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a b s t r a c t 

In this work we present a framework of designing iterative techniques for image deblurring in inverse 
problem. The new framework is based on two observations about existing methods. We used Landweber 
method as the basis to develop and present the new framework but note that the framework is applicable 
to other iterative techniques. First, we observed that the iterative steps of Landweber method consist of 
a constant term, which is a low-pass filtered version of the already blurry observation. We proposed 
a modification to use the observed image directly. Second, we observed that Landweber method uses 
an estimate of the true image as the starting point. This estimate, however, does not get updated over 
iterations. We proposed a modification that updates this estimate as the iterative process progresses. We 
integrated the two modifications into one framework of iteratively deblurring images. Finally, we tested 
the new method and compared its performance with several existing techniques, including Landweber 
method, Van Cittert method, GMRES (generalized minimal residual method), and LSQR (least square), to 
demonstrate its superior performance in image deblurring. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many imaging applications, including medicine and biol- 
ogy [1,2] , optics [3,4] , remote sensing [5] , astrophysics [6] , and 
other fields [7] , due to the relative motion between objects and 
the imaging device [8] , observed images are blurred and often con- 
taminated by measurement noise. Image quality may also be af- 
fected by packet loss due to the channel impairment during trans- 
mission [9,10] . Restoration of images is also necessary in com- 
pressed sensing in that one needs to solve an under-determined 
problem [11,12] . To restore the original images from the smoothed 
observations, we can employ either direct inversions or itera- 
tive solutions. Typical direct inversions include truncated singu- 
lar value decomposition (SVD) inversion [13,14] , Tikhonov regu- 
larization [15] , total variation regularization [16,17] and others. 
Representative iterative solutions include Landweber method [18] , 
Van Cittert method [19] , conjugate gradient descent [20] , Kalman 
filter-type method [21] , and others [22–24] . For both types of ap- 
proaches, maintaining the stability of the inversion process is crit- 
ical to obtain reasonable results. However, a trade-off exists be- 
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tween maintaining stability and achieving a satisfactory level of 
accuracy in results. In direct inversion methods, the trade-off man- 
ifests as the selection of the number of singular values in trun- 
cated SVD inversion or the weight factor in Tikhonov-like regular- 
ization [25] . In iterative inversion methods, the trade-off manifests 
as the selection of the iterative step size and the threshold used in 
stopping the iteration. In addition to the above two general types 
of methods, hybrid techniques have also been proposed to solve 
ill-posed problems. For example, in a hybrid setup, an inversion 
problem may be approximated by a series of small bidiagonal sys- 
tems to be solved via the Lanczos process [26] . In addition to the 
direct and iterative methods, in recent years other types of meth- 
ods have been proposed. For example, Singha and Majumdar pre- 
sented a method that treats inverse problems as a domain adap- 
tation in a coupled dictionary learning setup [27] . Peng et al. pro- 
posed a method employing two-dimensional principal component 
analysis in two directions to extract feature-based sparse represen- 
tation prior in a feature space instead of in the pixel space given 
by a blurred image, thus mitigating the effect of blurring [28] . In 
recent years, deep learning techniques have also been proposed 
to solve inverse problems. For example, Chun et al. presented an 
iterative neural network approach that combines regression neu- 
ral network with an iterative reconstruction algorithm to recon- 
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struct images [29] . In their approach, called Momentum-Net, mo- 
mentum terms are used in the extrapolation modules and ma- 
jorizers are used in non-iterative model-based image reconstruc- 
tion modules to obtain fast convergence rate and accurate results. 
Liu et al. proposed a method to adaptively guide the trajectories 
of learning-based iterations to restore blurred images in an un- 
rolling optimization framework [30] , where unrolling refers to the 
phenomenon that one can unroll an iterative method to become a 
feed-forward network. A potential limitation of unrolling iterative 
methods, however, is that the structure of resulting neural network 
may be highly complicated [31] . 

