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A geometric variational framework for computing
optimal transportation maps I

Dongsheng An, Na Lei, Li Cui, Kehua Su, Xiaoyin Xu,

Feng Luo, Xianfeng Gu∗, and Shing-Tung Yau

Optimal transportation (OT) maps play fundamental roles in many
engineering and medical fields. The computation of optimal trans-
portation maps can be reduced to solve highly non-linear Monge-
Ampère equations. In this work, we summarize the geometric vari-
ational framework to solve optimal transportation maps in Eu-
clidean spaces. We generalize the method to solve worst transporta-
tion maps and discuss about the symmetry between the optimal
and the worst transportation maps. Many algorithms from compu-
tational geometry are incorporated into the method to improve the
efficiency, the accuracy and the robustness of computing optimal
transportation.

1. Introduction

Optimal transportation (OT) map finds the most economical way to transfer
one probability measure to another. The transportation cost gives a metric
between measures – the so-called Wasserstein metric. OT method has be-
come an important tool in optics [19], economy [17], and life science [39].
Recently, OT has been successfully applied in different areas of computer sci-
ence, such as parameter estimation in Bayesian nonparametric models [35],
computer vision [8, 13, 46], natural language processing [26, 51], medical im-
age registration [25], 3D surface registration [43, 27, 54, 24], color transfer
[15, 37, 38] and so on. The Wasserstein metric has also been broadly applied
in generative models in deep learning, including the WGAN model [8, 33],
WAE [46], AE-OT [4, 5], and energy-based models [3].

The origin of the OT problem can be traced back to 1781, when Monge
asked if there existed an OT map between two measures for a given cost
function. Depending on the cost function and the measures, an OT map
may not exist. In the 1950s, Kantorovich relaxed the OT map to OT plan,
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and showed the existence and the uniqueness of the plan under mild con-

ditions [48]. In the 1980s, Brenier [12] discovered that, when the density

of the source measure is absolutely continuous and the cost function is the

squared Euclidean distance, the OT map is given by the gradient of a convex

function, the so-called Brenier potential.

Recently, the equivalence between the Brenier potential and Alexan-

drov’s convex polytope has been proved in [21], as both of them can be

obtained by solving the non-linear Monge-Ampère equation. This connec-

tion leads to a practical algorithm to solve the semi-discrete OT problem

using convex geometry. According to the Brenier theorem, the Brenier po-

tential can be represented as the upper envelope of a set of hyperplanes, and

its projection induces a power diagram of the source domain, which gives the

semi-discrete OT map. The geometric variational method proposed by Su

et al. [43] is based on classical computational geometry [10] and solves the

semi-discrete OT problem by minimizing a convex energy. Though with high

accuracy, the method is very slow and inefficient. At each step, it constructs

a new power diagram, or a weighted Delaunay triangulation of the samples.

During the optimization, the combinatorial structures of the triangulation

are changed dynamically, which makes the algorithm complicate. Moreover,

as the method assumes that the source distribution is uniform, it cannot

handle complex source measures. To circumvent this limitation, we can gen-

eralize the Lawson’s edge flip algorithm [28] to update the power diagram

during the optimization process, instead of constructing a new convex hull

at each iteration like Su et al. did in [43]. This improves the computational

efficiency by a factor of more than five. To handle the piecewise linearly

defined source measures, we can use the sweep convex polygon algorithm,

which is a generalization of the classical Bentley-Ottman’s sweep line algo-

rithm [9], to compute the subdivision of two cell decompositions. Thus we

can compute the semi-discrete OT map from a piecewise linear source mea-

sure to the target measure. This improves the efficiency and the robustness

of the algorithm.

Within the same framework of the OT solution, we can extend the OT

problem to solve the worst transportation (WT) problem [53], which tries to

maximize the cost between two distributions, given a cost function between

them. Different from finding the convex Brenier potential for the OT prob-

lem, the WT problem finds the concave Brenier potential whose gradient

gives the WT map. Moreover, we can unify the OT solution and WT solu-

tion into a single framework and solve them by Newton’s method. We also

discover the intrinsic symmetry between the OT map and the WT map.
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The geometric variational framework is generalizable for any dimensions.
For example, volumetric OT maps can also be directly computed based on
the same principle. However, the volumetric computational algorithms are
more complicated than planar ones.

2. Related work

OT maps [47, 48] play fundamental roles in many engineering and medical
fields and there is a huge body of research in this area. For a thorough
review, we refer readers to [36]. In the following we will concentrate on the
semi-discrete OT algorithm and its direct applications.

2.1. Semi-discrete OT

Haber et al. [24] propose to solve the semi-discrete OT problem based on
the connection between minimizing flow and OT, but this method is rel-
atively inefficient. Arjovsky et al. [8] propose an approach that specializes
to 1-Wasserstein distance, where the Lipschitz constraint is replaced by the
weight clipping at each iteration. This limits the approximation accuracy
of Wasserstein distance. Genevay et al. [18] extend the entropic regularized
OT to semi-discrete cases through stochastic gradient descent, which im-
proves the speed but sacrifices the accuracy. Seguy et al. [40] propose a reg-
ularization relaxation of the OT problem and approximate the Alexandrov
potential with a deep neural network (DNN). However, their approximation
cannot guarantee the convexity of the energy, and the algorithm may stuck
at a local optimum. An et al. [6] use the Pogrelov map to approximate the
OT map by solving the Monge-Ampère equation with a Dirichlet boundary
condition. Some other methods [34, 32] choose to approximate the Monge-
Ampère equation and solve the OT problem by discretizing the Hessian
matrix. One major problem of this kind of methods is that they assume one
measure to be uniformly defined on a rectangular space. As a result, they
cannot handle complex source measures with arbitrary convex support or
complex density functions. Their accuracy is also lower than those of the
geometric variational methods. Gu et al. [21] build the theoretical connec-
tion between the OT problem and convex geometry. Similar OT maps have
been introduced in [42, 43] for surfaces and in [30, 31] for volumes, but
these algorithms compute the power diagrams from scratch at each itera-
tion, which is highly inefficient. Our proposed algorithm updates the existing
power diagrams by a few edge flips, which greatly improve the computational
speed.
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2.2. Direct applications

Semi-discrete OT maps have been applied in various areas of computer vision
and medical imaging. In [25], OT maps are used to register grayscale medi-
cal images with high accuracy. In [42], human cortical surfaces are matched
using spherical OT maps. In [43], surfaces with large non-rigid deforma-
tions are reliably registered, where surfaces are first conformally mapped
to the planar domains with large area distortions and then the mapping is
composed with an OT map to balance the area distortion and this greatly
improves the matching accuracy. The method has been generalized to regis-
tering surfaces with complicated topologies, such as human skull in [54] and
multiply-connected surface registration in [44]. Besides, the semi-discrete
OT can be used to generate adaptive mesh in computational geometry [7].
On the other hand, the WT problem [53] can help to analyze difference in
cortical shape caused by the dementia due to Alzheimer’s disease and the
normal aging process. All of these applications require computation of low
dimensional but accurate OT maps, and most of the approximate methods
[14, 18, 40, 4] are not suitable since they approximate the OT maps by
transportation plans with relatively large approximation errors.

3. Theoretic foundation

This section introduces the theoretic foundation of our geometric variational
framework for OT maps. For more details, we refer readers to [47, 48, 29].

3.1. Monge-Kantorovich theory

Suppose Ω,Ω∗ are complete, separable metric spaces, such as domains in the
Euclidean space R

n, with probability measures μ and ν, respectively, with
corresponding density functions dμ = f(x)dx and dν = g(y)dy, satisfying
the equal total mass condition:

μ(Ω) = ν(Ω∗).

A transportation map T : Ω → Ω∗ is measure preserving if, for any Borel
set B ⊂ Ω∗,

∫

T−1(B)
dμ(x) =

∫

B

dν(y),

denoted as T#μ = ν. Monge raised the following problem [48]:
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Problem 3.1 (Monge). Given the cost function c : Ω× Ω∗ → R
+, find the

transportation map T : Ω → Ω∗ that minimizes the total transportation cost

(MP ) min

{
∫

Ω
c(x, T (x)) : T : Ω → Ω∗, T#μ = ν

}

.

The minimizer is call the optimal transportation map and the corre-
sponding transportation cost is called the optimal transportation cost. Kan-
torovich generalized the transportation maps to transportation
schemes, namely the joint distribution γ defined on Ω×Ω∗, γ ∈ P(Ω×Ω∗),
where P(Ω×Ω∗) represents the space of all probability measures on Ω×Ω∗,
its marginal distributions equals to μ and ν, respectively,

(πx)#γ = μ, (πy)#γ = ν,

where πx(x, y) = x and πy(x, y) = y are projections.

