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Abstract

Identifying printing defects is vital for process certification, especially with evolving
printing technologies. However, this task proves challenging, especially for micro-level
defects necessitating microscopy, which presents a scalability barrier for manufactur-
ing. To address this challenge, we propose an attribute learning methodology inspired
by human learning, which identifies shared attributes among seen and unseen objects.
First, it extracts defect class embeddings from an engineering-guided defect ontology.
Then, attribute learning identifies the combination of attributes for defect estimation.
This approach enables it to recognize previously unseen defects by identifying shared
attributes, even those not included in the training dataset. The research formulates a
joint optimization problem for learning and fine-tuning class embedding and ontology
and solves it by integrating natural language processing, metaheuristics for exploration
and exploitation, and stochastic gradient descent. In a case study involving a direct-
ink-writing process for creating nanocomposites, this methodology was used to learn
new defects not found in the training data using the optimized ontology. Compared to
traditional zero-shot learning, this ontology-based approach significantly improves class
embedding, outperforming transfer learning in one-shot and two-shot learning scenar-
ios. This research represents an early effort to learn new defect concepts, potentially
reducing the need for extensive measurements in defect identification.

Keywords: Additive Manufacturing; Attribute learning; Ontology; Defect identification;
Process certification

1 Introduction

In recent decades, the development pace of new processes for additive manufacturing has
been accelerating; however, many research efforts stopped at proof-of-concept. One grand

challenge is identifying defects and anomalies in printed structures that are helpful for



process certification. Automated defect identification is critical for qualifying and certifying
printing processes and parts, as it enables the evaluation of whether printed layers or
parts are defect-free or have specific types of defects. This capability is especially useful
when developing new printing processes. Typically, manufacturers rely on their experience
for offline inspection of printed parts or online inspection of printed layers for process
certification. However, if they lack experience and measurement capability or budget, defect
identification becomes challenging, hindering the development of repeatable processes for
scale-up production.

The defect identification requires significant efforts in conducting measurements to col-
lect labeled data that identifies the defect types. Afterward, machine learning algorithms
can be implemented to train classifiers that can categorize defects to build a process win-
dow that reveals how processes impact defects. Nevertheless, the measurements usually
involve microstructure characterization by microscopy, which could be expensive and time-
consuming. For inexperienced researchers and manufacturers, there exist entry barriers to
developing repeatable processes for the scale-up manufacturing and commercialization of
new printing technologies within a short period of time.

Recent research presents potential solutions to the classification problem given limited
measurements or experiments. Transfer learning, including multi-task learning (Pandiyan
et al. (2022); Cheng et al. (2017)), stands out as one method that has been attempted by
recent research, aiming to improve the learning accuracy through the transfer of knowledge
from a related learning task. The existing framework of transfer learning still expected
some labeled data to be collected for a target learning task. However, a zero-shot learning
(ZSL) scenario can be more realistic for new process development, i.e., some anomalies or
defects are completely unobserved in the training data.

This paper proposes a method to deal with ZSL by imitating human recognition behav-
ior to recognize new objects by recognizing the combinations of attributes. The method
explores the development of a defect ontology as a library of managing defect knowledge to
obtain attributes, a significant challenge in implementing the ZSL approach. An ontology
can be established for process anomalies by developing a unified way of representing the
defect information, called attributes, from published data and engineering knowledge that

can be shared across a range of processes. The learning of defects in a new process may



leverage the established ontology to characterize the printing anomalies or defects. This
way may enable the identification of unseen defects, i.e., a ZSL scenario. The ontology-
based approach has recently become popular in the manufacturing industry, especially in
developing maintenance strategies for system failures. Its potential in learning printing

defects for new processes has not been understood.

1.1 State-of-the-art

This section reviews the related research on the certification and small-sample quality con-
trol for additive manufacturing (AM) and state-of-the-art research on ontology, primarily
in manufacturing applications.