In this work, we focused on the Landweber method as it 
is a widely used technique and has motivated many variations 
of the original design, such as the smoothed-project Landweber 
method used in compressive sensing [32] , the Runge–Kutta type 
modification whereby a 2-stage Runge–Kutta solution is applied 
to Landweber-like iteration [33] , relaxation whereby an iterative 
relaxation strategy is used to accelerate the convergence [34] , 
and the reduced-base method that couples the usually high- 
dimensional parameter spaces in the inverse problem with the 
adaptive online reduced basis updates to achieve faster conver- 
gence [35] . In addition, many derivatives of Landweber methods 
have been developed for image deblurring [36–38] . Here, we pre- 
sented a new thought on designing iterative techniques that can 
perform better in many scenarios, especially in restoring the high- 
frequency components of images. There are two new ideas in our 
proposed method. For the first idea, we observed that the itera- 
tions of Landweber method can be decomposed into two terms, 
whereby the first term is a constant that remains unchanged 
throughout the iterations, and the second term is being updated 
each time. For the method to restore a blurred image, it requires 
the two terms to work together to generate a satisfactory result. 
Detailed analysis showed that the first term is a twice low-pass 
filtered version of the true image, meaning that the first term is 
of very low-frequency (or even smoother than the observed im- 
age). For the whole method to generate good results, the second 
term then needs to cancel out the low-frequency components in 
the much smoothed first term, a task that often is challenging. We 
therefore propose to modify the first term so that it is just a one- 
time low-pass filtered version of the true image. 

For the second idea, we observed that, in iterative methods like 
the Landweber method, the whole iterative process hinges on the 
original inverse problem, starting with the blurred observation as 
the best estimate of the true image, and then it tries to approxi- 
mate the true image iteratively by minimizing a cost function. We 
argue that we can obtain better results in designing iterative tech- 
niques by using the up-to-date best estimate of the true image at 
each iteration and solving a “new” inverse problem every time. In 
other words, for the very first iteration, our best estimate of the 
true image is indeed the blurred observation. However, starting 
with the second iteration, our best estimate of the true image is 
the restoration result given by the first iteration. So, for the sec- 
ond iteration, we can use the output of the first observation as the 
starting point to compute the output of the second iteration. The 
same process can then be repeated for the subsequent iterations. 
In this way, we should obtain better performance in the whole 
process. In this paper, we, therefore, have presented our new de- 
signs of iterative techniques by incorporating the above ideas. 

The paper is organized as follows. In Section 2 we have ex- 
plained the motivation of our idea and described the design of 
new method by using Landweber method as the starting point. In 
Section 3 we used test images to evaluate and compare the new 

method with the standard Landweber method, Van Cittert method, 
GMRES, and LSQR. We have discussed observations about the new 

method and offered conclusions in Section 4 . 

2. Method 

In a typical setup of image deblurring, we assume that the ob- 
served image g is a blurred version of true image f , plus some 
measurement noise w , such that we have an inverse problem 

g = H f + w (1) 

where H is the point spread function (PSF) and we need to find 
f . In the blurring process, the effect of H can be considered as a 
low-pass filter such that it smooths a sharp image f to generate g. 
In Landweber method, to find a solution f to Eq. (1) , we look to 
minimize 

argmin J( f ) = 
1 
2 
|| H f − g|| 2 2 (2) 

Take the derivative of the above formula, we have 

∇ J( f ) = H 
T (H f − g) (3) 

Then by gradient descent, Landweber method iteratively solves 
Eq. (2) by 

f n +1 = f n − β∇ J( f ) (4) 

We initialize f 0 to the observation g, and, for the first few itera- 
tions, the Landweber method has the form of 

f 0 = g (5) 

f 1 = f 0 + βH 
T (g − H f 0 ) = βH 

T g + ( f 0 − βH 
T H f 0 ) (6) 

. . . 

f n +1 = f n + βH 
T (g − H f n ) = βH 

T g + ( f n − βH 
T H f n ) (7) 

n = 1 , 2 , . . . for iteration n + 1 , where β is a small positive con- 
stant controlling the speed of iteration and superscript T stands for 
transpose. To ensure the stability of the iterative process, β must 
be less than 2 

λ2 
1 
where λ1 is the largest singular value of H. In im- 

plementation, the calculation of singular values takes a long time 
for large matrices and, without knowing the specific range for β , it 
is prudent to select a small β . However, the downside of choosing 
a small β is that the convergence will take a long time. In calcu- 
lation, the Landweber method is implemented in the lexicographic 
manner such that f and g become column vectors, instead of ma- 
trices. Overall, the purpose of the Landweber method is to recover 
the sharp image f from its low-pass filtered version g. 

From Eq. (7) , we note that the first term βH T g on the right- 
hand side (RHS) is a constant vector while only the second term 

( f n − βH T H f n ) is updated in the iterations. Examining the itera- 
tive process of Eq. (7) , especially its first term βH T g on the RHS, 
we can make two observations and, based on the two observations, 
we propose two changes to the iterative solution. 

