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Optimal transportation maps play fundamental roles in many engi-
neering and medical fields. The computation of optimal transporta-
tion maps can be reduced to solve highly non-linear Monge-Ampère
equations.

This work summarizes the geometric variational frameworks for
spherical optimal transportation maps, which offers solutions to
the Minkowski problem in convex differential geometry, reflector
design and refractor design problems in optics. The method is rig-
orous, robust and efficient. The algorithm can directly generalized
to higher dimensions.

1. Introduction

Optimal transportation (OT) map finds the most economical way to transfer
one probability measure to another. The transportation cost gives a metric
among measures – the so-called Wasserstein metric. Optimal transportation
method has become an important tool in optics [11], economy [10] and life
science [24]. Recently, OT has been successfully applied in different areas of
computer science, such as parameter estimation in Bayesian nonparametric
models [21], computer vision [4, 8, 27], natural language processing [16, 30],
medical image registration [15], 3D surface registration [25, 17, 32, 14], color
transfer [9, 22, 23] and so on. The Wasserstein metric has also been broadly
applied in generative models in deep learning, such as the WGAN model
[4, 20], WAE [27], AE-OT [2, 3], and energy-based models [1].

The origin of the optimal transport problem can be traced back to 1781,
when Monge asked if there existed an OT map between two measures for a
given cost function. Depending on the cost function and the measures, the
OT map may not exist. In the 1950s, Kantorovich relaxed the OT map to
OT plan, and showed the existence and the uniqueness of the plan under
mild conditions [29]. In the 1980s, Brenier [7] discovered that, when the

∗Corresponding author.

117

https://www.intlpress.com/site/pub/pages/journals/items/mcgd/_home/_main/index.php


118 Zhou Zhao et al.

density of the source measure is absolutely continuous and the cost function
is the squared Euclidean distance, the OT map is given by the gradient of
a convex function, the so-called Brenier potential.

Recently, the equivalence between the Brenier potential and Alexan-
drov’s convex polytope has been proved in [13], as both of them can be
obtained by solving the non-linear Monge-Ampère equation. This connec-
tion leads to a practical algorithm to solve the semi-discrete OT problem
using convex geometry. According to the Brenier theorem, the Brenier po-
tential can be represented as the upper envelope of a set of hyperplanes, and
its projection induces a power diagram of the source domain, which gives
the semi-discrete OT map. The geometric variational method proposed by
Su et al. [25] is based on classical computational geometry [6] and solves
the semi-discrete OT problem by minimizing a convex energy. Though with
high accuracy, the method is very slow and inefficient. At each step, it con-
structs a new power diagram, or a weighted Delaunay triangulation of the
samples. During the optimization, the combinatorial structures of the trian-
gulation are changed dynamically, which makes the algorithm complicate.
Moreover, as the method assumes that the source distribution is uniform,
it cannot handle complex source measures. To circumvent this limitation,
we can generalize the Lawson’s edge flip algorithm [18] to update the power
diagram during the optimization, instead of constructing a new convex hull
at each iteration like Su et al. did in [25]. This improves the computational
efficiency by a factor of more than 5. To handle the piecewise linearly defined
source measures, we can use the sweep convex polygon algorithm, which is
a generalization of the classical Bentley-Ottman’s sweep line algorithm [5],
to compute the subdivision of two cell decompositions. Thus we can com-
pute the semi-discrete OT map from a piecewise linear source measure to
the target measure. This improves the efficiency and the robustness of the
algorithm.

Within the same framework of the OT solution, we can extend the OT
problem to solve the worst transportation (WT) problem [31], which tries to
maximize the cost between two distributions, given a cost function between
them. Different from finding the convex Brenier potential for the OT prob-
lem, the WT problem finds the concave Brenier potential whose gradient
gives the WT map. Moreover, we can unify the OT solution and WT solu-
tion into a single framework and solve them by Newton’s method. We also
discover the intrinsic symmetry between the OT map and the WT map.

The geometric variational framework is generalizable for any dimensions.
For example, volumetric optimal transportation maps can also be directly
computed based on the same principle. However, the volumetric computa-
tional algorithms are more complicated than planar ones.
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2. Theoretic foundation

This section introduces the theoretic foundation of our geometric variational
framework for spherical optimal transportation maps. For more details for
general optimal transportation theory, we refer readers to [28, 29, 19].

2.1. Continuous Minkowski problem of type I

We introduce the classical Minkowski problem of type I, which is closely
related to the spherical optimal transportation.

As shown in Fig. 1, suppose K ⊂ Rd is a bounded open convex do-
main, containing the origin, the boundary ∂K is parameterized by polar
coordinates:

∂K = {ρ(x)x : x ∈ Sd−1, ρ : Sd−1 → R+}.

Definition 2.1 (sub-normal map). For any point z ∈ ∂K, the sub-normal
map maps a point z to a closed set on the unit sphere, z �→ NK(z),

(2.1) NK(z) :=
{
y ∈ Sd−1 : K ⊂ {w : 〈y, w − z〉 ≤ 0}

}
.