Defect Detection for Process Certification. Several studies have been proposed to iden-
tify printing defects for process certification that evaluates whether the printed layers are
defect-free. Depending on the defect types, different inspections were implemented for
post-printing processes or in real time. For real-time detection, researchers employed spa-
tial data cloud by 3D scanners (Ye et al. (2021)), thermal images by infrared or co-axial
pyrometer cameras (Khanzadeh et al. (2019); Seifi et al. (2019)), and/or stream videos by
high-speed cameras Vora and Sanyal (2020), acoustic emissions (Wu et al. (2016)), while
post-printing inspections include microscopy, scanning electron microscopy (SEM), X-ray
computed tomography, magnetic resonance imaging, and/or ultrasonic testing as reviewed
in Vora and Sanyal (2020).

Defect Feature Extraction. Recent research extract features to characterize and detect
defects and their underlying causes by using non-traditional defect detection methods.
Infrared thermal imaging technology proposed by Bartlett et al. (2018) uses a long-wave
infrared camera to detect the shape and contour of defects as thermal radiation differences.
Thermal analysis was also proposed in Bappy et al. (2022) in order to detect abnormalities
in the morphological dynamics of melt pools and heat-affected zones. Similarly, Esfahani
et al. (2022) carried out thermal image series analyses to characterize defects by studying
the dynamics in the layer-wise thermal history. Penetration defect detection in Chen et al.
(2021) uses capillary action and fluorescent or colored dyes to identify surface-opening de-
fects. After applying the penetrant fluorescent dye, a developer is applied to characterize

the defect. Eddy current testing proposed by Chen et al. (2021) uses electromagnetic in-



duction to identify defects in conductive materials by measuring changes in induced eddy
currents. Such changes represent the test piece’s material, defect, shape, and size. Ul-
trasonic testing (Du et al. (2018)) uses ultrasonic waves to inspect internal defects and is
more sensitive to cracks, incomplete penetration, and infusion defects. In ultrasonic testing,
reflected high-frequency sound waves characterize defects. Laser ultrasonic detection meth-
ods have been proposed to improve the performance of ultrasonic testing for crack defects
and have better performance in defect detection (Millon et al. (2018)). Laser ultrasonic
detection, on the hand, detects sound waves representing AM defects using a pulsed laser
and optical detection via interferometers.

Small-sample quality control for AM. Recent research has been developed to reduce the
measurements and samples needed in data modeling or machine learning for geometric
deviation and shape error compensation Luan and Huang (2016); Wang et al. (2016); Jin
et al. (2016); Cheng et al. (2017). This line of research decomposes the product shapes in the
shape error model. It progressively develops the shape error prediction model from simple
shapes, such as cylinders and polygons, to free-form shapes. Sabbaghi et al. (2018); Jin et al.
(2016); Sabbaghi and Huang (2016) developed a statistical framework of effect equivalence
for transferring information across multiple shapes and printing processes. Overall, the
related research focuses on geometric errors of the printed shapes and starts modeling from
specific common shapes to establish knowledge transfer. However, the internal defects in
each layer, as more concerned with emerging printing processes for functional structures
using novel materials, are not considered. Furthermore, a transfer learning technique was
also utilized by Scime and Beuth (2018) to efficiently train a multi-scale convolution neural
network using a pre-trained AlexNet (MsCNN), which detected powder irregularity for the
classification of defects.

Zero-shot learning in computer vision. In the past two decades, a significant breakthrough
has been made for small-sample learning in computer vision. One accomplishment is zero-
shot learning (ZSL), aiming to recognize objects that are not included in training data. In
other words, testing and training class sets are disjointed under a ZSL environment. This
line of approach is to identify new objects by transferring attributes from heterogeneous
objects (Lampert et al. (2013)). One common strategy in ZSL is to learn a linear compati-

bility function between the features extracted from input images and attributes associated



with classes (class embedding) as annotated by experts or learned from elsewhere. The
related approaches include ALE (Akata et al. (2015)) and Latent Embeddings (LatEm)
Xian et al. (2016). These methods only focus on the visual recognition of new objects
without any engineering background. Additionally, there were limited discussions on how

to identify defect attributes to improve the ZSL accuracy.

