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Abstract. We presented a novel radiomics approach using multimodal-
ity MRI to predict the expression of an oncogene (O6-Methylguanine-
DNA methyltransferase, MGMT) and overall survival (OS) of glioblas-
toma (GBM) patients. Specifically, we employed an EffNetV2-T, which
was down scaled and modified from EfficientNetV2, as the feature ex-
tractor. Besides, we used evidential layers based to control the distri-
bution of prediction outputs. The evidential layers help to classify the
high-dimensional radiomics features to predict the methylation status of
MGMT and OS. Tests showed that our model achieved an accuracy of
0.844, making it possible to use as a clinic-enabling technique in the di-
agnosing and management of GBM. Comparison results indicated that
our method performed better than existing work.

Keywords: Evidential Deep Learning · EfficientNet-V2 · Radiomics ·

MGMT Promoter Methylation Prediction · Brain Tumor.

1 Introduction

GBM is the most lethal type of brain tumor, constituting 60% of malignant adult
brain tumors [24]. Diverse MRI modalities are sensitive to different tissue and
thus can provide rich information about GBM, including shedding new insight
into the oncogenetic status of GBM.With the rapid development of deep learning
techniques, good performance in classification [8, 16] and regression tasks [13, 4,
7, 22, 10] on MRI to address clinical questions has been achieved. In this study,
we designed an end-to-end deep learning model for predicting OS and the status
of MGMT methylation using multimodality MRI.

1.1 Importance of MGMT Prediction

One important oncogenetic characteristic of GBM is the expression of MGMT.
The methylation status of MGMT can be used not only as a diagnostic ba-
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Fig. 1. Four MRI modalities of patients with different MGMT promoter methylation
status.

sis but also for prognostic evaluation, predicting the sensitivity of radiother-
apy and chemotherapy, and providing effective information for precise treat-
ment plans [11]. Though the status of MGMT can be assessed by biopsy, it
is often beneficial to predict whether a GBM expresses MGMT at the earliest
time point for better design of treatment and predicting the progress of the
tumor. There has been great interest in using radiomics methods to infer the
methylation status of MGMT in GBM [21, 17, 14]. Recently, several studies have
shown appealing results in identifying the methylation status of MGMT pro-
moters using deep learning methods [8, 27, 16]. Chang et al. designed a CNN
based on ResNet to classify the methylation status of MGMT on multimodality
MRI scans (T1c, T2, FLAIR) and reached a mean accuracy score of 83% on
5-fold cross-validation [8]. In a work by Yogananda et al., researchers proposed
a MGMT-net based on 3D-Dense-UNets to use T2 MRI only for predicting the
status of MGMT [27] and achieved a mean accuracy of 94.73% with an AUC
of 0.93 on 3-fold cross-validation. Using T2 MRI, Korfiatis et al. found that
ResNet50, with an accuracy of 94.90%, gave the most accurate results in this
task.

While most methods predict MGMT status by focusing on features extracted
from the tumor region, studies using whole brain MRI are not widely reported.
On the whole brain MRI, Han and Kamdar designed a new model to predict
the status of MGMT without tumor segmentation [11]. Their results showed an
accuracy of 67% on the validation data and 62% on the test data [11], indicating
the usefulness of whole brain analysis in such applications. In 2021, the Brain
Tumor Radiogenomic Classification challenge [3], organized by the Radiologi-
cal Society of North America (RSNA) and the Medical Image Computing and
Computer-Assisted Interventions (MICCAI) conference, contributed the most
extensive image dataset for MGMT prediction without tumor segmentation.
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Participants were not able to achieve more than 0.62 AUC on the validation
set [19], pointing to the challenge in accurately predicting MGMT status.

