = 89) (left panel
in Figure 4). The remainder of phylogenetic relationships
across the genus Asparagus resulted in mixed SBS/UFBoot
support, ranging from 59% to 100% (left panel in Figure 4).

Both Phycas runs resulted in the same topology as the
ML analyses, aside from the eight strongly supported
polytomies (posterior probability [PP]=1) in replicate

FIGURE 2 Extant biogeographic distribution of sexual systems in the genus Asparagus. Green = dioecious species with diclinous flowers; brown =

hermaphroditic species with monoclinous flowers; striped = both dioecious and hermaphroditic species. Notably, the anomalously widespread A. racemosus
is the sole species native to Australia (Batchelor and Scott, 2006). Species distributions illustrated here are based on the putative native range for all accepted
species of Asparagus (POWO, 2023) and geographical borders correspond to Taxonomic Databases Working Group's second level of classification
(Brummitt, 2001). Yellow star in southern Africa is the major radiation center and ancestral range of Asparagus, while the black star in southeastern Asia
represents a secondary radiation hotspot composed of dioecious species (Norup et al., 2015).
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FIGURE 3

Hemiphylacus alatostylus

Maximum likelihood phylogram based on 77 plastid genes for taxa from all six major clades of Asparagus, as hypothesized by Norup et al.

(2015). Standard nonparametric bootstrap branch support for all six clades was 100%. Support for relationships within each of these clades were varied, with
weaker support usually corresponding to shorter branches. One of the A. virgatus samples is labeled with its collection number (P.C. Bentz 15) to
differentiate between the two samples for this taxon. Branch values are shown only on branches with <99% support.

analyses that evaluated trees that were not fully bifurcating
(right panel in Figure 4; Appendix S5, Figures S5 and S6).
When forcing bifurcation, PP support decreased for the
following clades in each replicate analysis: single clade with
all dioecious taxa (PP =0.64 and 0.63); A. officinalis and A.
cf. pseudoscaber clade (PP = 0.96 in both); A. filicinus and A.
tibeticus clade (PP =0.67 and 0.68); clade with Racemosus
and Lignosus clades (PP =0.99 and 0.98); clade containing
A. falcatus and A. aethiopicus (PP = 0.77 in both); clade with
Myrsiphyllum and Africani-Capenses clades (PP =0.57 and
0.54); and clade with A. denudatus and A. recurvispinus
(PP =0.98 and 0.99) (Appendix S5, Figures S7 and S8).

Divergence time estimation

Time estimates for the stem node of both dioecious clades
(i.e., the possible first origin of dioecy, assuming bifurcation)
were 2.95-3.78 and 2.81-3.72 Ma, using uniform and
lognormal priors, respectively (Table 2). Further, the crown
node of both dioecious clades, representing the second
possible origin of dioecy was dated at 2.90-3.72 and
2.78-3.67 Ma using uniform and lognormal priors, respec-
tively (Table 2). Stem node estimates for the six clades of
Asparagus (Figure 3) were as follows when employing
uniform and lognormal prior, respectively: 4.55-5.92 and
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FIGURE 4 Contrasting cladograms for 77 plastid genes from Asparagoideae taxa (Asparagus and Hemiphylacus) estimated by two analyses: (left) maximum
likelihood (ML) with forced bifurcation and (right) Bayesian inference with the probability of polytomies explored. Both trees suggest that dioecy evolved either once
(yellow circle) followed by a loss (empty circle), or twice (red circles) in Asparagus, based on low support for bifurcations among the Mediterranean Basin dioecious
clade (highlighted purple), Eurasia dioecious clade (highlighted green), and a hermaphroditic clade with A. petersianus and A. flagellaris (left); and strong support for
a polytomy among those branches (right). Both scenarios are equally possible in both trees. Colored branches/tips correspond to six major clades of Asparagus
(Norup et al,, 2015) as illustrated in Figure 3 of this study. All nonhighlighted tips are hermaphroditic with monoclinous flowers. Branch values on the ML tree (Left)
represent standard nonparametric bootstrap support (top) and ultrafast bootstrap support (bottom) from IQ-TREE (Minh et al., 2020)—shown only on branches
with <99% support. All branches in the Bayesian tree (right) had posterior probability support of 1.0 from Phycas (Lewis et al., 2015).
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TABLE 2 Divergence time estimates compared across prior treatments in this study and that of previous work for the genus Asparagus and Asparagales
clades.

