
752 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 4, APRIL 2024

Reliable Hardware Watermarks for Deep
Learning Systems

Joseph Franklin Clements and Yingjie Lao , Senior Member, IEEE

Abstract— Recent successes in deep learning have indicated
that hardware technologies will play a prominent role in future
deep learning industries and applications. In light of their value,
researchers have recognized that deep neural networks (DNNs)
and other deep learning intellectual properties (IPs) can be
easily pirated, especially in undefended settings. While multiple
avenues of defending deep learning systems have been identified,
watermarks are particularly valuable as they allow IP theft
to be identified and remedied when it occurs. However, such
defenses have yet to be considered for defending the hardware
platforms running the deep learning systems. This article presents
the first framework for applying watermarks toward defending
deep-learning hardware accelerators from piracy, called Deep-
HardMark. The proposed methodology embeds modifications
into the functional blocks of deep-learning hardware acceler-
ators to act as a watermark signature. These modifications
produce targeted alterations to the execution of key DNNs
on corresponding key samples, which identifies the hardware.
We optimize this methodology to simultaneously minimize the
impact of the watermark embedding on both the hardware and
algorithmic components of the deep learning system making the
watermark unobtrusive and challenging to detect. Our exper-
imental evaluations demonstrate the feasibility of embedding
the proposed modifications into typical hardware designs and
in various deep-learning scenarios.

Index Terms— Deep learning, hardware accelerators,
intellectual property (IP), security, watermarks.

NOMENCLATURE

DNN Models
F(·) Generic DNN.
Fk(·) Key DNN.
F δ(·) DNN executed under a perturbation (δ).
Dataset
{xi , yi } /Input sample, ground truth output pairs.
{xk, yk}

K
1 K pairs of key sample, target output

pairs.
Model

Perturbationss
δ̂k Block constrained perturbation.
δk Operation reduced perturbation.

Manuscript received 18 August 2023; revised 12 December 2023;
accepted 9 January 2024. Date of publication 9 February 2024; date of current
version 22 March 2024. This work was supported by the National Science
Foundation under Award 2047384 and Award 2247620. (Corresponding
author: Yingjie Lao.)

Joseph Franklin Clements is with the Integrated Products Division,
Applied Research Associates, Albuquerque, NM 87110 USA (e-mail:
jclements@ara.com).

Yingjie Lao is with the Department of Electrical and Computer Engineering,
Tufts University, Medford, MA 02155 USA (e-mail: yingjie.lao@tufts.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2024.3360240.

Digital Object Identifier 10.1109/TVLSI.2024.3360240

µk Hardware modification set.
Binary Masks
H Hardware mask.
B Block selection mask.
R Reduced selection mask.
Algorithmic

Parameters
ψ Cardinality constraint.
ϵδ , ϵψ , ϵB Step sizes.
Tδ , Tψ , TB Max iteration count.

I. INTRODUCTION

AS DEEP learning continues to develop, and there are
increasing incentives to deploy neural networks to ded-

icated hardware platforms for improved performance and
efficiency [1]. Well-optimized hardware can give deep learning
providers a competitive edge and open the door to new
markets, like edge computing [2]. FPGA and ASIC solutions
can often provide performance, and efficiency boosts beyond
traditional general-purpose hardware [3]. Despite the signif-
icant production costs, these specialized hardware platforms
are valuable intellectual property (IP) that can produce a
significant return on investment [4]. Unfortunately, the modern
globalized supply chain faces numerous security challenges,
including piracy, misuse, overproduction, reverse engineer-
ing, and malicious modification [5]. Protecting deep-learning
hardware designs from IP theft is a critical concern [6].

While techniques like logic locking [7] and design-for-
trust [8] can mitigate IP theft, these techniques are not
infallible, and innovative adversarial approaches are often
introduced to bypass such defenses [9]. As such, detection
methods, such as watermarks, become the final measure in
defending an IP from theft [10]. Watermarking is the prac-
tice of embedding a signature into an IP such that it can
identify the rightful owner upon fraudulent usage. The recent
progress of deep learning has driven developers to extend
this concept to protecting deep neural networks (DNNs) and
other valuable algorithmic IPs [11], [12]. A typical deep
learning watermarking scheme embeds an intentional and
nonadversarial backdoor into a protected model. The backdoor
introduces functionality into the model that deviates from its
intended task and can be identified as unique to the model,
i.e., the watermark signature. However, these methodologies
have been conventionally applied to protect only the software
IPs. Inspired by recent works into deep-learning hardware
backdoors and Trojan-inspired hardware watermarks [13],
our prior conference paper DeepHardMark [14] became the

1063-8210 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8371-8602
https://orcid.org/0000-0002-9413-2455

CLEMENTS AND LAO: RELIABLE HARDWARE WATERMARKS FOR DEEP LEARNING SYSTEMS 753

first work to apply such techniques to protect deep-learning
hardware IPs from piracy.

This work presents an extension of the DeepHardMark [14]
framework: DeepHardMark+. This framework improves the
original work by introducing a gradient descent-based method-
ology for the intrablock perturbation reduction phase. This
improvement allows us to abandon the resource-heavy search-
based algorithm previously used in DeepHardMark to extend
the algorithm to larger, more complex architectures, includ-
ing state-of-the-art transformer-based models. Furthermore,
we incorporate algorithmic optimizations into DeepHardMark,
allowing the automatic initialization of key parameters to
improve the original algorithm’s performance. We demonstrate
the significance of these improvements in the experimental
evaluation by performing watermark embedding on hardware
intended for a broad range of deep-learning scenarios. In addi-
tion to these contributions, we solidify key components of the
original DeepHardMark algorithm, including a more rigorous
technical description linking the algorithmic perturbations
found by the DeepHarMark algorithms and the hardware
modifications it embeds. Our contributions are summarized
below.

1) This article presents, DeepHardMark+, which improves
upon the first hardware Trojan-inspired watermark-
ing framework by implementing a novel gradient
descent-based algorithm for finding the operation
reduction perturbation.

2) In addition, we utilize a methodology for minimizing
the target cardinality constraint during optimization to
ensure the algorithm reliably converges to the optimal
solution.

3) We present the first mathematical definition of the hard-
ware modifications which provides a general blueprint
for the developer to produce the hardware modifications.

4) We experimental demonstrate that our methodology
minimizes the embedded watermark’s impact from both
the hardware and algorithmic perspectives while suc-
cessfully embedding the hardware watermark on a broad
range of modern architectures.

We organize this article as follows. Section II provides
background on current trends in deep-learning hardware
development, watermark embedding frameworks, and back-
door injection. We then present the threat model for the
piracy violation of deep-learning hardware and propose the
DeepHardMark+ watermark framework as a defense against
such attacks in Section III. We follow this, in Section V,
with experimental evaluation demonstrating the efficacy of
DeepHardMark+. Our investigations cover the impact of both
DeepHardMark and DeepHardMark+ on a broad range of deep
learning scenarios and open-source hardware accelerators.
In Section VI, we discuss the broader impact and future
directions. Finally, we end the work in Section VII with a
brief conclusion.