Problem 3.2 (Kantorovich). Given two probability measures μ ∈ P(Ω),
ν ∈ P(Ω∗) and the cost function c : Ω× Ω∗ → [0,+∞], find

(KP ) inf

{

K(γ) :=

∫

Ω×Ω∗

c(x, y)dγ(x, y) : γ ∈ Π(μ, ν)

}

,

where the joint probability measure γ is in the transportation scheme space

Π(μ, ν) := {γ ∈ P(Ω× Ω∗) : (πx)#γ = μ, (πy)#γ = ν}.

By using the generalized Lagrange multiplier method, we can convert
Kantorovich problem to the dual problem:

Problem 3.3 (Dual). Given μ ∈ P(Ω), ν ∈ P(Ω∗) and the cost funtion
c : Ω× Ω∗ → [0,+∞), consider the following problem

(DP ) max

{
∫

Ω
ϕdμ+

∫

Ω∗

ψdν : ϕ ∈ Cb(Ω), ψ ∈ Cb(Ω
∗), ϕ⊕ ψ ≤ c

}

,

where ϕ⊕ ψ := ϕ(x) + ψ(y).

Definition 3.4 (c-transform). Given a function ϕ : Ω → R̄, its c-transform
(c-conjugate) ϕc : Ω∗ → R̄ is defined as

(3.1) ϕc(y) := inf
x∈Ω

c(x, y)− ϕ(x),

where R̄ := R ∪ {−∞} ∪ {+∞}.
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By using the concept of c-transform, the dual problem can be reformu-
lated as

Problem 3.5 (Dual-2). Given μ ∈ P(Ω), ν ∈ P(Ω∗) and the cost function
c : Ω× Ω∗ → [0,+∞), consider the following problem

(3.2) (DP ) max

{
∫

Ω
ϕdμ+

∫

Ω∗

ϕcdν : ϕ ∈ Cb(Ω)

}

.

3.2. Brenier theory

When the cost function is the square of Euclidean distance, the OT map is
the gradient of a convex function, claimed by the below:

Theorem 3.6 (Brenier [11]). Given the probability measures μ and ν on
compact supports Ω,Ω∗ ⊂ R

d with density functions f, g ∈ L1(Rd) and total
equal mass μ(Ω) = ν(Ω∗), if the cost function is c(x, y) = 1

2 |x − y|2, then
the OT map exists and is unique. It is the gradient of a convex function
u : Ω → R, where u is called the Brenier potential.

Suppose the Brenier potential u is C2, by the measure preserving con-
dition, it satisfies the Monge-Ampère equation,

(3.3) detD2u(x) =
f(x)

g ◦ ∇u(x)
,

and the unique OT map is given by T = ∇u.
In the following, we show that the OT map with the L2 cost is equivalent

to the WTmap with the inner product cost function, which greatly simplifies
the computation.

Lemma 3.7. The OT map with the cost c(x, y) = |x − y|2/2 is equivalent
to the WT map with the cost c(x, y) = 〈x, y〉.

Proof. Assume T#μ = ν, then f(x)dx = g(y)dy for y = T (x). By direct
computation:

1

2

∫

Ω
|x− T (x)|2f(x)dx

=
1

2

∫

Ω
|x|2f(x)dx−

∫

Ω
〈x, T (x)〉f(x)dx+

1

2

∫

Ω
|T (x)|2f(x)dx

=
1

2

∫

Ω
|x|2f(x)dx−

∫

Ω
〈x, T (x)〉f(x)dx+

1

2

∫

Ω
|y|2g(y)dy
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The first and the third terms are independent of T , therefore

min
T#µ=ν

∫

Ω
|x− T (x)|2f(x)dx ⇐⇒ max

T#µ=ν

∫

Ω
〈x, T (x)〉f(x)dx.

In this situation, the c-transform becomes the conventional Legendre
dual.

Definition 3.8 (Legendre Dual). The Legendre dual of a function ϕ : Ω →
R is

(3.4) ϕ∗(y) := sup
x∈Ω

〈x, y〉 − ϕ(x),

If the Brenier u is not smooth, we can still define the Alexandrov solution
to the Monge-Ampère Eqn. (3.3).

Definition 3.9 (sub-gradient). The sub-gradient of a function u at x is
defined as

(3.5) ∂u(x) :=
{

p ∈ R
d : u(z) ≥ 〈p, z − x〉+ u(x), ∀z ∈ Ω

}

which induces a set-valued map: ∂u : Ω → Ω∗, x �→ ∂u(x).

We can use the sub-gradient to replace gradient map in the Monge-
Ampère Eqn. (3.3), and define

Definition 3.10 (Alexandrov Solution [2]). Suppose a convex function u :
Ω → R satisfies the equation

(3.6) (∂u)#μ = ν,

or equivalently μ((∂u)−1(B)) = ν(B), ∀Borel B ⊂ Ω∗, then u is called an
Alexandrov solution to the Monge-Ampère Eqn. (3.3).

3.3. Theory for worst transportation

With the same setup, the WT problem can be formulated as follows:

Problem 3.11 (Worst Transportation Map). Given a transportation cost
function, c : Ω × Ω∗ → R

+, find a transportation map T : Ω → Ω∗ that
maximizes the total transportation cost,

(WP ) max

{
∫

Ω
c(x, T (x)) : T : Ω → Ω∗, T#μ = ν

}

.
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The maximizer is called the worst transportation map (WT map). The trans-
portation cost of the WT map is called the worst Wasserstein distance be-
tween measures.

We can generalize the Brenier theorem to the worst transportation map.

Theorem 3.12 (Worst Transportation Map). Given the probability mea-
sures μ and ν with compact supports Ω,Ω∗ ⊂ R

2d, respectively, and equal
total mass μ(Ω) = ν(Ω∗). Assume the density functions f, g ∈ L1(R2d) and
the cost function c(x, y) = 1

2 |x−y|2, then the worst transportation map exists
and is unique. It is the gradient of a concave function u : Ω → R, T = ∇u,
where u is the worst Brenier potential function, unique up to a constant.
Furthermore, if u is C2, then it satisfies the Monge-Ampère Eqn. (3.3).

Proof. Suppose T : Ω → Ω∗ is a measure-preserving map, T#μ = ν. Con-
sider the total transportation cost,

∫

Ω

|x− T (x)|2dμ =

∫

Ω

|x|2dμ+

∫

Ω

|T (x)|2dμ− 2

∫

Ω

〈x, T (x)〉dμ

=

∫

Ω

|x|2dμ+

∫

Ω∗

|y|2dν − 2

∫

Ω

〈x, y〉dμ, T (x) replaced by y.

Therefore maximizing the transportation cost is equivalent to

min
T#µ=ν

∫

Ω
〈x, T (x)〉dμ.

Use Kantorovich formula, this is equivalent to finding a transportation plan
γ : Ω× Ω∗ → R,

min

{
∫

Ω×Ω∗

〈x, y〉dγ, (πx)#γ = μ, (πy)#γ = ν

}

,

where πx, πy are the projections from Ω×Ω∗ to Ω and Ω∗, respectively. By
duality, this is equivalent to

max{J(u, v), (u, v) ∈ K}, J(u, v) :=

∫

Ω
u(x)f(x)dx+

∫

Ω∗

v(y)g(y)dy,

and the function space

K := {(u, v) : u(x) + v(y) ≤ 〈x, y〉} .

Now we define c-transform,

(3.7) uc(y) := inf
x∈Ω̄

〈x, y〉 − u(x).
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Fixing x, 〈x, y〉−u(x) is a linear function, hence uc(y) is the lower envelope

of linear functions and it is a concave function, and Lipschitz (since the

gradients x ∈ Ω̄). We construct a sequence of function pairs {(uk, vk)},

where uk = vck−1, vk = uck. Then J(uk, vk) increases monotonically, Lipschitz

function pairs (uk, vk) converge to the limit (u, v), which is the maximizer

of J . Since u and v are c-transforms of each other,

(3.8) u(x) + v(T (x)) = 〈x, T (x)〉.

This shows the existence of the solution.

From the definition of c-transform Eqn. (3.7), we obtain

v(y) = inf
x∈Ω̄

〈x, y〉 − u(x).

where u(x) is concave, therefore almost everywhere differentiable, hence

∇x〈x, y〉 − ∇u(x) = 0, implying y = T (x) = ∇u(x). This shows the WT

map is the gradient of the worst Brenier potential u.