1.2 Research gaps and proposed work
This paper identifies the following research gaps in small-sample learning for AM.

« Little work was found on identifying AM defect and morphology anomalies when the
labeled data about certain defects are all missing in the training data. Such a ZSL
scenario presents a major challenge to traditional classification algorithms and even
recent transfer learning or semi-supervised learning, which still requires limited data

from the target process.

» There is a lack of methods for effectively extracting class attributes about printing
defects to ensure the ZSL accuracy. Existing ZSL methods in computer vision primar-
ily rely on the expert annotation of data to generate different attributes and create
class embedding for ZSL algorithms. Also, attribute extraction and ZSL were stud-
ied separately and implemented in sequence. However, the selection of proper class
attributes significantly affects ZSL accuracy. It is essential to avail of a method that
can integrate engineering knowledge with machine learning for selecting appropriate

attributes shared between seen and unseen defect classes.

This survey demonstrate that knowledge on defect formation and characteristics is avail-
able with literature or online dataset to supplement data for supporting ZSL, thereby
proving the feasibility of the proposed attribute learning. Hence, this research proposes
an ontology-guided attribute learning framework that addresses the challenges in (1) ZSL
classification of printing defects that are unobserved in training data by recognizing at-
tributes shared between seen and unseen classes and (2) the learning of defect attributes
and associated class embedding to facilitate ZSL. This paper proposes to develop a defect
ontology initialized by published/shared data and information from the literature to extract

class embedding. A random walk algorithm is developed to explore the ontology structure



to generate a semantic description of defects, allowing natural language processing to parse
the ontology to defect embedding as attributes. The attribute learning framework formu-
lates a joint optimization problem to tune the defect ontology and determine an embedding
method. The problem is solved by integrating stochastic gradient descent with metaheuris-
tics by exploration/exploitation. The established defect ontology can help identify defects
in more printing processes under a ZSL scenario. A case study establishes/optimizes a
defect ontology for a direct-ink-writing of new composite materials and utilizes it to iden-
tify unseen defects. The study also discusses the impact of learning parameters on defect
classification accuracy and the robustness of the algorithm to noises in the input data.

In a broader aspect, this study is expected to become a building block for a pipeline
that scrapes data from literature and online databases to build a unified representation of
defects knowledge through ontology. This utilization and re-structuring of open-access engi-
neering information are expected to reduce the need for extensive testing and measurement
(especially microscopy). Eventually, the outcome of this study can expedite the new pro-
cess certification and lower the entry barriers for researchers/practitioners to commercialize
their technologies for market demand promptly.

The remainder of this paper is organized as follows. Section 2 proposes the methodol-
ogy of ontology-guided attribute learning, including an ontology-guided method to extract
attributes to facilitate ZSL in section 2.1, learning problem formulation, and a two-stage
solution algorithm in section 2.2, followed by a flowchart in supplemental materials. Section
3 presents a case study on a direct-ink-writing process for nanocomposites with results and

discussions. Finally, Section 4 summarizes the paper and outlines future research directions.

2 Ontology-guided Attribute Learning

The idea of attribute learning is to imitate the way how a human being would learn a new
concept, as discussed in Lampert et al. (2013). Figure 1illustrates an analogous example in
which a human learns to recognize an unseen class (ostrich) through shared attributes with
the panda, chicken, and other small birds. Although the person has never seen an ostrich
before, he/she can recognize the unique combination of feather, bill, and leg. Meanwhile,

literature may report an ostrich is a large bird that does not fly and has dark/light colors.



All the combination of the attribute information relevant to an ostrich can help identify it

with a highly successful chance.
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Figure 1: Illustration of attribute learning leveraging information from seen classes, along

with text, to identify unseen class ostrich.