1.2 Importance of OS Prediction

Accurate estimate of OS is important for assessing the prognosis of GBM as
the estimate is used to design appropriate treatment [18]. Most previous meth-
ods [1, 25, 26, 9, 28] for OS prediction employ a two-step pipeline that includes:
1) segmenting whole tumor region into necrotic, edema, and enhancing tumor
regions; and 2) extracting radiomics features to train a prediction model. How-
ever, these approaches have some obvious shortcomings. On the one hand, the
majority of datasets from hospitals do not contain segmentation maps, which are
time-consuming and labor-intensive to acquire. On the other hand, annotation
disagreements among experts can also cause inconsistency in tumor segmenta-
tion. Therefore, existing methods that predict OS are limited by the requirement
for segmentation maps.

1.3 Challenges

In predicting MGMT status and OS, challenges experienced by existing works
are: 1) the predicted values of the output are concentrated near the mean of
ground truth, and the models do not have a good discriminating ability; and 2)
given an input, a model must and can only create a single predicted value, and
it is not clear that the uncertainty in prediction is sufficiently incorporated into
the model. In other words, a model does not know its own limitation in dealing
with uncertainty.

1.4 Contribution of This Work

A novel contribution of this work is that we proposed an EDL-based approach as
a classifier for predicting the methylation status of MGMT. We used EfficientNet
as a feature extractor and reached the best performance on the task of predicting
the methylation status of MGMT. Our model also achieved similar performance
on predicting patients’ OS, demonstrating its broad applicability. Novelties of
this work are as follows.

1. In general, when applying radiomics analysis with deep-learning methods,
the learning models do not know the uncertainty of the prediction. To ad-
dress this problem, we used Evidential-Regression to implement the final
prediction, with uncertainty information attached to the prediction.

2. In Evidential-Regression, we used a priori NIG (Normal Inverse-Gamma)
of a Gaussian distribution to fit the data. And we implemented a network
structure similar to a multilayer perceptron to enhance the performance of
Evidential-Regression.
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2 Methods

2.1 Overview

Evidential Deep Learning As an important branch of prediction uncertainty
modeling, EDL builds on previous works of uncertainty estimation and modeling
probability distributions using neural networks. Unlike BNNs, which indirectly
infer prediction uncertainty through weight uncertainties, EDL employs the the-
ory of subjective logic to explicitly estimate the uncertainty [20]. EDL treats the
prediction as subjective opinions and uses a deterministic neural network to accu-
mulate evidence that leads to these opinions. Though EDL is usually employed
to address the ”know unknown” flaws, for its powefulness, as shown in [20],
EDL can be used for handling uncertainties in classification. In this work, we
used EDL to produce evidential distributions that better separate features arisen
from binary or multi-nary populations. Then starting with the EDL-generated
distributions, the learner can achieve higher performance in classification. In our
case, we consider MGMT prediction as a binary classification task such that,
given a GBM case, a regression model assigns probabilities to whether the case
is MGMT mutant or not. So we use Evidential-Regression in EDL to perform
classification for both MGMT and OS tasks.

Workflow of Our Algorithm Our algorithm consists of several major steps,
namely, feature extraction, EDL for generating evidential distributions, and clas-
sifiers. After being pre-processed, data are input into feature extractor to gener-
ate high dimensional feature maps. Evidential predictor outputs the evidential
distribution based on the feature maps. Last, the algorithm computes the result
from the distribution parameters. For MGMT classification, the result is a bi-

Fig. 2. Architecture of our proposed Evidential-Efficient-Net.
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nary assignment. For OS prediction, the result is a probability on whether the
GBM patient will have a short-, medium-, or long-term survival.

2.2 Evidential Regression

For regression problems, generally, loss function Li(w) = 1
2 ||yi − f(xi;w)||2 is

used for optimization, but such a loss function can only characterize how close
the predicted value is to the data. In other words, it can only be used to represent
uncertainty in the data, also known as the aleatoric uncertainty [15].However,
using evidential regression with uncertainty in the prediction results, it is possible
to explicitly calculate the part of uncertainty caused by the model’s predictions.