Figure 1: Given a convex K 	 0, the boundary ∂K is parameterized by
polar coordinates, represented as ρ : Sd−1 → R+. Given a point z ∈ ∂K, the
set NK(z) consists of all the exterior normals at z. When K has a unique
tangent plane at z (such as z2), Nk(z) is a singleton. If z is a corner point,
then NK(z) consists of multiple elements (such as z1).
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Definition 2.2 (Gauss Map). The multi-valued Gauss map GK : Sd−1 →
Sd−1 is defined by:

GK(x) := NK(ρ(x)x).

The Gauss curvature measure is defined as:

μK(E) := Hd−1(GK(E)), ∀ Borel set E ⊂ Sd−1.

where Hd−1 represents the d−1 dimensional Hausdorff measure on Sd−1.

It can be shown that μK is a Borel measure. As shown in Fig. 2, the
Minkowski problem is formulated as follows:

Problem 2.3 (Minkowski I). Given a Borel measure ν defined on the sphere
Sd−1, can we find a bounded convex open set K 	 0, such that ν = μK?

Figure 2: Minkowski Problem I.

The answer to the Minkowski problem is positive.

2.1.1. Minkowski theorem

Definition 2.4 (Spherical Convex Set and Polar Set). Given a spherical set
ω ⊂ Sd−1, we say ω is convex, if the cone

R+ω := {tx : t > 0, x ∈ ω}

is convex. The polar set of ω is defined as

ω∗ := {y ∈ Sd−1 : 〈x, y〉 ≤ 0, ∀x ∈ ω}.
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Theorem 2.5 (Minkowski I). Let ν be a Borel measure on Sd−1, then there

exists a bounded convex open set K, such that

ν = μK ⇐⇒
{

(a) ν(Sd−1) = Hd−1(Sd−1);
(b) ν(Sd−1 \ ω) > Hd−1(ω∗), ∀ω � Sd−1 compact convex.

If K exists, then different solutions differ by a dilation.

The regularity of the solution to the Minkowski problem is summarzied

as follows:

Theorem 2.6 (Regularity of the Solution to Minkowski Problem). Suppose

K ⊂ R3 is a convex open set containing the origin, if μK = fdH2, the

density function f : S2 → R+ is bounded, then ∂K is C1.

2.1.2. Proof of Minkowski theorem Fig. 3 shows the concept of the

generalized Legendre dual:

Definition 2.7 (Spherical Legendre Dual). Given a hyper-surface in Rd,

with polar representation S := {ρ(x)x : x ∈ Sd−1, ρ : Sd−1 → R+}, its
spherical Legendre dual is S∗ := {h(y)y : y ∈ Sd−1, h : Sd−1 → R+}, where

(2.2) h(y) := sup
x∈Sd−1

ρ(x)〈x, y〉.

Figure 3: Generalized Legendre Transform, h(y) = max{ρ(x)〈x, y〉, x ∈
Sd−1}.
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symmetrically, S = (S∗)∗, furthermore

(2.3) ρ(x) = inf
y∈Sd−1

h(y)

〈x, y〉 ,

or equivalently

ρ−1(x) = sup
y∈Sd−1

h−1(y)〈x, y〉.

Take logarithm of spherical Legendre duality formula,

(2.4) log ρ(x) = inf
y

{
− log〈x, y〉 − log

1

h(y)

}
,

and

(2.5) log
1

h(y)
= inf

x
{− log〈x, y〉 − log ρ(x)} .

Define cost function c : Sd−1 × Sd−1 → R+ ∪ {0},

(2.6) c(x, y) := − log〈x, y〉,

then log ρ(x) and − log h(y) are c-transform of each other:

(log ρ(x))c = log
1

h(y)
and

(
log

1

h(y)

)c̄

= log ρ(x).

We can use spherical optimal transportation theory to prove Minkowski’s
theorem:

Proof. Minkowski problem I can be rephrased as an optimal transportation
problem: given a Borel measure ν on Sd−1, find an optimal transportation
map T : (Sd−1,Hd−1) → (Sd−1, ν),

min
T#Hd−1=ν

∫
Sd−1

− log〈x, T (x)〉dHd−1.

this is equivalent to the dual problem:

max

{∫
Sd−1

ϕ(x)dHd−1(x) +

∫
Sd−1

ϕc(y)dν(y), ϕ ∈ c-conv
(
Sd−1

)}
.

the cost function − log〈x, y〉 is continuous, Sd−1 is a compact metric space,
by (DP) theory, there exists a solution (ϕ,ϕc) = (ρ(x), 1/h(y)).
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Figure 4: Reflector system set up.

2.2. Reflector design

As shown in Fig. 4, a illumination system consists of a point light source at
O and a reflector surface Γ with polar representation,

(2.7) Γρ = {xρ(x);x ∈ Ω}, ρ > 0,

all the incidence light rays fall inside the input domain Ω. If we only consider
the far field problem, then we can only care about the directions of the
reflected rays. All the reflected rays fall in the output domain Ω∗.

Figure 5: Left: the desired far field image, Lena; Right: the simulated re-
flected image.
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Figure 6: The reflector surface for the Lena image.