Figure 2 presents a high-level illustration of learning by attributes. X is a dataset,
including training and testing data that cover the information for K discrete types (classes)
of defects Y = {y1, y2... yk}. Generally, training and testing splits can be represented
as Yt — Y t/= ¢, indicating that seen and unseen classes can all be present in the testing
data. However, ZSL represents a special testing case where testing data contains defect
classes Y'ts = {z1, z5,...zn } that are not fully observed in or disjoint with training data,
i.e., Yts N Yt = g. In the case study, both testing scenarios will be explored. Each defect
class can be associated with a set of attributes A = {a1, a2. . . ar}, which describe the
physical property, material, and printing condition, representing multi-level properties of
classes shared across different processes or objects. The arrow within the attribute layer
indicates the relationship between the attributes, e.g., the dependency between properties.
The diagram shows that defects unobserved in training data can leverage the attributes
shared with seen defects in the training data to identify the defects.

The formulation of attribute learning for ZSL scenarios can be described as follows.
Given dataset of N defects S = {(Xn, yn), n = 1...N }, where y, € Y  belongs to the

training set of defects or seen classes and x, is the corresponding data, such as images
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Figure 2: Attribute learning of unseen classes by leveraging the information from attribute

layers shared between seen and unseen classes.

represented by vectors. The objective is to map input data, such as microscopic images,
to its corresponding class even if images representing the class were not included in the
training dataset. Similarly to Xian et al. (2017), for a given dataset with input images X
and class label sets Y, a mapping function f needs to be trained such that f : X — Y,
where the mapping function f(x; W) can be defined as:

f(x; W) = argmaxyey F (X, y; W) (1)

For ZSL testing, the objective is to assign a class label to the data/image with the
highest compatibility. In the testing phase, the performance of the trained classifier was
evaluated to identify unseen classes that were not present in the training dataset. The
compatibility function aims to find the most compatible class with the testing data/images.

The compatibility function is defined on the features of input data 8(x) and attributes of

class ¢(y) and can be represented as:

F(x, y; W) = max(6(x)We(y)) (6))

When applying the classifier to the features extracted from testing images, different
candidate classes are evaluated to determine which class embedding can maximize the
compatibility with features from images. The objective of classification during the testing
stage is to identify the candidate class that has the best compatibility with the input

features of the testing images and report it as the output class. This compatibility-based



classification during the testing stage is a common practice in computer vision (Xian et al.
(2017)). Therefore, unseen classes in the testing data will be assigned a label identified by
this compatibility mapping during the testing stage and later compared to actual labels for
performance evaluation. Assume that the measured data from a new process are x test,.

The classification is achieved by finding a class k so that the compatibility between input

features 6(x_test,) and the kth class embedding ¢(yx) is maximized, i.e.,

k = argmax{@(x test,)W ¢(yi)} (3)

There exists abundant research on extracting features 6(x) from images, such as Img2Vec
python library for image embedding, which uses ResNet50 (He et al. (2016)) model and
its weights pre-trained on the ImageNet dataset (Deng et al. (2009)). By contrast, the
research on the extraction of class attributes ¢(y) for printing defects is limited. As such,
the key challenge in successfully implementing attribute learning is to obtain appropriate

combinations of attributes ¢(y) from data, as will be discussed in the next section.

2.1 Defectontology and class embedding for attribute extraction

This paper proposes to extract attributes from the defect ontology learned from the in-
formation with literature, online databases, and other process data. The defect ontology
represents a way of managing the knowledge of defect classes with a relationship structure
that can be shared across a range of processes. The attributes of defects can be extracted
from the class embedding (vectorial representation) from the ontology. This section first
formulates a joint learning problem for tuning ontology structure and method of creating
embedding vectors. Based on the embedding, this section develops a learning algorithm to
solve the problem by integrating stochastic gradient descent with metaheuristics based on

exploration and exploitation.

2.1.1 Defect knowledge organization by ontology

This section develops a semantic representation of engineering knowledge to extract class
attributes ¢(y). A structural knowledge representation of a manufacturing defect, known

as a defect ontology, is used to represent information about defects such as morphology,



causes, and materials. In this work, ontology is used to capture the knowledge about
different aspects of defects that occur during printing, such as morphology, underlying
causes, and associated materials.