Suppose there are two maximizers (ϕ,ψ) ∈ K and (u, v) ∈ K, because

J(u, v) is linear, then 1
2(ϕ+ u, ψ + v) ∈ K is also a maximizer. Assume

ϕ(x0) + ψ(y0) = 〈x0, y0〉, ϕ(x0) + ψ(y) < 〈x0, y〉, ∀y �= y0

u(x0) + v(z0) = 〈x0, z0〉, u(x0) + v(z) < 〈x0, z〉, ∀z �= z0.

If y0 �= z0, then ∀y, 1/2(ϕ + u)(x0) + 1/2(ψ + v)(y) < 〈x0, y〉. But (12(ϕ +

u), 12(ψ+v)) is also a maximizer, this contradicts Eqn. (3.8). This shows the

uniqueness of the WT map.

Since u is concave, by Alexandrov’s theorem [1], it is almost everywhere

C2. The WT map T = ∇u is measure-preserving, T#μ = ν, thus

det(DT )(x) =
f(x)

g ◦ T (x)
=⇒ det(D2u)(x) =

f(x)

g ◦ ∇u(x)

This completes the proof.

Note that, this theorem cannot be proved by simply negating the cost

function c(x, y) and using the classical Brenier’s theorem, it is closely related

to the duality between upper and lower envelopes. This is more evident by

the spherical OT theory [49, 50], which focuses on the duality between the

inner and outer envelopes.
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Figure 1: Minkowski theorem and Alexandrov theorem.

3.4. Convex geometry

The OT theory has intrinsic relation with the convex geometry, especially
Minkowski-Alexandrov theory [2].

As shown in the left frame of Fig. 1, Minkowski asked about how to
recover a convex polyhedron from its face normals and face areas:

Problem 3.13 (Minkowski). Given k unit vectors in R
n, n1,n2, . . . ,nk,

not contained in any half-space of Rn, and positive numbers A1, A2, . . . , Ak,
satisfying the condition

(3.9)

k
∑

i=1

Aini = 0.

Find a compact convex polyhedron P , with k codimension 1 faces, F1, F2, . . . ,
Fk, such that the volume of Fi is Ai and the normal to Fi is n1.

Minkowski proved the existence and the uniqueness of the solution. The
existence is based on a variational method. The uniqueness is based on
Brunn-Minkowski inequality.

Theorem 3.14 (Minkowski). The solution to the Minkowski problem exists,
and is unique up to a translation.

Alexandrov generalized Minkowski’s theorem from compact convex poly-
hedron to open convex polyhedron, as shown in the right frame of Fig. 1.
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Theorem 3.15 (Alexandrov 1950). Suppose Ω ⊂ R
n is a compact and

convex domain in R
n, p1, . . . , pk are distinct vectors in R

n, A1, A2, . . . , Ak >
0 are positive numbers, satisfying the condition

k
∑

i=1

Ai = vol(Ω),

then there exists a convex polyhedron P in R
n+1, which has k codimension

1 faces, F1, F2, . . . , Fk, such that the volume of the intersection between the
projection of Fi and Ω equals to Ai and the gradient of the supporting plane
of Fi is pi. Furthermore, such kind of polyhedron P is unique up to a vertical
translation.

Equivalently, P can be treated as the graph of a piecewise-linear function

u(x) =
k

max
i=1

{〈pi, x〉 − hi},

satisfying vol(wi ∩ Ω) = Ai, where the cell Wi equals to

wi := {x ∈ R
n|∇u(x) = pi}.

In fact, Alexandrov theorem is equivalent to Brenier theorem, both of them
satisfy the Monge-Ampère equation.

Alexandrov proved the theorem using an algebraic topology method,
which is not constructive and difficult to translate to algorithms directly.

3.5. Semi-discrete OT maps

The Brenier theorem 3.6 can be directly generalized to the discrete situation.
In discrete cases, it is convenient to use the concepts and methods from
computational geometry.
Basic Concepts from Computational Geometry A hyperplane in R

d+1

is represented as π(x) := 〈p, x〉 − h. Given a family of hyperplanes {πi(x) =
〈pi, x〉 − hi}

n
i=1, their upper envelope of {πi}

n
i=1 is the graph of the func-

tion u(x) := maxni=1 {〈pi, x〉 − hi}; The lower envelope is the graph of the
function u(x) := minni=1 {〈pi, x〉 − hi}. The Legendre dual of u is defined as
u∗(y) := maxx∈Rd〈x, y〉 − u(x). The c-transform of u is defined as

(3.10) uc(y) := min
x∈Rd

〈x, y〉 − u(x).

Each hyperplane πi(x) has a dual point in R
2d+1, π∗

i := (pi, hi), the graph
of u∗ is the lower convex hull of the dual points {π∗

i }
n
i=1, the graph of uc
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Figure 2: The image of the OT map (left frame), and the WT map (right
frame).

is the upper convex hull of the dual points {p∗i }
n
i=1. The projection of the

upper envelope induces a nearest power diagram D(Ω) of Ω,

Ω =

n
⋃

i=1

Wi(u), Wi(u) := {x ∈ Ω|∇u(x) = pi} .

The projection of the lower envelope induces a farthest power diagram Dc

of Ω. The projection of the lower convex hull u∗ induces a nearest weighted
Delaunay triangulation T (Ω∗) of Ω∗. The projection of the upper convex
hull uc induces a farthest weighted Delaunay triangulation T c(Ω∗). D(Ω)
and T (Ω∗) are dual to each other, namely pi connects pj in T (Ω∗) if and
only if Wi(u) is adjacent to Wj(u). Similarly, Dc and T c are also dual to
each other. Fig. 2 and Fig. 3 show these basic concepts.

Problem 3.16 (Semi-discrete Optimal Transportation Map). Suppose Ω ∈
R
d is a compact convex domain, the source density function is dμ(x) =

f(x)dx, f ∈ L1(Ω). The target domain Ω∗ = {p1, p2, . . . , pn} ⊂ R
d is a set

of n distinct points. The target measure is a summation of Dirac measures
ν =

∑n
i=1 νiδ(y − pi), where ν1, . . . , νn are positive numbers and satisfy

μ(Ω) =

n
∑

i=1

νi.



Computational optimal transportation 219

Figure 3: The Brenier potential for OT map (a) and WT map (b), equiv-
alently the upper and lower envelopes. The Legendre dual to the potential
of the OT map (c) and the WT map (d), equivalently the lower and upper
convex hulls.

Find the transportation map T : Ω → Ω∗ that minimizes the total trans-

portation cost

(SD)

min

{

1

2

∫

Ω
|x− T (x)|2dμ(x) : T : Ω → Ω∗, μ(T−1(pi)) = νi, i = 1, . . . , n

}

.
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Figure 4: Semi-discrete OT: top left the Brenier potential uh, top right the
Legendre dual u∗

h
, bottom left the Power diagram, bottom right the weighted

Delaunay triangulation.

The Brenier theorem can be generalized to the semi-discrete cases as

shown in Fig. 4. The Brenier potential becomes a piecewise-linear convex

function u : Rn → R, each point pi ∈ Ω∗ corresponds to a support plane

πi(h, x) := 〈pi, x〉 − hi, i = 1, . . . , n,

where vector h represents all the heights (h1, h2, . . . , hn). Each support plane

πi(x) has a dual point π∗
i ∈ R

d+1

π∗
i (h) = (pi, hi), i = 1, 2, . . . , n.

The Brenier potential is the upper envelope of the support planes πi(h)’s as

below:

(3.11) uh(x) :=
n

max
i=1

{πi(h, x)} =
n

max
i=1

{〈pi, x〉 − hi}.

The Legendre dual of the Brenier potential is the lower convex hull of the

dual points π∗
i (h)’s

(3.12) u∗h(h) := min

⎧

⎨

⎩

d+1
∑

j=k

λkhik |y =

d+1
∑

k=1

λkpik ,

d+1
∑

k=1

λk = 1, λk ≥ 0, ∀k

⎫

⎬

⎭

.
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The projection of the Brenier potential induces a cell decomposition of Rd,
which is called the power diagram, denoted as D(h), where each cell is called
a power cell,

(3.13) R
d =

n
⋃

i=1

Wi(h), Wi(h) := {x ∈ R
d : ∇uh(x) = pi}.

The power cell can be equivalently defined as

(3.14) Wi(h) := {x ∈ R
d : πi(h, x) ≥ πj(h, x), ∀j}.