2.1. First observation and the proposed change 

The first observation is that, for the first term βH T g on the RHS 
of Eq. (7) , β is a scalar constant, H T is a low-pass filter, and g is 
a smoothed version of f . Then the effect of H T g is to essentially 
low-pass filter g again, further shifting the frequencies of g down 
to low-frequency and making g even smoother. Fig. 1 shows what 
image f , its observed image g which equals to H f + w and the fur- 
ther blurred image H T g may look like. For this example, the true 
image was blurred by a Gaussian kernel with a bandwidth of 7 and 
a standard deviation of 1.0. 

In this particular example, we can see that, while g is a 
blurred version of f , some details are still discernible. However, 
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Fig. 1. (a) True f of part of the “boat” image. (b) Blurred observation g. (c) Further 
blurred image H T g. 

H T g is even more blurred than g, making many details unreadable. 
Given a deblurring approach, under the same condition, it is likely 
more difficult to recover f from H T g, which is used in the stan- 
dard Landweber method, than from g. To find f , then Landweber 
method relies on the second term ( f n − βH T H f n ) to not only re- 
cover the lost high-frequency components of f , but also to cancel 
out the low-frequency components in H T g. Therefore, it seems rea- 
sonable that, if we remove H T in the first term on the RHS, we can 
reduce the burden placed on the second term on the RHS to accel- 
erate the iterative process to find f . In other words, the iterative 
process can be tentatively designed as 

f 0 = g (8) 

f 1 = βg + ( f 0 − βH 
T H f 0 ) (9) 

. . . 

f n +1 = βg + ( f n − βH 
T H f n ) (10) 

for n = 1 , 2 , . . . , so g in the first term on the RHS is not low-pass 
filtered by H T . Here we note that, though Eq. (10) is not directly 
derived from minimizing the cost of Eq. (2) , it can lead to supe- 
rior computational results in restoration. As we will see next, the 
iterative process of Eq. (10) can be further optimized. 

2.2. Second observation and the proposed change 

The second observation is that, from Eqs. (8) and (7) , we note 
that g is used as the initial estimate for the true image f . This 
is a reasonable estimate because, without further computations, 
g is the best guess we have when the iterations start. If we use 
Eq. (10) to express the first iteration, we have 

f 1 = βg + ( f 0 − βH 
T H f 0 ) (11) 

where g is the best estimate to be used to calculate f 1 . Here we 
note that, in Eq. (11) , f 0 is actually g, but for the convenience of 
discussion below, we keep the notion of f 0 in the second term. 
However, starting from the second iteration, our best estimate for 
the true f is no longer g but f 1 since f 1 now is available. If we 
assume f 1 is one-step closer to f than g, then we should replace g
by f 1 so that, to obtain f 2 , our best estimate for true image f now 

is f 1 . In other words, we assume that, at the second iteration, we 
are faced with a “new” inverse problem, that is, 

f 1 = H f + w (12) 

because we now have f 1 available to us. Then our goal is to solve 
Eq. (12) . Applying Eq. (11) to the new inverse problem of Eq. (12) , 
the process of computing f 2 can be written as 

f 2 = β f 1 + ( f 1 − βH 
T H f 1 ) . (13) 

In other words, starting from the second iteration, we can replace g
in Eq. (11) by the result of the previous iteration because, at each 
iteration, we have a new estimate that is better than g in terms of 
its distance to the true f . At the third iteration, our inverse prob- 
lem becomes 

f 2 = H f + w (14) 

and our solution is similar to Eq. (13) , that is, 

f 3 = β f 2 + ( f 2 − βH 
T H f 2 ) . (15) 

Essentially, the idea is that, as we progress through each iteration, 
we have an updated inverse problem and we solve the problem via 
one iteration, and then we move on to the next inverse problem 

and, again, solve it via one iteration. If we define 

� f n ≡ f n − βH 
T H f n (16) 

then we have 

f n +1 = β f n + � f n (17) 

while for the original Landweber method we have 

f n +1 = βHg + � f n (18) 

2.3. The finalized new design 

So, based on the above two observations, we propose a new 

iterative method as follows. 

f 0 = g (19) 

f 1 = βg + ( f 0 − βH 
T H f 0 ) (20) 

f 2 = β f 1 + ( f 1 − βH 
T H f 1 ) (21) 

. . . 

f n +1 = β f n + ( f n − βH 
T H f n ) (22) 

for n = 1 , 2 , . . . . In the new iterative method, the two changes are, 
(1) removal of PSF H in the first term on the RHS and (2) replace- 
ment of g by f n for n > 1 . The iteration stops when the differ- 
ence between two consecutive results is smaller than a threshold 
or the number of iterations reaches a preset level. As discussed 
before, the new method implicitly assumes a new inverse prob- 
lem starting with n > 1 , whereas the inverse problem becomes 
f n = H f (n −1) + w . 