The steps involved in building an ontology for defects in additive manufacturing are as
follows. First, it is necessary to identify the relevant concepts, relationships, and constraints
associated with the defects. These concepts and relationships are then represented as
class/subclass properties within the ontology. Next, they are organized under a hierarchical
structure using subclass and superclass relationships. Supplementary S1 and S2 outline the
details of the ontology-building process and updating with new information respectively.

Assume that the ontology has N classes and y € Y = {yi,......, yn}, and each class
in the structure has a set of M attributes {a; i = 1, 2....M } to describe the class. Each
class can be defined in an M-dimension attribute vector as @ (y) = [py,1......py,x], where
py,i Tepresents the measure of the association between each attribute a; and class y. If
the attribute and class are not associated, the corresponding value is zero. Stacking up
attribute vectors for N classes leads to an N X M matrix ¢ as shown in Figure 6, where
grey cells indicate that the attributes in the row are selected to be associated with the

defect class (column) for class embedding in the next step.

2.1.2 Parsing ontology for defect embedding

This section proposes an ontology exploration strategy integrated with natural language
processing (NLP) to convert or parse the ontology into class embedding in vector rep-
resentation to facilitate ZSL. To parse the ontology, a "walk” algorithm was developed.
This algorithm generates sentences that describe various aspects of the defect class using
domain-specific keywords such as morphology, color, surface texture, causes, and printing
parameters. These sentences are generated by traversing the ontology from the root to the
end nodes. The exploration starts with different defect nodes followed by different branches
in the ontology. For representation purposes, each combination of ontology branches and
segments can be represented as a gene. Take the ontology in Figure 3 for example. Gene
13 can represent that defect 1 is associated with branch 3, gene 16 with branch 6, and gene
17 with branch 7. The types of the association are labeled by different styles of arrows.

Table 1 shows an example of exploring ontology to generate genes and their explanations.
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The exploration of the ontology along different branches leads to different keyword sen-
tences. The table also summarizes the keyword sentences extracted corresponding to each
gene.

Associated Material ———»

Exhibits
morphology ............ »

Defect

Uneven
mixture of
olutiol

Thermal

s Rough uneven

surface, irregular
holes

Figure 3: An example of a defect ontology consisting of different relationships to identify

sentences containing specific attributes that describe the defect.

Table 1: presents an example of key-phrase sentences generated by the RandomWalk algo-
rithm, as depicted in Figure 3. Each sentence is represented by a ”"gene” that corresponds
to the branch from which it was generated. For example, gene 13 represents that defect 1

is associated with branch 3.

Gene | Extracted key-word sentences

13 Tiny crack exhibits zigzag-shaped morphology on a reddish smooths surface.
16 Tiny crack is caused by thermal stress.

17 Tiny crack is associated with polymer composite material.

24 Irregular pore has a morphology of irregular holes on rough uneven surfaces.
25 Irregular pores are caused by the uneven mixture of solutions.

27 Irregular pore is associated with polymer composite material.

Each sentence is then tokenized, breaking down the sentence into individual words or
phrases using an open-source python library called "TransformerWordEmbeddings.” These
tokens are then passed through the BERT model for embedding. BERT (Devlin et al.
(2018)), which stands for "Bidirectional Encoder Representations from Transformers,” is

a pre-trained transformer-based neural network that has been trained on a large corpus
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of text data. The embeddings generated by BERT capture the meaning and context of
the defect class in the sentence. By extracting the embedding for the token representing
the class, this information can be used for attribute-based learning. The ontology walk
algorithm is repeated to optimize the embedding process and generate different sentences
for each class. By performing BERT on the newly generated sentences after each walk, a
representation of the class can be obtained with shared attributes between seen and unseen
classes.