The projection of the Legendre dual of the Brenier potential induces a trian-
gulation of Rd, which is called the weighted Delaunay triangulation, denoted
as T (h). The OT map T : Ω → Ω∗ is given by the gradient map of the
Brenier potential:

(3.15) T = ∇uh : Wi(h) ∩ Ω �→ pi, i = 1, 2, . . . , n.

The inverse of the OT map T : Ω → Ω∗ is also an OT map T−1 : Ω∗ → Ω,
where the Brenier potential is u∗

h
, and uh = (u∗

h
)∗, the classical gradient is

replaced by sub-gradient in Eqn. (3.5),

(3.16) T−1 = ∂u∗h : pi �→ Wi(h) ∩ Ω, i = 1, 2, . . . , n.

The existence and the uniqueness of the solution is proved in [21] using
geometric variational approach. In the following we give a brief proof based
on Kantorovich dual theorem.

Theorem 3.17 (Gu et al. [21]). Let Ω be a compact convex domain in R
d,

Ω∗ = {p1, ..., pn} be a set of distinct points in R
d, the source measure density

function be dμ(x) = f(x)dx, f : Ω → R be positive and continuous. Then for
any ν1, . . . , νn > 0 with

∑n
i=1 νi = μ(Ω), there exists h = (h1, h2, . . . , hn) ∈

R
n, unique up to adding a constant (c, c, . . . , c), so that the projection of uh

μ(Wi(h) ∩ Ω) =

∫

Wi(h)∩Ω
f(x)dx = νi ∀i = 1, 2, . . . , n.

The height vector h is exactly the optimal solver of the following convex
function

(3.17) E(h) =

∫

h

0

n
∑

i=1

hiνi −

n
∑

i=1

μ(Wi(h) ∩ Ω)dhi
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on the open convex set (the admissible solution space)

(3.18) H = {h ∈ R
n|μ(Wi(h) ∩ Ω) > 0, ∀i}

⋂

{

n
∑

i=1

hi = 0

}

.

The gradient map ∇uh : Wi → pi ∀i = 1, 2, . . . , n minimizes the quadratic
cost 1

2

∫

Ω |x−T (x)|2f(x)dx among all the measure preserving transportation
maps T : (Ω, μ) → (Rd, ν =

∑n
i=1 νiδpi

) with T#μ = ν.

Proof. In order to find the OT map,

max
T#µ=ν

∫

Ω
〈x, T (x)〉dμ(x),

by the setup of the dual problem Eqn. (3.2), we need to find the Kantorovich
potential uh and its Legendre dual u∗

h
to minimize the potential,

min
h

E(h) =min
h

∫

Ω
uh(x)dμ(x) +

∫

Ω∗

u∗h(y)dν(y)

=min
h

∫

Ω
sup
y∈Ω∗

(〈x, y〉 − u∗h(y))dμ(x) +

∫

Ω∗

u∗h(y)dν(y)

=min
h

∫

Ω

n
max
i=1

{〈x, pi〉 − hi}dμ(x) +

n
∑

i=1

hiνi

=min
h

n
∑

i=1

∫

Wi(ϕ)∩Ω
(〈x, pi〉 − hi)dμ(x) +

n
∑

i=1

hiνi.

We set the μ-volume of each cell as

(3.19) wi(h) := μ(Wi(h) ∩ Ω).

By direct computation, the gradient is

(3.20) ∇E(h) = (ν1 − w1(h), ν2 − w2(h), · · · , νn − wn(h))
T .

Suppose the Hessian matrix of the energy is Hess(E(h)) = (hij), its off-
diagonal element hij is the ratio between the length of the corresponding
Voronoi and Delaunay edges,

(3.21) hij = −
∂wi(h)

∂hj
=

1

|pi − pj |
μ(Wi(h) ∩Wj(h)) = hji.
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Because the total volume of the cells is constant
∑n

i=1wi(h) = μ(Ω), there-
fore

(3.22) hii =
∂wi(h)

∂hi
= −

∑

j �=i

∂wj(h)

∂hi
= −

∑

j �=i

hji = −
∑

j �=i

hij .

This shows the Hessian matrix has one dimensional null space (1, 1, . . . , 1)T .
In the complement space

∑n
i=1 hi = 0, the Hessian matrix is diagonal dom-

inant, therefore it is negative definite and the energy is strictly convex.
The admissible solution space H in Eqn. (3.18) is convex according to

Brunn-Minkowski inequality. The OT map is the optimum interior point in
H, therefore it exists and is unique.

3.6. Semi-discrete WT maps

The WT theorem 3.12 can be directly generalized to the discrete situation
as follows.

Theorem 3.18 (Semi-discrete Worst Transportation Map). Let Ω be a com-
pact convex domain in R

2d, {p1, ..., pn} be a set of distinct points in R
2d and

f : Ω → R be a positive continuous function. Then for any ν1, . . . , νn > 0
with

∑n
i=1 νi =

∫

Ω f(x)dx, there exists h = (h1, h2, . . . , hn) ∈ R
n, unique up

to adding a constant (c, c, . . . , c), so that

μ(Wi(h) ∩ Ω) =

∫

Wi(h)∩Ω
f(x)dx = νi ∀i.

The height vectors h’s are exactly the maximum points of the concave func-
tion

(3.23) E(h) =

n
∑

i=1

hiνi −

∫ h

0

n
∑

i=1

μ(Wi(h) ∩ Ω)dhi

On the open convex set (admissible solution space)

(3.24) H = {h ∈ R
n|μ(Wi(h) ∩ Ω) > 0, ∀i}

⋂

{

n
∑

i=1

hi = 0

}

.

Furthermore, the gradient map ∇uh maximizes the quadratic cost 1
2

∫

Ω |x−
T (x)|2f(x)dx among all the measure preserving transport maps T : (Ω, μ) →
(R2d, ν =

∑n
i=1 νiδpi

), T#μ = ν.
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Proof. Given the height vector h = (h1, h2, · · · , hn), h ∈ H, we construct the

upper convex hull of vi(h) = (pi, hi)’s, see Fig. 3(d), each vertex corresponds

to a plane πi(h, x) := 〈pi, x〉 − hi. The convex hull is dual to the lower

envelope of the plane πi(h, ·)’s, see Fig. 3(b), which is the graph of the

concave function,

(3.25) uh(x) :=
n

min
i=1

〈pi, x〉 − hi.

The projection of the lower envelope induces a farthest power diagram D(h),

see Fig. 3 top right frame,

Ω =

n
⋃

i=1

Wi(h) ∩ Ω, Wi(h) := {x ∈ Ω,∇uh(x) = pi}.

The μ-volume of each cell is defined as

(3.26) wi(h) := μ(Wi(h) ∩ Ω) =

∫

Wi(h)∩Ω
f(x)dx.

By direct computation similar to lemma in [22], we can show the symmetric

relation holds:

(3.27)
∂wi(h)

∂hj
=

∂wj(h)

∂hi
=

1

|pi − pj |

∫

Wi(h)∩Wj(h)∩Ω
f(x)ds.

This shows the differential form ω =
∑n

i=1wi(h)dhi is a closed one-form. By

Brunn-Minkowski inequality, we can show that the admissible height space

H in Eqn. (3.24) is convex, therefore simply connected. Hence ω is exact.

So the energy E(h) :=
∫

h

0 ω is well defined. Furthermore, Hessian matrix of

E(h) is given by

(3.28)
∂2E(h)

∂hi∂hj
=

wi(h)

∂hj
≥ 0,

since the total volume of all the cells is the constant μ(Ω), we obtain

(3.29)
∂2E(h)

∂h2i
= −

∑

j �=i

wi(h)

∂hj
< 0.
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Therefore the Hessian matrix is negative definite in H, the energy is strictly
concave in H. By adding a linear term, the energy is still strictly concave,

E(h) =

∫

h

0

n
∑

i=1

wi(h)dhi −

n
∑

i=1

νihi.

The gradient of E(h) is given by

(3.30) ∇E(h) = (w1(h)− ν1, w2(h)− ν2, · · · , wn(h)− νn).

On the boundary ofH, there is an empty cellWk(h), and the k-th component
of the gradient is −νk, pointing to the interior of H. This shows the global
unique maximum of the energy is the interior point of H. At the maximum
point h∗, ∇E(h∗) is zero, wi(h

∗) = νi, hence h∗ is the unique solution to
the semi-discrete WT problem.

3.7. Symmetry between the optimal and the worst

transportation maps

The OT map and WT map have intrinsic symmetry. We illustrate it by an
example. Fig. 5 shows the source measure (Ω, μ), a facial surface is confor-
mally mapped to the unit disk, the surface area element is push forwarded
to the disk, and defines μ.

