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Abstract—Recent studies have shown Neural Networks (NNs)
are highly vulnerable to fault attacks. This work proposes a
novel defensive framework, NNTesting, for detecting the fault
attack and recovering the model. We first leverage gradient-based
optimization to generate a set of high-quality Test Vectors (TVs)
that effectively differentiate faulty profile models and further
optimize the TV set by reducing the TVs through compression.
The selected final TV set is then used to recover the model. The ef-
fectiveness of the proposed method is comprehensively evaluated
on a wide range of models across various benchmark datasets.
For instance, we successfully generate more than thousands of
TV candidates using a gradient-based generation method. After
compression, we achieve up to 94.76 % detection success rate with
only 140 TVs on the CIFAR-10 dataset.

Index Terms—Neural Network, Fault Attack, Defense, Test
Vector Generation, Model Repairing

I. INTRODUCTION

Neural Networks (NNs) have achieved remarkable success
in various fields, including image classification [1], natural
language processing [2], and self-driving cars [3]. However,
NNs are vulnerable to various attacks. Prior works mainly
focus on data-oriented attacks (e.g., adversarial examples and
data poisoning) [4, 5]. Orthogonal to these, fault injection
attacks [5—7] are model-oriented. Such attacks at the system
level compromise the overall accuracy [5-8] or inject a back-
door into victim NNs [9] by only modifying a tiny fraction
of model parameters via techniques such as adversarial laser
beam [8] and rowhammer [10].

One of the most prevalent fault injection attacks is the
Bit-Flip Attack (BFA), where the adversary leverages the
DRAM vulnerability and tampers a few bits of the most
critical parameters stored in the memory. A recent work [11]
demonstrates that the top-1 accuracy of a ResNet-18 model
degrades from 69.8% to 0.1% by only flipping 13 out of 93
million bits using the bit progressive search-based BFA, posing
a severe threat to safety-critical applications. Existing defenses
employ patching-based [12, 13] or detection-based [14, 15]
methods as countermeasures. Unfortunately, the robustness
improvement of these approaches is limited (e.g., the poor
generalizability to adaptive attacks and low detection rate due
to false positives, etc.). Moreover, models protected by such
methods may sacrifice accuracy or incur significant overhead
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in time and algorithm complexity. A new honeypot-based
approach improves the detection rate and reduces the overhead,
where trapdoors are injected into the model to induce BFA to
concentrate on particular weights [16]. However, this method
still incurs overhead to alter the model, impacting the accuracy.

In this work, we propose NNTesting, a novel testing frame-

work that detects and fixes the faults from BFA, attempting
to achieve a high detection rate at a low cost without sac-
rificing model accuracy. Unlike prior works, our approach
does not modify any pre-trained parameters nor inspect every
single weight in the model indiscriminately. Our main idea
is motivated by the conventional digital hardware testing
paradigm, where high-quality test patterns are used to detect
malfunctions [17, 18]. We likewise utilize carefully selected
Test Vectors (TVs) for BFA detection and fixing. NNTesting
consists of three phases: i) profile faulty model generation; ii)
TV generation; and iii) TV compression. We first perform the
state-of-the-art BFA [11] on the benign model to create a cer-
tain number of profile faulty models with flipped weights that
significantly undermine the model accuracy. We then generate
a TV candidate set that distinguishes the maximum number of
profile faulty models (i.e., covers as many faults as possible)
using a gradient-based algorithm. We exploit the benign and
profile faulty models to optimize TV generation concurrently.
Finally, we compress all TV candidates to find an optimal
set that detects the most faults with the fewest TVs. This
compression step is essential to improving testing efficiency.
The contributions of this paper are summarized as follows:

« We propose a novel model agnostic hardware testing
framework NNTesting against BFA, which detects and
fixes flipped bits with a high detection rate at a low cost
while preserving the model accuracy.

« We propose a novel gradient-based method to generate
high-quality TVs that effectively distinguish fault models
from benign ones.

« We develop an efficient compression algorithm to reduce
the TV set, which significantly reduces the overhead and
complexity of testing.

