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Abstract 

Identifying printing defects is vital for process certification, especially with evolving 

printing technologies. However, this task proves challenging, especially for micro-level 
defects necessitating microscopy, which presents a scalability barrier for manufactur- 
ing. To address this challenge, we propose an attribute learning methodology inspired 
by human learning, which identifies shared attributes among seen and unseen objects. 
First, it extracts defect class embeddings from an engineering-guided defect ontology. 
Then, attribute learning identifies the combination of attributes for defect estimation. 
This approach enables it to recognize previously unseen defects by identifying shared 
attributes, even those not included in the training dataset. The research formulates a 
joint optimization problem for learning and fine-tuning class embedding and ontology 
and solves it by integrating natural language processing, metaheuristics for exploration 
and exploitation, and stochastic gradient descent. In a case study involving a direct- 
ink-writing process for creating nanocomposites, this methodology was used to learn 
new defects not found in the training data using the optimized ontology. Compared to 
traditional zero-shot learning, this ontology-based approach significantly improves class 
embedding, outperforming transfer learning in one-shot and two-shot learning scenar- 
ios. This research represents an early effort to learn new defect concepts, potentially 
reducing the need for extensive measurements in defect identification. 

Keywords: Additive Manufacturing; Attribute learning; Ontology; Defect identification; 

Process certification 
 

 

1 Introduction 

In recent decades, the development pace of new processes for additive manufacturing has 

been accelerating; however, many research efforts stopped at proof-of-concept. One grand 

challenge is identifying defects and anomalies in printed structures that are helpful for 
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process certification. Automated defect identification is critical for qualifying and certifying 

printing processes and parts, as it enables the evaluation of whether printed layers or 

parts are defect-free or have specific types of defects. This capability is especially useful 

when developing new printing processes. Typically, manufacturers rely on their experience 

for offline inspection of printed parts or online inspection of printed layers for process 

certification. However, if they lack experience and measurement capability or budget, defect 

identification becomes challenging, hindering the development of repeatable processes for 

scale-up production. 

The defect identification requires significant efforts in conducting measurements to col- 

lect labeled data that identifies the defect types. Afterward, machine learning algorithms 

can be implemented to train classifiers that can categorize defects to build a process win- 

dow that reveals how processes impact defects. Nevertheless, the measurements usually 

involve microstructure characterization by microscopy, which could be expensive and time- 

consuming. For inexperienced researchers and manufacturers, there exist entry barriers to 

developing repeatable processes for the scale-up manufacturing and commercialization of 

new printing technologies within a short period of time. 

Recent research presents potential solutions to the classification problem given limited 

measurements or experiments. Transfer learning, including multi-task learning (Pandiyan 

et al. (2022); Cheng et al. (2017)), stands out as one method that has been attempted by 

recent research, aiming to improve the learning accuracy through the transfer of knowledge 

from a related learning task. The existing framework of transfer learning still expected 

some labeled data to be collected for a target learning task. However, a zero-shot learning 

(ZSL) scenario can be more realistic for new process development, i.e., some anomalies or 

defects are completely unobserved in the training data. 

This paper proposes a method to deal with ZSL by imitating human recognition behav- 

ior to recognize new objects by recognizing the combinations of attributes. The method 

explores the development of a defect ontology as a library of managing defect knowledge to 

obtain attributes, a significant challenge in implementing the ZSL approach. An ontology 

can be established for process anomalies by developing a unified way of representing the 

defect information, called attributes, from published data and engineering knowledge that 

can be shared across a range of processes. The learning of defects in a new process may 
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leverage the established ontology to characterize the printing anomalies or defects. This 

way may enable the identification of unseen defects, i.e., a ZSL scenario. The ontology- 

based approach has recently become popular in the manufacturing industry, especially in 

developing maintenance strategies for system failures. Its potential in learning printing 

defects for new processes has not been understood. 

 

1.1 State-of-the-art 

This section reviews the related research on the certification and small-sample quality con- 

trol for additive manufacturing (AM) and state-of-the-art research on ontology, primarily 

in manufacturing applications. 

Defect Detection for Process Certification. Several studies have been proposed to iden- 

tify printing defects for process certification that evaluates whether the printed layers are 

defect-free. Depending on the defect types, different inspections were implemented for 

post-printing processes or in real time. For real-time detection, researchers employed spa- 

tial data cloud by 3D scanners (Ye et al. (2021)), thermal images by infrared or co-axial 

pyrometer cameras (Khanzadeh et al. (2019); Seifi et al. (2019)), and/or stream videos by 

high-speed cameras Vora and Sanyal (2020), acoustic emissions (Wu et al. (2016)), while 

post-printing inspections include microscopy, scanning electron microscopy (SEM), X-ray 

computed tomography, magnetic resonance imaging, and/or ultrasonic testing as reviewed 

in Vora and Sanyal (2020). 

Defect Feature Extraction. Recent research extract features to characterize and detect 

defects and their underlying causes by using non-traditional defect detection methods. 

Infrared thermal imaging technology proposed by Bartlett et al. (2018) uses a long-wave 

infrared camera to detect the shape and contour of defects as thermal radiation differences. 

Thermal analysis was also proposed in Bappy et al. (2022) in order to detect abnormalities 

in the morphological dynamics of melt pools and heat-affected zones. Similarly, Esfahani 

et al. (2022) carried out thermal image series analyses to characterize defects by studying 

the dynamics in the layer-wise thermal history. Penetration defect detection in Chen et al. 

(2021) uses capillary action and fluorescent or colored dyes to identify surface-opening de- 

fects. After applying the penetrant fluorescent dye, a developer is applied to characterize 

the defect. Eddy current testing proposed by Chen et al. (2021) uses electromagnetic in- 
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duction to identify defects in conductive materials by measuring changes in induced eddy 

currents. Such changes represent the test piece’s material, defect, shape, and size. Ul- 

trasonic testing (Du et al. (2018)) uses ultrasonic waves to inspect internal defects and is 

more sensitive to cracks, incomplete penetration, and infusion defects. In ultrasonic testing, 

reflected high-frequency sound waves characterize defects. Laser ultrasonic detection meth- 

ods have been proposed to improve the performance of ultrasonic testing for crack defects 

and have better performance in defect detection (Millon et al. (2018)). Laser ultrasonic 

detection, on the hand, detects sound waves representing AM defects using a pulsed laser 

and optical detection via interferometers. 