Although the ground-truth labels only have binary value of 0 or 1, combined
with the prediction of the NormalCNN shown in Fig. 3 and other related knowl-
edge, it is expected that the classification probability values should be close to
the normal distribution. To reach the approximation for the true posterior which
is close to the normal distribution, the evidential distribution takes the form of
the Gaussian conjugate prior – NIG distribution – such that

P (µ, σ2|γ, ν, α, β) = βα
√
v

Γ(α)
√
2πσ2

(
1

σ2
)α+1 exp
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2σ2

}

.

With the NIG distribution, we can calculate the prediction, aleatoric uncertainty,
also known as statistical or data uncertainty, and epistemic uncertainty, which
presents the estimated uncertainty in the prediction, as follows:

E[µ] = γ (prediction), E[σ2] =
β

α− 1
(aleatoric), V ar[µ] =

β

ν(α− 1)
(epistemic).

After obtaining an evidential distribution expression that captures both uncer-
tainties at the same time, model training becomes a process of accumulating
evidence on the model that supports our observations or maximizing the ability
of the model to fit and reduce the impact of erroneous evidence on the model.
In terms of accumulating evidence, we use the Student-t distribution derivation
to obtain the loss function of the negative log likelihood part:
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where Ω = 2β(1 + ν). This loss provides an objective target for training a
neural network to output parameters of an NIG distribution by maximizing the
model evidence to fit with the observations. In terms of reducing the impact of
evidence on errors, we use the evidence regularizer proposed by Amini et al. [2]:
LR

i
(w) = |yi − γ| · (2ν + α). The total loss Li(w) is the sum of two losses and a

regularization coefficient λ to adjust their relative importance:

Li(w) = LNLL

i
(w) + λLR

i
(w)
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2.3 Model

The core component of our method is the EfficientNetV2, which, in our method,
was scaled down to a tiny net that we named EfficientNetV2-T. It preserved the
MBConv and Fused-MBConv block in the original architecture searching space
of EfficientNet. We adjusted the channels and the SE (squeeze and excitation)
layer inside the blocks to accommodate four MRI modalities. As the original
EfficientNetV2-S proves to be too deep for our task since it caused overfitting
and reached a low bottleneck, we introduced dropout layers and adjusted regu-
larization in our design to address this problem. With the extracted feature map,
the evidential predictor exports the parameters m = (γ, ν, α, β) of the eviden-
tial distribution. In the end, we used output distribution to calculate predicted
values, classification results, aleatoric and epistemic uncertainties.

3 Experiments and Results

3.1 Datasets and Implementation

Dataset and Evaluation Metrics for MGMT Predication This study used the
dataset from the Brain Tumor Radiogenomic Classification challenge [3]. Multi-
modality MRI scans (T1, T1c, T2, FLAIR) of 585 GBM patients were provided
in DICOM format. Pre-processing included skull stripping, isotropic resolution
uniformization, and co-registration to the same anatomical template (SRI24).
The dataset consists of 307 methylated cases and 278 unmethylated cases. Three
cases were removed due to data quality issue. We then randomly separated the
cases into a training group of 466 patients and a test group of 116 patients. For
each modality, we converted and resampled DICOM to 3D 16×256×256 NIFITI
data. Four modalities data constitute the four input channels to our model. To
evaluate the performance of our model, we implemented 5-fold cross-validation
on the dataset and calculated several performance metrics for each patients. In
this study, six widely used performance metrics are used to compare our model
with several state-of-the-art models for predicting MGMT methylation, includ-
ing overall accuracy (OA), sensitivity (SN), specificity (SP), positive predictive
value (PPV), negative predictive value (NPV), the area under the receiver op-
erating characteristic (ROC) curve (AUC).

Dataset and Evaluation Metrics for OS Prediction We trained and tested the
model for predicting OS of GBM patients with BraTS2019 datasets[18, 5, 6],
which contain four MRI modality scans and survival labels of 210 patients. Like
with BraTS2021, we resampled scans of each modality to 128×128×128 and
sent them to four channels of the feature-extractor. The ages of patients were
appended with feature maps and sent to the evidential predictor. For this task,
we calculated MSE (mean squared error) and classification accuracy for each
patient. Classification is based on an official evaluation setup that categorizes
lengths of OS into three groups: 1) short-term survivors (less than 300 days),
2) mid-term survivors (between 300 and 450 days), and 3) long-term survivors
(more than 450 days).
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Table 1. Results on MGMT Prediction.