Computationally, we note that the new method has the similar 
complexity as the Landweber method as there are no extra oper- 
ations. In addition, from Eq. (22) , we note that the idea behind 
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the new method can be applied to other iterative algorithms be- 
cause the proposed changes are about, first, how to prevent PSF 
H from low-pass filtering the already blurred observation g, and, 
second, how to utilize most recent intermediate results to update 
the inverse problem at each iteration. Note that the changes do not 
impact the second term on the RHS of the iterative process, which 
can be considered as how different methods calculate the stepwise 
changes to be added to the previous outputs. In other words, ex- 
isting algorithms like the Landweber method solve one fixed in- 
verse problem, as given by Eq. (1) , in N iterations, while the new 

method solves N inverse problems in N iterations whereas each 
inverse problem is attempted only once. Our assumptions about 
admitting a solution is that f is smooth and H is Fréchet differen- 
tiable. 

3. Results 

In this section we evaluated the performance of the new 

method in deblurring. Because the new method is motivated by 
our observation of how then Landweber method proceeds, we 
compared the new method with the Landweber method. Also, be- 
cause of the similarity between the Landweber method and Van 
Cittert method, which has the form of 

f n +1 = βg + ( f n − βH f n ) , (23) 

we included the Van Cittert method for comparison as well. 
We used mean squared error (MSE), which is defined as 

MSE = 
|| f n − f || 2 2 

L 
(24) 

where L is the total number of pixels in an image, to evaluate 
the restoration. We also used structural similarity index measure 
(SSIM) [39] as a measurement of the quality of restoration. For two 
images u and v , SSIM is defined as 

SSIM = 
(2 μu μv + c 1 )(2 σu v + c 2 ) 

(μ2 
u + μ2 

v + c 1 )(σ 2 
u + σ 2 

v + c 2 ) 
(25) 

where μu and σu are the average and standard deviation of image 
u , respectively, and μv and σv are similarly defined for image v . In 
the definition, σu v is the covariance of u and v , and c 1 and c 2 are 
two positive numbers to ensure the stabilization of the division. 
For all the examples, signal-to-noise ratio (SNR) is defined as the 
energy of H f over the energy of noise w 

SNR = log 
|| H f || 2 2 
|| w || 2 2 

( dB ) (26) 

where || w || 2 2 is the energy of the noise. 
As the first example, we compared the three methods on de- 

blurring the test image “baboon”. For this example, we set the 
Gaussian blurring kernel with a bandwidth of 7 and a standard 
deviation of 1.0. The SNR was 9.5 dB. We used a step size of 3e-4 
for the iterative processes. Results are shown in Fig. 2 . The origi- 
nal image and its blurred version are shown in Fig. 2 (a) and (b). 
The restorations by the standard Landweber method, Van Cittert 
method, and the new method are shown in Fig. 2 (c–e), respec- 
tively. From the three restorations, we note that the new method 
achieved the best performance as it showed more fine structure 
on the face and restored the pupil more sharply. The plot of MSEs 
in Fig. 2 (f) showed that, in this example, the new method had the 
lowest MSE. We also computed the SSIMs of the three restorations 
corresponding to Fig. 2 (c–e). The SSIMs were 0.60 69, 0.6 636, and 
0.7463, respectively, indicating that the new method had the high- 
est SSIM. 

For the next example, we applied the three methods to deblur 
the “boat” image shown in Fig. 1 (b). We set the step size to 1e- 
3 for the iterative processes. Results of the first 500 iterations are 

Fig. 2. (a) True image f . (b) Blurred observation g. (c) Restoration by Van Cittert 
method. (d) Restoration by Landweber method. (e) Restoration by the new method. 
(f) MSEs of the three methods. Black, Van Cittert method. Blue, Landweber method. 
Red, new method. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

shown in Fig. 3 . It is observable that the new method gave the best 
result. The characters on the boat are more readable in Fig. 3 (c) 
than in Fig. 3 (a) and (b). Fig. 3 (d) shows that the new method had 
lowest MSE. We calculated that the SSIMs of Fig. 3 (a and b) were 
0.6993, 0.7180, and 0.7462, respectively. 