« We empirically validate the effectiveness of NNTesting
in detecting and fixing faults on a wide range of models
across various benchmark datasets.
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The rest of the paper is organized as follows: In Section II,
we introduce the related research to our work. We then define
the threat model and elaborate on details of the proposed
NNTesting framework in Section III and Section IV, respec-
tively. In Section V, we demonstrate the experiment results
and analysis. Finally, we conclude the paper in Section VI.

II. RELATED WORKS
A. Bit-Flip Attacks

Recent works developed progressive bit search and flipping
to maximize the adversarial effect [11, 19]. The goal of BFA
is to degrade the model’s accuracy by performing a series of
bit-flips. The gradient-based progressive bit search iteratively
identifies the most vulnerable bits. It consists of intra-layer
and cross-layer search, finding the bits to be flipped within the
layer, selecting the most detrimental bit-flip across the layers,
and flipping the bit which causes the most significant loss
that individual bit-flip contributes to the overall model. Some
recent works also improve BFA technique [20, 21].

B. Defenses against BFA

Existing countermeasures against BFA are broadly cat-
egorized as patching-based, detection-based, and honeypot-
based defense. The patching-based approaches exploit bi-
narization [13] and block reconstruction [12] to patch the
vulnerable parts in NN models and improve the robustness
against BFA. However, such defenses sacrifice model inference
accuracy due to modifying the parameters in the patching
process. The detection-based approaches aim to categorize,
locate and repair the tampered bits by comprehensively in-
specting model parameters. For example, the self-test frame-
work proposed in [22] identifies bit-flip types, namely random,
worst-case bit-flip on selected weights’ Most Significant Bits
(MSB), imprecise programming, and drifting faults. A primary
drawback of detection-based approaches is the high overhead
caused by exhaustive inspection of large models (e.g., modern
NN models have billion to trillion-level parameters). Methods
using hash functions to protect NN’s critical weights have
also been investigated [23]. The honeypot-based approach [16]
embeds honey neurons into the model to lure the attacker’s
attention. It employs retraining-based and one-shot embedding
to inject trapdoors into the model and induce the attacker to
flip particular bits pre-defined by the defender. However, this
method alters model parameters and leads to an accuracy drop.

C. Digital Hardware Testing

NNTesting is partially inspired by the prior works of digital
hardware testing. In particular, digital hardware testing finds
input sequences to discover the circuit incorrectness [24]. It
exploits Test Patterns Generation (TPG) to generate qualified
Test Patterns (TPs) that distinguish a good circuit model and its
various faulty counterparts. In this work, we adopt the concept
and analogous benign NNs as good circuit models, faulty NNs
as the faulty circuit models, and TVs that differentiate benign
and faulty models as TPs. We embraced the deterministic TPG
approach (i.e., an optimized TV set) for our TV generation

for detection effectiveness. We also incorporated the concept
of TP compression, which is a part of TPG, to obtain efficient
TPs, and design a highly efficient TV compression algorithm
to enhance the performance of the approach further.

III. THREAT MODEL

In this paper, we consider real-world scenarios where model
owners provide a warranty to detect and fix failures on
deployed models caused by fault attacks. We adopt a consistent
threat model defined in prior works [10, 11] where the attacker
aims to undermine a NN model by modifying a small number
of model parameters. We assume a strong adversary to have
the necessary capability (e.g., model knowledge and physical
access) to perform the fault attack. The location and numbers
of tampered bits are unknown to the defender (i.e., the model
provider). However, the attacker is assumed to keep the attack
as stealthy as possible by only changing a minimal amount
of bits. After the attack, the defender tries to efficiently repair
the model without retraining. Note that the attack detection is
straightforward since the model accuracy is dropped signifi-
cantly. The defender’s goal is to locate and fix the flipped bits
efficiently.