The target measure (Ω∗, ν) is the uniform distribution on the unit disk,
namely g(y) ≡ 1. Let ϕ : Ω∗ → Ω∗ be the reflection in the origin, ϕ(x) = −x.
Then the target measure has the symmetry, ϕ#ν = ν, namely g(−y) = g(y).
The shape of the support Ω∗ also has the symmetry, ϕ(Ω∗) = Ω∗. In this
case, the OT map and WT map are symmetric with respect to each other.
The OT map T : (Ω, μ) → (Ω∗, ν) is shown in the left frame of the bottom
row of Fig. 5, the WT map t : (Ω, μ) → (Ω∗, ν) is shown in the right frame
of the bottom row of Fig. 5. They differ by a reflection in the origin, namely
T ◦ t−1 = ϕ.

If (Ω∗, ν) is not symmetric, ϕ#ν �= ν, then the OT map and WT map
are not symmetric either. As shown in Fig. 6, when the target domain Ω∗

is not symmetric about the origin, the images of OT map and WT map are
not symmetric anymore.

Theorem 3.19 (Continuous Symmetry). Given the probability measures
μ and ν with compact supports Ω,Ω∗ ⊂ R

2d respectively, and equal total
mass μ(Ω) = ν(Ω∗). Assume the density functions f, g ∈ L1(Rd, Ω,Ω∗),
furthermore, Ω∗ is symmetric about the origin, ϕ#ν = ν, where ϕ(y) = −y
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Figure 5: The top row is the target measure (Ω∗, ν), which is induced by
a conformal mapping from a female face to the planar disk. The push-
forwarded surface area element is ν. The bottom row shows the source mea-
sure (Ω, μ), which is the uniform distribution on the disk. The OT map
image (left) and the WT map image (right) differ by a rotation of angle π,
namely they are symmetric under the reflection in the origin.

is the reflection in the origin. Then the OT map T : Ω → Ω∗ and the WT
map t : Ω → Ω∗ differ by ϕ, T = ϕ ◦ t, t = ϕ ◦ T .

Proof. By Brenier Thm. 3.6, there is a convex Brenier potential u : Ω → R,
the OT map T = ∇u. By Thm. 3.12, there is a concave function v : Ω → R,
such that the WT map t = ∇v. −u is a concave function, −T = −∇u,

(−∇u)#μ = (ϕ ◦ T )#μ = ϕ#(T#μ) = ϕ#ν = ν,

therefore (−T )#μ = ν, and −T is the gradient map of a concave function
−u. By the uniqueness of the WT map, we have −T = t and the worst
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Figure 6: The target measure (Ω∗, ν) is the uniform distribution on an ir-
regular domain, the OT map image (left), the WT map image (right) are
not symmetric.

Brenier potential equals to −u. This shows t = ϕ◦T . Similarly, we can show
t ◦ ϕ = T .

Theorem 3.20 (Semi-discrete Symmetry). Let Ω be a compact convex do-
main in R

2d, the measure μ is with continuous density function dμ = f(x)dx,
f : Ω → R. ϕ#μ = μ, where ϕ(x) = −x is the reflection in the origin. The
target measure ν =

∑n
i=1 νiδ(y − pi), where {p1, . . . , pn} be a set of distinct

points in R
2d, and ν1, . . . , νn > 0 with

∑n
i=1 νi = μ(Ω). Then the OT map

T : Ω → {pi}
n
i=1 and the WT map t : Ω → {pi}

n
i=1 differ by a reflection in

the origin, T ◦ ϕ = t, t ◦ ϕ = T .

Proof. By Thm. 3.17, there is a convex Brenier potential u : Ω → {pi}
n
i=1,

T = ∇u, T#μ = ν.

(−∇u)#μ = (∇u(−x))#μ = (∇u)#(ϕ#μ) = (∇u)#μ = ν,

according to the uniqueness of the WT map, we obtain T ◦ϕ = t. Similarly,
we can show t ◦ ϕ = T .

In summary, if the source measure is symmetric, ϕ#μ = μ, then T ◦ϕ = t
and t ◦ ϕ = T ; if the target measure is symmetric, ϕ#ν = ν, then ϕ ◦ T = t
and ϕ ◦ t = T .
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4. Computational algorithms

4.1. OT map algorithm

The algorithm for computing the semi-discrete OT map is to optimize the
convex energy Eqn. (3.17) using Newton’s method in the admissible space
H in Eqn. (3.24). By Newton’s method, the searching direction d is the
solution of the linear system,

(4.1) Hess(E(h))d = ∇E(h).

In each step, we update the current height vector h by h− λd with λ being
a carefully chosen step length.

To compute the gradient and the Hessian matrix of the energy Eqn.
(3.17), we need to compute the Brenier potential uh and its corresponding
cell decomposition D(h), which is realized through computing the dual con-
vex hull u∗

h
and its corresponding weighted Delaunay triangulation T (h).

To keep the Hessian matrix nondegenerate, we need to carefully select the
step length λ such that h− λd is still in the admissible space H.

During the optimization, the Brenier potential uh and its Legendre dual
u∗
h
are updated step by step. Su et al. [43] construct the new convex hull

u∗
h
at each step with time complexity O(n log(n)) (such as the incremental

algorithm, or the divide and conquer algorithm [10]). This is the most time
consuming step in the pipeline. We observe that in the later stages of the
optimization, the combinatorial structure of the convex hull u∗

h
keeps in-

variant, thus it is unnecessary to construct the new triangulation structure
T (h) in each step [43]. Here, we propose to modify the previous triangulated
convex hull u∗

h
to make the current T (h− λd) weighted Delaunay triangu-

lation. To do so, we generalize the Lawson’s edge flip algorithm [28] from
conventional Delaunay triangulations to the weighted Delaunay triangula-
tions (section 4.1.1). With the convex hull u∗

h
and the weighted Delaunay

triangulation T (h), we can then compute the Brenier potential uh (sec-
tion. 4.1.2) and its corresponding cell decomposition D(h) (section 4.1.3).
This greatly improves the computational efficiency.

By translation and scaling, we can assume Ω∗ ⊂ Ω, namely all the sam-
ples pis are contained in the source domain Ω. To keep the height vec-
tor h in the admissible space during the optimization, we initialize h =
1/2(|p1|

2, |p2|
2, · · · , |pn|

2) and h = h−mean(h). Its corresponding power di-
agram D(h) is the classical power diagram, and the corresponding weighted
Delaunay triangulation T (h) is the traditional Delaunay triangulation of
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Algorithm 1: Optimal Transportation Map
Input: Ω, μ, ν, threshold ε
Output: The Brenier potential uh

Normalize {p1, p2, . . . , pn} to be inside Ω by translation and scaling;
Initialize hi = 〈pi, pi〉/2;
while true do

Call Alg. 3 to compute the power diagram D(h);
Compute μ(Wi) i = 1, 2, . . . , n using Eqn. (4.2);
Compute ∇E(h) using Eqn. (3.20);
if ‖∇E(h)‖ < ε then

break;
else

Compute the μ-lengths of the power Voronoi edges using Eqn. (4.3);
Construct the Hessian matrix of the energy E(h) using Eqn. (3.21);
Find the searching direction d by solving the linear system in Eqn. (4.1);
Set λ = 1 ;
repeat

Compute the power diagram D(h− λd);
if h− λd /∈ H then

λ ← 1

2
λ;

continue;

end

until no empty power cell ;
Update the height vector h ← h− λd;

end

end

{pi}
n
i=1. Since all the samples are inside Ω, all the Voronoi cells Wi(h)’s are

non-empty. Thus, the initialized h is in the admissible spaceH in Eqn. (3.24).
Given the previous height vector h ∈ H and the search direction d, we firstly
set λ = 1 and compute D(h − λd). If some cells of D(h − λd) are empty,
namely h − λd is not in the admissible space H, we then set λ = 1

2λ and
repeat the above procedure until there is no empty cell in D(h − λd). In
such a way, we find the proper step length λ to keep the updated height
vector h := h− λd in the admissible space H.

Furthermore, Su et al. [43] assume the source distribution to be uniform
and cannot handle more complex source measures. In Sec. 4.1.4, we pro-
pose the sweep convex polygon algorithm that can help compute the OT
map from a piecewise linearly defined source measure to the target discrete
measure.