Figure 7: Left: the desired far field image, Monge; Right: the simulated
reflected image.

Suppose f is the illumination intensity defined on the input domain Ω,
namely the distribution of the incidence rays emanating from O, g is the
illumination intensity in the output domain Ω∗. Assume there is no energy
loss, then according energy conservation law, we have

(2.8)

∫
Ω
f =

∫
Ω∗

g.

A ray emanates from O, propagates along a direction x ∈ Ω, intersects
the mirror at z = xρ(x) ∈ Γρ, the reflection direction is determined by the
reflection law,



Computational optimal transportation 125

Figure 8: The reflector surface for the Monge image.

(2.9) T (x) = Tρ(x) = ∂ρ(x) = x− 2〈x, n〉n,

where n is the exterior normal to the reflector surface Γρ at point z, 〈x, n〉
represents the inner product. By energy conservation, T is measure preserv-
ing,

(2.10)

∫
T−1(E)

f =

∫
E
g, ∀ Borel set E ⊂ Ω∗.

satisfying the natural boundary condition

(2.11) Tρ(Ω) = ∂ρ(Ω) = Ω∗.

By measure preserving condition, we can obtain the PDE for the reflec-
tor. In fact, at x ∈ Ω, the Jacobi of T equals to f(x)/g(T (x)), in a local
ortha-normal coordinates of S2, the local representation of the PDE is

(2.12) Lρ = η−2 det(−∇i∇jρ+2ρ−1∇iρ∇jρ+ (ρ− η)δij) = f(x)/g(T (x)),

where ∇ is the covariant differential operator, η = (|∇ρ|2+ρ2)/2ρ, and δij is
the Kronecker function. This is a non-linear Monge-Ampère PDE, a natural
boundary condition is

(2.13) Tρ(Ω) = ∂ρ(Ω) = Ω∗.

Problem 2.8 (Reflector Design). Given spherical domains Ω, Ω∗ ⊂ S2, and
density functions f : Ω → R+ and g : Ω∗ → R+, find a reflector surface Γρ,
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such that the reflection map Tρ satisfies the measure-preserving condition
and the natural boundary condition.

2.2.1. Surface with uniform reflection property The uniform reflec-
tion property of a paraboloid of revolution: all the reflected rays of the
incidence rays parallel to the rotation axis intersect at the focal point, vice
versa, as shown in Fig. 9.

Figure 9: A paraboloid of revolution about the axis of direction y, with radial
representation ρ(x) = C/(1− 〈x, y〉).

Definition 2.9 (Supporting Paraboloid). Let ρ ∈ C(Ω) be a positive func-
tion, Γρ = {xρ(x) : x ∈ Ω} represents the radial graph of ρ. We say Γp is a
supporting paraboloid of ρ at x0ρ(x0) ∈ Γρ, where p = py,C , if

(2.14)

{
ρ(x0) = py,C(x0),
ρ(x) ≤ py,C(x), ∀x ∈ Ω.

Definition 2.10 (Admissible Function). We say ρ is an admissible function,
if its radial graph Γρ has a supporting paraboloid at every point.

2.3. Generalized solution

Definition 2.11 (Subdifferential). Let ρ be an admissible function; the
subdifferential is a set-valued map ∂ρ : Ω → S2: for any x0 ∈ Ω, ∂ρ(x0) is
set of y0, such that there exists a C > 0, py0,C is the supporting paraboloid
of ρ at x0,

∂ρ(x) = {y ∈ Ω∗ : ∃ C > 0 s.t. paraboloid py,C supports ρ at x} .



Computational optimal transportation 127

Definition 2.12 (Generalized Alexandrov Measure). The subdifferential
∂ρ induces a measure μ = μρ,g on Ω, where g ∈ L1(Ω∗) is a non-negative
measurable function on S2, such that for any Borel set E ⊂ Ω,

(2.15) μρ,g(E) =

∫
∂ρ(E)

g(x)dx.

μρ,g is called a generalized Alexandrov measure.

Definition 2.13 (Generalized Solution). Admissible function ρ is called the
generalized solution to the spherical Monge-Ampère equation for reflection
system, if as measures μρ,g = fdx. Equivalently, for any Borel set E ⊂ Ω,
we have

(2.16)

∫
E
f =

∫
∂ρ(E)

g.

Furthermore, if ρ satisfies

(2.17) Ω∗ ⊂ ∂ρ(Ω), |{x ∈ Ω : f(x) > 0 and ∂ρ(x)− Ω∗ �= ∅}| = 0,

then ρ is the generalized solution to the spherical Monge-Ampère equation
for the OT map Lρ = f/g ◦T with natural boundary condition Tρ(Ω) = Ω∗.

2.4. Solution to the reflector design problem

Suppose ρ is admissible, fix a direction y ∈ S2, there exists a paraboloid
of revolution about the axis of direction y, represented as py,c with radial
representation c

1−〈x,y〉 , which supports Γρ at point ρ(x)x. As shown in the

Fig. 10, for any paraboloid of revolution about the axis of direction y py,c̃,
which intersects Γρ, we have c̃ ≤ c. Assume Γρ intersects py,c̃ at ρ(x)x, then
ρ(x) = c̃

1−〈x,y〉 , c̃ = ρ(x)(1− 〈x, y〉). Hence we have

c(y) = sup
x∈Ω

ρ(x)(1− 〈x, y〉) ⇐⇒ 1

c(y)
= inf

x∈Ω

1

ρ(x)(1− 〈x, y〉) ,

We represent it as η : Ω∗ → R+, η(y) = 1/c(y).