95% HPD age estimates (Ma)

Uniform Lognormal Givnish McKain Chen et al.
Clade Node priors® priors® et al. (2018) et al. (2016) (2013)¢
Asparagus clade (Eurasia and Crown 2.90-3.72 2.78-3.67 - - -
Mediterranean Basin)?
Asparagus clade (Eurasia and Stem 2.95-3.78 2.81-3.72 - - -
Mediterranean Basin)®
Asparagus clade Crown 3.46-4.45 3.33-4.39 - - -
Asparagus clade Stem 3.76-4.83 3.62-4.76 - -
Asparagus genus Stem 9.75-15.04 9.38-14.78 - 12.73-39.58 8.6-25
Asparagoideae Stem 35.41-44.87 33.36-43.60 39.80-46.24 46.46-80.16 37.4-57.3
Asparagaceae Stem 46.72-56.68 44.55-55.57 49.43-54.68 65.44-99.09 49.9-67.4
Asparagales Stem 81.04-92.95 79.56-91.98 111.42-121.02 129.95-172.63 99-113

Note: The Asparagus clade corresponds to a clade within the genus Asparagus as described by Norup et al. (2015) and shown in Figures 3-5 of this study. HPD = highest density
probability interval. Ma = million years ago.

“Results from BEAST run in this study when uniform prior densities were applied to fossil time calibrations.

PResults from BEAST run in this study when lognormal prior densities were applied to fossil time calibrations.

“Age estimates reported for Chen et al. (2013) are median 95% HPD.

4Age estimates for the crown node of both dioecious clades (i.e., possible dioecy origin number 2), according to the bifurcating BEAST tree.

“Age estimates for the stem node of both dioecious clades (i.e., possible dioecy origin number 1) according to the bifurcating BEAST tree.
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FIGURE 5 Chronogram of Asparagoideae taxa showing relatively young origin(s) of dioecy in the genus Asparagus, estimated to have occurred once or
twice (due to the short branch length and poor support for a single dioecious clade as shown in Figure 4) approximately 2.78-3.78 million years ago (Ma).
Green (Eurasia clade) and purple (Mediterranean Basin clade) highlighted taxa are dioecious and non-highlighted taxa are hermaphroditic with
monoclinous flowers. Dark blue node bars represent 95% highest posterior density (HPD) intervals. Branch values are mean age estimates, and scale bar
(bottom) is Ma from present. Colored branches/tips correspond to the six major clades of Asparagus from Norup et al. (2015).
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4.37-5.79 Ma (Setaceus clade), 4.08-5.29 and 3.94-5.20 Ma
and 3.94-52 Ma (Myrsiphyllum and Africani-Capensis
clades), 3.55-4.7 Ma and 3.43-4.62 Ma (Racemose and
Lignosus clades), and 3.76-4.83 and 3.62—4.76 Ma (Asparagus
clade). The stem node age of the genus Asparagus was
estimated at 9.75-15.04 and 9.38-14.78 Ma using uniform
and lognormal priors, respectively. Age estimates for the stem
node of Asparagoideae were 35.41-44.87 (uniform priors)
and 33.36—43.60 (lognormal priors) Ma. While the stem node
for Asparagaceae was estimated at 46.72-56.68 (uniform
priors) and 44.55-55.57 Ma (lognormal priors) and the stem
node for Asparagales at 81.04-92.95 (uniform priors) and
79.56-91.98 Ma (lognormal priors). The stem node for
all monocots, which used a normal distribution prior in
both analyses, was estimated at 132.28-136.18 Ma and
132.15-136.06 Ma in the analyses otherwise featuring
uniform and lognormal priors, respectively. For the
remaining branches, 95% HPD intervals for divergence
time estimates overlapped without differing more than 3
Ma, when comparing results from each prior treatment
(Appendix S5, Figures S9 and S10).