We put all the pieces together, and the whole algorithmic pipeline is sum-
marized in Alg. 1. The evaluations of μ-areas of the cells and the μ-lengths
of the power Voronoi edges use Eqn. (4.2) and Eqn. (4.3), respectively.
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Figure 7: Edge local weighted Delaunay condition.

The computational process is to optimize the convex energy Eqn. (3.17)
in the admissible solution space Eqn. (3.24). At each step, we compute (i)
the convex hull u∗

h
and its corresponding weighted Delaunay triangulation

T (h) with our generalized Lawson’s edge flip, (ii) the upper envelope uh by
Legendre dual and (iii) the power diagram D(h) through the Sutherland-
Hodgman clipping. We also introduce the sweep convex polygon algorithm
to handle the piecewise linearly defined source measures.

4.1.1. Generalized Lawson’s edge flip The generalized Lawson’s edge
flip is used to compute the weighted Delaunay triangulation T (h − λd)
through updating T (h). In general, the Lawson’s edge flip algorithm does
not guarantee the recovery of the weighted Delaunay triangulations. An ele-
mentary example of when the algorithm will fail to terminate is shown in [16].
In our case, if the Lawson’s edge flip fails to terminate, there must exist some
vertices pis that do not belong to the weighted Delaunay triangulation T (h−
λd). Equivalently, the dual Voronoi cells Wis of such vertices in D(h− λd)
are empty. In such a case, we claim that h−λd /∈ H, and λ needs to be fur-
ther decreased to make h−λd ∈ H. If the following Lawson’s edge flip works
well, then we can finally get the weighted Delaunay triangulation T (h−λd).

The idea of Lawson’s edge flip algorithm is to check whether each in-
terior edge of a triangulation is locally weighted Delaunay. If not, then the
algorithm tries to flip it to become locally weighted Delaunay. The locally
weighted Delaunay is shown in Fig. 7. Given an edge e = (p0, p1) in a pla-
nar triangulation T , we 1) find its two neighboring faces, 2) lift the four
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Figure 8: A non-flippable edge.

vertices to the convex hull, and 3) compute the volume of the tetrahedron
[q0, q1, q2, q3] with qi = (pi, hi). If the volume is positive, then e is locally
weighted Delaunay. If the volume is negative, then e is not locally weighted
Delaunay. Before flipping an edge, we need to check whether it is flippable.

As shown in the Fig. 8, if we flip the edge e to edge ē, one triangle
becomes clockwise, thus the edge e is not flippable. Our generalized Lawson’s
edge flip algorithm marks all the non-local Delaunay edges and pushes them
into a stack. When the stack is non-empty, the top edge e is popped and
unmarked. If e is still non-local weighted Delaunay and flippable, then e is
flipped and its unmarked neighboring edges are pushed into the stack. If the
stack is empty but there are still some non local weighted Delaunay edges,
it means that not all the points (pi, hi) are on the convex hull and we need
to decrease λ. It has been proven that if all the points (pi, hi) are on the
convex hull, then the Lawson’s edge flip algorithm converges and gives the
desired weighted Delaunay triangulation T (h−λd) of pi’s [10], which is the
same as the triangulation given by the convex hull of (pi, hi)s. The bottom
row of Fig. 3 shows a convex hull obtained by the generalized Lawson edge
flip algorithm, whose pipeline is given by Alg. 2.

4.1.2. Legendre dual The convex hull is the graph of u∗
h
, and the Bre-

nier potential uh is the Legendre dual of u∗
h
and is represented as the upper

envelope of planes {πi(x) = 〈x, pi〉 − hi}
n
i=1. The upper envelope uh is con-

structed as follows: given a vertex qi = (pi, hi) on the convex hull u∗
h
, it

corresponds to a planar face of the upper envelope uh with the supporting
plane πi(x) = 〈pi, x〉−hi. Given an edge [qi, qj ] on the convex hull, its dual is
an edge on the upper envelope uh along the intersection line between πi and
πj . Given a triangle [qi, qj , qk] on the convex hull, it corresponds to a vertex
on the upper envelope uh that is the intersection of three planes πi, πj and πk.

Since we only need the projection of the Brenier potential on the regions
around Ω, we add an infinity vertex (0, 0,−∞), which represents a horizontal
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Algorithm 2: Generalized Lawson’s Edge Flip
Input: The planar point set {p1, . . . , pn} with heights {h1, . . . , hn}, the initial

triangulation T of pis
Output: The convex hull of {(pi, hi)}, the weighted Delaunay triangulation of

{pi}, all (pi, hi)s are on the convex hull or not
Push all non-locally interior edges of T into a stack and mark them;
while the stack is non-empty do

e ← pop(), unmark e;
if e is not locally weighted Delaunay then

if e can be flipped then

flip edge e;
push the other four edges of the two triangles adjacent to e into the
stack if they are unmarked;

end

end

end

return all edges are local weighted Delaunay

Figure 9: Legendre dual of the augmented convex hull.

plane z = ∞ in the upper envelope u∗
h
, to the convex hull and get an

augmented convex hull. The Legendre dual of the augmented convex hull
gives the upper envelope truncated by the horizontal plane z = ∞. Fig. 9
shows the Legendre dual of the augmented convex hull (corresponds to the
bottom row of Fig. 3 obtained by the algorithm, where the height of the
horizontal plane is chosen to be large enough.

4.1.3. Sutherland-Hodgman clipping The projection of the Legendre
dual of the augmented convex hull is a planar power diagram, denoted as
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D̄(h) defined on a region including Ω. It is then clipped by the boundary of
the source domain ∂Ω. In our algorithm Ω is required to be convex. Since
each cell of the power diagram D̄(h) is a convex planar polygon, and ∂Ω is
also convex, the clipping can be carried out using the classical Sutherland-
Hodgman algorithm [45], which goes through all the edges of ∂Ω. Basically,
suppose W̄i is a cell of D̄(h), then the line through one edge of ∂Ω divides
the plane into two halves and only the left half where Ω belongs to is kept.
This may cut off a corner portion of W̄i. The remaining part of W̄i after the
corner cuttings of all the lines in ∂Ω is the intersection between W̄i and ∂Ω,
namely Wi of D(h).

The algorithm for constructing the power diagram D(h) is obtained by
combining all the procedures explained so far. As shown in Alg. 3, for a given
set of samples {pi}

n
i=1 and the corresponding height vector h, it produces

the power diagram of Ω induced by the upper envelope uh.

Algorithm 3: Power Diagram and Upper Envelope

Input: Ω, samples {pi}
n
i=1, heights {hi}

n
i=1

Output: The power diagram of Ω induced by the samples and its corresponding
heights

Use the generalized Lawson’s edge flip Alg. 2 to compute the convex hull;
Add the infinity vertex (0, 0,−∞) to the convex hull and get the augmented
convex hull;

Compute the Legendre dual of the augmented convex hull to obtain the
unclipped upper envelope;

Project the unclipped upper envelope to obtain the unclipped power diagram
D̄(h) ;

Clip the unclipped power diagram D̄(h) by ∂Ω using the Sutherland-Hodgman
algorithm [45] to obtain the power diagram D(h);

Lift D(h) to obtain the clipped upper envelope uh defined on Ω.

4.1.4. Sweep convex polygon algorithm In practice, the source do-
main Ω is triangulated as S and Ω =

⋃m
j=1Δj . The density function dμ =

f(x)dx can be represented as a piecewise linear function defined on the tri-
angulation S and f(x) is linear on each triangle face Δj . The power diagram
D partitions Ω into cells, Ω =

⋃n
i=1Wi(h). In order to evaluate the μ-area

of each cell wi(h) =
∫

Wi(h)
f(x)dx and compute the μ-length of each power

edge, we need to compute the subdivision of S and D,

Ω =

n
⋃

i=1

m
⋃

j=1

Wi(h) ∩Δj ,
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Figure 10: The sweep convex polygon algorithm to compute the overlay
(right) of two cell decompositions (left S and middle D).

as shown in Fig. 10. The left frame shows the triangulation S of Ω, the
middle frame the power diagram D, and the right frame demonstrates the
subdivision of S and D.