Next, the extracted keyword sentences are converted into contextualized embedding
vectors (@) by using BERT, a self-supervised transformers model pre-trained on a massive
corpus of multilingual data. The self-supervision implies that the model was pre-trained
entirely on raw texts, with no human labeling. A popular BERT model is provided by
Huggingface’s transformers package (Wolf et al. (2019)). BERT will convert an extracted
sentence to a column vector of dimension M for class embedding, i.e., ¢ (). The embedding
vectors for all N classes can be collected in a ¢p matrix with dimension M XN (e.g., Figure 4).
Once the extracted sentences are converted to a column vector of dimension M through
BERT, the embedding of each class (column) can be fine-tuned by swapping between rows
in the ¢ matrix (Figure 4). Such a manipulation essentially applies linear mapping to the
initial embedding matrix converted from the ontology to obtain the finalized embedding
vector. The proposed procedure of converting/parsing defect ontology (¢) to the vector

representation of class (i.e., defect class embedding ¢) is summarized in Figure 5.

[1, D , N [1, :o% g , N]
02|03|05|07|05|08|09|05 02fo03fos5]07]os]os8]oo]os]|[17
|[07]05]0.4]01]0.8]|0.4]0.6]|0.7 0.4/08/{04/04[0.1]0.6]0.8][0.4
06| 04|01]08]06|04]0.7]|04 06|04|01|08|06|04[07]|04
07|05(02|06|08|09]|01]|09 07|05/02|06[08[09[0.1]|09
0408040401 06|08]0.4 07(05[{04(01[0.8|04|06]0.7
0405|0708 |01|02]05]07 04[05[07[08[01[02]05][0.7][f
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Figure 4: Linear mapping, such as row swapping, to fine-tune the embedding vector of

defect classes

The proposed methodology essentially relies on experts’ domain knowledge to create

attribute vectors that are suitable for defects in additive manufacturing. However, it has

12
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Figure 5: The logic flow of using ontology and natural language processing to obtain defect

class embedding.

the advantage of providing a generalized, uniform representation of engineering knowledge

about defects in printing applications (Please refer to Supplementary S3 for details).

2.2 Joint ontology tuning and class embedding guided by ZSL

This section discusses the optimization problem formulation for tuning the ontology and
class embedding guided by ZSL. It focuses on the challenge in the formulated problem and
proposes a solution algorithm integrating stochastic gradient descent with metaheuristics

based on exploration/exploitation.

2.2.1 Formulation of joint optimization

Once features 6(x) and attributes ¢(y) are extracted, the objective Eq. 2 can be detailed

with an optimization formulation. The proposed framework learns the feature-to-attribute
mapping matrix W, attribute stacking matrix ¢ and class embedding matrix ¢ by mini-

mizing the objective function:

A

. 1
Minw gp . LUn fGn; W, @, ¢)) 4)
n=1
where L is the loss function, defined as a ranking-based loss function (Xian et al. (2016)):
L
L= max{o, Alyn y) + F (Xn, y; W) — F (X, yn; W)} (5)
yey tr

where A(yn, y) = 1if /= y, and o otherwise. This loss function can force the model to
produce higher compatibility between the input data (e.g., image) embedding and the class
embedding of the true label than between the image embedding and the class embedding of

incorrect labels. In the training phase, the mapping W, ontology ¢ , and class embedding
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$ are jointly estimated through (4) and (5) based on labeled samples from published data
sources and literature.

Challenge in the joint optimization: The formulation (4) and (5) have the challenge
in the combinatorial search for ontology and defect class embedding and minimization of a
non-smooth ranking-based loss function, which is not jointly convex in all the W's. The
combinatorial search in this optimization can be briefly explained in an example in Figure 6,
where an ontology with two-level structures is simplified as a matrix. On the left panel,
light grey cells indicate all candidate attributes (row) associated with each class (column)
guided by engineering knowledge. The right panel is the selection of attributes as indicated
by dark grey cells after tuning. The ontology can be restructured by exploring different
combinations of attributes and connections between levels and sub-levels in ontology ¢.
Furthermore, the search for the embedding of the sentences from ontology exploration, as
shown in Figure 4, adds to the computational cost of obtaining defect class embedding. Such
combinatorial search can be computation-expensive if the ontology has a large structure
with multiple levels. The ontology exploration and search for class embedding vectors are
guided by performance feedback from ZSL based on the minimization of the loss function.
This performance feedback represents the ability of the current embedding to represent the

class and promote better attribute sharing between seen and unseen classes.