II. BACKGROUND

A. Developing Novel Hardware for Deep Learning

Deep learning systems are often determined to be supe-
rior to traditional approaches for many application domains.

However, the complexity of these models usually requires
increased resource utilization, including data storage, power
draw, and computation time [15]. As such, hardware accelera-
tors for DNNs have seen a resurgence in recent years [16].
While general processors, like GPUs, have enabled the
widespread availability of deep learning, there is an increasing
demand for low-latency or low-power technologies, specifi-
cally in edge computing and IoT, where such resources are
limited [17]. Premium hardware accelerators maximize the
utilization of hardware resources when executing a DNN
model through efficient memory hierarchies and dataflows,
which determines when and where operations are computed
and where data is stored or reused [18]. By carefully consid-
ering the specific target deep learning system and its intended
usage, systems designers can generate highly effective devices
that excel well beyond the performance possible with general
purpose devices [19].

B. Injecting Backdoors in Hardware Designs

Hardware Trojans are modifications injected into the
intended circuit designs by an adversary either during design
or fabrication. These modifications introduce malicious behav-
ior into the design, such as stealing secured information or
manipulating software executed on the device [20]. The Trojan
behaviors are often designed to only be activated when unique
input conditions are satisfied, making them very difficult
to defend against even with modern techniques, especially
without the Trojan-free design [21]. Recent developments have
revealed that deep learning systems are also susceptible to
manipulation through their hardware platform [22]. Hardware
Trojans are a practical approach for injecting backdoors into
deep learning models [23]. In much the same way that
backdoors can be repurposed as a watermark to protect deep
learning algorithmic IPs, a recent study has demonstrated a
designer can similarly leverage the hardware Trojans to embed
watermarks into hardware IPs [13]. DeepHardMark framework
integrates this perspective from the hardware domain with an
understanding of deep-learning algorithmic IP to effectively
embed watermarks into deep-learning hardware designs.

C. Defending Deep Learning IPs From Piracy

Watermarking is a technique deployed as a countermeasure
to IP theft. Conventional approaches in multimedia often
introduce near-invisible distortions to an image that identifies
its owner [24]. This hidden signature allowed the rightful
owner to claim fraudulent usage of the IP. Recently concern
over the ease with which adversaries can steal deep learn-
ing models has motivated researchers to extend the concept
of watermarking to DNNs [25]. A common approach for
watermarking neural network models is leverage model poi-
soning [26] and backdoor [27] attacks to embed abnormal
and hidden functionality into the neural network [28]. The
rightful owner can reveal this hidden functionality as a proof
of the model’s origin [29]. Recently, similar backdoor-based
watermarking techniques have been extended to protect deep
learning datasets [30].

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

754 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 4, APRIL 2024

A similar identifying methodology, fingerprinting, has also
been investigated for defending DNN models recently [31].
These techniques attempt to identify DNN models’ char-
acteristics that developers can use to verify IP ownership
without altering the model’s functionality [32]. However, these
previous works have exclusively been deployed for defending
the algorithmic IPs in deep learning, such as the DNN model.
In this environment, hardware has primarily been used to
protect algorithmic IPs running on a defended device [33]. Due
to the high value of deep-learning hardware and the potential
for adversaries to access hardware designs through horizontal
supply chains, a recent work developed the DeepHardMark
framework, which extends the protection of watermarking
techniques to deep-learning hardware IPs [14].

D. Watermark-Free Defenses Against Hardware Piracy

Many methods of defending Hardware designs from piracy
exist. Obfuscation-based protections attempt to hide the func-
tionality of a hardware design. For example, designers can
utilize techniques for encrypting or modifying RTL sources,
so it is incomprehensible to protect higher level designs [34],
[35]. Logic locking designs hardware in such a way that
the device only works when specific keys are applied to the
device [36], [37]. Design for trust techniques can be used to set
up supply chains such that single point of entry attacks do not
compromise the security of an IP [38]. However, no method of
defending hardware IPs from piracy is perfect, and designers
benefit from providing multiple layers of security for their
designs. Watermarks differ from these approaches in that
they serve as an authentication-based method for identifying
devices after theft.

The process of watermarking finite state machines (FSMs)
has been extensively explored. These methods add new
states [39], abnormal I/O sequences [40], or state encod-
ings [41] to embed information into the FSM. This effectively
embeds information into the unused portions of an FSM
that can later be extracted and used to identify the system.
However, deep learning accelerators are composed of large
arrays of computational blocks computing well-understood
mathematical operations. Such operations do not contain such
unused cases but are typically expected to accurately compute
their operation for all input combinations. Deep learning is
a special case, as it is well known to be highly robust
to most noise. This allows for the unique opportunity of
embedding modifications into the core functional blocks of the
deep learning system, providing a very stealthy and effective
watermark.

III. PROBLEM DEFINITION

A. Threat Model

Globalization in semiconductor supply chains often out-
sources manufacturing applications to third parties. This
procedure provides an attack vector threat actors can utilize to
access critical manufacturing applications. This work consid-
ers a setting where an adversary has used this access to pirate
a valuable deep-learning hardware accelerator and distribute
the device for use in their own applications. The goal of

Fig. 1. DeepHardMark provides the first framework for watermarking
deep-learning hardware. It functions by embedding modifications in the
design, which the owner can activate with a key DNN/key sample pair
producing an abnormal behavior. The distinction between this watermark
response and the natural response of watermark-free designs can be used
to prove ownership over pirated hardware.

the proposed watermark defense is to embed a watermark
signature into the hardware such that the rightful owner can
prove their right to the device. The owner must embed the
signature before manufacturing without any knowledge of the
adversary. As stated in prior works [10], we can assume that
the adversary does not have access to a behavioral description
of the design.

Furthermore, the signature must be identifiable without
direct access to the device’s internal functioning and be
reliably accessed through remote API calls. We assume,
however, that these API calls allow the user freedom in
selecting the model and inputs computed by the model. This
requirement is practical in most deep learning applications,
which observe the best performance when finely tuned for
specific downstream tasks. This threat model is consistent
with the literature of hardware watermarking [10]. As seen
in Fig. 1, DeepHardMark extends backdoor-inspired deep-
learning watermarks to the hardware domain, establishing
the first watermark-based defense for deep-learning hardware
accelerators against piracy.

