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Abstract—Since being proposed in 2017, the posit number
system has attracted much attention due to its advantages
over the IEEE 754 standard floating-point format for better
dynamic range and higher accuracy, which are crucial to many
applications such as neural networks. Those advantages are
yielded from a varying-length segment, regime bits, which lead
to the size variations for all rest components except the sign bit.
Consequently, it requires an extra decoding process to extract
the numerical value of a posit number. The state-of-the-art
posit decoder is designed based on a leading one/zero detector.
However, we find that this conventional method holds implicit
redundancy when dealing with binary numbers. In this paper, we
design a novel hardware architecture, i.e., the leading difference
detector, to optimize the circuit operation by eliminating the
redundancy. The experimental results show that the proposed
architecture can decrease the delay and power consumption by
over 41% compared to the conventional designs for 8-bit, 16-bit,
32-bit, and 64-bit posit decoders.

Index Terms—posit number system, floating-point, decoder,
circuit design, machine learning.

I. INTRODUCTION

Since the universal number was proposed, IEEE 754 Stan-
dard floating-point format [1] has become one of the most
commonly used number formats. In searching for higher ac-
curacy and dynamic range to better serve modern applications,
[2] designed posit number in 2017, a drop-in replacement for
IEEE 754, as claimed by the developers.

With the same bit size as floating-point, posit number
offers a more flexible trade-off than floating-point between
decimal accuracy and dynamic range. Compared with floating-
point, posit shows many advantages such as larger dynamic
range, higher accuracy, better closure, and overflow resistance.
Besides, [3] found that posit can save the hardware cost such
that an n-bit IEEE 754-2008 adder and multiplier can be
safely replaced by an m-bit Posit Arithmetic Units adder and
multiplier where m < n. In addition, posit number achieves
superior performance in computing some special functions.
For example, it only requires simple bit shifting and flipping
to estimate the value of the sigmoid function (1/(1 + e™%))
with posit number.

Recent works have been exploring its applications by lever-
aging the advantages of posit numbers. For instance, [3]-
[5] designed ASIC architectures for posit arithmetic core
generator, [6]—[8] exploited the implementations of posit sys-
tem on FPGA, [9] applied approximate computing to the
posit system, [10], [11] designed efficient multiplier for posit
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number, and [12]-[15] adapted posit number system to deep
neural networks (DNN). For instance, one of the biggest
challenges for DNN is the DRAM capacity and speed limits
due to its massive trainable parameters [16], [17]. Alleviating
the challenge, techniques like low-precision arithmetic [18],
[19] are studied to lessen the data size. Enlightened by this
approach, researchers found posit number a great fit to neural
network applications due to its high dynamic range [20], which
means the users can either have higher dynamic range with
the same number size, or similar dynamic range with smaller
number size, compared to the floating-point.

A posit number is composed by four parts: sign bit (s),
regime bits (1), exponent bits (e), and fraction bits (f), as
shown in Fig. 1. The length of the regime bits can vary, which
may even take over the space of fraction bits and exponent bits
for different number values. This key property yields the trade-
off between decimal accuracy and dynamic range. However,
it requires an extra decoding/data extraction process to obtain
the sizes and values for each component before arithmetic
calculation.
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Fig. 1: Generic posit format for finite, nonzero values.

To perform the decoding process for posit, the state-of-the-
art posit decoder [3]-[5], [21], [22] are based on hardware
structures named leading one detector (LOD) or/and leading
zero detector (LZD) [23] (some papers call them leading
one/zero counter), whose function is to detect the size of
the regime bits. After regime size is obtained, the decoder
then ‘flush out’ the specific values for all parts and get them
ready for the subsequent arithmetic calculations. However, we
find that this design does not fully utilize the hardware when
encoding the regime’s size into a binary number and decoding
it for bit shifting, and the implied redundancy introduces
extra delay and power consumption. In this paper, to address
this weakness, we design a novel circuit structure, leading
difference detector (LDD). Then we implement a posit number
decoder based on the LDD. Our experimental results show that
the proposed LDD-based posit decoder can reduce the delay
and energy consumption by about 60% and 50%, respectively,
compared to the conventional LOD decoder for 8-bit, 16-bit,
32-bit, and 64-bit posit numbers. We believe this is a firm
improvement as LOD/LZD is a ‘must use’ structure for the
posit decoder.