[1, . . . L N [1: & =i e L N]
Defects Defects ]
Attributes 1 | 2 | 3 4 5 Py N Attributes 3 ‘ 2 l 3 a 5 & N |
: gases | gases _al_
icro pores Micio potes I
Unmo\ttd?wdor : Urmelted powder I
density [ density |
High temperature | | ] Hightemperature ] |
Low temperaiure | Low tempetature

Termal stress

Termal stress
Black and white Elack and white
Birownish Ercwnish
Grey | Grey

Redsh ] Fedh ]
Circulat holes | Circulsrholes

Crates | Crates
liregulai holes Irregulas holes
Zigzaglines cigzaglines

1
Fough 1 | I ] Fough
e | [ i) -: —
Smooth | i | 1 Smooth I | | |

Ungven I 1 Tneven

Candidate ontology relationship (0]

Figure 6: An illustration of ontology optimization. The left panel shows all candidate
attributes based on domain knowledge, represented by light grey cells. The right panel

shows the selected attributes after tuning, represented by dark grey.
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Remark: If engineering knowledge about the ontology structure ¢* is available, the ob-
jective ( 4) can tge regularized to ensure the closeness with ¢ such as:

mi”W,rp,dulv N L(yn fxXs W, @, @) + Al — @,
where A is the regularization parameter that can be later determined by cross-validation.

This formulation is to fine-tune the ontology according to the data collected.

2.2.2 Integrating metaheuristics with stochastic gradient descent

The optimization in the training phase can adopt a two-stage strategy: (1) search for
mapping W in the compatibility function given class embedding ¢ and ontology structure
¢ by stochastic gradient descent to minimize the ZSL loss function in Eq. (4) and (2) find
class embedding ¢ and ontology structure ¢ through exploration and exploitation. The
ZSLloss in stage (1) will guide the tuning of ontology ¢ and embedding ¢. Supplementary
S8 provides the flow chart of the optimization process.

The procedure is summarized in Algorithm 1. The input data and parameters include
In dt - sample features; owl- defect ontology; Ir - learning rate; ep - total number of epochs;
erly stp - early stop epochs; rd sd - random seed; Tho - ontology exploration rate; and m
- the iteration number. The features 6(x) are extracted in line 4. The ontology (¢4) for
class embedding is initialized in line 5, and the mapping matrix W is randomly initialized
in line 6. An iterative search process begins at line 10. Each iteration implements the
two-stage search, where lines 8-16 implement the stochastic gradient descent in stage (1)
to update the mapping matrix W from training data, and lines 17-29 search for the tuning
of ontology and class embedding in stage (2). In stage (1), the stochastic gradient descent
draws sample (x», y») at each step t and searches for the highest compatible class i/'= yx»
as shown in line 11, where 1)y is the learning step size. The trained W is applied to the
data for tuning ontology to estimate classification accuracy in lines 14.

In stage (2), this accuracy is compared with an ontology exploration rate Tho to de-
termine if the algorithm continues ontology structure exploration (lines 25-26) based on a
random walk and NLP or refine class embedding (lines 23). To extract information from
ontology, a random walk is performed iteratively through different branches of the ontology
(line 25). At iteration m, a function randomWalk is executed to perform this task based

on section 2.1.2 and Table:1 gene formulation. The iterative step includes three functions:
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* OntologyWalk(g'™) — Gene'™: Depending on the performance of the previous
ontology structure, an ontology walk is performed across the branches to extract new

information.

o Mutation(Gene'™) — Genelm*V: A new set of attributes are generated by mutating
local gene segment, e.g., 16 mutated to 17. Each gene represents a unique set of paths

on the walk.

e Decoding(Genelm*)) — ¢(m*1); The newly generated genes (representing a new

path) are then converted (decoded) to sentences with attributes.