We then tested how the three methods performed if we in- 
creased the number of iterations to 10 0 0. The results are shown 
in Fig. 4 . From this figure, we observed that the MSE of the new 

method started to increase at iteration 800, yet its result was still 
sharper than those given by the other two methods. We calculated 
that the SSIMs of Fig. 4 (a–c) were 0.7145, 0.7415, and 0.7756, re- 
spectively. 

When we increased the number of iterations further to 1500, 
we obtained results shown in Fig. 5 . It is interesting to note that 
the MSE of the new method exceeded those of the Van Cittert and 
Landweber methods. We calculated that the SSIMs of Fig. 5 (a–c) 
were 0.7260, 0.7551, and 0.7318, respectively. Here we note that 
from the MSE plot and the SSIM calculation, it seems that the re- 
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Fig. 3. (a) Restoration of Fig. 1 by Van Cittert method at 500 iterations. (b) Restora- 
tion by Landweber method at 500 iterations. (c) Restoration by the new method 
at 500 iterations. (d) MSEs of the three methods. Black, Van Cittert method. Blue, 
Landweber method. Red, new method. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. (a) Restoration of Fig. 1 by Van Cittert method at 10 0 0 iterations. (b) 
Restoration by Landweber method at 10 0 0 iterations. (c) Restoration by the new 

method at 10 0 0 iterations. (d) MSEs of the three methods. Black, Van Cittert 
method. Blue, Landweber method. Red, new method. (For interpretation of the ref- 
erences to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 5. (a) Restoration of Fig. 1 by Van Cittert method at 1500 iterations. (b) 
Restoration by Landweber method at 1500 iterations. (c) Restoration by the new 

method at 1500 iterations. (d) MSEs of the three methods. Black, Van Cittert 
method. Blue, Landweber method. Red, new method. (For interpretation of the ref- 
erences to color in this figure legend, the reader is referred to the web version of 
this article.) 

sult of the new method was not as good as that of the Van Cittert 
method. Yet, from the restored images, we observed that the new 

method generated the sharpest result among the three methods. 
This phenomenon points to the fact that MSE and SSIM, though 
can measure difference between the true image and its restoration, 
do not always indicate whether the restoration is sharp or not. 

As another example, we used a Gaussian kernel with a band- 
width of 3 and a standard deviation of 0.75 to blur a test im- 
age “sails” and added white Gaussian noise to the blurred image. 
The SNR was 9.4 dB. We then tested the Landweber method, Van 
Cittert method, and the new method on deblurring the image by 
50 0 0 iterations. The step size was set to 3e −4. Results and the 
MSEs are shown in Fig. 6 . From the images, we see that the new 

method created a sharper restoration, such as the numbers on the 
sails, even when it had a larger MSE than the other two meth- 
ods. From the MSE plot, it is also seen that the new method had 
a smaller error. It is interesting to note that the results of the new 

method and the Landweber method had similar MSEs, yet the re- 
sult of the new method was sharper. The SSIMs of the standard 
Landweber method, Van Cittert method, and the new method were 
0.8506, 0.8815, and 0.9200, respectively. 

We next used the same blurring kernel and parameters and ap- 
plied the three methods on test image “clock”. Results are shown 
in Fig. 7 . We had the same observation that the new method 
generated a sharper result, despite that its MSE was higher than 
those of the other two methods. We also computed the SSIMs for 
Fig. 7 (c–e) and they were 0.6389, 0.6236, and 0.6132, respectively. 
In this example, we have the same observation that it seemed the 
new method gave a result with a higher MSE and lower SSIM than 
the other two methods. Yet, visual inspection of the results indi- 
cated that the new method created sharpest restoration. 

5 
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Fig. 6. (a) True image f . (b) Blurred observation g. (c) Restoration by Van Cittert 
method. (d) Restoration by Landweber method. (e) Restoration by the new method. 
(f) MSEs of the three methods. Black, Van Cittert method. Blue, Landweber method. 
Red, new method. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Another scenario we tested is when the true PSF H is not 
known exactly. In the next example, we evaluated how the new 

method may perform using an estimated H to restore images. For 
the first example, the “bridge” image was blurred by a Gaussian 
kernel H with a bandwidth of 3 and a standard deviation of 1.0. 
The SNR was 9.8 dB. Assuming that we did not know H exactly, 
we used an estimate ˆ H with a bandwidth of 5 and a standard de- 
viation of 1.5 to deblur the image. Results are shown in Fig. 8 . We 
see from the comparison that the new method generated the best 
restoration as the restoration was sharper and showed more details 
about the “bridge”. It also had a lower MSE. The SSIMs of Fig. 8 (c–
e) were 0.6988, 0.7810, and 0.7915, respectively. 