DISCUSSION

Geographic distribution of monocliny and
dicliny in Asparagus

Approximately 78% (111 of 142 spp.) of extant hermaphro-
ditic lineages of Asparagus are native to regions south of the
Sahara in Africa, while dioecious lineages are only native to
the Mediterranean Basin, including northern Africa and
Macaronesia, and across Eurasia (Figure 2). The geographic
ranges of hermaphroditic and dioecious lineages are largely
disjunct, 22% (31) of hermaphroditic species overlap with
dioecious relatives in regions bordering the Mediterranean
Basin, Macaronesia, the Arabian Peninsula, and India
(Figure 2). China represents the center of diversity for
dioecious species of Asparagus, with 50% (29) of dioecious
species occurring there. Whereas the center of diversity for
the hermaphroditic species is in southern Africa, with
approximately 57% (81) occurring there. Interestingly,
about 42% (19) of the hermaphroditic lineages outside of
Africa occur in India. Except for A. albus and those in India
and bordering regions, hermaphroditic species of Asparagus
do not naturally occur in Eurasia. In contrast, 100% of
dioecious lineages occur in Eurasia, including the Mediter-
ranean Basin clade (Figure 4), which also inhabits regions of
northern Africa that border the Mediterranean Sea
(Figure 2). The geographically widespread A. racemosus is
the only species reported as native to Australia, although
eight other species have naturalized on the continent
(Batchelor and Scott, 2006). However, it is possible that
the extant, broad distribution of A. racemosus is due to
historical human introduction given its long-term usage in
the Ayurveda and Siddha medicine systems in India and
Nepal (Choudhary and Sharma, 2014; Singla and

Jaitak, 2014) and as a popular ornamental and food source
(Peters et al., 1992).

Review of sexual systems in Asparagus

In reviewing the literature, we found no evidence for
gynodioecious, androdioecious, nor monoecious populations
of Asparagus. We scored 58 (~27% of total species) dioecious
and 142 (~66%) hermaphroditic species of Asparagus exhibit-
ing diclinous and monoclinous flowers, respectively. We leave
open the possibility for these totals to slightly fluctuate because
references for 15 species were unattainable or lacked
description of sexual system (Appendix S3). Additionally,
population-level surveys focused on individual sex phenotypes
may reveal inaccuracies in the original species descriptions and
monographs used in this study. Some studies incorrectly cite
monoecy in Asparagus (e.g., Marcellin and Camadro, 1996;
Renner and Miller, 2021). Of these two studies, the latter
refers to phylogenetic work from Norup et al. (2015) and cites
that monoecy has independently evolved several times in
Asparagus, but zero monoecious species were identified by
Norup et al. (2015). The former of the two studies simply
refers to A. densiflorus as monoecious, which is inaccurate
because this species produces hermaphroditic flowers accord-
ing to the original species description (i.e., Kunth, 1850),
subsequent revisions (e.g., Jessop, 1966; Fellingham and
Meyer, 1995), and personal observations (P. C. Bentz).