IV. NNTESTING

The proposed NNTesting is designed to efficiently defend
against BFA as shown in Fig. 1, demonstrating the high-level
overview. A model provider is responsible for model training.
In completion of training and before delivering the model to
the user for deployments, the model provider derives a set
of TV candidates based on profile faulty models and then
compresses them to obtain an optimized TV set. The TV set
locates faults and recovers the faulty model after deployment
in case of BFA occurrence. By using the optimized TV set,
the user promptly locates the flipped bits and fixes them rather
than reloading all parameters or retraining the model. In this
section, We present the detailed flow of NNTesting.

A. Profile Faulty Model Generation

The first step in NNTesting involves generating profile faulty
models, which serve as surrogate models for actual victim
models. These profile models cover the most vulnerable bits
in a model, enabling the TV generation algorithm to find the
most valuable fault patterns and generate high-quality TVs
covering most faults caused by BFA. The primary theoretical
basis of our approach is that different parameters have different
vulnerabilities against fault attacks. Particular parameters are
critical to the inference accuracy of the NN model, which
are the targets to tamper. In contrast, other parameters are
much less vital, which in fact is consistent with the findings
in model pruning [25]. Thus, although the exact parameters
being attacked are unpredictable, the attacker tends to select
these more critical ones over others. To this end, we argue
that different attack algorithms would search for a similar
set of “important” and “vulnerable” parameters to attack,
which is empirically verified by our experiments. We use
one representative BFA algorithm, namely bit progressive
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Fig. 1: Overview of NNTesting. The process is situated after the training of an NN. We first generate profile faulty models
by existing fault attacks, which will then be used to derive TV candidates that will differentiate parameter changes in this
model. The compressed TV sets and the corresponding classifications can be used to locate and repair the parameters, which

are compromised by future fault attacks.

search [11], to generate profile faulty models and derive TVs
upon these models, which can then be generalized to unseen
faulty models attacked by different attack algorithms. Note
that we want the profile models to encompass a wide range
of vulnerable bits. Therefore, we utilize various input images
to generate different profile models, which enrich the diversity
of profile models and hence improve vulnerable bits coverage.

B. Test Vectors Generation

Next, we generate TV candidates based on these profile
faulty models. We propose a novel gradient-based approach
for TV generation. The idea is partially inspired by the
prior work of adversarial examples [4], which aims to cause
a classification discrepancy between benign and perturbed
inputs. In contrast to adversarial examples, we seek to generate
TVs that cause a classification discrepancy between benign
and profile faulty models. These TVs distinguish faulty models
from benign ones. We achieve this by solving the optimization
objective defined as:

Lo = - E(F7 X + g[VxL(F, X, yt)] 0
(1= a) - L(F x + g[(VxL(F, x,5)])

where L is cross-entropy loss, F' is the benign model, and
F’ as the profile faulty model. Our approach involves min-
imizing the loss of F' and that of I’ with respect to the
TV x and target class label y;,y;, so that the generated
TV effectively differentiates these two models. o controls
the mixing strengths between the two loss functions. We
explore three different approaches to select y; and y;, namely
soft, medium, and hard selection. For the hard selection, we
enumerate all possible different classes for y; and y;. While
for medium and soft selection, they are chosen by logit value
ranking and current iterations’ classification result of F’, F,

respectively. The motivation is to improve the efficiency of
the TV generation algorithm as we empirically find that soft
selection takes significantly less time, while only introducing
trivial performance degradation. Consequently, we use the soft
selection approach in our final implementation.

The function g[-] in our approach refers to the gradient-
based generation method. The high-level concept is illustrated
in Fig. 2. The TV generation process moves initial seed TVs
sampled from the dataset to the decision boundary, following
the gradient directions (i.e., dotted arrows) to achieve the TV
generation objective expressed in Equation (1). The generated
TVs that successfully cross the decision boundary are marked
as stars in Fig. 2 and are considered TV candidates. To
accomplish this, we have adapted techniques from FGSM [4]
and PGD [26] in our approach.
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Fig. 2: Illustration of the TV generation process. Circles
represent the seed TVs, dotted arrows represent the gradient-
based search process, and stars indicate the generated TVs that
can differentiate parameter changes in the model.