Small-sample quality control for AM. Recent research has been developed to reduce the 

measurements and samples needed in data modeling or machine learning for geometric 

deviation and shape error compensation Luan and Huang (2016); Wang et al. (2016); Jin 

et al. (2016); Cheng et al. (2017). This line of research decomposes the product shapes in the 

shape error model. It progressively develops the shape error prediction model from simple 

shapes, such as cylinders and polygons, to free-form shapes. Sabbaghi et al. (2018); Jin et al. 

(2016); Sabbaghi and Huang (2016) developed a statistical framework of effect equivalence 

for transferring information across multiple shapes and printing processes. Overall, the 

related research focuses on geometric errors of the printed shapes and starts modeling from 

specific common shapes to establish knowledge transfer. However, the internal defects in 

each layer, as more concerned with emerging printing processes for functional structures 

using novel materials, are not considered. Furthermore, a transfer learning technique was 

also utilized by Scime and Beuth (2018) to efficiently train a multi-scale convolution neural 

network using a pre-trained AlexNet (MsCNN), which detected powder irregularity for the 

classification of defects. 

Zero-shot learning in computer vision. In the past two decades, a significant breakthrough 

has been made for small-sample learning in computer vision. One accomplishment is zero- 

shot learning (ZSL), aiming to recognize objects that are not included in training data. In 

other words, testing and training class sets are disjointed under a ZSL environment. This 

line of approach is to identify new objects by transferring attributes from heterogeneous 

objects (Lampert et al. (2013)). One common strategy in ZSL is to learn a linear compati- 

bility function between the features extracted from input images and attributes associated 
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with classes (class embedding) as annotated by experts or learned from elsewhere. The 

related approaches include ALE (Akata et al. (2015)) and Latent Embeddings (LatEm) 

Xian et al. (2016). These methods only focus on the visual recognition of new objects 

without any engineering background. Additionally, there were limited discussions on how 

to identify defect attributes to improve the ZSL accuracy. 

 

1.2 Research gaps and proposed work 

This paper identifies the following research gaps in small-sample learning for AM. 

 
• Little work was found on identifying AM defect and morphology anomalies when the 

labeled data about certain defects are all missing in the training data. Such a ZSL 

scenario presents a major challenge to traditional classification algorithms and even 

recent transfer learning or semi-supervised learning, which still requires limited data 

from the target process. 

• There is a lack of methods for effectively extracting class attributes about printing 

defects to ensure the ZSL accuracy. Existing ZSL methods in computer vision primar- 

ily rely on the expert annotation of data to generate different attributes and create 

class embedding for ZSL algorithms. Also, attribute extraction and ZSL were stud- 

ied separately and implemented in sequence. However, the selection of proper class 

attributes significantly affects ZSL accuracy. It is essential to avail of a method that 

can integrate engineering knowledge with machine learning for selecting appropriate 

attributes shared between seen and unseen defect classes. 

This survey demonstrate that knowledge on defect formation and characteristics is avail- 

able with literature or online dataset to supplement data for supporting ZSL, thereby 

proving the feasibility of the proposed attribute learning. Hence, this research proposes 

an ontology-guided attribute learning framework that addresses the challenges in (1) ZSL 

classification of printing defects that are unobserved in training data by recognizing at- 

tributes shared between seen and unseen classes and (2) the learning of defect attributes 

and associated class embedding to facilitate ZSL. This paper proposes to develop a defect 

ontology initialized by published/shared data and information from the literature to extract 

class embedding. A random walk algorithm is developed to explore the ontology structure 
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to generate a semantic description of defects, allowing natural language processing to parse 

the ontology to defect embedding as attributes. The attribute learning framework formu- 

lates a joint optimization problem to tune the defect ontology and determine an embedding 

method. The problem is solved by integrating stochastic gradient descent with metaheuris- 

tics by exploration/exploitation. The established defect ontology can help identify defects 

in more printing processes under a ZSL scenario. A case study establishes/optimizes a 

defect ontology for a direct-ink-writing of new composite materials and utilizes it to iden- 

tify unseen defects. The study also discusses the impact of learning parameters on defect 

classification accuracy and the robustness of the algorithm to noises in the input data. 

In a broader aspect, this study is expected to become a building block for a pipeline 

that scrapes data from literature and online databases to build a unified representation of 

defects knowledge through ontology. This utilization and re-structuring of open-access engi- 

neering information are expected to reduce the need for extensive testing and measurement 

(especially microscopy). Eventually, the outcome of this study can expedite the new pro- 

cess certification and lower the entry barriers for researchers/practitioners to commercialize 

their technologies for market demand promptly. 

The remainder of this paper is organized as follows. Section 2 proposes the methodol- 

ogy of ontology-guided attribute learning, including an ontology-guided method to extract 

attributes to facilitate ZSL in section 2.1, learning problem formulation, and a two-stage 

solution algorithm in section 2.2, followed by a flowchart in supplemental materials. Section 

3 presents a case study on a direct-ink-writing process for nanocomposites with results and 

discussions. Finally, Section 4 summarizes the paper and outlines future research directions. 

 

2 Ontology-guided Attribute Learning 

The idea of attribute learning is to imitate the way how a human being would learn a new 

concept, as discussed in Lampert et al. (2013). Figure 1 illustrates an analogous example in 

which a human learns to recognize an unseen class (ostrich) through shared attributes with 

the panda, chicken, and other small birds. Although the person has never seen an ostrich 

before, he/she can recognize the unique combination of feather, bill, and leg. Meanwhile, 

literature may report an ostrich is a large bird that does not fly and has dark/light colors. 
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All the combination of the attribute information relevant to an ostrich can help identify it 

with a highly successful chance. 

 

 
Figure 1: Illustration of attribute learning leveraging information from seen classes, along 

with text, to identify unseen class ostrich. 

Figure 2 presents a high-level illustration of learning by attributes. X is a dataset, 

including training and testing data that cover the information for K discrete types (classes) 

of defects Y tr = {y1, y2. . . yK}. Generally, training and testing splits can be represented 

as Y ts − Y tr ̸= ϕ, indicating that seen and unseen classes can all be present in the testing 

data. However, ZSL represents a special testing case where testing data contains defect 

classes Y ts = {z1, z2, . . . zN } that are not fully observed in or disjoint with training data, 

i.e., Y ts ∩ Y tr = ø. In the case study, both testing scenarios will be explored. Each defect 

class can be associated with a set of attributes A = {a1, a2. . . aL}, which describe the 

physical property, material, and printing condition, representing multi-level properties of 

classes shared across different processes or objects. The arrow within the attribute layer 

indicates the relationship between the attributes, e.g., the dependency between properties. 