We identified only one peer-reviewed source that makes
claims of gynodioecy in Asparagus (Norup et al., 2015), which
we deemed erroneous for various reasons as described below.
Norup et al. (2015) scored species native to Macaronesia as
gynodioecious (Asparagus plocamoides Webb ex Svent.,
Asparagus umbellatus Link., Asparagus nesiotes Svent., and
A. acutifolius) based on personal observations from the field
and herbarium specimens, comments from a third party, and
two sources (i.e, Kunth, 1850; Baker, 1875) (Norup
et al, 2015). However, none of the samples in question are
vouchered (see Table 1 in Norup et al., 2015), so their sexual
systems cannot be verified. Also, Baker (1875) wrote that
A. acutifolius exhibits polygamous flowers (i.e., male, female,
or bisexual), and Kunth (1850) cited this species as dioecious,
while both Baker (1875) and Kunth (1850) stated that
A. umbellatus bears hermaphroditic flowers. None of
these sources contain information about A. nesiotes or
A. plocamoides. Additionally, all Macaronesian Asparagus
(except for the dioecious A. horridus) were previously
diagnosed as hermaphroditic with monoclinous flowers
(Valdés, 1979), and A. acutifolius is widely accepted as
dioecious (e.g., Valdés, 1980; Falavigna et al, 2005; Sica
et al,, 2005; Kubota et al., 2012; Boubetra et al., 2017; Murase
et al,, 2017). Further, A. acutifolius does not naturally occur in
Macaronesia, and the specimen used in Norup et al. (2015)
was likely A. nesiotes or A. scoparius (Boubetra et al., 2017).
We scored A. acutifolius as dioecious and the other three as
hermaphroditic, according to field observations and detailed
floral phenotypes described by Valdés (1979).
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Based on previous studies and observations as described
below, we hypothesize that all sexually dimorphic populations
of Asparagus can be scored as dioecious or subdioecious (i.e.,
males, females, and hermaphrodites coexisting). Gynodioe-
cious populations selectively maintain genotypes with distinct
female and hermaphrodite phenotypes (Charlesworth, 1989)
as opposed to maintenance of genotypes with unstable sex
phenotypes (e.g., subdioecy). Dioecy and subdioecy can both
superficially appear as gynodioecy when the stable sex
phenotype in a population is female and male flowers exhibit
remnants of pistil development. In A. officinalis flowers,
rudimentary organs of the opposite sex commonly develop,
and hermaphroditic flower primordia are always present in
male flowers (Lazarte and Palser, 1979; Bracale et al., 1990).
Further, variation in pistil development exists among and
within genotypic male plants of A. officinalis, which ranges
from nearly no pistili development to fully functional
hermaphroditic flowers that produce fruit in andromonoe-
cious males (Galli et al, 1993; Caporali et al., 1994).
Rudimentary pistil development is also observed in genotypi-
cally male plants of A. horridus and A. acutifolius, causing
their staminate flowers to superficially appear as monoclinous
flowers (P. C. Bentz, personal observations). This subdioe-
cious pattern (or “leaky” form of dioecy) is only weakly
influenced by the age of dioecy (Kéfer et al., 2022), which is
relatively young (~2.78-3.78 Ma, see Figure 5 and Table 2) in
Asparagus. Nonetheless, populations of Asparagus formerly
described as gynodioecious may be subdioecious with a mix
of males, females, hermaphrodites and/or andromonoecious
males with varying levels of pistil function—a phenomenon
documented in several wild species of Asparagus
(Tamanyan, 1990) and other sexually dimorphic species
(Webb, 1979; Lloyd, 1980; McNeilage, 1991). Field surveys of
many plants and multiple populations is necessary to fully
understand whether a species’ mating system is hermaphro-
dite, dioecious, subdioecious, or gynodioecious. Further, pistil
fertility trials should be conducted on a large sampling of
hermaphroditic-appearing flowers to discern between male
and hermaphroditic phenotypes (Arroyo and Raven, 1975;
Spigler and Ashman, 2012). It is important to note that
although flower morphology (e.g., monocliny vs. dicliny) can
usually be inferred from species descriptions and verified with
herbarium specimens, defining sexual systems for a popula-
tion or species is difficult to infer from herbarium specimens
unless multiple individuals of all sex types are vouchered from
each population.

Plastome assembly and phylogeny

In this study, we leverage whole plastome assemblies to
significantly increase the amount of molecular data used in
phylogenetic analyses (i.e., 77 plastid genes) of Asparagus,
compared to previous studies (e.g., Fukuda et al., 2005;
Kubota et al., 2012; Norup et al, 2015). We successfully
assembled complete plastomes for all samples except for A.
cf. setaceus (Burrows & Burrows 7817), due to a lack of

continuous, and/or consistent, read coverage across the
entire plastome. Incomplete assembly of the plastome may
be a limitation of utilizing off-target reads for plastid
sequence recovery (Granados Mendoza et al., 2020). Our
phylogenetic analyses agree with others that show strong
support for Hemiphylacus as sister to Asparagus (Norup
et al., 2015) and monophyly of the Asparagaceae subfamily
Asparagoideae (Fay et al., 2000; Pires et al., 2006; Seberg
et al., 2012). We also report significant increases in support
for the six major clades of Asparagus, as previously
proposed to represent the full diversity and geographical
distribution of the genus (Norup et al.,, 2015). Compared to
the analyses by Norup et al. (2015) showing overall weak
bootstrap support for these clades (i.e., Setaceus clade =
67%; Myrsiphyllum clade = 81%; Africani-Capenses clade =
93%; Lignosus clade = 71%; Racemose clade = 65%; Aspara-
gus clade = 89%), all our analyses showed 100% support for
all six clades. Notably, we show strong support for the
Asparagus clade as circumscribed by Norup et al. (2015)
(Figures 3 and 4), which includes the hermaphroditic
species A. exuvialis sister to the rest of the group with
stronger bootstrap support (BS) than seen in the previous
study (BS=100% in Figures 3 and 4 vs. BS=89 in Norup
et al., 2015). Additionally, compared to the ubiquitously
weak BS support (<66%) for relationships amongst the six
major Asparagus clades from Norup et al. (2015), we report
strong support for the following bifurcations: the Setaceus
clade as sister to the remainder of the genus; Myrsiphyllum
and Africani-Capenses clades as sister to the Lignosus,
Racemose, and Asparagus clades; and Lignosus and
Racemose clades as sister to the Asparagus clade
(Figures 3 and 4). Increased taxon sampling within the
Myrsiphyllum, Africani-Capenses, Lignosus, and Racemose
clades may help resolve relationships among these clades.
For now, these unresolved nodes may represent soft
polytomies (i.e., those that may be resolved with suffi-
cient data).