B. Proposed Hardware Watermarking

The DeepHardMark algorithm connects a hardware accel-
erator to deep learning algorithmic components held by the
rightful owner. The algorithm begins by selecting the algorith-
mic components: a key DNN, Fk(·), and K key samples, {xk}

K
1

used in generating the watermark. A target model functionality,
yk , is selected for the key samples that can be identified
as abnormal behavior for the model, i.e., Fk(xk) ̸= yk .
The watermarking objective is to embed a signature into the
system such that it produces abnormal behavior under the key
samples. Ideally, the watermark should only alter the system
for the key samples

F δ
k (x) =

{
yk, when x == xk

Fk(x), otherwise.
(1)

We utilize F δ
k (x) here to identify the signature embedded

system, where δ represents the specific alteration to the system.
Prior works in the algorithmic perspective have performed
watermark signature embeddings by altering the algorithmic
components directly.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

CLEMENTS AND LAO: RELIABLE HARDWARE WATERMARKS FOR DEEP LEARNING SYSTEMS 755

The signature must be embedded within the hardware design
to provide proper protection for the hardware. Deep-learning
hardware designs are composed of arrays of functional blocks,
each targeted at executing specific operations with high
throughput. The owner selects a target array of functional
blocks and determines the operations in the key DNN, which
will be computed on these blocks according to the device’s
hardware mapping scheme. We can use this mapping to
produce a hardware mask, H ∈ {0, 1}O×N , that identifies
which of the N functional blocks in the hardware each of the
O operations will be executed on. Modifying these functional
blocks can slightly alter the execution of the operations as they
are executed and change the outcome of inference. Prior works
have shown that such modifications can use this to produce
targeted changes in a model’s behavior [23]. However, the
magnitude of modifications to these functional blocks must
be minimal to ensure a negligible impact on the hardware
overhead and change in the hardware’s functionality. As such,
we introduce a binary mask, B ∈ {0, 1}O , to minimize the
number of functional blocks modified. We define a deep
learning system modified through the hardware as

F δk
k (x) =

{
yk, when x == xk

Fk(x), otherwise
(2)

where δk describes an algorithmic perturbation on the model
when executed by the target functional blocks, for producing
the watermark signature.

From the deep learning perspective, we can describe δk as a
perturbation of the model’s latent representations, hl = hl+δk,l

for all layers, l. From the hardware perspective, δk is generated
by some set of modifications, µk , embedded in the design.
Our approach to producing these modifications is to utilize
two small combinational circuits for each perturbed operation.
The first observes the inputs to a functional block. When it
detects a rare internal state indicating the target operation
is being executed, it sends a signal to the second circuit
activating it. Once activated, the second circuit flips bits on
the output that would produce the desired perturbation to the
operation. δk is an algorithmic approximation of such a change
to the deep learning system when processing the key sample.
However, this is beneficial as it implies methods for detecting
and bypassing watermarks from the algorithmic perspective do
not directly transfer to those in the hardware.

Embedding the modification set, µk , into the hardware
establishes an observable difference between the key DNN’s
behavior on watermark-free hardware and modified hardware.
The device’s rightful owner can reveal the presence of this
signature by first demonstrating the similarity of the hard-
ware to watermark-free counterparts. Once the consistency of
operation is established, the owner can then reveal their key
DNN and key samples and demonstrate the abnormal behavior
they produce on the modified hardware. As the behavioral
change is tied to the hardware and does not modify any
algorithmic components, this establishes a link between the
hardware design and the owner’s key DNN and key sample.
This verification procedure follows a scheme similar to those
used to protect various algorithmic components, including
models [42] and datasets [30]. DeepHardMark is the first

methodology that extends this understanding to deep-learning
hardware accelerators.

IV. METHODOLOGY

A. Block Constrained Perturbations

We begin by defining the optimization problem seen in (3)
to produce δ̂k , the block-constrained perturbation. This prob-
lem utilizes the relationship δ̂k = δ ⊙ BH to simultaneously
embed the watermark signature and minimize the functional
blocks targeted for modification

minimize
δ,B

L(F δ⊙BH
k (xk), yk)

s. t. 1T B < ψ, B ∈ {0, 1}. (3)

We use L to represent a loss function, such as cross-entropy
loss, that quantifies the watermarking objective for a target
output, yk . 1T B < ψ is a cardinality constraint that defines an
upper bound on the magnitude of B.

The selection of ψ is critical to the strength of the water-
mark embedding as it contributes to determining the number
of functional blocks targeted by the algorithm. DeepHard-
Mark [14] applies a brute force method of determining ψ by
decreasing constant selections for ψ until the algorithm cannot
find a solution. However, such strategies result in inferior
solutions. In the DeepHardMark+ algorithm, we improve the
selection of this parameter by integrating it into the algorithm
allowing it to settle into a more desirable solution.

We do this by initializing ψ to the largest constraint
possible, ψ = |B|, i.e., the total number of functional blocks
in the hardware. Then, after updating B and δ, we verify that a
valid solution was found by asserting that F δ⊙BH

k (xk) == yk .
If the algorithm finds a valid solution, we record it as ψM

= ψ .
Then, tighten the constraint by setting ψ = ⌈ψ ∗ ϵψ⌉ where
ϵψ ∈ (0, 1) determines the rate of decrease. If a solution is
not found, we instead relax the constraint by perturbing ψ

toward ψM , the lowest observed value which produced a valid
solution, using ψ = ⌈ψ + (1/Tψ) ∗ (ψM

− ψ)⌉. The cooling
temperature, Tψ , is a variable used to control how swiftly
ψ returns to ψM . This framework allows us to dynamically
decrease the cardinality constraint as the algorithm converges
and then relax the constraint when it becomes too difficult for
a solution to be found.

We employ the recently developed ℓp-box alternating direc-
tion method of multipliers (ℓp-ADMMs) [43] to solve (3).
We defer the details of the derivation of this algorithm to
DeepHardMark [14] and present just the optimization proce-
dure here. Solving (3) is conducted by alternating between
updating δ and B. We begin by first fixing B to 1 and solving
for δ using the following equation:

δ = δ − ϵδ

[
∂L(F δ⊙BH

k (xk), yk)

∂δ

]
. (4)

Here, ϵδ is a step size, a hyper-parameter used to control
convergence speed. We perform this update step iteratively
until the signature is embedded, verified by F δ⊙BH

k (xk) == yk .

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

756 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 4, APRIL 2024

Algorithm 1 Block Constrained Perturbations

Then, for a fixed value of δ, we solve for B using the update
step

B = B − ϵB

[
∂L
∂B

]
(5)

where

∂L
∂B

=
∂L(F δ⊙BH

k (xk), yk)

∂B
+ ζ1(B − S1)+ Z1

+ ζ2(B − S2)+ Z2 + [ζ3(1T B − ψ)+ Z3]1. (6)

Here, S1 = max(min(B, 1), 0) and S2 = ((M)1/2/2)(B −

0.5(1)/∥B − 0.5(1)∥) + (1/2)(1). Z1 ∈ R
M , Z2 ∈ R

M , and
Z3 ∈ R

1 are dual variables initialized to 1 with corresponding
penalty parameters: ζ1, ζ2, and ζ3, respectively. The penalty
parameters balance the terms of (6).