A naive way to compute the subdivision is to compute the intersection
of each pair of cell and triangle (Wi(h),Δj) using the Sutherland-Hodgman
algorithm [45], and the complexity will be O(mn), where n,m are the num-
ber of cells and triangles, respectively. Since most of the pairs have empty
intersection, this method is highly inefficient. An efficient solution is to use
the Bentley-Ottman’s sweepline algorithm [9]. Unfortunately, the original
sweepline algorithm is notoriously vulnerable to arithmetic errors. In order
to ensure the stability of the algorithm, people usually use exact arithmetic
methods, such as rational computation. But this will greatly slow down
the computation. To solve this problem, we propose a method called the
sweep convex polygon algorithm that combines the simplicity and stability of
the Sutherland-Hodgman method with the efficiency of the Bently-Ottman
method, as shown in Alg. 4. At first, we sort the planar points from left
to right, then from bottom to top. For the planar polygons, we sort them
by their minimal vertices. If two polygons share the same minimal vertex,
we sort them by the slope of the edge starting from the minimal vertex. If
their slopes are the same, we consider the second minimal vertex and so on.
Similar to the classical Bentley-Ottman algorithm, the algorithm preserves
an event queue (X-structure) and a sweepline data structure (Y-structure).

The algorithm sweeps a vertical line from left to right across a polygon,
if the sweepline crosses the minimal vertex of a polygon, the polygon is
born; if the sweepline goes through the maximal vertex of an alive polygon,
then the polygon is killed. The births and the deaths of all the polygons are
treated as events. All the events are put into the event queue and sorted
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Algorithm 4: The Sweep Convex Polygon Method
Input: The triangulation S and the power diagram D of Ω
Output: The subdivision of S and D
For each polygon in S and D, compute its minimal and maximal vertex;
Enqueue all the birth and death events to the event queue;
while the event queue is not empty do

Pop the event queue to get an event et;
if et is a birth event then

Find all the newborn polygons, whose minimal vertices equal to the
event point;

Insert all the newborn polygons to the Y-structure;
for each newborn σ ∈ S and each τ ∈ D in the Y-structure do

if τ and σ have not been tested for intersection then

use the Sutherland-Hodgman algorithm to compute σ ∩ τ ;
end

end

else
Find all the dead polygons in the Y-structure, whose maximal vertices
equal to the event point;

Delete all the dead polygons from the Y-structure;

end

end

by the corresponding minimal and maximal vertex positions. At each step,
the algorithm handles the top event in the event-queue. If it is a birth
event, then all the polygons starting from the event point are added to the
Y-structure. For each newly inserted polygon σ ∈ S and each polygon in
the Y-structure τ ∈ D, the algorithm performs the intersection test, and
finds the overlapping σ∩ τ between them. Similarly, for each newly inserted
polygon τ ∈ D and each polygon in the Y-structure σ ∈ S, the algorithm
finds the intersection. In practice, the bounding box of each polygon is used
to speed up the intersection testing.

Finally we obtain the subdivision of D and S, formed by the convex
polygons {Wi(h)∩Δj}

n,m
i=1,j=1, as shown in the right frame of Fig. 10. Then

the μ-area of a cell Wi(h) is calculated as:

(4.2) μ(Wi(h)) =
∑

j

∫

Wi(h)∩Δj

f(x)
∣

∣

Δj
dx.

Since the restriction of the density function f(x) of each Δj , namely f(x)
∣

∣

Δj
,

is linear, the computation is straightforward. Each power Voronoi edge
Wi(h) ∩ Wk(h) is also segmented by Δj ’s. The μ-length of each segment
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Wi(h)∩Wk(h)∩Δj is evaluated, and summed up to obtain the μ-length of
Wi(h) ∩Wk(h),

(4.3) μ(Wi(h) ∩Wk(h)) =
∑

j

∫

Wi(h)∩Wk(h)∩Δj

f(x)
∣

∣

Δj
ds.

4.2. WT map algorithm

This section explains a unified algorithm to compute both the OT and WT
maps.

The algorithm mainly optimizes the energy E(h) in the admissible so-
lution space H using Newton’s method. At the beginning, for the OT (WT)
map, the height vector h0 is initialized as hi = 1

2 |pi|
2 (hi = −1

2 |pi|
2). At

each step, the convex hull of {(pi, hi)}
n
i=1 is constructed. For OT (WT)

map, the lower (upper) convex hull is projected to induce a nearest (farthest)
weighted Delaunay triangulation T of {pi}’s. Each vertex on the convex hull
vi(h) = (pi, hi) corresponds to a supporting plane πi(h, x) = 〈pi, x〉−hi, each
face [vi, vj , vk] in the convex hull is dual to the vertex in the envelope, which
is the intersection point of πi, πj and πk. For the OT (WT) map, the lower
(upper) convex hull is dual to the upper (lower) envelope. The projection
of the envelopes induces the power diagrams. For the OT (WT) map, the
upper (lower) envelope induces the nearest (farthest) power diagram.

Then we compute the μ-volume of each power cell using Eqn. (3.26),
the gradient of the energy Eqn. (3.17) is given by Eqn. (3.20). The Hessian
matrix Hess(E(h)) can be constructed using Eqn. (3.28) for off diagonal
elements and Eqn. (3.29) for diagonal elements. The Hessian matrices of the
OT and WT maps differ by a sign. Then we solve a linear system to find
the update direction,

(4.4) Hess(E(h))d = ∇E(h).

Then we need to determine the step length λ, such that h − λd is still in
the admissible solution space H. First, we set λ to be +1 for OT map, −1
for WT map. Then compute the power diagram D(h− λd) using h− λd. If
some cells disappear in the power diagram, then it means h−λd falls out of
the admissible space. Then we shrink λ by half, λ ← 1

2λ, and reconstruct the
power diagram h−λd. We repeat this process, until we find an appropriate
step length λ and update h as h − λd. We repeat this procedure until the
norm of the gradient of the energy is less than a prescribed threshold ε. Then
the upper (lower) envelope is the Brenier potential for the OT (WT) map.
Each nearest (farthest) power cell Wi(h) is mapped to the corresponding
sample point pi, which is the desired OT (WT) map.
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Algorithm 5: Optimal/Worst Transportation Map

Input: (Ω, μ), {(pi, νi)}
n
i=1, OT or WT map

Output: The optimizer h the Brenier potential uh

Normalize {p1, p2, . . . , pn} to be inside Ω by translation and scaling;
Initialize hi = ±〈pi, pi〉/2 for OT/WT;
while true do

Compute the lower (upper) convex hull of {(pi, hi)}
n
i=1 for OT/WT map;

Compute the upper (lower) envelope of the planes {〈pi, x〉 − hi}
n
i=1 for

OT/WT map;
Project the upper (lower) envelope to Ω to get a nearest (farthest) power
diagram Ω =

⋃n

i=1
Wi(h) for OT/WT map ;

Compute the μ-volume of each cell wi(h) = μ(Wi(h)) using Eqn. (3.26);
Compute the gradient of the energy E(h), ∇E(h) = (wi(h)− νi);
if ‖∇E(h)‖ < ε then

return h;
end

Compute the μ-lengths of the power Voronoi edges Wi(h) ∩Wj(h) ∩Ω using
Eqn. (3.27);

Construct the Hessian matrix of the energy E(h) for OT/WT map:

Hess(E(h)) :=
∂2E(h)

∂hi∂hj

= ±
μ(Wi(h) ∩Wj(h))

|yi − yj |

Solve linear system: Hess(E(h))d = ∇E(h);
λ ← ±1 for OT/WT map;
repeat

Compute the nearest (farthest) power diagram D(h− λd) for OT/WT
map;

λ ← 1

2
λ;

until no empty power cell ;
Update the height vector h ← h− λd;

end

4.3. Volumetric OT map algorithm

The algorithm for volumetric OT maps is very similar. The computation of
power cell is based on cell clipping algorithm. Suppose at the current step,
the power diagram is given by

(4.5) R
d =

n
⋃

i=1

Wi(h),

where Wi(h) is the projection of the supporting plane πi(h) on the graph
of the Brenier potential uh, we need to clip Wi(h) by Ω to obtain the cell
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Wi(h) ∩ Ω. The domain Ω is represented by a convex polyhedron, with
supporting planes τj ’s, j = 1, 2, . . . , k. Each plane τj divides R

d into an
upper half-space and a lower half-space, Ω is the intersection of all the lower
half-spaces. The power cell Wi(h) is clipped by each supporting plane τj
sequentially to obtain Wi(h) ∩ Ω. At the j-th step, we test whether the
current cell Wi(h) is above the plane τj , if so, then the power cell Wi(h)
is empty; otherwise, if Wi(h) is below the plane τj , then we skip the plane
τj and proceed to the next plane; if Wi(h) intersects τj , we cut off the
component of W̃i(h) above τj .