C. Test Vectors Compression

The TV generation described in Section IV-B generates
massive TV candidates to cover as many faults as possible for
each profile faulty model with redundancy. We then propose a
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TV compression algorithm to find an optimal set that detects
and locates maximum amount of faults with a minimum
number of TVs. The compression reduces the size of the TV
set by iteratively removing redundant candidates. We utilize
collision to evaluate the performance after compression and
guide the removal process. Our algorithm uses a coarse-to-
fine-grained strategy, as summarized in Algorithm 1.

Algorithm 1 Probabilistic Test Vector Compression

Require: Initial TV mapping M, Compression method C,
initial TV removal size Siy.
Ensure: Compressed TV mapping Mcomp.
I: ONTgee=0, CNTp=0, Scomp = Oinit
2: OrgCNT=CollisionCNT(Morg), Meomp = Morg
3: while Stopping criteria do not satisfy do
Remove Scomp TVs using C, resulting Miemp.
if CollisionCNT(Miemp)< OrgCNT then
Mcomp = Mlemps CNTgyect+
else
CN Tfai]++
Scomp=Comp_Size_Mod(Scomp; CN Tsuce; CNTait)
. for Remaining TVs going backward do
11:  Iterative delete each TV resulting Miemp.
2:  if CollisionCNT(Memp)< OrgCNT then
13: Mcomp = Mtemp

R P R AN U

—_
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—

The total collision of TV set x for a set of faulty NN Sg-
with individual model F]' is defined as:

[Sprl |SEr]
collision = Z Z ]lcolsum(j1,j2,,x):|x| (2)
J1 j2=ji1+1
colsum(j, jo, %) = Lps (x)=F), (x) 3)

where colsum is the sum of indicator function for all avail-
able x in the set whether they have identical classification
results for /] and F7, as in Equation (2). The collision in
Equation (3) checks whether all pairs of F , F/, have a total
amount of collision TVs as the number of available x using
indicator function Lcoisum(j,,j.,x)=|x|- All available x cannot
distinguish F” if colsum(jy, j2,X) = |x|, resulting a collision
between faulty model F and I, over x.

The proposed compression algorithms in Algorithm 1 re-
duces the remaining TVs without an increase in collisions
iteratively. The majority run-time of the algorithm is consumed
by the collision computation (i.e., CollisionCNT). To this end,
we use a universal hash function to accelerate the process by
hashing all individual profile model’s classification results with
respect to the TVs within M, which is the TV classification
results of profile faulty models. Then we enumerate all key-
value pairs to accumulate the collisions within the pair to
compute the indicator function Equation (3), significantly
reducing the algorithm’s time complexity.

For the compression process (Step 3 to Step 9 in Algo-
rithm 1), we assign TV candidates with a probability of being

removed from the current set of TV candidates based on a
randomized strategy in Step 4, where all TVs have an equal
probability of being removed in the experiment. Note that
the traditional integer-programming-based TV compression
method in [27] is time-consuming for such a large problem
size. Using such a randomized strategy significantly improves
the run-time. If the remaining TV keeps an identical collision
property as defined in Equation (2), the compression is suc-
cessful. We check whether collisions within the updated TV
mapping deteriorate the collisions or not at Step 5.

At the end of randomized TV compression, we perform a
final round of exhaustive TV reduction by enumerating the
remaining TVs in Step 10 to Step 13. The result Moy is the
mapping between x’s and profile faulty model’s fault locations
annotated as Fy, Fy,...F) in Fig. 1.

D. Detection and Repairing

We finally perform faulty model detection and repairing pro-
cess using the optimal set of TVs obtained from Section IV-C,
which only relies on the model inference without model
weight inspection. The procedure is shown in the bottom right
part of Fig. 1 to monitor the performance of NN hardware
implementations by comparing the current TV’s classification
results with the benign model’s ground truth classification
results. We fed TVs to potential under-attack models (unseen
profile models in the experiment). Then, we use the known TV
classification results for the profile faulty models and profile
faulty models’ fault locations to fix errors of the unseen faulty
models. The fault locations of the profile faulty models with
the highest classification similarity with the current model are
identified as the possible fault locations. Once the possible
locations of faults are identified, they are iteratively refreshed
back to the correct values. The success of repairing each bit is
assessed by monitoring the model performance on a small set
of held-out validation data. The process stops once the model
achieves an acceptable level of TVs’ classification results.