Methods AUC OA SN SP PPV NPV

Kaggle Winner 0.605 0.610 0.702 0.509 0.615 0.618

ResNet [12] 0.611 0.64 - - - -

Saeed et al. [19] 0.630 - - - - -

EfficientNetV2-S [23] 0.637 0.67 - - - -

Proposed Methods 0.809 0.844 0.819 0.886 0.921 0.750

Our Method (without EDL) 0.613 0.62 - - - -

EfficientNetV2-S (with EDL) 0.729 0.73 - - - -

Implementation Our model was implemented in a PyTorch 16.1 environment.
The training and testing process was performed on a PC equipped with eight
NVIDIA GTX 2080Ti GPUs. In training, we chose the Adam optimizer. The
learning rate was 0.01, the batch-size was set to 16, and the model parameters
were randomly initialized.

3.2 Results of Predicting MGMT

For MGMT prediction, the test result of our model is shown in Table 1. Com-
pared with two state-of-the-art methods, it is seen that our method had sig-
nificantly better performance across all metrics. Also, we designed ablation
experiments to compare and verify the effectiveness of our components. The
EfficentNetV2-S with EDL gave an increase of 0.092 on AUC and 0.06 on accu-
racy, respectively, as compared to the original network. Together with the com-
parison between proposed methods and our method without EDL, we observed
that the effect of EDL is significant. Besides, the better results of proposed meth-
ods over EfficientNetV2-S with EDL proves that our modification of EfficientNet
leads to improved performance.

Fig. 3. Histograms of the predicted classification probabilities made by our EEN and
ordinary CNN on training and validation data in predicting MGMT.
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Fig. 4. Visualization of heat-maps generated by gradCAM in MGMT prediction.

On the predicted value distribution of the final output, as shown in Fig. 3, we
compared the results of our method with the predicted output value of our net-
work without EDL. Although the distribution of the predicted values after using
EDL still resembles a normal distribution, it had better differentiation ability
than networks that do not use EDL. In Fig. 4, we present heatmaps generated
by the gradCAM algorithm to show that our model learns more information
from tumor areas. Specifically, tumor areas in most cases contribute mainly to
classification while other regions provide supplementary support to the classifi-
cation process like the case a and b. However, in a few cases (e.g., Fig. 4(c)),
the non-tumor area also contributes a lot to the final classification results, which
may reveal some limitations of the model.

Table 2. Comparison and Ablation Results on OS Prediction.

Method Accuracy MSE

Kaggle first winner [1] 0.586 105,062

Kaggle second winner [25] 0.488 100,000

Post-hoc [13] 0.517 105,746

EfficientNetV2-S [23] 0.421 129,547

Proposed Methods 0.513 79,265

Regression (using age only) 0.387 152,619

Ours (without EDL) 0.409 136,475

3.3 Results of Predicting OS

Our model achieves the results of Table 2 on the test dataset. Compared with
two state-of-the-art methods, it is seen that our method had better performance.
Currently, on this dataset, most high-performance models use segmented tumor
regions for analysis, such as [1, 25]. While our method does not require tumor
segmentation and directly processes MRI of the whole brain still achieves good
performance close to the champion [1] in terms of accuracy. Compared with
other models that do not require segmentation [13, 23], our performances also
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have certain advantages. It is worth noting that, thanks to the good fitting ability
of EDL, our experimental results are particularly better as measured by MSE.
The ablation experiments also demonstrate the effectiveness of our method.

4 Conclusions

We presented a novel End-to-End Evidential-Efficient Net for radiomics analysis
that incorporates EDL layers as a classifier to predict MGMT expression and
OS of brain tumor patients. We compared the proposed method to the state-
of-the-art method and the results showed our model obtains better results. Our
model also requires a short training time and demonstrates high stability.
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