Definition 2.14 (Generalized Legendre Transform). Suppose ρ is an ad-
missible function defined on Ω ⊂ S2, the generalized Legendre transform of
ρ with respect to the function 1

1−〈x,y〉 is a function η defined on S2,

(2.18) η(y) = inf
x∈Ω

1

ρ(x)(1− 〈x, y〉) .
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Figure 10: Generalized Legendre transformation.

For any fixed y0 ∈ Ω∗, suppose the infimum is reached at x0 ∈ Ω, hence
we have

(2.19) η(y0)ρ(x0) =
1

1− 〈x0, y0〉
,

for arbitrary x ∈ Ω and y ∈ Ω∗,

(2.20) ρ(x)η(y) ≤ 1

1− 〈x, y〉 ,

and the paraboloid py0,C(x) = C
1−〈x,y0〉 supports ρ at x0, and px0,C(y) =

C
1−〈x0,y〉 supports η at y0.

Furthermore:

y0 ∈ ∂ρ(x0) ⇐⇒ x0 ∈ ∂η(y0).

especially, when the generalized Legendre transform of η is restricted on Ω,
it is exactly ρ,

ρ∗∗ = ρ.

If ρ is smooth and satisfies the Monge-Ampère equation (2.12), then the
subdifferential ∂η is the inverse map of ∂ρ. Hence, η satisfies the equation

(2.21) Lρ =
f(x)

g(∂ρ(x))
, Lη =

g(y)

f(∂η(x))
,



Computational optimal transportation 129

Theorem 2.15 (Reflector Design). Suppose Ω and Ω∗ are domains con-
tained in the north and the south hemi-sphere respectively, f and g are
bounded positive functions,

∫
Ω f(x) =

∫
Ω∗, then there exist a pair of func-

tions (ϕ1, ψ1) maximizing the following energy,

(2.22) sup

{∫
Ω
ϕ(x)f(x)dx+

∫
Ω∗

ψ(y)g(y)dy, ϕ(x) + ψ(y) ≤ c(x, y)

}
,

where

(2.23) c(x, y) = − log(1− 〈x, y〉),

〈x, y〉 is the inner product in R3, such that ρ = eϕ is the solution to the spher-
ical Monge-Ampère equation Lρ = f/g ◦ ∂ρ satisfying the natural boundary
condition ∂ρ(Ω) = Ω∗, and all such solutions φ differ by a constant.

Proof. Reflector design is an optimal transport problem. By the existence
and the uniqueness of the solution to the dual problem (DP), we get that
there exist a pair of Kantorovich potentials (ϕ,ψ), ψ = ϕc, ϕ = ψc̄,and ϕ
is unique up to a constant. Let x0 ∈ Ω be a differentiable point of ϕ,let
y0 ∈ Ω∗, such that

{
ϕ(x0) = c(x0, y0)− ψ(y0)
ϕ(x) ≤ c(x, y0)− ψ(y0), ∀x ∈ Ω.

now let ρ = eϕ, the paraboloid is given by

p(x) = exp(c(x, y0)− ψ(y0)) =
C

1− 〈x, y0〉
, C = exp(−ψ(y0)).

then p(x) supports Γρ at x0.
Γρ is the inner envelope of the supporting paraboloids, ρ is almost

everywhere differentiable. At the differentiable points of ρ,the supporting
paraboloid is unique, hence y0 is unique. Hence, the optimal transport plan
becomes an optimal transport map Tρ : Ω → Ω∗.

The paraboloid p(x) and Γρ share the same normal vector at the tan-
gential point, by the uniform reflection property of the paraboloid, we have

y0 = Tρ(x0) = Tp(x0) = x0 − 2〈x0, n〉n.

Tρ is measure preserving, satisfies the spherical Monge-Ampère equation,
Lρ = f/g ◦ ∂ρ, with the natural boundary condition Tρ(Ω) = Ω∗.
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Fig. 5 and Fig. 6 show the solution to the reflector design problem, where
the target image is the Lena image. Fig. 7 and Fig. 8 show the solution to
the reflector design problem, where the target image is the Monge image.

2.5. Refractor design

As shown in Fig. 11, suppose n1 and n2 are refractive indices of two homo-
geneous, isotropic media I and II. Suppose the light source is at a point O
in the medium I, along a direction x ∈ Ω ⊂ S2, the light intensity is f(x).

Figure 11: Refractive lens system.

We want to construct a refractive surface with radial representation Γρ,

(2.24) Γρ = {xρ(x);x ∈ Ω}, ρ > 0,

Γρ separates the media I and II, such that all the directions of the refracted
rays in the medium II are inside Ω∗ ⊂ S2, and the intensity of the ray along
y ∈ Ω∗ equals to g(y), where the spherical function g : Ω∗ → R is prescribed.