The diagram shows that defects unobserved in training data can leverage the attributes 

shared with seen defects in the training data to identify the defects. 

The formulation of attribute learning for ZSL scenarios can be described as follows. 

Given dataset of N defects S = {(xn, yn), n = 1....N }, where yn ∈ Y tr belongs to the 

training set of defects or seen classes and xn is the corresponding data, such as images 
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Figure 2: Attribute learning of unseen classes by leveraging the information from attribute 

layers shared between seen and unseen classes. 

represented by vectors. The objective is to map input data, such as microscopic images, 

to its corresponding class even if images representing the class were not included in the 

training dataset. Similarly to Xian et al. (2017), for a given dataset with input images X 

and class label sets Y , a mapping function f needs to be trained such that f : X → Y , 

where the mapping function f (x; W) can be defined as: 

 
 

f (x; W) = argmaxy∈Y F (x, y; W) (1) 

 
For ZSL testing, the objective is to assign a class label to the data/image with the 

highest compatibility. In the testing phase, the performance of the trained classifier was 

evaluated to identify unseen classes that were not present in the training dataset. The 

compatibility function aims to find the most compatible class with the testing data/images. 

The compatibility function is defined on the features of input data θ(x) and attributes of 

class ϕ(y) and can be represented as: 

 

F (x, y; W) = max(θ′(x)Wϕ(y)) (2) 

 
When applying the classifier to the features extracted from testing images, different 

candidate classes are evaluated to determine which class embedding can maximize the 

compatibility with features from images. The objective of classification during the testing 

stage is to identify the candidate class that has the best compatibility with the input 

features of the testing images and report it as the output class. This compatibility-based 
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classification during the testing stage is a common practice in computer vision (Xian et al. 

(2017)). Therefore, unseen classes in the testing data will be assigned a label identified by 

this compatibility mapping during the testing stage and later compared to actual labels for 

performance evaluation. Assume that the measured data from a new process are x testn. 

The classification is achieved by finding a class k so that the compatibility between input 

features θ(x testn) and the kth class embedding ϕ(yk) is maximized, i.e., 

 

k̂ = argmax{θ′(x testn )Ŵ ϕ(yk)} (3) 

There exists abundant research on extracting features θ(x) from images, such as Img2Vec 

python library for image embedding, which uses ResNet50 (He et al. (2016)) model and 

its weights pre-trained on the ImageNet dataset (Deng et al. (2009)). By contrast, the 

research on the extraction of class attributes ϕ(y) for printing defects is limited. As such, 

the key challenge in successfully implementing attribute learning is to obtain appropriate 

combinations of attributes ϕ(y) from data, as will be discussed in the next section. 

 

2.1 Defect ontology and class embedding for attribute extraction 

This paper proposes to extract attributes from the defect ontology learned from the in- 

formation with literature, online databases, and other process data. The defect ontology 

represents a way of managing the knowledge of defect classes with a relationship structure 

that can be shared across a range of processes. The attributes of defects can be extracted 

from the class embedding (vectorial representation) from the ontology. This section first 

formulates a joint learning problem for tuning ontology structure and method of creating 

embedding vectors. Based on the embedding, this section develops a learning algorithm to 

solve the problem by integrating stochastic gradient descent with metaheuristics based on 

exploration and exploitation. 

 

2.1.1 Defect knowledge organization by ontology 

This section develops a semantic representation of engineering knowledge to extract class 

attributes ϕ(y). A structural knowledge representation of a manufacturing defect, known 

as a defect ontology, is used to represent information about defects such as morphology, 
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causes, and materials. In this work, ontology is used to capture the knowledge about 

different aspects of defects that occur during printing, such as morphology, underlying 

causes, and associated materials. 

The steps involved in building an ontology for defects in additive manufacturing are as 

follows. First, it is necessary to identify the relevant concepts, relationships, and constraints 

associated with the defects. These concepts and relationships are then represented as 

class/subclass properties within the ontology. Next, they are organized under a hierarchical 

structure using subclass and superclass relationships. Supplementary S1 and S2 outline the 

details of the ontology-building process and updating with new information respectively. 

Assume that the ontology has N classes and y ∈ Y = {y1, ......, yN }, and each class 

in the structure has a set of M attributes {ai, i = 1, 2....M } to describe the class. Each 

class can be defined in an M -dimension attribute vector as φ (y) = [ρy,1......ρy,M ], where 

ρy,i represents the measure of the association between each attribute ai and class y. If 

the attribute and class are not associated, the corresponding value is zero. Stacking up 

attribute vectors for N classes leads to an N × M matrix φ as shown in Figure 6, where 

grey cells indicate that the attributes in the row are selected to be associated with the 

defect class (column) for class embedding in the next step. 

 

2.1.2 Parsing ontology for defect embedding 

This section proposes an ontology exploration strategy integrated with natural language 

processing (NLP) to convert or parse the ontology into class embedding in vector rep- 

resentation to facilitate ZSL. To parse the ontology, a ”walk” algorithm was developed. 

This algorithm generates sentences that describe various aspects of the defect class using 

domain-specific keywords such as morphology, color, surface texture, causes, and printing 

parameters. These sentences are generated by traversing the ontology from the root to the 

end nodes. The exploration starts with different defect nodes followed by different branches 

in the ontology. For representation purposes, each combination of ontology branches and 

segments can be represented as a gene. Take the ontology in Figure 3 for example. Gene 

13 can represent that defect 1 is associated with branch 3, gene 16 with branch 6, and gene 

17 with branch 7. The types of the association are labeled by different styles of arrows. 

Table 1 shows an example of exploring ontology to generate genes and their explanations. 
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The exploration of the ontology along different branches leads to different keyword sen- 

tences. The table also summarizes the keyword sentences extracted corresponding to each 

gene. 
 

 
Figure 3: An example of a defect ontology consisting of different relationships to identify 

sentences containing specific attributes that describe the defect. 