5. Experimental results

In this section, we present our experimental results to show the accuracy,
efficiency and robustness of the proposed methods, including the planar OT
map, the planar WT map, and the volumetric OT map.
Setup All the algorithms are developed using generic C++ compatible with
Windows and Linux platforms. The code uses half-edge data structure to
represent meshes, Eigen [23] for numerical computation and OpenGL for
interface. All the experiments are conducted on a Windows laptop with
Intel Core i7-7700HQ CPU (planar and volume OT maps) or Intel Core
i7-6700HQ CPU (planar WT map) using single thread and 16 GB mem-
ory.

5.1. Planar OT map

In order to show the accuracy and efficiency of the proposed algorithm,
we compute the area preserving mappings from 3D models to the planar
disk and compare with the method by Su et al. [43]. Each triangulated 3D
model M in Fig. 11(a) is firstly conformally mapped to the unit disk D

by the Ricci flow method [52], as shown in Fig. 11(b). It is obvious that
the conformal mapping has large area distortions compared with the 3D
surfaces. The conformal mapping is denoted by φ, and each vertex vi ∈ M
is mapped to pi = φ(vi) on D. Its corresponding discrete measure is given
by νi = 1

3

∑

[vi,vj ,vk]∈M
area([vi, vj , vk]), where [vi, vj , vk] represents a face

adjacent to vi on M . After normalization, the summation of the discrete
measures will be equal to the area of the planar disk, namely π. Then we
compute the semi-discrete OT map T from the uniform distribution defined
on the planar disk to the target measure ν =

∑n
i=1 νiδ(x − pi). Finally,

the composition T−1 ◦ φ gives the discrete area-preserving map from the
discrete mesh M to the planar disk D, as shown in Fig. 11(c). (i) To show
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Figure 11: The conformal mapping (b) and the computed area-preserving
mapping (c) for various 3D surface models (a).
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Table 1: Running time (s) comparison

Model Vertex Method [43] Our method Speedup
Alex 14358 11.189 1.390 8.05
David 21466 16.656 2.380 7.00
Sophie 24891 22.462 2.373 9.47
Hand 3706 5.390 1.287 4.19
Buddha 18237 14.549 2.264 6.43

32765 29.500 5.422 5.44
Brain 14971 14.960 2.592 5.77

25909 24.892 5.047 4.93
Luke 17830 13.849 1.841 7.52

24977 23.016 2.653 8.68

the efficiency of the proposed method, we set the stopping condition for

Alg. 1 to be maxi μ(Wi)/νi < 10−8 and report the computing time for the

proposed algorithm and Su et al. [43] in Tab. 1. For our method, the reduced

area-distortion within each iteration is two to three times faster than [43],

and the total iteration number required by the proposed method is three

to four times less. Therefore, the new method is 6 to 10 times faster than

that of [43]. (ii) To show the accuracy of the proposed method, we plot

the histograms of log(μ(Wi)/νi), i = 1, 2 . . . , n in different iterations and

compare with [43] in Fig. 12 for the first model of Fig. 11. Upon convergence,

we have μ(Wi) = νi, namely log(μ(Wi)/νi) = 0 for all i = 1, 2, . . . , n. It is

obvious that our method (the second row of Fig. 12) converges much faster

than Su et al. (the first row), and it finds the global minimum nearly after

five iterations.

5.2. Planar WT map

The testing surfaces are either scanned from the real world, Fig. 5, Fig. 13,

Fig. 14, or reconstructed from medical images, Fig. 15 with multiple reso-

lutions. The surfaces are conformally mapped to the planar disk, and the

push-forwarded surface area elements are treated as the source measure.

The target measures are the uniform distribution on different planar do-

mains.

Symmetry We verify our symmetry theorems Thm 3.19 and Thm 3.20

using the Buddha model in Fig. 14 and the brain model in Fig. 15. Fig. 14(c-

d) and Fig. 15 (c-d) show the OT and WT map results to the unit disk

with uniform distribution, visually they differ by the reflection in the origin.
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Figure 12: Histogram comparison in different iterations for Su et al. [43]
(the first row) and the proposed method (the second row). The iterations
are given in the title of the figures.

Figure 13: The input probability measures.
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Figure 14: From top left to bottom right, the original Buddha surface (a),
conformal mapping image (b), the OT and WT maps to the unit disk with
uniform distribution (c) and (d), the OT and WT map to an irregular convex
shape with uniform distribution (e) and (f).

We also quantitatively measure the symmetry. For each vertex vi on the
surface, we compute the Euclidean distance between its OT and WT images,
di := |T (vi) − t(vi)|, then plot the histograms of the matching error {di}’s
in Fig. 16 (a-b). It is obvious that the error is concentrated at the origin. If
we examine frames (e) and (f), since the target measures are not symmetric,
the OT and WT images are not symmetric anymore.
Accuracy In order to demonstrate the accuracy of the algorithm, for each
triangular face on the input surface, we calculate its area on the surface and
its area of the OT/WT image, then plot the histograms of the logarithms of
the area ratios for OT/WT map. As shown in Fig. 16 (c-f), the histograms
highly concentrated at the origin, this shows that the OT/WT mapping
results are accurately measure-preserving.
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Figure 15: From top left to bottom right, the original Brain surface (a),
conformal mapping image (b), the OT and WT maps to the unit disk with
uniform distribution (c) and (d), the OT and WT map to an irregular convex
shape with uniform distribution (e) and (f).

Efficiency The model complexities and running times are reported in Tab 2,
we can see that the algorithm is highly efficient, for meshes with 32.7k
vertices, the running time is less than 6 seconds.

5.3. Volumetric OT map

We tested our volumetric OT map algorithm on the geometric model shown
in Fig. 17. The top row shows the cortical surface reconstructed from MRI
images, the bottom row shows the tetrahedral mesh obtained using Tetgen
[41]. The volumetric brain has been normalized such that its total volume
equals to 4

3π.
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Figure 16: Statistical results, from top left to bottom right, symmetry verifi-
cation for Buddha (a) and brain (b); area distortion histograms for Buddha
OT (c) and WT (d), for brain OT (e) and WT (f).

Table 2: The processing time (in seconds) of OT and WT maps

Model Vertex OT WT Model Vertex OT WT
Brain 3842 0.59 0.47 Budd. 3762 0.360 0.325

11341 1.87 1.97 11038 1.17 1.43
18564 3.48 2.81 18237 2.37 2.34
22275 4.05 3.79 25473 3.99 4.24
25909 5.03 5.14 32765 5.70 5.53

Alex 14358 1.63 1.643 Soph 24891 3.01 2.99
David 21466 2.58 2.82

Fig. 18 shows the harmonic mapping results. The top row shows the

harmonic map image of the cortical surface to the unit sphere using the

algorithm in [20]. The bottom row shows the harmonic map image of the

volumetric brain mesh to the unit ball with the cortical surface mapping

result as the Dirichlet boundary condition. The volumetric harmonic map
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Figure 17: The cortical surface (top row) and the tetrahedral mesh (bottom
row).

image of each vertex vi defines a sample pi, one third of the total volume of
all the tetrahedra adjacent to vi defines the target measure νi. The central
row shows the volumetric vonoroi diagram.

The OT map result is shown in Fig. 19, the top row is the power diagram.
Each sample pi is mapped to the mass center of the power cell Wi, the OT
map is approximated by the piece-wise linear map as shown in the bottom
row.
Robustness During the optimization process, if we skip the admissibility
test procedure and if the step length is large, the algorithm collapses; if
the step length is chosen to be too small, the process converges but is very
slow. With the admissibility test procedure, the algorithm is very stable
and converges fast. This shows the proposed method greatly improves the
robustness of finding OT maps.

6. Conclusions and future works

In this work, we summarize the geometric variational framework to solve
OT maps in Euclidean spaces. We generalize the method to solve WT maps
and discuss about the symmetry between the OT and WT maps. Computa-
tional geometric algorithms, such as Lawson edge flip, Sutherland-Hodgman
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Figure 18: The cortical surface is harmonically mapped onto the unit sphere
(top row) and the tetrahedral mesh is harmonically mapped onto the unit
ball (bottom row), the corresponding volumetric Voronoi diagram is com-
puted (central row).

clipping, sweep convex polygon, power diagram and the weighted Delaunay
triangulation, are incorporated into the method to improve its accuracy, ef-
ficiency and robustness. The experimental results demonstrate the proposed
framework is general, rigorous and practical.

In the future, we will generalize the framework to compute optimal/worst
transportation maps on Riemannian manifolds.
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Figure 19: The OT map from the Lebesgue measure to the push-forward
measure induced by the volumetric harmonic map, the top row shows the
power diagram, the bottom row shows the piece-wise linear map.
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