The rest of the paper is organized as follows: Section II
reviews the basic principle of the posit number system, the
current decoding methodology, and the corresponding circuit
design. Then, our proposed efficient LDD-based posit number
decoder is presented in Section III. In Section IV, we present
the experimental results to verify the advantages of our design.
Finally, Section V concludes this paper.

II. BACKGROUND

A. Posit Number System

The universal number (unum) has several types. The “type I’
unum is a superset of IEEE 754 Standard floating-point format,
which is widely used today, but it requires extra management
to activate variable length. Unlike the “type I” unum that is
used for expressing interval arithmetic, the “type II” unum
is designed based on the projective reals, which means it
becomes a pointer to the values instead of the value it-
self. Although having many ideal mathematical properties,
the “type II” unum has exaggerated hardware cost since it
requires a bigger lookup table for most operations [24]. As a
representative of the “type III” unum, posit number system is
designed to create a hardware-friendly version of the “type II”
unum.

As shown in Fig. 1, a posit number is composed by: sign
bit (s), regime bits (1), exponent bits(e), and fraction bits (f),
together with two pre-known parameters: number size (/V) and
exponent size (es).

The highest bit will always be the sign bit, where ‘0’ stands
positive and ‘1’ stands negative. When negative, we need to
take the 2’s complement before decoding the rest parts. The
very next part is the regime bits. To decode it, we need to
count the number of consecutive Os or 1s after the sign bit,
and the last bit of regime bits will be the first different bit. For
m consecutive Os, regime » = —m, while for m consecutive
1s, regime r = m — 1. If all the bits except the sign bit are
the same, they will all be counted as m. One 4-bit decoding
example is shown in Table I.

TABLE I: Regime Bits Decoding Example

Regime Bits 000 001X 01XX 10XX 110X 111
T -3 —2 -1 0 1 2

After the regime bits, the very next es bits will be e. If there
are not enough bits left, e equals the remaining bits or just 0
if no bit is left. After decoding all the parts mentioned above,
the rest of the bits are all f, and f = 0 when there is no bit
left. With all the extracted data, the value of a posit number
can be expressed as:

(27 x2° x 1.f (1)

Due to the variable bit sizes for each component of a posit
number, an extra data extraction/decoding process is necessary
to perform arithmetic operations.

B. Leading One/Zero Detector

To decode a posit number and perform data extraction, LOD
and LZD are employed by the state-of-the-art studies [3]-[5],
[21], [22]. Those hardware structures detect and output the
location for the first 0/1 for a binary number. The circuit
design for fast LOD used by, to the best of our knowledge,
all the recent studies, is shown in Fig. 2. A LOD/LZD has
two outputs, K = (i — 1) indicates the first 0/1 occurs at the
i — th bit (counting from left), and Vid = 0 when no 0/1
is detected. For example, an LOD will output K = 101 to
indicate that the first 1 occurs at 6th bit when the input number
starts with ‘000001°. Then, based on the outputs of LOD, the
posit decoder can obtain the value for regime bits and flush
out the rest parts of the posit number with a shifter. Since the
posit’s decoding process typically finishes within one clock
cycle, the ‘shifter’ here is actually a selector, which selects
the correct output from all possible shifting results that are
pre-defined. As LOD and LZD have a similar circuit design
and current posit decoders only use one of those combined
with inverters to handle all the input patterns (as shown in
lines 7 and 8 of Algorithm 1), we implement an LOD-based
decoder as the baseline comparison in this paper. The detailed
decoding process with LOD can be found in Algorithm 1.
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Fig. 2: Circuit design for LOD.