Overall, this approach allows for detecting and repairing
faults without relying on model weight inspection, making it
practical for real-world implementations.

V. EXPERIMENT AND EVALUATION
A. Experimental Settings

The NN training and TV generation are implemented in
Pytorch [28] based on datasets of MNIST [29], CIFAR10, and
CIFAR100 [30]. One fully-connected layer (1FC) model and
LeNet5 [29] are used for the MNIST dataset. VGG11 [1] and
VGG19 with Batch Normalization (BN) as well as ResNet [31]
are used for CIFAR10 and CIFAR100 datasets. All models are
quantized in 8-bit. We use the bit-flip progressive search [11]
for the 1,000 distinct profile and 3,000 distinct unseen faulty
model generation. All faulty models are generated randomly
within 50 iterations of the attack algorithm.

B. Experimental Results and Discussions

1) Profile model flip location distribution: We first examine
the occurrence of bit-flip locations of generated 4,000 distinct
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feat.7 feat.7 Medium-PGD 32,809 585 1/9/12.13/55
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Fig. 3: Faulty model bit-flip layer statistics with more than 10
flips in faulty models (feat: feature; clf: classifier layer).
faulty models. From Fig. 3, a limited number of bit locations
(all in MSBs), which mostly lie in a few layers of the entire
NN, are flipped among the profile and unseen distinct faulty
models. In the meantime, the profile and unseen distinct
faulty models share similar bit-flip layer locations. Such an
observation validates the idea of using the profile models
to repair the unseen faulty models. However, we notice the
difference in distribution between profile and unseen faulty
models that unseen faulty models contain more diverse bit-
flip locations given their larger sizes.

2) TV generation and compression performance: From
the results in Table I, we observe that hard selection of
classes during the TV generation using the gradient-based
generation method generates a significantly larger amount of
TV candidates with similar collision counts compared with
the gradient-based generation method using soft or medium
methods. In order to reduce the complexity of the method,
especially for larger NNs, the soft method is the best option.
Thus, we only present the results for soft methods in the
following. In addition, we observe that the FGSM and PGD
methods achieve similar performance.

Table I shows the effectiveness of the compression algo-
rithm proposed in Section IV-C to discover the high-quality
TVs among the TV candidates. The number of compressed
TVs for the models used in the experiments has a manageable
size for regular NN hardware implementation performance
monitoring, testing, and fixing in practice. From the visual-
ization of the generated TV in Fig. 4, the generated TVs are
mostly visually recognizable.

3) Detection and repairing: The performances of the detec-
tion for different models are shown in Table II. We present the
minimum, medium, maximum, and average iterations needed
for repairing the faults. It can be observed that the proposed
method achieves a success rate of 70-90% in general. Note
that in our experiments, we divide the profile faulty models

< ol 3 i

BEMﬂm@

Fig. 4: Generated TV examples with original seed TV on the
left, generated TV in the middle, and the absolute difference
between them on the right. (a) MNIST-LeNet-5, (b) CIFAR10-
VGGI11BN, (c) CIFAR100-VGG11BN.

and unseen faulty models randomly, especially for the large
model with more diverse possible harmful bit-flip locations.
Thus, some bit-flip patterns may only appear in the unseen
faulty models, which will lower the success rate. In addition,
there is a trade-off between the TV set size and success rate.
We significantly reduce the number of TVs during the TV
compression process, which also contributes success rate loss.

-'..-n-

VI. CONCLUSION

This work proposed a novel defensive framework against
fault attacks, which utilizes gradient-based optimization to
produce a set of TVs. The set is then compressed to enhance
efficiency. We have empirically verified that the selected TVs
obtained using our methods can successfully detect and repair
the models compromised by unseen fault patterns from attacks.
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