 

Table 1: presents an example of key-phrase sentences generated by the RandomWalk algo- 

rithm, as depicted in Figure 3. Each sentence is represented by a ”gene” that corresponds 

to the branch from which it was generated. For example, gene 13 represents that defect 1 

is associated with branch 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Each sentence is then tokenized, breaking down the sentence into individual words or 

phrases using an open-source python library called ”TransformerWordEmbeddings.” These 

tokens are then passed through the BERT model for embedding. BERT (Devlin et al. 

(2018)), which stands for ”Bidirectional Encoder Representations from Transformers,” is 

a pre-trained transformer-based neural network that has been trained on a large corpus 

Gene Extracted key-word sentences 

13 Tiny crack exhibits zigzag-shaped morphology on a reddish smooths surface. 

16 Tiny crack is caused by thermal stress. 

17 Tiny crack is associated with polymer composite material. 

24 Irregular pore has a morphology of irregular holes on rough uneven surfaces. 

25 Irregular pores are caused by the uneven mixture of solutions. 

27 Irregular pore is associated with polymer composite material. 
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of text data. The embeddings generated by BERT capture the meaning and context of 

the defect class in the sentence. By extracting the embedding for the token representing 

the class, this information can be used for attribute-based learning. The ontology walk 

algorithm is repeated to optimize the embedding process and generate different sentences 

for each class. By performing BERT on the newly generated sentences after each walk, a 

representation of the class can be obtained with shared attributes between seen and unseen 

classes. 

Next, the extracted keyword sentences are converted into contextualized embedding 

vectors (ϕ) by using BERT, a self-supervised transformers model pre-trained on a massive 

corpus of multilingual data. The self-supervision implies that the model was pre-trained 

entirely on raw texts, with no human labeling. A popular BERT model is provided by 

Huggingface’s transformers package (Wolf et al. (2019)). BERT will convert an extracted 

sentence to a column vector of dimension M for class embedding, i.e., ϕ (y). The embedding 

vectors for all N classes can be collected in a ϕ matrix with dimension M ×N (e.g., Figure 4). 

Once the extracted sentences are converted to a column vector of dimension M through 

BERT, the embedding of each class (column) can be fine-tuned by swapping between rows 

in the ϕ matrix (Figure 4). Such a manipulation essentially applies linear mapping to the 

initial embedding matrix converted from the ontology to obtain the finalized embedding 

vector. The proposed procedure of converting/parsing defect ontology (φ) to the vector 

representation of class (i.e., defect class embedding ϕ) is summarized in Figure 5. 
 

 
Figure 4: Linear mapping, such as row swapping, to fine-tune the embedding vector of 

defect classes 

The proposed methodology essentially relies on experts’ domain knowledge to create 

attribute vectors that are suitable for defects in additive manufacturing. However, it has 
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N 

 

 
Figure 5: The logic flow of using ontology and natural language processing to obtain defect 

class embedding. 

 
the advantage of providing a generalized, uniform representation of engineering knowledge 

about defects in printing applications (Please refer to Supplementary S3 for details). 

 

2.2 Joint ontology tuning and class embedding guided by ZSL 

This section discusses the optimization problem formulation for tuning the ontology and 

class embedding guided by ZSL. It focuses on the challenge in the formulated problem and 

proposes a solution algorithm integrating stochastic gradient descent with metaheuristics 

based on exploration/exploitation. 

 

2.2.1 Formulation of joint optimization 

Once features θ(x) and attributes ϕ(y) are extracted, the objective Eq. 2 can be detailed 

with an optimization formulation. The proposed framework learns the feature-to-attribute 

mapping matrix W , attribute stacking matrix φ and class embedding matrix ϕ by mini- 

mizing the objective function: 

 

min 
1 

 
 

W,φ,ϕ N 
L 

L(yn 
n=1 

, f (xn ; W, φ, ϕ)) (4) 

where L is the loss function, defined as a ranking-based loss function (Xian et al. (2016)): 

L = 
L

 

y∈Y tr 

 

max{0, ∆(yn, y) + F (xn, y; W) − F (xn, yn; W)}. (5) 

where ∆(yn, y) = 1 if y ̸= yn and 0 otherwise. This loss function can force the model to 

produce higher compatibility between the input data (e.g., image) embedding and the class 

embedding of the true label than between the image embedding and the class embedding of 

incorrect labels. In the training phase, the mapping Ŵ , ontology φ̂ ,  and class embedding 
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ϕ̂ are jointly estimated through (4) and (5) based on labeled samples from published data 

sources and literature. 

Challenge in the joint optimization: The formulation (4) and (5) have the challenge 

in the combinatorial search for ontology and defect class embedding and minimization of a 

non-smooth ranking-based loss function, which is not jointly convex in all the W′s. The 

combinatorial search in this optimization can be briefly explained in an example in Figure 6, 

where an ontology with two-level structures is simplified as a matrix. On the left panel, 

light grey cells indicate all candidate attributes (row) associated with each class (column) 

guided by engineering knowledge. The right panel is the selection of attributes as indicated 

by dark grey cells after tuning. The ontology can be restructured by exploring different 

combinations of attributes and connections between levels and sub-levels in ontology φ. 

Furthermore, the search for the embedding of the sentences from ontology exploration, as 

shown in Figure 4, adds to the computational cost of obtaining defect class embedding. Such 

combinatorial search can be computation-expensive if the ontology has a large structure 

with multiple levels. The ontology exploration and search for class embedding vectors are 

guided by performance feedback from ZSL based on the minimization of the loss function. 

This performance feedback represents the ability of the current embedding to represent the 

class and promote better attribute sharing between seen and unseen classes. 

 

 

 
Figure 6: An illustration of ontology optimization. The left panel shows all candidate 

attributes based on domain knowledge, represented by light grey cells. The right panel 

shows the selected attributes after tuning, represented by dark grey. 
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Remark: If engineering knowledge about the ontology structure φA is available, the ob- 

jective ( 4) can be regularized to ensure the closeness with φ such as: 

min 1 
"£N 

L(yn, f (xn; W, φ, ϕ)) + λ lφ − φAl2 
, 

where λ is the regularization parameter that can be later determined by cross-validation. 

This formulation is to fine-tune the ontology according to the data collected. 