Algorithm 1 Posit Data Extraction with LOD

1: Input: IN[N —1:0]

2: Outputs:
Sign(s), Regime(r), Exponent(e), Fraction(f),
Zero(z), Infinity(inf)

: Pre-defined: Input_Size(N), Exponent_Size(ES)

: 2+ NOR(IN[N —1:0])

. inf < IN[N — 1)&(NOR(IN[N — 2 : 0]))

. XIN « IN[N —1]?(~ IN[N —2: 0]+ 1) : IN[N —2: 0]

(Take 2’s complement if IN[N — 1] = 1)

7: LIN + XIN[N —2?(~ XIN[N —2:0]) : XIN[N —2: 0

8: K < Leading One Detector(LIN)

9: 7+ XIN[N — 2]?2(K — 1) i~ (K — 1)

10: temp < XIN << (K +1)

11: if N — K —2 > ES then

12: e < Highest ES bits of temp

13: else

14: e + Highest (N — K — 2) bits of temp

15: end if

16: f < temp << ES

[0 BN I O]

Although this design is intuitive, there are several places that
we can further optimize in the hardware implementation. Dur-
ing the decoding process of the example we mentioned above,



the LOD encodes the first 1’s location into a binary number
‘101°, then the ‘shifter’ decodes this number and makes the
selection. Such redundancy introduced by the encoding and
decoding of binary numbers will consume extra power and
circuit area.

III. LDD-BASED POSIT DECODER
A. Leading Difference Detector

In this section, we present the design of a novel posit
decoding circuit based on a leading difference detector (LDD),
which eliminates the redundant binary decoding process of the
conventional decoder.

The decoding process with LDD is shown in Algorithm 2,
where N is the posit number bit width, z and o mean all
the bits after taking the 2’s complement are Os or 1s. For a
better illustration, an example is provided later in this section
to explain this algorithm. In essence, the LDD generates a
binary indicator ‘LDD’ instead of a binary number based on
the location of the first different bit. This indicator has the
property that its (¢ — 1) — th bit will be ‘1” and the rest will
be ‘0’ if the input’s first difference occurs at the ¢ — th bit.
An example is shown as Fig. 3, where the output of LDD
‘00010000000’ indicates that the first difference occurs at the
5th bit. Please note that the output size of LDD will be 1
bit smaller than its input size, as the difference will never
occur at the very first bit. Then, based on the obtained value
of LDD, the corresponding output for each component will be
generated by a customized selection circuit.

Input 1111(31101011
00010000000

Fig. 3: LDD output format example.

LDD

For a better illustration, we provide an example of the circuit
design with a 4-bit input XIN (here N =5 since the sign bit
is removed after taking 2°s complement at Algorithm 2, line
4) in Fig. 4. There are 3 stages in the LDD circuit:

o The ‘dif’ stage (Fig. 4(a)) checks the differences for all
adjacent bits in the way that di f[i] = ‘0" when in[i+1] #
in[i] (Algorithm 2, line 5-7).

e The ‘en’ stage (Fig. 4(b)) implements a priority arbiter
[25] to examine the existence of the differences among
the higher bits with AND logic (Algorithm 2, line 9).
When a difference is detected among the higher bits,
the current en[i] will be locked at ‘0’ ignoring the value
of difli]. A straightforward implementation is shown as
Fig. 5(a), which uses fewest logic gate but have largest
delay. To balance the cell number and circuit delay, we
start from implementing a large tree-structured AND gate
for en[0] = AND(dif[(N —2) : 0]), and then add 2-to-1
AND gates onto that large AND gate to obtain the rest
en. Fig. 5(b) illustrates the design for a 3-bit output ‘en’
stage, where the red AND gate is added to generate en]1]
(Algorithm 2, line 8-10).