Suppose the refraction has no energy loss, by energy conservation law,

(2.25)

∫
Ω
f(x)dx =

∫
Ω∗

g(y)dy.

A ray starts from O and arrives at xρ(x) ∈ Γρ, where x ∈ Ω. It is refracted,
the direction of the refracted ray is

(2.26) T (x) = Tρ(x) = ∂ρ(x).
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By energy conservation, T is measure preserving, namely

(2.27)

∫
T−1(E)

f(x)dx =

∫
E
g(y)dy, ∀ Borel set E ⊂ Ω∗,

with natural boundary condition

(2.28) Tρ(Ω) = ∂ρ(Ω) = Ω∗.

Problem 2.16 (Refractor Design). Suppose n1 and n2 are refractive indices
of two homogeneous, isotropic media. Given spherical domains Ω,Ω∗ ⊂ S2,
density functions f : Ω → R+ and g : Ω∗ → R+, find refractive surface Γρ

separates the two media, the refraction map Tρ (2.26) satisfies the measure
preserving condition (2.27) and the natural boundary condition (2.28).

2.5.1. Surface with uniform refraction property As shown in Fig. 12,
v1 and v2 are the light speeds in the media I and II, n1 = c/v1, n2 = c/v2
are the refractive indices. Suppose a ray along the direction x ∈ Sn−1 travels
in medium I, and hits a boundary point p ∈ Γ and enters the medium II,
the refracted ray is along the direction y ∈ Sn−1.

Figure 12: Snell refraction law.

Snell law claims

n1 sin θ1 = n2 sin θ2,

where θ1 is the angle of incidence, θ2 is the angle of refraction, n is normal
to the interface surface Γ, pointing to the medium II. The vectors x, n and
y are co-planar.
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Definition 2.17 (Surface with uniform refraction property). If the interface
surface Γ of the media I and II refracts all the rays of light emanating from
the origin O inside medium I into rays parallel to a fixed y ∈ S2, then Γ is
called a surface with uniform refraction property.

κ = n2/n1, when κ < 1, Γ is an ellipsoid of revolution about the axis of
direction y, denoted as ey,b

(2.29) ey,b =

{
ρ(x)x : ρ(x) =

b

1− κ〈y, x〉 , x ∈ Sn−1, 〈x, y〉 ≥ κ

}
.

when κ > 1, by physics constraint 〈x, y〉 > 1/k, Γ is a the sheet with opening
in direction y of a hyperboloid of revolution of two sheets about the axis of
direction y, as shown in Fig. 13,

(2.30) hy,b =

{
ρ(x)x : ρ(x) =

b

κ〈y, x〉 − 1
, x ∈ Sn−1, 〈x, y〉 ≥ 1/κ

}
.

Lemma 2.18 (Lemma). Suppose n1 and n2 are the refractive indices of two
media I and II respectively, and κ = n2/n1. The origin O is in medium I,
ey,b and hy,b are interface surface between media I and II, defined by (2.29)
and (2.30) respectively, we have
if κ < 1, then ey,b refracts all the rays emanating from the origin O in
medium I into rays in medium II with refraction direction y;
if κ > 1, then hy,b refracts all the rays emanating from the origin O in
medium I into rays in medium II with refraction direction y.

Figure 13: A hyperboloid of revolution of two sheets.
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2.5.2. Generalized solution

Definition 2.19 (Supporting Ellipsoid). Suppose ρ ∈ C(Ω) is a positive
function, and Γρ = {xρ(x) : x ∈ Ω} is the radial graph of ρ. Let e = ey,c be
an ellipsoid of revolution, its radial graph be Γe. If

(2.31)

{
ρ(x0) = ey,c(x0),
ρ(x) ≤ ey,c(x), ∀x ∈ Ω,

then we say Γe is a supporting ellipsoid of ρ at the point x0ρ(x0) ∈ Γρ.
If the radial graph Γρ has a supporting ellipsoid at every point, then we

say ρ is admissible.

Definition 2.20 (sub-differential). Let ρ be an admissible function. We
define a set-valued map ∂ρ : Ω → S2, the so-called sub-differential. For any
x0 ∈ Ω, ∂ρ(x0) is the set of y0’s, such that ∃c > 0, ey0,c is the supporting
ellipsoid of ρ at x0,

∂ρ(x0) := {y0 ∈ S2 : ∃c > 0, ey0,c supports ρ at x0}.

For any subset E ⊂ Ω, we define

∂ρ(E) =
⋃
x∈E

∂ρ(x).

Definition 2.21 (Generalized Alexandrov Measure). Suppose ρ is an admis-
sible function defined on Ω ⊂ S2, g ∈ L1(Ω∗) is a non-negative measurable
function defined on Ω∗ ⊂ S2, the generalized Alexandrov measure induced
by ρ and g, denoted as μρ,g, is defined as

(2.32) μρ,g(E) =

∫
∂ρ(E)

g(x)dx, ∀ Borel E ⊂ Ω.