The cardinality constraint, ψ , is used in (3) as a target for
the number of functional blocks to be selected by B. However,
while solving for B, we can further improve our control over
the convergence rate by targeting a decreasing schedule of ψi

converging to ψ . To accomplish this, we define the rule below
for migrating toward ψ while optimizing B

ψ0 = |B|

ψi = ψi−1 −
1

TB
∗ (|B| − ψ) (7)

where TB refers to the number of iterations used in solving
for B. We then rewrite (6) with ψi

δL
δB

=
δL(F δ⊙BH

k (xk), yk)

δB
+ ζ1(B − S1)+ Z1

+ ζ2(B − S2)+ Z2 + [ζ3(1T B − ψi)+ Z3]1. (8)

This update produces a more elastic downward pressure on B,
which allows the algorithm to slowly settle into a valid solution
over multiple iterations of the algorithm, often contributing to
a better solution.

Finally, we update the dual variables in each iteration with
the following:

Z1 = Z1 + ζ1(B − S1)

Z2 = Z2 + ζ2(B − S2)

Z3 = Z3 + ζ3(1T B − ψi). (9)

Using this procedure, summarized in Algorithm 1, we are able
to determine δ̂k = δ⊙BH. This block-constrained perturbation
can embed the watermark signature into the key DNN while
altering only the operations executed on a minimal set of
functional blocks in the target hardware.

B. Intrablock Perturbation Reduction

The block-constrained perturbation, δ̂k , is targeted at min-
imizing the number of hardware blocks perturbed by the
watermarking algorithm. However, δ̂k is not optimized to
constrain the total perturbations within each block. Thus, it is
likely that redundant perturbations that contribute little to the
watermark’s performance are contained in δ̂k . In the next step
in the algorithm, we remove these redundant perturbations by
finding a minimal subset of δ̂k , which still produces the desired
watermark signature.

1) Search-Based Approach: We can mathematically define
δk = R ⊙ δ̂k , an operation reduced perturbation, where
R ∈ {0, 1}N is the reduced selection mask which specifies
which perturbations to retain. We accomplished this using the
optimization problem

minimize
R

∥1T R∥

s. t. FR⊙δ̂k
k (xk) == yk (10)

which is solved by iteratively selecting the elements of δ̂k with
the greatest impact on the objective function and activating
them with R. DeepHardMark utilizes the brute force search
algorithm presented in Algorithm 2 to accomplish this.

The search algorithm begins with two sets: Rδ = 0 and
RN = {Rn| ∥Rn∥∞ == 1, 1T Rn == 1, Rn ⊙ δ̂k ̸= 0}.
We can understand RN as the set of all significant single-bit
variations of R. The algorithm’s goal is to iteratively incor-
porate members from RN into Rδ by selecting the most
effective choice at each step of the algorithm. We do this by
generating the Cartesian sum of both sets and determining
which the choice of Rd ∈ Rδ , and Rn ∈ RN best minimizes
the loss function, L(F (Rd+Rn)⊙δ̂k

k (xk), yk). These choices are
then used to populate Rδ during the next iteration of the
algorithm, iteratively increasing the number of bits selected
by the members of Rδ . Furthermore, we incorporate the beam
search techniques by keeping the C best choices for Rδ rather
than only the best. Once an R which produces the desired
watermark signature is found, we can compose the operation
reduced perturbation as δk = R ⊙ δ̂k .

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

CLEMENTS AND LAO: RELIABLE HARDWARE WATERMARKS FOR DEEP LEARNING SYSTEMS 757

Algorithm 2 Search-Based Intra-Block Reduction

2) Gradient Decent-Based Approach: The search-based
approach to finding δk = R⊙δ̂k is a computationally expensive
process compounded by the need to maintain a list of the
C-best solutions to decrease the likelihood that the algorithm
converges suboptimally. Using this algorithm limits Deep-
HardMark’s usefulness when defending larger scale models
with many parameters. For the DeepHardMark+ algorithm,
we utilize an alternative gradient-based methodology for
finding δk .

We begin by recognizing that we know a solution to
FR⊙δ̂k

k (xk) == yk exists when R ⊙ δ̂k = δ̂k , i.e., R =

1. However, this stage of the algorithm aims to minimize
∥1T R∥, the number of operations targeted by the hardware
modifications. Using a loss function, L , we can redefine the
objective from (10) in the form

minimize
R

L(FR⊙δ̂k
k (xk), yk)

s. t. ∥1T R∥ < ε (11)

where ε is an upper bound on the size of R. Finding the
optimal R implies finding the tightest bound on ε with a valid
solution to (11). Solving for (11) is analogous to finding the
sparse solution to the objective function: L(FR⊙δ̂k

k (xk), yk).
To solve this, we perform an iterative algorithm using the

gradient information. The proposed methodology can be seen
in Algorithm 3. We begin with the initialization R = 0.
We then iteratively activate bits in R by first calculating
L(FR⊙δ̂k

k (xk), yk) using R. R is used as a mask to turn off
individual elements of the unreduced perturbation, δ̂k . The
gradient of L with respect to R is a valid local approximation
of the impact switching bits in the mask on the loss. As such,
we find the element with maximal effect on the loss with
M = argmax((δL/δR)⊙BH). We can then iteratively activate
those bits in R until we arrive at a valid solution for (11).
Once a R is selected, which produces the desired mapping
FR⊙δ̂k

k (xk) == yk this mask can be used to extract a subset of
δ̂k which produces the watermark signature.

However, as highlighted by the sparse adversarial example
literature [44], such methods often introduce unnecessary or
redundant elements to δk . To ensure the selection of the

Algorithm 3 Gradient-Based Intra-Block Reduction

Fig. 2. (a) Convolutional neural network (CNN) hardware accelerator derived
from [45]. (b) We can embed small combinational circuits into the hardware
blocks of the IP. These circuits detect the target input combinations and flip
the corresponding output bits as specified by µk .

best mask, we perform additional rounds of optimization by
activating features with minimal impact on the loss function,
identified by m = argmin((δl/δR) ⊙ BH). Then, we deacti-
vate elements until the watermark signature is removed, i.e.,
FR⊙δ̂k

k (xk) ̸= yk . We repeatedly activate the necessary and
deactivate unnecessary elements of R until both branches of
the algorithm toggle the same set of features. This process
ensures that we find a R which satisfies (11) for a minimal
choice of ε.