Algorithm 2 Posit Data Extraction with LDD
1: Input: IN[N —1: 0]
: Outputs:

Sign(s), Regime(r), Exponent(e), Fraction(f),
AllZero(z), AllOne(o)

(3]

3: Pre-defined: Input_Size(N), Exponent_Size(ES)

4 XIN + IN[N — 1]?(~ IN[N —=2: 0] + 1) : IN[N —2: 0]
(Take 2’s complement if IN[N — 1] =1)

5:for i =0: (N —3) do

6 difli] < XIN[i] ® XIN[i+ 1]

7: end for

8: for i =0: (N —4) do

9: en[i] < AND(dif[(N —3) : 4])

10: end for

11: LDD[N — 3] <~ dif[N — 3]

122 LDD[N — 4] + dif[N — 3] & ~ dif[N — 4]

13: for i =0: (N —5) do

14: LDDJi] +~ dif[i] & en[i + 1]

15: end for

16: z + XIN[N — 2] & en|0]

17: 0 <~ XIN[N — 2] & en[0]

18: s+ IN[N —1]

19: r,e, f < Corresponding values from NAND selection
arrays based on current LD D. Follow the principle
that introduced in Section II-A. Circuit design is
introduced in Section III-B.

« The output stage computes the final decision of LDD
based on the en (Algorithm 2, line 14). Besides, it uses
en]0] to check if all the bits are Os or 1s, as en[0] = 0
only when no difference is detected (Algorithm 2, line
11-17).

in[3] in[2] in[1] in[O]

dif(2] dif[1] dif[0]

en[1l] en[0]
(b) ‘en’ stage

dif[2] dif[1] dif[0]
(a) “dif” stage

1dif[2] 'dif[1] dif[2] !dif[0] en[1] in[3] en[O] lin[3]

LDD[2] LDDI[1] LDD[0] allone allzero

(c) Output stage

Fig. 4: Example circuit for 4-bit LDD.

By removing the process of ‘encoding the first 1’s location
into a binary number’ introduced by LOD, the LDD circuits
utilize the AND-gate tree instead of the multiplexer (MUX)
tree for LOD (Fig. 2) to identify the first difference’s location.
Since the tree sizes for LDD and LOD are similar, better
performance on LDD with simplified logic gates can be
expected. Specific comparisons are shown in Section IV.



dif[3] dif[2] dif[1] dif[0]

en[2] en[1] en[0]
(a) Fewest logic gates.

dif[3]dif[2] dif[1]dif[0]

en[2] en[1] en[0]

(b) Balanced design. The red AND gate is added
to generate en[1].

Fig. 5: 3-bit output ‘en’ stage.

B. Bit Shifter

As we mentioned above, a ‘bit shifter’ is typically imple-
mented as a selection circuit, which selects the corresponding
output from all possibilities based on the input of ‘# of bits to
be shifted’. The conventional posit decoders with LZD/LLOD
utilize MUX for the shifter [26] as illustrated in Fig. 6(a),
where ‘o_i[j]’ indicates the corresponding output value for
out[i] when left shifting j bits. As the first difference will
never occur at the first bit, the o_i[1] is always unused (marked
as red) for all cases.

In contrast, with LDD, suppose the input size for LDD is
N bits, we can simply express the out[i] as:

out[i] = (o_i[NJLDDI0))...(o_i[jJLDDIN — j])..., (2)

which can be implemented as a tree-structured NAND selec-
tion array. A 4-bit example is shown in Fig. 6(b), where the
LDD’s input size N = 5. With the ‘en’ stage from LDD
module, only LD D[N —j] will be ‘1’ and the rest bits of LD D
will be ‘0” when the first difference appears at in[N — j]. With
this characteristic, the NAND gate that takes LDD[N — j] as
input will output ~ 0;[j], while all the rest of NAND gates
in the input stage will output 1 since the rest bits of LDD are
‘0’. Then with another stage of NAND operation, we will have
out[i] = o0;]j], according to Eq. 2, which achieves the same
selection function with a conventional ‘shifter’. In addition,
since LDD has the bit-to-bit flexibility, no input bit will be
unused here.

Similar with LDD, the ‘shifter’ for LDD replaces the MUX
tree of conventional shifter with NAND tree by removing the
redundancy introduced by the binary numbers, which further
optimizes the hardware cost of posit decoder.

IV. EXPERIMENTAL RESULTS

Our experimental results are presented in this section.
We implement the LDD-based posit decoder and the LOD-

o_i LDD o_i LDD o_i LDD o_i LDD

[2] 31 [3] [2]1 [4] [1] [5] I[0O]
o_io_i o_i o_i
[1] [2] 3] [4]
L1 [I] |
0 1 0 10
N/
out[i] out[i]

(a) Conventional 4-bit shifter.  (b) 4-bit shifter for LDD.