 

2.2.2 Integrating metaheuristics with stochastic gradient descent 

The optimization in the training phase can adopt a two-stage strategy: (1) search for 

mapping W in the compatibility function given class embedding ϕ and ontology structure 

φ by stochastic gradient descent to minimize the ZSL loss function in Eq. (4) and (2) find 

class embedding ϕ and ontology structure φ through exploration and exploitation. The 

ZSL loss in stage (1) will guide the tuning of ontology φ and embedding ϕ. Supplementary 

S8 provides the flow chart of the optimization process. 

The procedure is summarized in Algorithm 1. The input data and parameters include 

In dt - sample features; owl- defect ontology; lr - learning rate; ep - total number of epochs; 

erly stp - early stop epochs; rd sd - random seed; Th0 - ontology exploration rate; and m 

- the iteration number. The features θ(x) are extracted in line 4. The ontology (φA) for 

class embedding is initialized in line 5, and the mapping matrix W is randomly initialized 

in line 6. An iterative search process begins at line 10. Each iteration implements the 

two-stage search, where lines 8-16 implement the stochastic gradient descent in stage (1) 

to update the mapping matrix W from training data, and lines 17-29 search for the tuning 

of ontology and class embedding in stage (2). In stage (1), the stochastic gradient descent 

draws sample (xn, yn) at each step t and searches for the highest compatible class y ̸= yn 

as shown in line 11, where η(t) is the learning step size. The trained W is applied to the 

data for tuning ontology to estimate classification accuracy in lines 14. 

In stage (2), this accuracy is compared with an ontology exploration rate Th0 to de- 

termine if the algorithm continues ontology structure exploration (lines 25-26) based on a 

random walk and NLP or refine class embedding (lines 23). To extract information from 

ontology, a random walk is performed iteratively through different branches of the ontology 

(line 25). At iteration m, a function randomWalk is executed to perform this task based 

on section 2.1.2 and Table:1 gene formulation. The iterative step includes three functions: 

W,φ,ϕ N n=1 
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• OntologyWalk(φ(m)) → Gene(m): Depending on the performance of the previous 

ontology structure, an ontology walk is performed across the branches to extract new 

information. 

• Mutation(Gene(m)) → Gene(m+1): A new set of attributes are generated by mutating 

local gene segment, e.g., 16 mutated to 17. Each gene represents a unique set of paths 

on the walk. 

 

• Decoding(Gene(m+1)) → φ(m+1): The newly generated genes (representing a new 

path) are then converted (decoded) to sentences with attributes. 

 
In each iteration, the best-discovered ontology and embedding will be updated (lines 19- 

21). The iteration will continue when certain convergence criteria are not satisfied (line 

10), such as ZSL accuracy no longer improves or the cut-off iterations have been reached. 

The algorithm outputs the mapping matrix W∗, tuned ontology φ∗, and class embedding 

ϕ∗ for future ZSL implementation. 

 

3 Case study 

This section presents a case study to demonstrate the proposed ontology-guided attribute 

learning in helping identify defects that are unobserved in training data. 

 

3.1 A direct-ink-writing process for creating nanocomposites 

The case study focuses on a printing process for creating a new nanowire-polymer composite 

structure (Shan et al. (2019)) as photoactive coatings that detect visible light. Supplemen- 

tary S7 presents the details of the printing process. For the simplicity of illustration, this 

research only focuses on ten defect types of cracks and pores in different morphologies as 

captured by microscopic images from different data sources. An example of these defects 

is given in Figure 7. The samples for classes 1,3, 7, and 9 were obtained from a printing 

process of functional composites (Shan et al. (2019)), while the remaining classes 2, 4, 5, 6, 

8, and 10 were obtained from other AM processes, such as selective laser melting (SLM). 

It should be noted that although samples obtained from SLM are very different, certain 

defect morphologies still share some common attributes with the direct-ink-writing process. 
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The idea can be analogous to the learning of a certain species by leveraging the attributes 

of different types of animals. As such, this study also explores the opportunity of attribute 

learning in leveraging information from more different printing processes as reported in 

published data and literature. The types of printing defects considered in this study are 

summarized in Supplementary S4. 
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Remark on between-process attribute sharing: Certain attributes are unique to each 

AM process or its family. When AM processes are intrinsically distinct, sharing attributes 

based on process parameters and their impacts on defects may not be feasible. In ontology, 

attributes related to causes and materials can be unique to each type of AM process and 

can only be shared within similar or closely related AM processes. Attributes related 

to morphology, on the other hand, are more transferable across different processes. For 

example, in SLM and other directed energy AM processes, cracks are caused by localized 

thermal stress, whereas in direct inc-writing processes, cracks are caused by tiny pores 

and rapid solidification during extrusion. The causes are mainly related to the physics of 

each process, and the process-defect relationship is not transferable. However, all cracks 

have common attributes of zig-zag shapes and long aspect ratios that can be shared across 

different processes. Similarly, pores caused by trapped gases during extrusion or material 

preparation that exhibit roundish morphologies on a surface can be shared across processes. 

 

3.2 Defect data preparation and embedding 

The dataset includes ten defect classes with five samples per class. All defect data, along 

with their labels, were collected and categorized into training and testing datasets. Some 

or all samples in the testing data are not present in the training data, making them un- 

seen. The training data only includes seen classes that share common attributes and class 

embedding with unseen classes. For data with unseen classes, one part is reserved for fine- 

tuning the ontology. The rest is for testing the performance. The algorithm learns to map 

the features extracted from training samples to their respective attribute-based embedding. 

Shared attributes between seen and unseen classes exist, allowing the algorithm to extrap- 

olate information on unseen classes based on their class embedding during training. The 

algorithm focuses on the attributes of the shared attributes of seen classes. The algorithm 

is then tested to determine the label of the unseen classes, and the prediction is compared 

against the actual label. Traditional classification metrics such as accuracy, F1 score, and 

confusion matrix are still applicable to evaluate the algorithm’s performance in determining 

the unseen class label. 

The case study uses different percentages of available classes to define classes unseen in 

the training phase, including 10%, 20%, 30%, 40%, and 50%. Figure 7 shows an example 
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of seen vs. unseen class split, by which the ZSL classifier will be trained on 70% (7 seen 

classes) and tested for 30% of available classes (3 unseen classes on the right column). Each 

class has its unique property in shape, texture, or color. Sharing attributes between seen 

and unseen classes is vital for ensuring the good performance of ZSL. Below lists some 

examples of shared features: 

• Irregular pore-1 shares the attribute “grey colored surface” with Large pore-2 and the 

attribute “irregular shaped pores” with Irregular pore-2. 