Other weakly supported bifurcations in our analyses
may represent hard polytomies (i.e., true polytomies
supported with sufficient data) resulting from rapid
radiations, as indicated by short branches across the
backbone of Asparagus, a pattern also found in a previous
study with much denser taxon sampling (Norup et al., 2015).
For example, bifurcations among four species in the
Racemose clade (A. aethiopicus, A. densiflorus ‘Myersii’, A.
densiflorus ‘Sprengeri’, and A. falcatus) were poorly
supported in analyses that did not evaluate the likelihood
of polytomies, whereas analyses that did evaluate trees with
polytomies recovered a well-supported polytomy among
these branches (PP = 1) (right panel of Figure 4). Although,
it is possible that this well-supported polytomy is an artifact
of our limited taxon sampling in this clade and should be
tested by phylogenomic analysis with a greater taxon-
sampling scheme. Incomplete lineage sorting, in which
ancestral variation persists across speciation events, and
ancient hybridization may explain the polytomous relation-
ship among these lineages. Incomplete lineage sorting and
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hybridization are predicted to occur alongside rapid bursts
of diversification (Pease et al, 2016), as is predicted in
Asparagus (Norup et al.,, 2015). If hybridization occurred,
chloroplast introgression (i.e., chloroplast capture) could
cause discordance between the plastid and species tree
(Baldwin et al., 2023). However, incomplete lineage sorting,
ancient hybridization, and chloroplast capture are not
detectable using only the plastome, which is inherited as a
single, non-recombining unit (Doyle, 2022). Future investi-
gations should focus on increasing taxon sampling and
combining plastome and nuclear sequences in phyloge-
nomic analyses to further explore intra- and interclade
relationships across the genus Asparagus. Such investiga-
tions may also help identify potential source(s) of adaptive
variation that may have contributed to rapid species
diversification.

Within the Asparagus clade, our analyses provide
strong support for a polytomy including the Mediterra-
nean Basin dioecious clade, the larger Eurasian dioecious
clade, and the hermaphroditic clade with A. petersianus
and A. flagellaris (PP = 1.0; right panel of Figure 4),
compared to the poor support from analyses that forced
bifurcations (SBS = 58; UFBoot = 86; PP = 65). The nest-
ing of these taxa in the Asparagus clade agrees with a
previous analysis (Kubota et al., 2012) but disagrees with
another (Norup et al,, 2015) likely due to misidentifica-
tion of A. acutifolius in the latter (Boubetra et al., 2017).
Nonetheless, the polytomous relationship between both
dioecious clades leaves open the possibility for indepen-
dent origins of dioecy in the Mediterranean Basin and
Eurasian clades (red circles in Figure 4). Strong support
for a monophyletic dioecious clade would support a
single origin of dioecy in Asparagus. Alternatively,
dioecy may have evolved once in an ancestral population
of these three lineages emanating from a polytomous
node (yellow circle in Figure 4), followed by a loss in the
A. flagellaris + A. petersianus clade (empty circle in
Figure 4).

