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Online Beam Learning for Interference Nulling in
Hardware-Constrained mmWave MIMO Systems

Yu Zhang and Ahmed Alkhateeb

Abstract—Employing large antenna arrays is a key character-
istic of millimeter wave (mmWave) and terahertz communication
systems. Due to the hardware constraints and the lack of channel
knowledge, codebook based beamforming/combining is normally
adopted to achieve the desired array gain. Existing codebooks,
however, are typically pre-defined and focus only on improving
the beamforming gain of their target user, without taking interfer-
ence into account, which incurs critical performance degradation.
In this paper, we propose an efficient deep reinforcement learning
approach that learns how to iteratively optimize the beam pattern
to null the interference. The proposed solution achieves that while
not requiring any explicit channel knowledge of the desired or
interfering users and without requiring any coordination with the
interferers. Simulation results show that the developed solution is
capable of finding a well-shaped beam pattern that significantly
suppresses the interference while sacrificing negligible beamform-
ing/combing gain, highlighting a promising solution for dense
mmWave/terahertz networks.

1. INTRODUCTION

Deploying large number of antennas is crucial in enabling
millimeter wave (mmWave) and terahertz (THz) communi-
cations. By applying beamforming/combining, mmWave/THz
systems are able to combat the severe path loss incurred
in the high frequency bands and hence provide sufficient
receive signal power. To reduce the high cost and power
consumption of the mixed-circuit components, on the one
hand, these systems start to seek either fully analog or hybrid
architecture to achieve such potential [1]. On the other hand,
the adoption of such architectures also introduces several
difficulties in the following signal processing, one of which is
channel estimation. As a result, pre-defined codebooks (such
as beamsteering codebooks) are normally used for both initial
access and data transmission. Being pre-defined, however,
those beams are normally designed in a way that focuses
solely on improving the beamforming/combining gain from
specific directions, without taking interference into account.
This raises issues in situations where there are interfering users
in the surrounding, communicating at the same time-frequency
slots. Those “interference-unaware” beams might incur severe
interference from other users, which could possibly degrade
the system performance to a great extent. Therefore, an ideal
beam pattern design algorithm should be able to strike a bal-
ance between the desired user and interfering users, targeting
the signal-to-interference-plus-noise ratio (SINR) as its final
objective, which is the focus of this paper.
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Prior work: Designing analog beamforming or hybrid
precoding for MIMO systems has been an important topic
for quite some time [2]-[6]. In fully analog systems, pre-
defined beamsteering codebooks are normally adopted to
simplify the design process, as in [2], [3], where sharp
and directional beams are used for acquiring the desired
beamforming/combining gains. In [4], a neural network based
analog beam codebook design approach is proposed, although
the authors focus only beamforming gain and the potential
interference problem is ignored. In hybrid analog/digital sys-
tems, a variety of hybrid precoding strategies are proposed to
improve the multiplexing and sum-rate performance, as in [5],
[6]. However, the common problems in these solutions include
the need for either complete or partial channel knowledge of
all the user channels, as well as the relaxation of the quantized
analog phase shifter constraints during the design stage.

Contribution: In this paper, we propose a deep reinforce-
ment learning based beam pattern design framework that can
efficiently adapt the beam pattern to avoid interference from
surroundings while maximizing the beamforming/combining
gain of the desired user. This is done by not requiring the
channel knowledge of both target user and the interferers, and
by only relying on the power measurements. The proposed
framework also respects the key hardware constraints such
as quantized phase shifter constraint, making it a hardware
compatible solution. Simulation results show that the proposed
solution is capable of forming a beam pattern that can strike a
balance between the beamforming/combining gain of the target
user and the suppression gain of the surrounding interferers.