• Large pore-1 shares the attribute “reddish surface with small red dots” with Tiny 

crack-1 and the attribute “large circular pores” with Large pore-2. 

 

 
Figure 7: An example of split for seen classes and unseen classes in the dataset. 

 
In the testing/implementation phase, the defect classes can include seen and/or unseen 

classes. This study will focus on two scenarios : (1) all classes in the testing data are unseen 

to demonstrate the potential of the ontology-guided attribute learning, and (2) a mixture 

of seen and unseen classes in the testing data that may lead to lower classification accuracy 

due to more candidate classes included. 

Feature extraction was performed to obtain θ(x) from defect images. This study uses 

Img2Vec python library for image embedding based on a ResNet50 model and its weights 

pre-trained on the ImageNet dataset (Deng et al. (2009)). Supplementary S5 outlines the 

details of the pre-trained network used for feature extraction and why its suitable for the 

proposed methodology. 
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This study also employed the ”BERT BASE Uncased” variant of the BERT model to 

convert sentences generated from multiple walks into contextualized embedding vectors (ϕ) 

of size 768. The tokenization process was performed using the open-source python library 

”TransformerWordEmbeddings.” The BERT BASE model used in the study is the smaller 

variant of the BERT model, designed for lowercase sentences. The ”BERT BASE Uncased” 

variant consists of 12 transformer blocks, each containing a multi-head self-attention mech- 

anism, 768 hidden layers, and 12 attention heads. To embed defect classes, the model takes 

a sentence as input, tokenizes it into individual words, and generates a vector embedding 

for each token. The embedding of each defect class token captures the meaning and context 

of the sentence that describes the class. 

 

3.3 Results and discussion 

One outcome of this study is to build an ontology of defects that promotes the sharing of 

defect attributes. Since not all features are equally relevant to learning the classifier, the 

algorithm should learn to re-structure the defect ontology and fine-tune the representation 

of attributes shared between seen and unseen classes. This section presents the results 

on (1) the optimized tuning of the defect ontology structure, (2) the ZSL accuracy of the 

defect classification achieved by ontology-guided attribute learning, (3) the analysis of how 

ontology exploration rate in the optimization impacts testing accuracy, (4) the robustness 

of the methodology against noises in the data, and (5) comparative study against baseline 

transfer learning methodologies. 

 

3.3.1 Optimized tuning of the defect ontology structure 

This section presents the optimized tuning of the ontology that can facilitate the sharing 

of attributes between seen and unseen classes and its effect on defect classification perfor- 

mance. Figure 8 illustrates an example of optimized tuning of a 2D ontology structure in 

a tabular format when certifying processes with ten possible defect classes (assuming six 

seen classes in the training and four unseen classes in the blue cells with bold text present 

in the testing data). A light yellow cell with “x” label indicates that a particular attribute 

is selected for the corresponding defect class in the ontology configuration, and a grey cell 

means that the corresponding candidate attribute is not selected. 
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Figure 8: An example of the optimized ontology through attribute selection. 

 
Figure 8 illustrates how the morphological information in the ontology enables knowl- 

edge sharing and transferability between seen and unseen classes. For example, even though 

Wide crack-1 is an unseen class, the attribute learner extrapolates how it might appear 

because it shares “zigzag-shaped” morphology with seen classes Tiny crack-2 and Wide 

crack-2. Similarly, Irregular pore-1 is unseen but shares an “irregular pore” attribute with 

Irregular pore-2. In addition, both Small pore-1 and Large pore-1 are unseen classes, each 

with a unique set of attributes. They both share an attribute “circular holes,” which is the 

shape of the defect with the seen class Small pore-2. The tuned ontology in Figure 8 is a key 

enabler in performing ZSL of unseen defects by generating appropriate class embeddings 

for seen and unseen classes. 

 

3.3.2 Application of the ontology: Zero-shot defect classification 

The ontology-guided attribute classifiers are trained and tested under different hypothetical 

scenarios with different splits between seen vs. unseen classes. Results in Table 2 (column 

3) show that the algorithm successfully identified defects with unseen classes only. The 

methodology was tested for a range of scenarios from one unseen class to five unseen classes 

out of ten. It can be seen that the ZSL based on the tuned defect ontology achieved an 

accuracy of 100% when one unseen class is mixed with seen classes in the testing data 

(column 4). The accuracy decreased as more unseen classes are included for both scenarios. 

It should be noted that the inclusion of more classes in the training data may potentially 

contribute to the defect ontology, thus improving the learning accuracy. The case study 
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includes ten classes in total, limiting the accuracy when the percentage of unseen classes 

increases in the testing data. However, an accuracy of 0.66% (worst result) is still far better 

than a random selection of one class out of ten, even if 50% of the classes are unseen. 

Table 2: Comparison of our model to existing ZSL methods 

 
In Table 2 (columns 5 and 6), the ontology-guided attribute learning was compared 

against a recent ZSL method called ALE Akata et al. (2015) in computer vision. It performs 

image classification based on the classes embedded by contextualized language processing 

models. In a ZSL situation, the ALE outperforms the conventional Direct Attribute Pre- 

diction Lampert et al. (2009) baseline approaches on the Animals With Attributes Lampert 

et al. (2009), and Caltech-UCSD-Birds Wah et al. (2011) datasets. The results in Table 

2 show that the proposed ontology-guided attribute learning outperforms ALE in both 

testing scenarios, demonstrating the importance of class embedding of defects. When the 

defect classes are embedded by applying general language models to the text dataset in 

ALE, the ZSL learning accuracy achieved by ALE can sometimes be as worse as a random 

experiment (flat accuracy across all classes). With the class embedding improved by the 

proposed ontology-guided optimization, the performance is significantly improved. 

Figure 9 shows a confusion matrix for the true and predicted labels when only three 

unseen classes are present in the testing data, and Figure 20 in Supplementary S9 illustrates 

the scenario when seen and unseen classes are mixed in the testing data. Both achieve an 

accuracy above 0.72. The three unseen class ZSL task only involves the classification of three 

unseen classes, while the mixture of seen and unseen classes includes all ten classes in the 

testing dataset. Therefore, the classification in the unseen-only scenario is less challenging 

than that in the mixed-class scenario. The lower accuracy obtained in the mixed class 

scenario is expected because the algorithm is presented with images from all ten classes, 

making the decision harder. However, this study does not intend to compare the results 
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between seen-only classes. 