C. Generating Hardware Modifications

The final stage of the algorithm converts δk into a hard-
ware modification set, µk , which defines δk in terms of
modifications that can be embedded in the hardware. As a
case study in this article, our implementation embeds small
combinational circuits into the target hardware, as shown in
Fig. 2. Let op ∈ Ops be a target operation indicated by δk with
Ok = |δk |. In our example, µk = {Pk,Fk}

Ok
1 contains latent

representations inputs to an operation, Pk , and bit flip patterns,
Fk , that can produce δk at the output of an operation when xk

is being computed.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

758 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 4, APRIL 2024

TABLE I
EFFECTIVENESS AND IMPACT OF EMBEDDING DEEPHARDMARK WATERMARKS

We can determine Pk and Fk by analyzing the latent space of
Fk(·) under xk and δk , the operation reduced perturbation. Let
P̂k be the latent space representation immediately preceding
the layers targeted by the algorithm and P̃k = op(̂Pk), those
immediately following them, under the key sample, xk . Then,
we can define Pk by masking the inputs to the target op ∈ Ops
using the Reduced Selection Mask, R, from Section IV-B

Pk = R ⊙ P̂k . (12)

Furthermore, we understanding that we want Fk to be a mask
such that Fk ⊕ [R ⊙ P̃k]b = [R ⊙ P̃k + δk]b. Thus, we can
define Fk in terms of P̃k and δk as

Fk = [R ⊙ P̃k + δk]b ⊕ [R ⊙ P̃k]b. (13)

Here ⊕ is the exclusive-or function. We use the notation [·]b

to denote the use of a binary representation of a value.
Mathematically, we can use Pk to define a trigger function

for the operation, such that

τop = comp([Pt,op]b, [̂Pt,op]b) (14)

where [̂Pt,op]b is the binary representation of the input of
op when a test input, xt , is computed by the model. Here,
comp(·, ·) is an operation that returns 1 if the binary represen-
tations of its inputs are the same and 0 otherwise. We can
easily translate this function into a simple combinational
circuit that activates a trigger signal, τ when it detects a latent
representation that matches that of Pk .

The trigger signal can then be fed as input into a second
circuit which produces the desired perturbation by flipping bits
on the output. We define a mathematical representation of this
perturbation functionality for op, using the flip patterns, Fk

pert(Fk, P̂t,op), τop)=

{
[op(̂Pt,op)]b ⊕ Fk, when τop == 1,
[op(̂Pt,op)]b, otherwise.

(15)

This functionality is easily migrated into a minimal com-
binational circuit which, when embedded into a functional
block, works in conjunction with the previously described
modification to produce the watermark perturbation on op.
Using this method, we can generate modifications that, when
embedded into the hardware, produce the desired watermark
signature under xk .

V. EXPERIMENTAL VERIFICATION

A. Evaluation Setting

1) Verification Datasets: Our experiments use the Cifar10,
Cifar100, and ImageNet (1k) image classification datasets.
The Cifar datasets utilize 60 000 32 × 32 color images orga-
nized into 50 000 training and 10 000 testing images. The

TABLE II
GENERAL INFERENCE ON DEEPHARDMARK

MODIFIED HARDWARE

Cifar10 images are drawn equally from ten classes, while
the Cifar100 dataset draws 100 classes. The ImageNet dataset
contains 1.2 million high-resolution color images drawn from
1000 classes, including 50 000 validation images. The images
were preprocessed to a resolution of 224 according to the
evaluated networks’ specifications.

We also use the IMDB and GLUE-SST2 sentiment analysis
datasets. The IMDb dataset contains 50 000 text reviews from
popular movie titles with a 50/50 train/test split. The Glue-
SST2 dataset contains 68 000 training and 1000 validation
text reviews from popular movie titles. Both datasets utilize a
sentence-level two-way class split.

Code is provided at https://github.com/Jfcleme/Hardware-
Watermarks-for-Deep-Learning-Systems.

2) Evaluation DNN Models: For these evaluations, we uti-
lize multiple CNN image classifiers of various depths, includ-
ing ResNet [46], WideResNet [47], VGG [48], DenseNet [49],
and EfficientNet [50]. In addition, we utilize the “large” and
“small” 16-patch ViT [51] and Swin transformer [52] as
attention-based image classification models. Finally, we use
DistilBERT [53] and RoBERTa [54] sentiment analysis mod-
els. To remain consistent with other works, we utilize the
CNN models provided by the TIMM model library and the
transformer models provided by HuggingFace. These models
are used as the key DNN or evaluation model, as described in
the results. We utilize the standard notations for these models
to indicate the specific architectures used in our evaluations.

3) Evaluation Metrics and Hardware Platforms: To eval-
uate the watermark embedding, we utilize the embedding
success rate (ESR), accuracy difference (1Acc), fidelity dif-
ference (1Fid), and triggering ratio (Tratio) consistent with
the prior work. We test our watermark embedding on the
MMU and TinyTPU hardware accelerators. We implement and
synthesize these designs in the FPGA and ASIC paradigms
using Intel’s Quartus and Synopsys Design Compiler, respec-
tively. We defer the detailed description of these materials to
DeepHardMark [14].

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

CLEMENTS AND LAO: RELIABLE HARDWARE WATERMARKS FOR DEEP LEARNING SYSTEMS 759

TABLE III
DEEPHARDMARK FPGA HARDWARE UTILIZATION

TABLE IV
DEEPHARDMARK ASIC HARDWARE OVERHEAD

B. Embedding Results

1) Efficacy Analysis: We first demonstrate the efficacy of
embedding hardware watermarks into a deep learning system
through the hardware domain. We target a ResNet18 model as
the key DNN trained on the Cifar10, Cifar100, and ImageNet
datasets for these results. For each key DNN, we randomly
select 25 testing images from the corresponding dataset. In this
evaluation, we assume the target hardware is the MMU design
and targets its ReLU functional blocks. We find a watermark
embedding for each key DNN/key sample pair. We developed
a framework that allows us to simulate hardware modifications
in Pytorch. Using this framework, we observe the binary
representation of a model’s latent space variables and produce
corresponding bit-flips in the binary representations of those
values when the modifications are activated.

Using this framework, we calculate ESR, |δk |, 1Acc, and
1Fid. |δk |% describes the average percentage of target opera-
tions in the model that require hardware modification. We also
calculate 1Area, the average percentage area increase in the
area of the ASIC design when embedding the modifications.
These results provide a general overview of the efficacy
and impact of watermark embedding on the deep learning
system from both the functional and hardware perspectives.
We present these results in Table I. 1Acc and 1Fid are cal-
culated using 1000 images from the testing dataset excluding
the key sample. We utilized several models, seen in Table II,
to determine 1Fid as discussed below.

We conclude from these results that the proposed watermark
embedding scheme can reliably embed low-impact hardware
watermarks into a design. Specifically, we observed an E S R
of 100% across these experiments while requiring only a
1% increase in hardware overhead when using the ResNet18
ImageNet classifier as the Key DNN. Furthermore, 1Acc and
1Fid are under 0.7% for all scenarios while often being
significantly lower. From both the hardware overhead and
algorithmic functionality, these impacts are minor.