Definition 2.22 (Generalized Solution). Given spherical measures f ∈
L1(Ω) and g ∈ L1(Ω∗), such that

∫
Ω fdx =

∫
Ω∗ gdy. Suppose ρ is a spherical

admissible function. If the generalized Alexandrov measure induced by ρ
satisfies μρ,g = fdx, namely

(2.33)

∫
E
f =

∫
∂ρ(E)

g, ∀ Borel E ⊂ Ω

furthermore, if ρ satisfies

(2.34) Ω∗ ⊂ ∂ρ(Ω), |{x ∈ Ω : f(x) > 0 and ∂ρ(x)− Ω∗ �= ∅}| = 0,
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Figure 14: Generalized Legendre transform.

then we say ρ is a generalized solution to the spherical Monge-Ampère equa-

tion with natural boundary condition.

2.5.2.1. Generalized Legendre transform As shown in Fig. 14, among all

ellipsoids ey,c’s of revolution about the axis of direction y intersecting with

Γρ, c ≤ c∗. If Γρ intersects ey,c at ρ(x) =
c

1−κ〈x,y〉 , c = ρ(x)(1−κ〈x, y〉), thus
we obtain

c∗(y) = sup
x∈Ω

ρ(x)(1− κ〈x, y〉) ⇐⇒ 1

c∗(y)
= inf

x∈Ω

1

ρ(x)(1− κ〈x, y〉) .

1/c∗(y) is the function of y, denoted as η : Ω∗ → R+.

Definition 2.23 (Generalized Legendre Transform). Suppose ρ is an ad-

missible function defined on Ω. The generalized Legendre transform of ρ

with respect to the function 1
1−κ〈x,y〉 is a function η defined on the sphere

S2 η, given by

(2.35) η(y) = inf
x∈Ω

1

ρ(x)(1− κ〈x, y〉) .
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2.5.3. Solution to refractor design Denote Ω∗ = ∂ρ(Ω). For any fixed

point y0 ∈ Ω∗, (2.35) reaches the infimum at x0 ∈ Ω, then

(2.36) η(y0)ρ(x0) =
1

1− κ〈x0, y0〉
,

For arbitrary x ∈ Ω and y ∈ Ω∗,

(2.37) ρ(x)η(y) ≤ 1

1− κ〈x, y〉 .

we have

y0 ∈ ∂ρ(x0) ⇐⇒ x0 ∈ ∂η(y0).

Especially, the generalized Legendre transform of η, restricted on Ω, is ρ

itself,

η∗∗ = η, (∂η)−1 = ∂ρ

ρ∗∗ = ρ, (∂ρ)−1 = ∂η

Theorem 2.24. Suppose Ω and Ω∗ are domains in Sn−1, the illumination

intensity of the emanating ray lights is represented by a positive bounded

function f(x) defined on Ω, the illumination intensity of the refracted rays

is represented by a positive bounded function g(y) on Ω∗. Suppose |∂Ω| = 0

and satisfies the physical constraint

(2.38) inf
x∈Ω,y∈Ω∗

〈x, y〉 ≥ κ.

furthermore, assume the total energy is conserved

(2.39)

∫
Ω
f(x)dx =

∫
Ω∗

g(y)dy > 0,

where dx, dy represent the Hausdorff measure on Sn−1. Then for κ < 1, there

exists a week solution Γρ, all such solutions Γρ’s differ by a scaling.

Proof. By the (DP) theorem in optimal transportation, there are a pair of

functions (φ, ψ), unique up to a constant, maximizing the following energy

sup{I(u, v) : (u, v) ∈ K},
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where

I(u, v) =

∫
Ω
f(x)u(x)dx+

∫
Ω∗

v(y)g(y)dy,

K =
{
(u, v) ∈ (C(Ω), C(Ω∗)) : u(x) + v(y) ≤ c(c, y), ∀x ∈ Ω, y ∈ Ω∗} ,

c(x, y) = − log(1− κ〈x, y〉),

where 〈x, y〉 is the inner product in Rn, such that ρ = eφ is the solution to the
spherical Monge-Ampère equation with the natural boundary condition.

Theorem 2.25. Suppose Ω and Ω∗ are domains in Sn−1, the illumination
intensity of the emanating ray lights is represented by a positive bounded
function f(x) defined on Ω, the illumination intensity of the refracted rays
is represented by a positive bounded function g(y) on Ω∗. Suppose |∂Ω| = 0
and satisfies the physical constraint

(2.40) inf
x∈Ω,y∈Ω∗

〈x, y〉 ≥ 1

κ
.

furthermore, assume the total energy is conserved

(2.41)

∫
Ω
f(x)dx =

∫
Ω∗

g(y)dy > 0,

where dx, dy represent the Hausdorff measure on Sn−1. Then for κ > 1, there
exists a week solution Γρ, all such solutions Γρ’s differ by a scaling.

The proof is similar to the proof for the case of κ < 1, but the cost
function is modified as

(2.42) c(x, y) = − log(κ〈x, y〉 − 1).

Fig. 15 shows one example of refractor designed using the proposed method.
The refraction simulation result is shown, which is the prescribed Lena im-
age.