II. SYSTEM AND CHANNEL MODELS

Our objective in this paper is to investigate the design of
interference-aware beam patterns. To study this problem, we
consider a communication system where a mmWave MIMO
base station (BS), equipped with M antennas, is communicat-
ing with a single-antenna user equipment (UE). Moreover, we
assume that there exists K (> 1) non-cooperative interference
transmitters! in the vicinity of the BS, operating at the same
frequency bands and hence causing inevitable interference
to the considered communication link. More specifically, we
consider the uplink transmission where the BS will receive
signal from the UE, together with the interference signals
transmitted from the interference transmitters. Therefore, if
the UE transmits a symbol x € C to the BS, and the other K

'For ease of exposition, each interference transmitter is also assumed
to have single-antenna. This means that the interference signals are being
transmitted omni-directionally.
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The considered scenario where a mmWave base station is communicating with its target user under the presence of non-cooperative interference

transmitters. This could be the case, for instance, where the mmWave road side units of a vehicular network are broadcasting traffic messages to the surrounding
vehicles, which interferes the civilian data communication link, as depicted in the figure.

interference transmitters also transmit symbols x;, € C,k =
1,..., K at the same time and frequency slot, such that all the
transmitted symbols satisfy the same average power constraint,
ie., E[|z]?] = P, and E[|z3|?] = P,,Vk, the received signal
at the BS after combining can then be expressed as

K
Y= wlhz + ZWHhk;rk +WHn,
k=1

ey

where h € CM*! is the channel between the BS and the
UE, h;, € CM*! jg the channel between the BS and the
k-th interference transmitter. It is worth pointing out here
that for clarity, we subsume the factors such as path-loss and
transmission power into the channels. n ~ CA(0, 0%1) is the
receive noise vector at the BS with o2 being the noise power
and w € CM*! is the combining vector used by the BS.
Furthermore, given the high cost and power consumption of
the mixed-signal components, we consider a practical system
where the BS has only one radio frequency (RF) chain? and
employs analog-only beamforming/combining using a network
of r-bit quantized phase shifters. Therefore, the combining
vector at the BS can be written as

1 S

w=—— [l 02 . eI 2

Vit | ] @

where each phase shift 6,,,,Vm = 1,..., M is selected from a

finite set ¥ with 2" possible discrete values drawn uniformly
from (—, 7). The normalization factor M ~'/ is to make sure
the combiner has unit power, i.e., |w]|3 = 1.

We adopt a narrowband geometric channel model for the
channel between BS and UE, as well as the interference

It is very important to note that the RF precoder in a system with
hybrid architecture is normally constructed using pre-defined codebooks that
have pre-determined beams. Therefore, the learned beams in this paper can
be included in such codebooks and be used in the hybrid analog/digital
architectures as well.

channel between BS and any interferer. Hence, the channel
between BS and its served UE takes the following form?

L
h= Za(a(¢€:195)7

=1

3

where we assume that the signal propagation between BS and
UE consists of L multi-paths. Each path ¢ has a complex
gain «y, which subsumes the factors such as path-loss, trans-
mission power, etc. The angles ¢, and 1, represent the /-th
path’s azimuth and elevation angles of arrival respectively, and
a(¢e,¥¢) is the array response vector of the considered BS
to the signal with such arriving angles. The exact expression
of a(¢y, ) depends on the array geometry and possible
hardware impairments.

III. PROBLEM FORMULATION

In this paper, we investigate the design of analog combiner
that achieves interference awareness without knowing the
explicit channel knowledge.* Given the receive signal (1) at
BS, the achievable rate of its target UE can be written as

|[wHh|?P,

1+ =%
2=t WP Py + 0®

R = log, 4)

The objective is to design the combining vector w such
that the achievable rate of the target user, i.e., (4), can be
maximized. This is equivalent to maximize the SINR term in

3The channel between BS and any interference transmitter takes similar
form.