Next we used several other test images for comparison 
among the three methods with different degrees of blurriness. 
These test images are shown in Fig. 9 , downloaded from home- 
pages.cae.wisc.edu/ece533/images/. Table 1 compares results given 
by the three methods on images blurred by a Gaussian kernel with 
a bandwidth of 3 and standard deviation of 1.0. The step size of 

Fig. 7. (a) True image f . (b) Blurred observation g. (c) Restoration by Van Cittert 
method. (d) Restoration by Landweber method. (e) Restoration by the new method. 
(f) MSEs of the three methods. Black, Van Cittert method. Blue, Landweber method. 
Red, new method. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Table 1 

MSEs and SSIMs of the three methods in restoring images blurred by a 
Gaussian kernel with bandwidth of 3 and a standard deviation of 1.0. 
Numbers are MSE followed by SSIM, separated by “/”. 

SNR Landweber Van Cittert New 

Tulips 8.7 0.187 / 0.851 0.168 / 0.869 0.066 / 0.900 
Monarch 8.8 0.211 / 0.878 0.190 / 0.897 0.080 / 0.933 
Gold hill 5.5 0.076 / 0.624 0.074 / 0.636 0.067 / 0.664 
Saturn 8.5 0.161 / 0.885 0.145 / 0.882 0.048 / 0.886 
Fruits 9.9 0.334 / 0.816 0.301 / 0.817 0.091 / 0.824 
Mountain 9.4 0.404 / 0.634 0.378 / 0.667 0.294 / 0.727 

restoration was 2e −4 and the number of iterations was 30 0 0. Re- 
sults in the table are given as MSE followed by SSIM. From the ta- 
ble we see that the new method achieved lower MSEs and higher 
SSIMs than the other two methods. 

We next made the blurring effect more severe by increasing 
the standard deviation of the Gaussian kernel to 1.5 but kept all 
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Fig. 8. (a) True image “bridge” f . (b) Blurred observation g by a Gaussian kernel 
H with a bandwidth of 3 and a standard deviation of 1.0. (c) Restoration by Van 
Cittert method using a Gaussian kernel ˆ H with a bandwidth of 5 and a standard 
deviation of 1.5. (d) Restoration by Landweber method using ˆ H . (e) Restoration by 
the new method using ˆ H . (f) MSEs of the three methods. Black, Van Cittert method. 
Blue, Landweber method. Red, new method. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Test images. Top, from left to right, tulips, monarch, and gold hill. Bottom, 
Saturn, fruits, and mountain. 

Table 2 

Comparison of the three methods in restoring images blurred by a Gaus- 
sian kernel with bandwidth of 3 and a standard deviation of 1.5. Numbers 
are MSE followed by SSIM. 

SNR Landweber Van Cittert New 

Tulips 7.7 0.493 / 0.632 0.427 / 0.698 0.274 / 0.793 
Monarch 7.9 0.541 / 0.622 0.468 / 0.701 0.304 / 0.820 
Gold hill 4.5 0.121 / 0.470 0.111 / 0.497 0.090 / 0.550 
Saturn 7.5 0.439 / 0.739 0.379 / 0.774 0.240 / 0.834 
Fruits 9.0 0.924 / 0.673 0.798 / 0.708 0.503 / 0.763 
Mountain 8.4 0.772 / 0.383 0.686 / 0.447 0.507 / 0.546 

the other setup the same. The results are shown in Table 2 , from 

which, again, we note that the new method had the lowest MSEs 
and highest SSIMs. 

In real world, it is often the case that we do not know the blur- 
ring PSF exactly. Next, we evaluated the new method when we 
used an inexact PSF to deblur an image. In this example, we also 
compared the new method not only with the standard Landweber 
method and the Van Cittert method but also the GMRES (general- 
ized minimal residual method) and LSQR (least squares) methods. 
At first, we blurred an image with a Gaussian kernel with a band- 
with of 3 and a standard deviation of 1.25. The SNR was 7.8 dB. We 
then used a Gaussian kernel with a bandwidth of 3 and a standard 
deviation of 1.55 to restore the image. The results of five meth- 
ods are shown in Fig. 10 . For the first three methods, we ran it- 
erations to 20 0 0 as the MSEs for the Van Cittert and Landweber 
methods continued to decrease. For the GMRES and LSQR, we ran 
iterations to 100 as their MSEs started to increase after the first 
several iterations. For the Van Cittert method, standard Landweber 
method, and the new method, their restorations were the results of 
20 0 0th iteration. For the GMRES and LSQR methods, their restora- 
tions were the results of their second iteration, as both methods 
achieved their lowest MSEs at the second iteration, which can also 
be seen from Fig. 10 . Comparing the restoration results, we see 
that, in the presence of noise and with an estimated PSF, the new 