2.6. Summary

From above discussion, we can see that the spherical optimal transportation
map can be applied to solve the following fundamental problems:

1. Minkowski Problem I;
2. Reflector Design;
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Figure 15: Reflector Design.

3. Refractor Design κ < 1;
4. Refractor Design κ > 1;

We compare the mathematical formulations for each problem. We use the
following symbols: source measure (Ω, μ), target measure (Ω∗, ν), cost func-
tion c(x, y), Kantorovich potential function (ϕ,ψ), density function dμ(x) =
f(x)dx, dν(y) = g(y)dy, the total transportation cost

sup

{∫
Ω
ϕf +

∫
Ω∗

ψg : ϕ⊕ ψ ≤ c

}

the c-transforms

ψ(y) = ϕc, ϕ(x) = ψc̄

The costs, support surfaces and the Brenier potentials, the Legendre duals
and the optimal transportation maps are summarized in the following tables.

3. Computational algorithm

As shown in Fig. 16, the genus zero closed surface M is conformally mapped
onto the unit sphere S2 using the spherical harmonic map algorithm [12].
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cost support potential
c(x, y) c(x, y)− ψ(y) ϕ = infy c(x, y)− ψ(y)

1 〈x, y〉 〈x, y〉 − ψ(y) ϕ(x) = supy〈x, y〉 − ψ(y)

2 − log〈x, y〉 e−ψ(y)

〈x,y〉 ρ(x) = eϕ(x) = infy
e−ψ(y)

〈x,y〉

3 − log(1− 〈x, y〉) e−ψ(y)

1−〈x,y〉 ρ(x) = eϕ(x) = infy
e−ψ(y)

1−〈x,y〉

4 − log(1− κ〈x, y〉) e−ψ(y)

1−κ〈x,y〉 ρ(x) = eϕ(x) = infy
e−ψ(y)

1−κ〈x,y〉

5 − log(κ〈x, y〉 − 1) e−ψ(y)

κ〈x,y〉−1 ρ(x) = eϕ(x) = infy
e−ψ(y)

κ〈x,y〉−1

map support Legendre Dual
∇xc(x, T (x)) = ∇ϕ(x) c(x, y)− ψ(y) ψ(y) = infx c(x, y)− ϕ(x)

1 T (x) = ∇ϕ(x) plane ψ(y) = supx〈x, y〉 − ϕ(x)

2 T (x) = n(x) plane η(y) = eψ(y) = infx
e−ϕ(x)

〈x,y〉

3 T (x) = x− 2〈x, n〉n paraboloid η(y) = eψ(y) = infx
e−ϕ(x)

1−〈x,y〉

4 n(x) = x−κT (x)
|x−κT (x)| ellipsoid η(y) = eψ(y) = infx

e−ϕ(x)

1−κ〈x,y〉

5 n(x) = x−κT (x)
|x−κT (x)| hyperboloid η(y) = eψ(y) = infx

e−ϕ(x)

κ〈x,y〉−1

Figure 16: The Maxplanck surface (left) is conformally mapped onto the
unit sphere by a harmonic map (right).

The image of each vertex vi ∈ M is xi ∈ S2. The target measure νi equals

to the one third of the total area of the faces adjacent to vi. The target

spherical measure is

ν =

n∑
i=1

νiδ(x− xi).
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Figure 17: Spherical Legendre dual. The support plane ρ(x) = h/〈x,y〉 is
dual to the point h−1y.

As shown in Fig. 17 top right frame, the Legendral dual of the Brenier
potential is denoted as ρ : S2 → R+, its radial graph is the convex hull
of {ρixi}, which can be computed using Lawson Edge Flip algorithm [18].
In Fig. 17 top left frame, the spherical Brenier potential function is the
Legendre dual of ρ, denoted as 1/ρ∗. Each point vi = ρixi on the convex
hull presents a plane v∗i = πi, its radial representation is

πi(y) =
1

ρi

1

〈xi, y〉
.

Each face on the convex hull f = [ρixi, ρjxj , ρkxk] is dual to a vertex on
the f∗ on the spherical Brenior potential, which is the inner envelope of the
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Algorithm 1: Spherical Power Diagram
Input: a set of points {ρixi}ni=1, a spherical convex domain Ω
Output: the spherical power diagram of {ρixi}ni=1

1. Compute the convex hull C of {ρixi}ni=1 using Lawson edge flipping
Algorithm;

2. Compute the inner envelope of the planes {πi(y)}ni=1 using spherical
Legendral dual algorithm;

3. Central project the inner envelope onto the unit sphere to obtain the spherical
power diagram D;

4. Stereo-graphic project Ω and D onto the plane;
5. Clip the power cells using Sutherland-Hodgeman algorithm if necessary;
6. Stereo-graphic project back the clipped power cells onto the sphere.

supporting planes {πi}, satisfying the condition

〈ρixi, r∗〉 = 〈ρjxj , r∗〉 = 〈ρkxk, r∗〉.

In Fig. 17 lower left frame, the projection of the Brenier potential is a power
diagram on the unit sphere. In the lower right frame, the projection of the
Legendre dual of the Brenier potential is a Weighted Delaunay triangulation
of the sphere. The details for the spherical power diagram algorithm can be
found in Alg. 1.