The polytomy estimated at the origin of dioecy in
Asparagus (right panel in Figure 4) implies that three
ancestral lineages failed to coalesce due to a rapid burst of
speciation that gave rise to their three ancestral species
lineages evolving from a single ancestral species. Whether
the speciation process involved a single radiation or two,
successive bifurcations cannot be resolved with plastome
data alone. These alternative scenarios must be tested
through multispecies coalescent analyses including many
nuclear loci (e.g., One Thousand Plant Transcriptomes
Initiative, 2019). Taxon sampling could also be increased in
the Eurasia clade, but no other species are known to
associate with the A. flagellaris + A. petersianus clade, and
the only other known species from the Mediterranean Basin
clade is A. aphyllus (Norup et al., 2015). In a wider context,
these two scenarios should be considered when interpreting
polytomies in gene trees, especially when gene trees are
estimated from large non-recombining loci such as in the
plastome.

The nature of polytomies

Polytomies are commonly interpreted as unresolved
bifurcations. It is frequently recommended that researchers
increase taxon and/or character (e.g, sequence length)
sampling to resolve poorly supported branching events due
to insufficient data or sampling, low sequence variation,
introgression, or ill-suited phylogenetic methods (Whitfield
and Lockhart, 2007; Liu et al., 2012). However, these notions
discount the possibility of true rapid radiations in which more
than two descendant species or haplotypes arise from the same
ancestral population or molecule in a species or gene tree,
respectively. Evolutionary radiations result in real (hard)
polytomies or very short internal branches that are statistically
indistinguishable from zero despite sufficient data/power
(Maddison, 1989). Polytomies in species trees can be explicitly
tested using coalescent-based species tree estimation (Zhang
et al. 2018), and polytomies in gene trees (including whole
plastome trees) can be assessed using tree inference methods
that evaluate the relative support for fully bifurcating trees with
trees including polytomies (e.g., Phycas: Lewis et al, 2015).
Polytomies in gene trees estimated for single, non-recombining
molecules (e.g., plastomes) can arise when more than two
lineages that originate from a hub genotype in haplotype
network persist and the hub genotype lineage goes extinct.
Intraspecific network analyses (e.g., TCS analyses: Templeton
et al,, 1992; Clement et al., 2000) of plastome sequence data
frequently reveal networks with common hub haplotypes
linking more than two spoke haplotypes (e.g., Katayama
et al., 2012; Lopez et al,, 2021). Indeed, TCS network analyses
were developed to reconstruct relationships among coexisting
ancestral and multiple derived haplotypes (Templeton
et al, 1992; Clement et al., 2000). It is certainly plausible that
hub haplotypes with more than two spoke haplotype lineages
persist over evolutionary time.

Timing for dioecy evolution in Asparagus

We estimate that dioecy evolved once or twice (Figure 4)
between 2.78 and 3.78 Ma in Asparagus (Figure 5). These
estimates represent the wider of the two 95% HDP intervals
from both divergence time analyses in this study (Table 2).
Considering both analyses, if dioecy independently evolved
twice, then the second origin would have occurred in the
MRCA of the Eurasia clade (Figure 5) approximately 2.78—3.72
Ma (Table 2); while the first would have occurred in the MRCA
of the Mediterranean Basin clade (Figure 5) approximately
2.81-3.78 Ma (Table 2). Regardless, these age intervals almost
completely overlap, and both scenarios indicate relatively
young evolutionary origin(s) of dioecy in Asparagus. Since
separate sex phenotypes are controlled via the presence of a
Y-chromosome in Asparagus (Harkess et al., 2017, 2020), age
estimates reported in this study support previous hypotheses
for the young age of sex chromosomes in the genus and will
inform future studies investigating the dynamic evolution of
sex chromosomes in this important model system. A previous
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review inferred the age of sex chromosomes in A. officinalis
(Renner and Miiller, 2021) from a broad-scale divergence time
analysis of four plastid genes and only four Asparagus taxa by
Chen et al. (2013): A. densiflorus (hermaphrodite in Racemose
clade: Figure 4), A. schoberioides, A. cochinchinensis, and
A. oligoclonos (all three in Eurasian dioecious clade: Figure 4).
According to Renner and Miiller (2021) the MRCA of these
three dioecious taxa diverged from its hermaphroditic ancestor
between 1-6 Ma, but it is unclear how these estimates were
extrapolated from the original analysis by Chen et al. (2013)
because the presented time calibrated tree was missing tip and
branch labels (see Figure 3 of Chen et al,, 2013). These time
estimates were also missing from the main text and online
supplemental material from Chen et al. (2013); therefore, we
did not include these estimates in Table 2. Either way, inclusion
of many more Eurasian samples in our study enables finer-scale
comparisons, and our study is the first to test for the age of
dioecy in both dioecious clades of Asparagus, since Chen et al.
(2013) did not include any representatives from the Mediterra-
nean Basin dioecious clade.