2) Watermark Fidelity Evaluation: This section evaluates
the ability of the proposed methodology to embed hardware
modifications into a design while preserving the design’s
algorithmic fidelity. We perform this evaluation by taking the
hardware modification sets produced for the Cifar10 ResNet18
classifier generated in the previous experiments and utilizing

our simulation framework to alter a broad range of Cifar10
evaluation models. In this setting, we observe the Tratio and
1Fid of each evaluation model under the hardware modifica-
tion set. The results of this evaluation are presented in Table II.

We can see from these results that in the worst case
scenario, 1Fid is only changed by 0.26%, which is minor
enough to be considered the effect of optimizations in such
hardware designs. However, 1Fid quantifies the accumulation
of changes in the model’s operations, resulting in altered
classifications. In other settings, the Tratio gives us a better
insight into fidelity preservation as it indicates how frequently
the modifications would introduce minor changes to models.
From this perspective, we observe that <1% of the model’s
target operations are incorrectly altered. These results indicate
that the watermark embedding has a very subtle impact on the
hardware’s functionality.

3) Hardware Overhead: Here, we evaluate the hardware
overhead needed to embed the watermarks determined by
DeepHardMark through FPGA and ASIC designs generated in
Intell’s Quartus and Synopsys Design Compiler, respectively.
Targeting the 32×32 MMU hardware design discussed above,
we arbitrarily select a Cifar10 ResNet18 modification set
generated above and implement a combinational circuit for
each of these modifications. We inject this hardware into the
Verilog design and synthesize the design for the Cyclone V
FPGA. We compare the hardware overhead of this design with
the watermark-free version in Table III. We observe that the
impact of the modifications is minimal in this setting. For
example, there is only a 0.18% increase in the number of LUTs
used, while FF and DSP utilization remains unchanged. From
the power utilization perspective, we only observe an approx-
imate increase of 0.17%, further verifying the effectiveness of
the watermarking scheme.

In addition, we also synthesize ASIC implementations and
present the hardware overhead in Table IV for this paradigm.
For this perspective, we target both TinyTPU and extend the
FPGA MMU design to ASIC. We can translate the water-
mark modifications to this domain with ease. In this setting,
we also observe very little overhead. As seen, the modifi-
cations increase the area of the hardware implementation by
0.054% and its power consumption by 0.038%. We present the
average increase in area consumption by a random selection of
modification sets for each of the ResNet18 models in Table I.

4) Broad Evaluation of DeepHardMark+: We continue our
experimental evaluations by presenting the effectiveness of
the DeepHardMark+ algorithm. The improvement in com-
putational efficiency of these optimizations allows us to
easily extend our results to larger, more complex models
and hardware architectures demonstrating a significant benefit.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

760 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 4, APRIL 2024

TABLE V

EVALUATING THE EFFECTIVENESS AND IMPACT OF DEEPHARDMARK+ WATERMARK MODIFICATIONS IN IMAGE CLASSIFICATION

TABLE VI

EVALUATING THE EFFECTIVENESS OF DEEPHARDMARK+

IN TRANSFORMERS AND NATURAL LANGUAGE
PROCESSING MODELS

We target a larger hardware design for these experiments
containing a 128 × 128 MMU and show that we can embed
watermarks while targeting fewer operations in the key DNN.
We utilize the same procedures discussed in Section V-B1.

In Table V, we present the results of our experimental
evaluations on the improved methodology on an array of
image classifiers, including ResNet50, WideResNet, and Effi-
cientNetB2. We observe that the enhanced algorithm can
successfully target these large CNN image classifiers with
a high success rate, i.e., >90%. It also produces watermark
embeddings that target a smaller percentage of the model’s
operations than the base algorithm while being less likely
to affect the key DNN’s accuracy and fidelity negatively.
We further highlight the minor impact of the algorithm with
the trigger ratio, Tratio, which is very small for all key DNNs.

5) Extension to Alternative Deep Learning Scenarios: In
Table VI, we directly extend our experimental evaluations
to state-of-the-art transformer-based classifiers and natural
language processors. We assume a 128 × 128 MMU-based
hardware design for this evaluation. Similar to the previous
experiments, we produce 100 watermark embeddings gen-
erated with randomly selected testing inputs targeting the
ReLU functional blocks. We utilize our simulation framework
to analyze the impact of the watermark embedding on ViT
and Swin ImageNet classifiers, as well as DistilBERT and
RoBERTa sentiment analysis models. We present the ESR
and |δk |% observed in Table VI. Despite the significant differ-
ences between transform models and CNNs, DeepHardMark+

achieves similar levels of performance on ViT and Swin mod-
els to their CNN counterparts. We observe a drop in the ESR
as we transition to the natural language processing setting.
However, the ESR remains above 65% in this setting. Despite

this, we note that the embedding DeepHardMark+ produces
highly efficient watermark embedding for this domain with
less than 0.001% of the model operations being targeted. The
high success rates and low impact of these results demonstrate
that our methodology can easily extend into other applica-
tion domains with minor optimizations for the various target
scenarios.

6) Hardware Evaluation of DeepHardMark+: We then
evaluated the hardware impact of the DeepHardMark+ water-
mark embedding. For this evaluation, we implement a
32 × 32 version of the MMU and TinyTPU hardware accel-
erators in Quartus. We generate a watermark embedding
for the ResNet18 Cifar10 classifier and embed modification
which produces the watermark in the design. We synthesize
the watermarked and watermark-free designs for a Cyclone
V FPGA and determine its resource utilization in terms of
look-up tables (LUTs), registers (Reg), and digital signal
processors (DSPs) as well as its estimated power draw. For
the power consumption estimation, we assumed an I/O toggle
rate of 12.5%. We present the recorded FPGA utilization in
Table VII.

This process is repeated for ASIC design using a Synop-
sys 32-nm technology node. We utilize the same watermark
embedding and hardware designs. For the ASIC design imple-
mentations, we determine the area and cell count. Power
consumption and propagation delay of the system. The
recorded estimations of these characteristics are presented in
Table VIII.

From these results, we observe that the impact of the
watermark modifications on the hardware overhead is min-
imal. This finding is consistent with prior evaluations of
DeepHardMark. For instance, the increase in register and
DSP utilization in the FPGA implementations and the power
consumption and propagation delay of the ASIC designs are
all less than 0.01%. Furthermore, in the ASIC designs, the
largest impact is the increase in the required cells, which
requires only a 0.045% expansion. Comparing these results
with those presented in Section V-B3, we demonstrate that
the DeepHardMark+ algorithm can produce hardware modifi-
cations with a decreased impact on the hardware overhead of
the target design.

VI. BROADER IMPACT AND FUTURE DIRECTIONS

Some estimates calculate that IC piracy results in as much
as $7.5 billion lost in yearly revenue and 11 000 jobs [55].