method gave the sharpest restoration, for example, the numbers on 
the watch, among the five methods. Next, we used the same test 
image but assumed that the PSF was under-estimated by 0.5. The 
results given by GMRES, LSQR, and the new method are shown in 
Fig. 11 . From the figure, we note that the new method still gen- 
erated the best restoration and, in this case, had lowest MSE. The 
results given by the Van Cittert and Landweber methods are not 
shown but they had higher MSEs than the new method and blur- 
rier restorations. We also computed the SSIMs for the standard 
Landweber method, the Van Cittert method, GMRES, LSQR, and the 
new method. The values were 0.4921, 0.4710, 0.0264, 0.0677, and 
0.3518, respectively. We note that the new method had a higher 
SSIM than GMRES and LSQR methods but its SSIM was lower 
than those of the standard Landweber method and the Van Cit- 
tert method. However, visual inspection of the restored images in- 
dicates that the new method had the best result as it shows more 
fine details about the watch. 

Additional results are given in supplement materials, in which 
we performed ablation tests of implementing one idea only and 
compared the performance with the full new method, and more 
comparisons between the new method and two other existing it- 
erative methods, GMRES and LSQR, and evaluated the new method 
on how it performs on restoring images blurred by a uniform ker- 
nel. 

4. Discussion and conclusions 

In this work we presented a new framework on designing iter- 
ative techniques for image deblurring. We demonstrated the per- 
formance of the new framework using the Landweber method as 
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Fig. 10. (a) An original image. (b) Blurred observation. (c-g) Results by Van Cittert method, standard Landweber method, GMRES, LSQR, and the new method, respectively, 
when the PSF was not known exactly and its standard deviation was over-estimated by 0.3. The MSEs of the five restoration results were 0.0296, 0.0565, 0.1189, 0.1191, and 
0.6712, respectively. (h) MSEs of the Van Cittert method, standard Landweber method, and new method. (i) MSEs of GMRES and LSQR methods. 

Fig. 11. (a–c) Results by GMRES, LSQR, and the new method, respectively, when the PSF was not known exactly and its standard deviation was under-estimated by 0.5. The 
MSEs of the three restoration results were 0.1214, 0.1211, and 0.0940, respectively. 
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a baseline technique. The motivation for the new framework stems 
from two observations about the Landweber method. 

The first observation is that, as the true images are degraded 
by the low-pass filtering effect of a PSF, it is reasonable to avoid 
using twice the low-pass filtered f from the beginning in the iter- 
ative process so the new method can achieve better performance. 
Our design was based on the idea of making the task of the itera- 
tive process easier because, as we showed, it is the iterative term 

that must cancel out the low-frequency components in the con- 
stant term to generate sharp restorations. If the constant term is 
much smoothed, as in the standard Landweber method, then the 
iterative term may not sufficiently cancel out the smoothness in 
the constant term, leading to sub-optimal results. Here we note 
that, for the image deblurring problem described in this work, we 
assumed an undetermined boundary condition. The reason is that, 
as shown by Zhou et al. [40] , an undetermined boundary condi- 
tion can lead to better results in image deblurring if the under- 
lying image does not have high similarity at the boundary, which 
is the case for many images. On the other hand, if the underly- 
ing images have high similarity at the boundary, then a repeated 
boundary condition may lead to better results in deblurring [40] . In 
cases where a boundary condition can be imposed, Donatelli et al. 
proposed to replace the quadratic H T H operator by H ′ H where H ′ 

is the H related to the boundary conditions with the PSF rotated 
by 180 degrees and their results showed that re-blurring H ′ H with 
anti-reflective boundary conditions can reduce the ringing effects 
during the blurring process [41] . Our method is distinct from the 
re-blurring idea by emphasizing the effect of avoiding two two 
times of low-pass filtering incurred by H T H to reduce the burden 
for the deblurring process to generate sharp restorations. 