Fig. 6: Example circuit for 4-bit shifter.

based posit decoder proposed by recent studies [3]-[5], [21],
[22] using Verilog HDL and then map them into a 32nm
technology node using Synopsys Design Compiler, all circuits
are optimized with the same effort level and are driven by
identical inverters. Each decoder has three specific circuit
designs that are compatible with the 16-bit number system
with ES = 1, the 32-bit number system with ES = 3, and
the 64-bit number system with ES = 4, according to the
posit inventor’s recommendation [2]. All the designs are then
mapped into a 32nm technology node using Synopsys Design
Compiler.

All of our Verilog codes can be found in the GitHub
link: https://github.com/JSCooode/LDD_Posit_Decoder. The
modules for 16-bit and 64-bit LDD-based decoders are pa-
rameterized so that they can be easily configured for any posit
system with different number sizes.

TABLE II: Comparison: LDD vs. LOD [3]-[5], [21], [22]

16-Bit 32-Bit 64-Bit
LDD LOD LDD LOD LDD LOD
Delay (ns) 1.44 2.75 1.8 4.61 1.88 4.85
Power (uW)  22.2 19.6 66.8 56.1 231.7 167.8
Area (um?) 369 489 1201 1461 4474 4733
P-D Prod. 1x 1.7x 3.8X% 8.1x 13.6x 25.5%

Our experimental results are summarized in Table II, where
‘P-D Product’ stands for ‘power—delay product’, which repre-
sents the average energy consumption under the same through-
put. The result shows that the delay of the LDD-based decoder
is decreased by 47.6%, 60.1%, and 61.2% for 16-bit, 32-bit,
and 64-bit designs, respectively, compared to the LOD-based
decoder. Meanwhile, the average energy consumption of the
LDD-based decoder is also about 50% smaller than the LOD-
based decoder for 16-bit, 32-bit, and 64-bit posit numbers.
In addition, the LDD-based decoders also have smaller area
consumption. For a better illustration, we plot the changes
of P-D product for both LDD and LOD under different bit
sizes in Fig. 7, from which we can see that LDD-based
decoder outperforms LOD-based decoder for all input sizes,
and an increasing advantage of LDD-based decoder when
expanding the input size can be observed. This indicates that
the LDD-based decoder will be even more applicable for
modern computer systems that work with bigger data size
(like the upgrade from 32-bit systems to 64-bit systems). In



addition, we also implement the 32-bit LOD introduced in
[11] with simulation results: (Delay: 4.37ns, Power: 51.2uW,
Area: 1948m?), which shows that our design outperforms the
recent study.
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Fig. 7: LDD-based decoder vs. LOD-based decode P-D prod-
uct comparison.

To decrease the memory cost for neural networks, recent
research studied the feasibility of decreasing the data size
to 8 bits [27]. As posit shows great potential with its high
dynamic range, we also implement the LDD-based decoder for
extremely small-sized systems (8-bit, £.S = 1) to evaluate the
novelty of our design in small-data-size use cases and compare
it with state-of-the-art decoder as shown in Table III, where
LDD still outperforms in all the aspects.

TABLE III: Comparison for Extremely Small Data Size

Delay (ns) Power (uWW)  Area (um?) P-D Prod.
LDD-based 1.16 9.11 118 1x
LOD-based 1.28 10.21 136 1.24%

V. CONCLUSION

In this paper, we presented an efficient circuit structure
named LDD and designed a novel decoder based on that to
perform data extraction for posit numbers. By eliminating the
redundant binary number encoding and decoding processes,
our proposed LDD-based posit decoder approximately halves
the delay and energy consumption with a smaller hardware
cost for 16-bit, 32-bit, and 64-bit decoders compared to the
conventional design. Future work will be directed towards
the design of an efficient posit arithmetic core based on the
proposed LDD and the corresponding evaluation of the overall
performance on a wide range of applications.
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