Divergence time estimates compared between
prior treatments and across similar studies

The two sets of priors (i.e., uniform vs. lognormal probability
distributions) applied to fossil time calibrations in BEAST
yielded similar divergence time estimates across the phylogeny.
Previous studies have presented varying ranges of divergence
time estimates for Asparagoideae, Asparagaceae, and Aspar-
agales (Chen et al, 2013; McKain et al, 2016; Givnish
et al,, 2018). For example, the estimated 95% HPD interval
for the crown node age for Asparagoideae was estimated at
12.73-39.58 Ma in one study (McKain et al., 2016), 8.6-25 Ma
in another (Chen et al,, 2013), and 9.45-14.81 using lognormal
priors in the current study (Table 2). However, all other
Asparagaceae divergence times estimated by McKain et al.
(2016) were older compared to those from the current study
and two similar studies (Table 2). Unlike the current and two
similar studies (i.e., Chen et al., 2013; Givnish et al., 2018),
McKain et al. (2016) did not apply a calibration prior to the
stem or crown node of monocots, which may explain the
overall older age estimates from analyses, since the age of
monocots was constrained in our analyses. All Asparagaceae
divergence time estimates reported by Givnish et al. (2018) and
Chen et al. (2013) overlap with the 95% HPD intervals
presented in this study (Table 2), which is not surprising, since
similar time calibration priors were applied across these three
studies.

Paleoclimatic oscillations in northern Africa
and the origin(s) of dioecy in Asparagus

Based on our current understanding of the timing of
paleoclimatic oscillations in northern Africa, we speculate that
such historical shifts in climate may have influenced the origin

(s) and evolution of dioecy in Asparagus. Though the precise
timing for the aridification of the Sahara region remains a topic
of ongoing research and has been controversial (e.g., see
Kroepelin, 2006; Schuster et al., 2006b), it is generally agreed
that the region has experienced several cyclical episodes of
aridification and humidification and was likely already
occurring or began aridifying around the Quaternary ice ages
(2-3 Ma) (Ruddiman et al, 1989; Demenocal, 1995;
Kroepelin, 2006). Climate model simulations indicate that
aridification of northern Africa was largely influenced by
shrinkage of the Tethys Sea around 7-11 Ma, leading to periods
of arid-humid fluctuations and eventual extreme desert
conditions in the Sahara region (Zhang et al, 2014). Recent
evidence based on paleosols from the Sahara region suggests
that the Sahara Desert formed at least 4.6 Ma (Mubhs et al., 2019),
and earlier studies infer desert conditions in the region for at
least 7 Ma (Schuster et al., 2006a; Senut et al., 2009). All of these
studies suggest that arid-humid fluctuations in northern Africa
were occurring around the time we estimate dioecy evolved in
Asparagus (Figure 5: 2.78-3.78 Ma). A biogeographic
reconstruction for the genus suggests that hermaphroditic
ancestors of extant dioecious lineages of Asparagus were
involved in multiple independent dispersal events out of
southern Africa followed by expansion into Europe and Asia
(Norup et al,, 2015: Supplementary Figure S5). Considering the
geographic distributions of sexual systems in extant Asparagus
species (Figure 2), it is possible that such climatic oscillations in
northern Africa contributed to change in population sizes and
shifts in geographical range, potentially leading to selective
pressure for transition(s) to dioecy. Under these circumstances,
dioecy may evolve partly due to selection for outcrossing to
avoid inbreeding depression in fluctuation populations result-
ing in small effective population sizes and/or founder
populations established through long-distance dispersal, and/
or colonization of new habitats (Charlesworth, 1999). The
maintenance of sexual dimorphism in extant populations may
be further explained by increases in fertility via resource
allocation between the sexes (e.g., females spending more
energy on seed production) (Ross and Weir, 1976). In any case,
dioecy clearly evolved in association with range expansion
some 3 million years ago and has persisted since then across a
broad geographic region.
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