It is very important to note that the proposed interference-aware beam
pattern learning approach in this paper can be straightforwardly extended to
learning a codebook with multiple beams, by using the user clustering and
assignment algorithm proposed in [7].
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(4). Therefore, the problem of designing interference-aware
beam pattern can be cast as

« (w”h[*P,
W' = argmax — - ,
wo > |wHh 2P, + o2

1 .
——em Ym=1,....,M, (6
M

&)

S.t.wy, =
0, €V, VYm=1,..., M, 7

where w,,, is the m-th element of the combining vector w. The
interference-aware beam pattern design problem formulated
in (5) has several defining characteristics: (i) The constraint
(6) requires constant-modulus on all the elements of the
combining vector, which is a non-convex constraint, (ii) to
respect the discrete phase shifter hardware constraint, w,, can
only take finite number of values based on all the possible
phase shifts given by (7), (iii) the target UE’s channel h is
assumed to be unknown, due to the difficulties encountered in
the CSI acquisition in a practical mmWave system with fully-
analog transceiver architectures, (iv) the possible hardware
impairments are also assumed to be unknown, and (v) the
channels of the interference transmitters, i.e., hy,Vk, are
also unknown, which is mainly because normally there is
no coordination between the interference transmitters and the
considered BS receiver.

Given all these aforementioned difficulties, (5) is very hard
to be solved using the conventional optimization based meth-
ods [8]-[10]. However, an important observation is that for a
given combining beam w, evaluating the SINR requires only
the power values (after combining) of the desired and interfer-
ence signals, and does not require explicit knowledge about the
channel vectors. Fortunately, it is less hard and more robust to
acquire the receive power measurements for both the desired
and interference signals, which require much less control
signaling compared to the complex channel estimation process.
With this observation, we cast our problem as developing a
machine learning based approach that learns how to design an
interference-aware beam pattern w that optimizes (5), given
only the receive power measurements for the sizgnal plus
interference and noise, th‘2 P, +Zf=1 |wihy|” Py 402,

and the interference plus noise, Zszl |wH hk,| P, + o2

IV. REINFORCEMENT LEARNING OF INTERFERENCE
AWARE BEAM PATTERN DESIGN

In this section, we present the proposed reinforcement learn-
ing based interference-aware beam pattern learning approach.
The motivation of using reinforcement learning is mainly two-
fold. First, the lack of the explicit channel knowledge makes
most of the existing approaches, such as [4], [11], invalid. Sec-
ond, the beam design problem is essentially a search problem
over dauntingly huge space. Hence, we consider leveraging
the powerful exploration capability of reinforcement learning
to efficiently navigate through such very large space to find the
optimal or near-optimal beam patterns. Next, we first discuss
how the system is supposed to be operating in practice, and
how the formulated problem is fully compatible with such
operation in Section IV-A. Then, we provide the details of the
proposed solution in Section IV-B.

A. Practical System Operation

In this subsection, we discuss how to acquire the power
measurements that are used for evaluating the objective func-
tion of the formulated optimization problem (5). As can be
seen from (5), in order to estimate the SINR performance,
the system needs to know the receive power measurements
of the target user as well as the interference power incurred
from the other undesired transmitters. Given that the BS can
coordinate with its served UE, this can be achieved if the
BS knows when the UE is transmitting or not transmitting
signals. To be more specific, to estimate the SINR performance
of a certain beam w, the BS first measures the interference
plus noise level, ie., P Ny = Zszl |wHhy|2P, + o2, by
“muting” the target UE. Then, when the target UE starts
transmitting reference signals, the BS uses the same beam
to measure the signal plus interference plus noise level, i.e.,
Psiiyn = [WHH2P, + 5 | |WwHh 2P, + 02, We depict
such “on/off” measurement method in Fig. 2. The receive
power of the target UE can hence be determined by subtracting
the previously measured power PN from the new power
measurement Ps;yn, and the SINR can be approximately
obtained as (Pst1+n — Pryn)/Prin. To this end, it is worth
mentioning that, in practice, zero power reference signals,
such as Zero Power (ZP) Channel State Information Ref-
erence Signal (CSI-RS), are normally used to measure the
interference plus noise level [12], i.e., Pryn. This means that
the formulated problem requires nothing more than what is
already supported in the current 5G NR system to obtain all
the quantities needed to perform the beam learning task. In
the next subsection, we present the idea of how to leverage
reinforcement learning for designing the interference-aware
beam pattern based on these acquired power measurements.