The results demonstrate the potential of the proposed ontology-guided attribute learn- 

ing in accelerating process certification based on very few measurements from a new process 

of interest by leveraging the data from different processes and literature. This study is 

among the first attempts to deal with zero observations/measurements of the defects from 

the target process of interest. This learning challenge is beyond the capability of popular 

classification algorithms, transfer learning, or semi-supervised learning approaches that still 

anticipate measurements in the training data from the target process. 

 

 
Figure 9: Confusion matrix, accuracy, precision, recall, and F1 score of ZSL to classify 

three unseen classes only 

 

 

3.3.3 Effect of ontology exploration rate 

The ontology exploration rate 0 ≤ Th0 ≤ 1 in the two-stage optimization can determine 

how likely the ontology would be re-structured to import new information. Compared 

to the tuning of class embedding, the ontology update implies a more drastic change in 

searching for new information. This section discusses the effect of the ontology exploration 

rate on the ZSL accuracy so that an appropriate range of Th0 can be determined. All 

other parameters, such as epochs and cut-off values for terminating the iterations, were 

kept constant at the optimal level previously discovered. 

A high exploration rate means a high frequency of ontology re-structuring to generate 

very different embeddings, thus searching along more directions to seek optimal solutions. 

By contrast, the optimization on a lower exploration rate relies more on tuning class em- 

bedding and initial ontology. Figure 10 shows the 95% confidence interval (CI) of average 

accuracy estimated from multiple samples for each Th0. The results indicate that a lower 

rate of ontology exploration (0.1-0.4) resulted in lower average accuracy. As Th0 increases, 
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Figure 10: The effect of ontology exploration rate on the performance of the classifier. 

the average accuracy increases; however, it does not exhibit a statistical difference when 

Th0 ≥ 0.5. The median accuracy is relatively close when Th0 ≥ 0.7. It is also noticed that 

the highest Th0 may also lead to larger variability in the average accuracy. Therefore, a 

value around 0.7 is recommended for Th0 in this case. In practice, the selection of ontology 

exploration can be affected by the selection of the initial ontology. An initial ontology 

capturing more common attributes between seen and unseen classes may be expected to 

work better with a lower value of Th0. As such, a mid-range value for Th0 is recommended 

considering the balance of all possible scenarios. 

 

3.3.4 Robustness against data noises 

A robustness study was conducted by adding noises at different levels to existing images. 

Gaussian white noise variance ranging up to 1.2 was added to every image. Figure 11 (lower 

panels) shows an example of a noise-free reference image against four levels of added noises. 

The added noises can reduce any common features among classes and images. Also, added 

noises reduce visibility by removing fine details and making images blurry. 

The noisy data include seven training classes and three unseen testing classes and each 

run was repeated ten times. Boxplot in Figure 11 shows the interquartile range (IQR) and 

the median of classifier accuracy at each noise level for testing only unseen classes (upper left 

panel) and a mix of seen and unseen classes (upper right panel). In general, the accuracy of 
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Figure 11: Effect of noise on accuracy for unseen classes only and mixed seen/unseen classes. 

 
the proposed methodology decreases as the images become increasingly blurred. We notice 

that the algorithm’s performance for mixed classes of seen and unseen classes exhibits a 

rapid decline in performance due to the bias toward the seen classes during training. This 

pattern occurred because the number of classes to be classified could significantly affect the 

accuracy consistency as the noise level increases. Thus, the accuracy in the classification of 

ten seen-unseen classes shows low variability (very narrow IQR boxplot), indicating that the 

performance is becoming consistently worse. By contrast, the accuracy in the classification 

of three unseen classes exhibits larger variability (wide IQR). 

 

3.3.5 Comparative study against transfer learning 

The proposed methodology was also compared against three benchmark methods under 

a transfer learning framework. It should be noted that traditional transfer learning is 

incapable of dealing with ZSL. Thus, this comparison was made for one-shot and two-shot 

learning, i.e., classes with only one or two samples observed in training data. In this study, 

three popular pre-trained CNN’s for image classification were employed, including AlexNet, 

VGG, and ResNet50. Supplementary S6 outlines details of the transfer learning networks. 

To implement transfer learning, a pre-trained CNN network was downloaded from an 

open-source repository (Falbel (2022)). Then, the last fully-connected and softmax layers 
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were replaced with a new custom fully connected layer containing ten output neurons. 

During training, the pre-trained weights were frozen and not updated, but the added final 

layer was trained using the AM defect data. In this research, transfer learning techniques 

such as AlexNet, ResNet50, and VGG were compared with the proposed method for one- 

shot and two-shot learning scenarios where only one or two samples of a class were present 

in the training data. The box plots of accuracy for the one-shot learning tests are shown in 

the left panel of Figure 12, and the results of two-shot learning experiments are reported in 

the right panel. For both cases, the proposed method statistically outperformed the other 

transfer learning methods, with ResNet being the worst. 

 
Figure 12: Comparison of attribute learning against three transfer learning methods during 

one-shot (left panel) and two-shot (right panel) experiments 

 

 

4 Conclusion 

The scarcity of measurement data during new printing process development may prevent 

scale-up production or commercialization within a short time. This study aims to address 

the challenge of limited measurements and experiments to be conducted for new printing 

process development. By leveraging published data and literature, this research establishes 

an ontology-guided attribute learning methodology to identify defects that are completely 

unobserved in training data. The method tackles the zero-shot learning (ZSL) challenge by 

mimicking how humans learn a new concept by recognizing attribute combinations. The 

proposed algorithm learns the attributes of a defect based on developing/learning a defect 

ontology and how attributes are shared across seen and unseen classes. 

The proposed attribute learning first establishes an initial defect ontology to facilitate 
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uniform knowledge representation and attribute sharing, representing the morphology, ma- 

terials, and process parameters related to defects. This procedure is guided by engineering 

knowledge from published data and literature and facilitated by an annotation tool, owl, to 

build a defect ontology. An algorithm for exploring the ontology structure is developed and 

combined with a pre-trained BERT, thus parsing the ontology into defect class embedding 

(attributes). By compatibility mapping, the attributes are correlated to the features ex- 

tracted from input data, such as microscopic images by Img2vec embedding. In the training 

phase, attribute learning involves a joint decision-making problem by maximizing the com- 

patibility mapping between the input features and defect attribute combinations extracted 

from the defect ontology. The compatibility mapping is found by stochastic gradient de- 

scent in stage (1) optimization. In stage (2), a metaheuristics was developed to explore 

and exploit ontology structures and class embedding. The testing phase finds the most 

compatible classes with testing images based on the trained mapping and class embedding. 