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

CLEMENTS AND LAO: RELIABLE HARDWARE WATERMARKS FOR DEEP LEARNING SYSTEMS 761

TABLE VII

HARDWARE UTILIZATION OF DEEPHARDMARK+ IN FPGA DESIGNS

TABLE VIII

HARDWARE OVERHEAD OF DEEPHARDMARK+

IN ASIC DESIGNS

Historically, adversaries have been able to pirate enough to
build large enough portfolios to mimic major electronics
suppliers, such as NEC [56]. In September 2023, an exec-
utive employee at SK Hynix, a Korea DRAM supplier, was
convicted of pirating counterfeit chips [57]. As the majority
of chips are developed through fabless manufacturing, deep-
learning hardware accelerators are susceptible to these same
supply chains.

Our results demonstrate our methodology is able to reliably
and effectively embed watermarks in deep learning acceler-
ators that can be used to identify the hardware. However,
the method of verifying the proposed watermark relies on
the owner providing the key DNN and samples that acti-
vate the hardware watermarks. There is no guarantee that
other data will not activate the watermark. Luckily, the low
1Acc and 1Fid demonstrate that it is very unlikely that an
adversary randomly stumbles upon input materials that trigger
the watermark. However, it is possible that methodologies
to discern or generate the materials needed to activate the
watermark exist. To ensure the reliability of such watermarks
in real-world scenarios, research efforts should be applied
to discovering such methodologies and to defend against
them. Such adversarial compromises have been a significant
direction of interest from the software perspective. Luckily,
the inherent differences between hardware and software make
such techniques likely not trivially transferable to this scenario
but may provide inspiration for valid points of entry.

Another perspective for improving upon this work is to
increase the capacity of the embedded watermarks. As authen-
tication methods continue to develop we anticipate methods
for increasing the capacity of embedded watermarks. Pow-
erful methodologies in other domains have allowed for more
information to be embedded in the systems, for example, serial
numbers, licensing information, and developer identifiers can
be embedded in many IPs. Expanding the ability of deep
learning authentication beyond the scheme proposed here will
be a significant benefit to the field.

VII. CONCLUSION

This work extends the DeepHardMark algorithm, the first
watermarking embedding framework for deep-learning hard-
ware, with DeepHardMark+. The extended algorithm improves

upon it with a novel methodology of optimizing for the
minimal cardinality constraint and an improved intrablock per-
turbation reduction algorithm. These optimizations allow the
algorithms to consistently converge to superior solutions over
DeepHardMark while enhancing the algorithm’s efficiency.
These improvements allow us to expand our experimental
evaluations to cover a broader range of key DNNs, including
state-of-the-art transformer-based deep learning models. Fur-
thermore, our evaluations targeting the more complex models
demonstrate a significant improvement in the performance and
impact of the DeepHardMark+ watermarks embeddings over
DeepHardMark.

REFERENCES

[1] D. Ghimire, D. Kil, and S.-H. Kim, “A survey on efficient convolutional
neural networks and hardware acceleration,” Electronics, vol. 11, no. 6,
p. 945, Mar. 2022.

[2] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 2nd
Quart., 2020.

[3] Y. Hu, Y. Liu, and Z. Liu, “A survey on convolutional neural network
accelerators: GPU, FPGA and ASIC,” in Proc. 14th Int. Conf. Comput.
Res. Develop. (ICCRD), Jan. 2022, pp. 100–107.

[4] D. Zhang et al., “A full-stack search technique for domain optimized
deep learning accelerators,” in Proc. 27th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., Feb. 2022, pp. 27–42.

[5] S. Boyson, T. M. Corsi, and J.-P. Paraskevas, “Defending digital supply
chains: Evidence from a decade-long research program,” Technovation,
vol. 118, Dec. 2022, Art. no. 102380.

[6] F. Koushanfar, “Intellectual property (IP) protection for deep learning
and federated learning models,” in Proc. ACM Workshop Inf. Hiding
Multimedia Secur., Jun. 2022, p. 5.

[7] J. J. Rinsy, N. M. Sivamangai, R. Naveenkumar, A. Napolean,
A. Puviarasu, and V. Janani, “Review on logic locking attacks in hard-
ware security,” in Proc. 6th Int. Conf. Devices, Circuits Syst. (ICDCS),
Apr. 2022, pp. 342–347.

[8] T. Nigussie, J. C. Schabel, S. Lipa, L. McIlrath, R. Patti, and P. Franzon,
“Design obfuscation through 3-D split fabrication with smart partition-
ing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 9,
pp. 1230–1243, Sep. 2022.

[9] D. Sisejkovic, F. Merchant, L. M. Reimann, H. Srivastava, A. Hallawa,
and R. Leupers, “Challenging the security of logic locking schemes in
the era of deep learning: A neuroevolutionary approach,” ACM J. Emerg.
Technol. Comput. Syst., vol. 17, no. 3, pp. 1–26, Jul. 2021.

[10] N. N. Anandakumar et al., “Rethinking watermark: Providing proof of
IP ownership in modern SoCs,” IACR Cryptol. ePrint Archive, p. 92,
Jan. 2022.

[11] N. M. Jebreel, J. Domingo-Ferrer, D. Sánchez, and A. Blanco-Justicia,
“KeyNet: An asymmetric key-style framework for watermarking deep
learning models,” Appl. Sci., vol. 11, no. 3, p. 999, Jan. 2021.

[12] Y.-Q. Zhang, Y.-R. Jia, X. Wang, Q. Niu, and N.-D. Chen, “DeepTrigger:
A watermarking scheme of deep learning models based on chaotic
automatic data annotation,” IEEE Access, vol. 8, pp. 213296–213305,
2020.

[13] M. Shayan, K. Basu, and R. Karri, “Hardware trojans inspired IP
watermarks,” IEEE Des. Test., vol. 36, no. 6, pp. 72–79, Dec. 2019.

[14] J. Clements and Y. Lao, “DeepHardMark: Toward watermarking neu-
ral network hardware,” in Proc. AAAI Conf. Artif. Intell., 2022,
pp. 4450–4458.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

762 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 4, APRIL 2024

[15] X. Hu, L. Chu, J. Pei, W. Liu, and J. Bian, “Model complexity of
deep learning: A survey,” Knowl. Inf. Syst., vol. 63, pp. 2585–2619,
Aug. 2021.

[16] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund,
“Freely scalable and reconfigurable optical hardware for deep learning,”
Sci. Rep., vol. 11, no. 1, pp. 1–12, Feb. 2021.

[17] G. Li et al., “Optimizing deep neural networks on intelligent edge
accelerators via flexible-rate filter pruning,” J. Syst. Archit., vol. 124,
Mar. 2022, Art. no. 102431.

[18] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks,” Synth. Lect. Comput. Archit., vol. 15, no. 2,
pp. 1–341, 2020.

[19] C. Gao, T. Delbruck, and S.-C. Liu, “Spartus: A 9.4 TOp/s FPGA-
based LSTM accelerator exploiting spatio-temporal sparsity,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 1098–1112,
Jan. 2024.