The second observation is that we can treat each iteration as 
searching for solution to a new deblurring problem in the sense 
that, at each iteration, our best estimate about the true image 
is updated by the previous cycle and, therefore, we do not have 
to use the original blurry observation as our best estimate. In 
other words, traditional methods solve the inverse problem of g = 

H f + w over many iterations. In our proposal, we showed that it 
is beneficial to solve a series of inverse problems, starting with 
g = H f + w , then the inverse problem is updated to f 1 = H f + w , 
then to f 2 = H f + w and so on. For each updated inverse problem, 
we only solve it one time by f n +1 = β f n + ( f n − βH T H f n ) where 
n = 1 , 2 , . . . . Then the inverse problem gets updated and we then 
solve the “new” problem again. 

The contribution of this work is two-fold. The first contribution 
is that it shows the initialization term in the Landweber method 
is a twice blurred version of true image f and it is beneficial to 
replace Hg with g to remove the additional low-pass filtering im- 
posed by the PSF H. The second contribution is that, as we showed 
in the analysis of the iterative steps of Landweber method, we 
can update the inverse problem model as we progress through 
the iterations. Instead of keeping the inverse problem unchanged, 
meaning that we always start from the same point, we can up- 
date the inverse problem as we acquire an estimate of the true 
image. This estimate then can be used to rewrite the inverse prob- 
lem and help the iterative process achieve a better performance. 
We note that the two contributions are not constrained to modify- 
ing the Landweber method. They are applicable to other iterative 
algorithms if they have the similar computational setup in initial- 
ization and updating the iterative process. 

Here we note that we present the new framework as a stand- 
alone method, however, it is possible to integrate it with the la- 
tent iterative techniques it is based on. For example, it can be in- 
tegrated with the standard Landweber method such that the new 

method is used for the first few hundreds of iterations while the 
standard Landweber method is used for the next several hundreds 
of iterations. 

Based on the test results and comparisons, we can make sev- 
eral observations. First, it shows that the new method can gener- 
ate sharper images as compared to other methods, whether its re- 
sulting images have a lower or higher MSE than the results given 
by the other two methods. This is likely due to the fact that the 
new method, using βg as the starting point, maintains more high- 
frequency components in the first place. 

Second, when the PSF had to be estimated, the new method 
still generated the best results among the three methods, likely be- 
cause of the constant part of the new iterative process, i.e., βg, is 
not filtered by the estimated PSF to start the iterations, thus re- 
ducing the impact of the imprecise PSF on the results. 

It is also interesting to note that, as can be seen from our com- 
parisons, MSE and SSIM do not always concur with visual inspec- 
tion on how good a restored image is. Though a low MSE is typ- 
ically desirable in image processing, depending on the underlying 
task of an application, a higher MSE may be an acceptable trade- 
off if the resulting image can provide useful information, such as 
in image deblurring. We used MSE in this work because the cost 
functions of many image deblurring algorithms essentially aims to 
minimize an energy term with an L 2 norm of the similar form as 
MSE, i.e., to minimize || g − H ̂  f || where ˆ f is the restored image. In 
our experiments, we note that a high SSIM is generally preferred 
but just relying on SSIM may lead to incorrect conclusion on se- 
lecting the best restoration results. This could be due to the fact 
that SSIM is not a parameter-free metric as the two constants c 1 
and c 2 in Eq. (25) need to be carefully set to stabilize its calcu- 
lation. To the best of our knowledge, there is no dedicated metric 
that assesses the quality of deblurred images in both a quantita- 
tive way that an algorithm can be based on and a qualitative way 
that agrees with visual inspection. It would be beneficial to de- 
velop such a metric, which, however, is beyond the scope of this 
work. 

In this work, we compared the new method to the standard 
Landweber method, Van Cittert method, GMRES, and LSQR. We 
chose these methods for comparison because they constitute the 
backbone of many other methods and have broad practical ap- 
plications. More importantly, the purpose of comparing the new 

method to these methods is to illustrate the impact of the idea 
on designing iterative deblurring algorithms to better recover the 
high-frequency components in images, which is the overarching 
goal of image deblurring. From the idea of constructing the new 

framework, the two novel modifications can be adapted to other 
iterative techniques in solving inverse problems, including but not 
limited to image deblurring. 

There are limitations of this work. We derived the new design 
of the deblurring process via insights into the existing Landweber 
method to improve the performance of image deblurring, how- 
ever, we did not theoretically analyze the convergent behavior 
of the new algorithm. Our numerical examples showed that the 
new algorithm can attain sharper restorations, though it may at- 
tain higher MSEs over an exceedingly large number of iterations. 
It points to the fact that a judiciously designed stopping rule is 
needed to stop the iterations. One choice is to stop the process 
when the difference between two iterations is smaller than a pre- 
set threshold. 
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