B. Reinforcement Learning based Interference Aware Beam
Pattern Design

In this subsection, we present our proposed reinforcement

learning based solution for addressing the interference-aware
beam pattern design problem (5).
Reinforcement Learning Formulation: To solve the problem
with reinforcement learning, we first fit all the ingredients of
problem (5) into a general reinforcement learning framework
as follows:

o State: We define the state s; as a vector that consists of
the phases of all the phase shifters at the ¢-th iteration,
that is, s; = [61,02, ..., GM]T. This phase vector can be
converted to the actual combining vector w by applying
(2). Since all the phases in s; are selected from W, and all
the phase values in ¥ are within (—, 7], (2) essentially
defines a bijective mapping from the phase vector to the
combining vector. Therefore, for simplicity, we will use
the term “combining vector” to refer to both this phase
vector and the actual combining vector (the conversion is
given by (2)), according to the context.

o Action: We define the action a; as the element-wise
changes to all the phases in s;. Since the phases can
only take values in W, a change of a phase represents
the action that a phase shifter selects a value from W.
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Fig. 2. An illustration of the operation flow of the proposed interference-aware beam pattern learning solution.

Therefore, the action is directly specified as the next state,
i.e., a; = s;41, which can be viewed as a deterministic
transition in the Markov Decision Process (MDP).

« Reward: We define a binary reward mechanism, i.e.,
the reward r; takes values from {+1,—1}. Since the
objective of (5) is to maximize the SINR performance,
we compare the SINR achieved by the current combining
vector, denoted as SINR;, with the previous one, i.e.,
SINR;_;. The reward is determined according to the
following rule: r; = +1, if SINR; > SINR;_1; r; = —1,
otherwise.

The above reinforcement learning formulation is fully com-
patible with the original problem (5) in the following aspects.
First, since the state and action are directly specified as phase
shifts of the discrete analog phase shifters, the constraints (6)
and (7) are automatically satisfied. Second, to obtain the re-
ward, the objective function of (5), i.e., the SINR performance,
needs to be evaluated, which can be done in a way that does
not rely on channel state information of both the target user
and the interfering transmitters, the details of which has been
provided in Section IV-A.

Deep Reinforcement Learning Architecture: We adopt an
actor-critic based deep reinforcement learning architecture.
More details about this learning framework can be found in
[7]. To put it in simple words, both actor and critic networks
are implemented using elegant fully-connected feed-forward
neural networks. The input of the actor network is the state and
the output is the action, while the critic network takes in the
state-action pair and outputs the predicted Q value. Moreover,
to respect the discrete phase shifter hardware constraint (7), we
perform an element-wise quantization to make the predicted
action a valid one. To be more specific, assume that a, is the
predicted action from the actor network at time . Then, the
action that finally gets implemented to the system is given by
-0, Vm=1,..., M. ®)

[at]m = argmin |[@¢] .,
0cw

It is worth emphasizing that such quantization operation is
only activated when the system is actually implementing the
predicted action by the actor network to obtain reward. It is
not involved in the training process of the actor network due
to its non-differentiability. The detailed architectures and the
parameters of the adopted neural networks are provided in
Section V-B.