[20] A. R. Díaz-Rizo, H. Aboushady, and Haralampos-G. Stratigopoulos,
“Leaking wireless ICs via hardware trojan-infected synchronization,”
IEEE Trans. Depend. Secure Comput., vol. 20, no. 5, pp. 3845–3859,
Sep. 2023.

[21] A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments for
hardware trojan detection,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2021, pp. 1–5.

[22] X. Hu et al., “Practical attacks on deep neural networks by memory
trojaning,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 6, pp. 1230–1243, Jun. 2021.

[23] J. Clements and Y. Lao, “Hardware trojan design on neural networks,”
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[24] P. Kadian, S. M. Arora, and N. Arora, “Robust digital water-
marking techniques for copyright protection of digital data: A
survey,” Wireless Pers. Commun., vol. 118, no. 4, pp. 3225–3249,
Jun. 2021.

[25] J. Jia, Y. Wu, A. Li, S. Ma, and Y. Liu, “Subnetwork-lossless robust
watermarking for hostile theft attacks in deep transfer learning models,”
IEEE Trans. Depend. Secure Comput., early access, Jul. 28, 2022, doi:
10.1109/TDSC.2022.3194704.

[26] B. Zhao and Y. Lao, “Class-oriented poisoning attack,” in Proc. Winter
Conf. Appl. Comput. Vis., 2022, pp. 3741–3750.

[27] Y. Wu, M. Xue, D. Gu, Y. Zhang, and W. Liu, “Sample-specific backdoor
based active intellectual property protection for deep neural networks,” in
Proc. IEEE 4th Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2022,
pp. 316–319.

[28] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in Proc. 27th USENIX Conf. Security Symp., Baltimore,
MD, USA, 2018, pp. 1615–1631.

[29] M. Xue, S. Sun, Y. Zhang, J. Wang, and W. Liu, “Active intellec-
tual property protection for deep neural networks through stealthy
backdoor and users’ identities authentication,” Appl. Intell., vol. 52,
pp. 16497–16511, Mar. 2022.

[30] Y. Li, Z. Zhang, J. Bai, B. Wu, Y. Jiang, and S.-T. Xia, “Open-sourced
dataset protection via backdoor watermarking,” 2020, arXiv:2010.05821.

[31] Y. Lao, W. Zhao, P. Yang, and P. Li, “DeepAuth: A DNN authentication
framework by model-unique and fragile signature embedding,” in Proc.
AAAI Conf. Artif. Intell., 2022, pp. 9595–9603.

[32] X. Cao, J. Jia, and N. Z. Gong, “IPGuard: Protecting intellectual property
of deep neural networks via fingerprinting the classification bound-
ary,” in Proc. ACM Asia Conf. Comput. Commun. Secur., May 2021,
pp. 14–25.

[33] A. Chakraborty, A. Mondai, and A. Srivastava, “Hardware-assisted
intellectual property protection of deep learning models,” in Proc. 57th
ACM/IEEE Des. Automat. Conf., Jul. 2020, pp. 1–6.

[34] A. Viticchié et al., “Assessment of source code obfuscation techniques,”
in Proc. IEEE 16th Int. Work. Conf. Source Code Anal. Manipulation
(SCAM), Oct. 2016, pp. 11–20.

[35] I. Khairunisa and H. Kabetta, “PHP source code protection using
layout obfuscation and AES-256 encryption algorithm,” in Proc. 6th
Int. Workshop Big Data Inf. Secur. (IWBIS), Oct. 2021, pp. 133–138.

[36] A. Sengupta and S. P. Mohanty, “Functional obfuscation of DSP cores
using robust logic locking and encryption,” in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI (ISVLSI), Jul. 2018, pp. 709–713.

[37] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. M. Tehranipoor,
“Advances in logic locking: Past, present, and prospects,” IACR Cryptol.
ePrint Arch., p. 260, Jan. 2022.

[38] J. Rajendran, O. Sinanoglu, and R. Karri, “Regaining trust in VLSI
design: Design-for-trust techniques,” Proc. IEEE, vol. 102, no. 8,
pp. 1266–1282, Jul. 2014.

[39] A. L. Oliveira, “Robust techniques for watermarking sequential circuit
designs,” in Proc. 36th Conf. Design Autom., M. J. Irwin, Ed. New York,
NY, USA: ACM, 1999, pp. 837–842.

[40] I. Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions,” IEEE J. Solid-State Circuits, vol. 35, no. 3,
pp. 434–440, Mar. 2000.

[41] M. Lewandowski and S. Katkoori, “Enhancing PRESENT-80 and
substitution-permutation network cipher security with dynamic ‘Keyed’
permutation networks,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2021, pp. 350–355.

[42] K. Dzhanashia and O. Evsutin, “Low complexity template-based water-
marking with neural networks and various embedding templates,”
Comput. Electr. Eng., vol. 102, Sep. 2022, Art. no. 108194.

[43] B. Wu and B. Ghanem, “]ℓP -box ADMM: A versatile framework for
integer programming,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 7, pp. 1695–1708, Jul. 2019.

[44] X. Dong et al., “GreedyFool: Distortion-aware sparse adversarial attack,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 11226–11236.

[45] J. Zhang and J. Li, “Improving the performance of OpenCL-based FPGA
accelerator for convolutional neural network,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, Feb. 2017, pp. 25–34.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[47] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Brit.
Mach. Vis. Conf., R. C. Wilson, E. R. Hancock, and W. A. P. Smith,
Eds. Durham, U.K.: BMVA Press, 2016.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
Y. Bengio and Y. LeCun, Eds., 2015.

[49] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4700–4708.

[50] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” in Proc. 36th Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[51] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” in Proc. Int. Conf. Learn. Represent.,
2021.

[52] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 10012–10022.

[53] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper and lighter,” 2019,
arXiv:1910.01108.

[54] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining
approach,” 2019, arXiv:1907.11692.

[55] J. Blake. (Feb. 2022). Planning, Policy, Production and Piracy
Converging Economic and Technology Drivers of the Global
Semiconductor Shortage. Accessed: Nov. 24, 2023. [Online]. Available:
https://www.linkedin.com/pulse/planning-policy-production-piracy-
converging-economic-jeffrey-blake/?trk=articles_directory

[56] P. Clarke. (May 2006). Fake NEC Company Found, Says Report.
Accessed: Nov. 24, 2023. [Online]. Available: https://www.eetimes.com/
fake-nec-company-found-says-report/

[57] J. Eun-Soo. (Sep. 2023). Supplier’s Employees Found Guilty of Pirat-
ing SK Hynix Chip Technology to China. Accessed: Nov. 24, 2023.
[Online]. Available: https://koreajoongangdaily.joins.com/news/2023-
09-14/business/industry/1869545

Authorized licensed use limited to: TUFTS UNIV. Downloaded on March 24,2024 at 02:57:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2022.3194704