Assume μ is the source measure on the sphere μ(S2) = 4π, with con-
tinuous density function. The target measure is ν =

∑n
i=1 νiδ(y − yi). The

spherical power diagram is S2 =
⋃n

i=1Wi(η), the measure of each cell is
wi(η) = μ(Wi(η)). The Kantorovich potentials are ϕ = log ρ and ψ = log η,
the functional is

I(ϕ,ψ) =

∫
S2

ϕ(x)dμ(x) +

∫
S2

ψ(y)dν(y), ϕ⊕ ψ ≤ c

=

n∑
i=1

∫
Wi(ψ)

ψcdμ(x) +

n∑
i=1

ψiνi, ψi = ψ(yi)

=

n∑
i=1

∫
Wi(ψ)

(c(x, yi)− ψi)dμ(x) +

n∑
i=1

ψiνi.

Let ψ = (ψ1, ψ2, . . . , ψn), c(x, y) = − log〈x, y〉, the energy

I(ψ) =

n∑
i=1

∫
Wi(ψ)

(c(x, yi)− ψi)dμ(x) +

n∑
i=1

ψiνi.
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Figure 18: The duality between the spherical power diagram and the
weighted Delaunay triangulation.

The gradient is

∇I(ψ) = (ν1 − w1(ψ), ν2 − w2(ψ), · · · , νn − wn(ψ)).

As shown in Fig. 18, the spherical power digram and the spherical
weighted Delaunay triangulation are dual to each other. The Hessian matrix
equals to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2I(ψ)

∂ψi∂ψj
= −∂wi(ψ)

∂ψj
= −∂wj(ψ)

∂ψi
=

sin dl + sin dk
tan di + tan dj

∂2I(ψ)

∂ψ2
i

=
∑
i �=j

∂wi(ψ)

∂ψj

The null space of the Hessian matrix is Span{(1, 1, . . . , 1)}. The energy is
strictly concave in the subspace

∑n
i=1 ψi = 0. During the optimization, we

have to make sure the Brenier potential is non-degenerated, all the power
cells are non-empty. We adapted a damping algorithm to guarantee the non-
degeneracy. Suppose at the current stage, the Brenier potential is legal, we
update the radial length by d, if some cells disappear in the power diagram,
we return to the initial stage, and change the radial change by d/2. We repeat
this trial procedure until find the appropriate radial change d. Algorithmic
details can be found in Alg. 2. Based on the damping algorithm, we can
design the Newton’s algorithm for the optimization. The Newton’s algorithm
is explained in Alg. 3.
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Algorithm 2: Spherical Damping
Input: a set of points {ρixi}ni=1, a radial change d
Output: the updated spherical power diagram of {ρieλdixi}ni=1 for some λ, such

that no power cell is degenerated
1. Initialize the step length λ;
2. ρi ← ρie

λdi ;
3. Compute the convex hull using spherical Lawson edge flipping Algorithm [18];
4. If the convex hull misses any vertex, then λ ← 1

2
λ, repeat step 2 and step 3;

5. Compute the upper envelope using Legendre dual algorithm, project to the
spherical power diagram D;

6. If necessary, clip the power cells using Sutherland-Hodgman algorithm [26];
7. If any power cell is empty, then λ ← 1

2
λ, repeat step 2 through step 6;

Algorithm 3: Spherical Newton’s Method

Input: {xi}ni=1 ⊂ S2, {νi}ni=1,
∑n

i=1 νi = 4π, νi > 0
Output: Convex hull of {ρixi}ni=1, such that the curvature at ρixi is νi
1. Initialize ρ as ρi ← 1;
2. Call the spherical power diagram Alg. 1;
3. Compute the gradient ∇E, the target area minus the current power cell area;
4. Compute the Hessian matrix H, using the power diagram edge length;
5. Compute the update direction Hd = ∇E;
6. Call the spherical damping Alg. 2, set ρ ← ρeλd, such that ρ is admissible;
7. Repeat step 2 through step 6, until the gradient is close to 0.

Figure 19: The initial conformal map from the cortical surface to the unit
sphere.
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Figure 20: The Brenier potential and the Legendre dual functions.

Figure 21: The spherical power diagram and the spherical weighted Delau-
nay triangulation. The spherical optimal transport map is given by mapping
each power cell to the corresponding vertex in the weighted Delaunay trian-
gulation.

Fig. 19 shows a human cortical surface (left), which is conformally
mapped onto the unit sphere using a harmonic map (right). Fig. 20 shows
the Brenier potential (left) and its Legendral due (right). Fig. 21 shows the
spherical power diagram (left) and the spherical weighted Delaunay trian-
gulation (right). The spherical optimal transport map is given by mapping
each power cell to the dual vertex.
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Figure 22: Input meshes.

Figure 23: Initial harmonic maps.

Fig. 22 shows the input Bimba surface, Fig. 23 shows the spherical har-
monic map, Fig. 24 and Fig. 25 show the Brenier potential and the Legendral
due for the optimal transportation map.
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