V. SIMULATION RESULTS
A. Simulation Setup

In this simulation, we consider a BS equipped with uniform
linear array that has 8 antenna elements and half-wavelength
antenna spacing, where each antenna is followed by a 3-
bit analog phase shifter. Besides, for a better demonstration,
we adopt the following simulation steps: (i) We generate the
channel of the target user based on (3), where, for simplicity,
we consider the case when the user only has a LOS connection
with the BS, i.e., L = 1 in (3); (ii) We then learn a beam
pattern when there is no interference and this learned beam is
referred to as “interference-unaware” beam since it focuses
on maximizing the combining gain of the desired signal;
(iii) After this beam is learned, we intentionally position
the interfering transmitters at the directions aligning with the
strongest side lobes of the learned beam and also assume that
they only have LOS channels with the considered BS, which
causes non-negligible interference; and (iv) We finally take
the interference into account and re-design an “‘interference-
aware” beam that learns how to manage the interference in
such a way that improves the SINR performance.

B. Deep Learning Architectures

Since the input of the actor network is the state and the
output is the action, the size of both the input and output of
the actor network is M = 8, i.e., the number of antennas. The
critic network takes in the state-action pair and outputs the
predicted Q value and hence it has an input size of 2M = 16
and an output size of 1. Both the actor and critic networks have
two hidden layers in our proposed architecture, with the size of
the first hidden layer being 16 times of the input size and the
size of the second hidden layer being 16 times of the output
size in both networks. All the hidden layers are followed by the
batch normalization layer for an efficient training experience
and the Rectified Linear Unit (ReLU) activation layer. The
output layer of the actor network is followed by a Tanh
activation layer scaled by 7 to make sure that the predicted
phases are within (—m,«] interval. The output layer of the
critic network is a linear layer.

C. Numerical Results

Based on the above simulation setup and deep learning
architectures, in Fig. 3, we demonstrate the learning results
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Fig. 3. The beam pattern learning results in an environment with two interfering sources, where (a) shows the learned beam pattern when ignoring the
surrounding interfering transmitters, and (b) shows the interference-aware beam pattern. (c) shows the interference-aware beam pattern learning process.

when there are two interfering transmitters. We show the beam
patterns learned with and without taking the interference into
account, together with the receive patterns (i.e., the distribution
of receive power strength in angular domain at the BS) of the
selected interfering sources. As shown in Fig. 3(a), the two
interferers are present at the directions aligning with the two
most strongest side-lobes of the interference-unaware beam,
which incurs significant interference and causes performance
degradation. The learned interference-aware beam is plotted
in Fig. 3(b). Clearly, unlike the interference-unaware beam,
the interference-aware beam shapes nulls that have very
low receive gains at the directions where the interferers
are, which nearly eliminates the severe interference. To
be more specific, in the interference-unaware case, the signal-
to-interference ratio (SIR) levels are 10.56 dB and 13.71 dB
with respect to the two interfering users. By contrast, the SIR
levels are improved to 28.63 dB and 26.28 dB when using the
interference-aware beam, which only incurs a loss of 0.8348
dB for the combining gain of the target user.

In Fig. 3(c), we show how the combining gains of the
received signals from the target user and the interfering
transmitters are changing as the learning proceeds, as well as
the overall SIR performance. As can be seen, the combining
gain of the target user and the combining gains of the two
interfering transmitters start from almost the same level, since
a random beam is used as the starting point. As learning
proceeds, the combining gain of the target user maintains,
generally speaking, an increasing trend, while the combining
gains of the two interfering transmitters are gradually de-
creasing. The overall SIR, however, maintains a monotonically
increasing trend. Fig. 3(c) also shows that with only around
1000 iterations, the SIR performance is able to be improved
from around —10 dB to around 20 dB, without knowing the
channels (for both target user and the interfering transmitters).

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we developed a deep reinforcement learning
based approach that can efficiently learn interference-aware
beams. The proposed solution learns how to design the beam
pattern to shape nulls towards the interfering directions relying
only on the receive power measurements and without any

channel knowledge. This solution also relaxes the coher-
ence/synchronization requirements of the system and respects
the key hardware constraints of practical mmWave transceiver
architectures. Simulation results show the effectiveness of
the proposed solution in learning beam pattern that achieves
satisfying interference suppression performance.
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