A case study is conducted on classifying defects for a direct-ink-writing of nanocom- 

posites. A simplified defect ontology based on morphologies was established and tuned to 

facilitate attribute extraction for attribute learning. The shared attributes between seen 

and unseen classes of defects resulted in better classification performance when identifying 

unseen defect classes. The results show an accuracy of 0.76, 0.86, and 0.9 achieved when 

testing four, three, and two unseen classes, respectively, when both seen and unseen testing 

samples are mixed. The study also discusses the relationship between the ontology explo- 

ration rate and testing accuracy to help identify an appropriate value for it. The results 

from the case study show that accuracy is low at lower exploration rates. A steady increase 

in performance has been recorded as the ontology exploration rate increases. This increase 

in performance is because higher rates result in a frequent change of attribute combinations, 

which increases the probability of finding the most optimal one. Furthermore, analyses were 

also carried out to investigate the robustness of the method by adding noises of different 

levels to every image in the dataset. 

The proposed methodology’s accuracy decreases with increasingly blurred images. Per- 

formance decline is observed in the algorithm when dealing with mixed classes of seen and 

unseen classes compared to tests containing only unseen classes. This decline is due to bias 

toward seen classes during training and the impact of increased class numbers on accuracy 
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consistency as noise levels increase. 

Future research directions include: (1) improving and refining defect ontology by in- 

corporating more process parameters and their value ranges, such as printing speed and 

temperature, to facilitate the discovery of process-defect relationships; (2) Using ontology- 

guided attribute learning to establish process windows for new process qualification given 

limited measurements; (3) developing a pipeline of algorithms based on a search engine, 

adaptively scraping published data online by topic modeling, such as latent Dirichlet alloca- 

tion (LDA), to extract most relevant attributes for class embedding in ZSL; (4) leveraging 

the emerging Generative Pre-trained Transformers (GPT) or other large language mod- 

els to improve the attribute embedding based on their models pre-trained from massive 

literature data (refer to Supplementary S10); and (5) developing a self-supervised learn- 

ing framework for ZSL where defect knowledge is organized under ontology and labels are 

generated without human supervision before ontology fine-tuning and attribute learning. 

 

5 Data availability statement 

The data and code used in this study is here (https://github.com/FAMU-FSU-IME/Ontology- 

guided-Attribute-Learning.git). 

References 

Akata, Z., F. Perronnin, Z. Harchaoui, and C. Schmid (2015). Label-embedding for image 

classification. IEEE transactions on pattern analysis and machine intelligence 38 (7), 

1425–1438. 

Bappy, M. M., C. Liu, L. Bian, and W. Tian (2022). Morphological dynamics-based anomaly 

detection towards in situ layer-wise certification for directed energy deposition processes. 

Journal of Manufacturing Science and Engineering 144 (11), 111007. 

Bartlett, J. L., F. M. Heim, Y. V. Murty, and X. Li (2018). In situ defect detection in 
selective laser melting via full-field infrared thermography. Additive Manufacturing 24, 

595–605. 

Chen, Y., X. Peng, L. Kong, G. Dong, A. Remani, and R. Leach (2021). Defect inspection 

technologies for additive manufacturing. International Journal of Extreme Manufactur- 

ing 3 (2), 022002. 

Cheng, L., F. Tsung, and A. Wang (2017). A statistical transfer learning perspective for 

modeling shape deviations in additive manufacturing. IEEE Robotics and Automation 

Letters 2 (4), 1988–1993. 



29  

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). Imagenet: A large-scale 
hierarchical image database. In 2009 IEEE conference on computer vision and pattern 

recognition, pp. 248–255. Ieee. 

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). Bert: Pre-training of deep 

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . 

Du, W., Q. Bai, Y. Wang, and B. Zhang (2018). Eddy current detection of subsurface defects 

for additive/subtractive hybrid manufacturing. The International Journal of Advanced 

Manufacturing Technology 95 (9), 3185–3195. 

Esfahani, M. N., M. M. Bappy, L. Bian, and W. Tian (2022). In-situ layer-wise certification 
for direct laser deposition processes based on thermal image series analysis. Journal of 

Manufacturing Processes 75, 895–902. 

Falbel, D. (2022). torchvision: Models, Datasets and Transformations for Images. 

https://torchvision.mlverse.org, https://github.com/mlverse/torchvision. 

He, K., X. Zhang, S. Ren, and J. Sun (2016, June). Deep residual learning for image 

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR). 

Jin, Y., S. Joe Qin, and Q. Huang (2016). Offline predictive control of out-of-plane shape 
deformation for additive manufacturing. Journal of Manufacturing Science and Engi- 

neering 138 (12). 

Khanzadeh, M., S. Chowdhury, M. A. Tschopp, H. R. Doude, M. Marufuzzaman, and 

L. Bian (2019). In-situ monitoring of melt pool images for porosity prediction in directed 

energy deposition processes. IISE Transactions 51 (5), 437–455. 

Lampert, C. H., H. Nickisch, and S. Harmeling (2009). Learning to detect unseen object 

classes by between-class attribute transfer. In 2009 IEEE conference on computer vision 

and pattern recognition, pp. 951–958. IEEE. 

Lampert, C. H., H. Nickisch, and S. Harmeling (2013). Attribute-based classification for 

zero-shot visual object categorization. IEEE transactions on pattern analysis and ma- 

chine intelligence 36 (3), 453–465. 

Luan, H. and Q. Huang (2016). Prescriptive modeling and compensation of in-plane shape 

deformation for 3-d printed freeform products. IEEE Transactions on Automation Sci- 

ence and Engineering 14 (1), 73–82. 

Millon, C., A. Vanhoye, A.-F. Obaton, and J.-D. Penot (2018). Development of laser 

ultrasonics inspection for online monitoring of additive manufacturing. Welding in the 

World 62 (3), 653–661. 

Pandiyan, V., R. Drissi-Daoudi, S. Shevchik, G. Masinelli, T. Le-Quang, R. Log é , and 
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