In each iteration, the best-discovered ontology and embedding will be updated (lines 19-
21). The iteration will continue when certain convergence criteria are not satisfied (line
10), such as ZSL accuracy no longer improves or the cut-off iterations have been reached.
The algorithm outputs the mapping matrix W+, tuned ontology ¢+, and class embedding

¢+ for future ZSL implementation.

3 Case study

This section presents a case study to demonstrate the proposed ontology-guided attribute

learning in helping identify defects that are unobserved in training data.

3.1 Adirect-ink-writing process for creating nanocomposites

The case study focuses on a printing process for creating a new nanowire-polymer composite
structure (Shan et al. (2019)) as photoactive coatings that detect visible light. Supplemen-
tary S7 presents the details of the printing process. For the simplicity of illustration, this
research only focuses on ten defect types of cracks and pores in different morphologies as
captured by microscopic images from different data sources. An example of these defects
is given in Figure 7. The samples for classes 1,3, 7, and 9 were obtained from a printing
process of functional composites (Shan et al. (2019)), while the remaining classes 2, 4, 5, 6,
8, and 10 were obtained from other AM processes, such as selective laser melting (SLM).
It should be noted that although samples obtained from SLM are very different, certain

defect morphologies still share some common attributes with the direct-ink-writing process.
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Algorithm 1 Zero-shot Learning algorithm with adaptive class embedding optimization
1: procedure ZS5L(In_dt, owl, Ir, erly_stp, ep, rdsd, Thy, m )

2 In: Indi, owl, Ir, erly_stp, ep, rd_sd, Thq, m

3 ont: Zero-shot class labels; optimum class embedding

4 0(x) « loudFeatures(In.dt) ; " + loadClass Embed(owl)
w ' p™ « BERT(yp) # Initialization

(=]

6i: W e Randinitialize(rd_sd) ; 7 - training data {images vs. class label)

T while Termination_criteria is not met do
B while | < ep do
8 Draw (Xp, yn) € 7 and y # i
10 if Fixp, u) + 1 > Fixg, up) then
1 WD W — 5 X ((y) — ™) ()
12: end if
13: Return W
14 Ac™ aslace(x_lesln, W, Lest_labels)
15: bt +1
16: end while
17! it Accl™ = Thy then
18: il Acc!™ = Acel™=1) then
1% @* @™ J update the best ontology discovered @*
20 ¢ + ™ & update the best class embedding discovered ¢*
21: W* ¢« W 4 Update the best discovered W*
et cend if
o1, Bt pmgme
24: else <1 ,
K = Acc - RandomUniform(0, 1)
2 ") RandomW alk(e) If K < 0, #Exploration on (™
2% Gl . BERT(plm+1)) Wm+1)€—  Random Swap( ™ )
- end if If K = 0, #Exploitation on ¢(™
" e _ﬁ’m"U “— TwoRowSwap( '™ )
bt} end while
30 Return W*, ¢* and @*

The idea can be analogous to the learning of a certain species by leveraging the attributes
of different types of animals. As such, this study also explores the opportunity of attribute
learning in leveraging information from more different printing processes as reported in
published data and literature. The types of printing defects considered in this study are

summarized in Supplementary S4.
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Remark on between-process attribute sharing: Certain attributes are unique to each
AM process or its family. When AM processes are intrinsically distinct, sharing attributes
based on process parameters and their impacts on defects may not be feasible. In ontology,
attributes related to causes and materials can be unique to each type of AM process and
can only be shared within similar or closely related AM processes. Attributes related
to morphology, on the other hand, are more transferable across different processes. For
example, in SLM and other directed energy AM processes, cracks are caused by localized
thermal stress, whereas in direct inc-writing processes, cracks are caused by tiny pores
and rapid solidification during extrusion. The causes are mainly related to the physics of
each process, and the process-defect relationship is not transferable. However, all cracks
have common attributes of zig-zag shapes and long aspect ratios that can be shared across
different processes. Similarly, pores caused by trapped gases during extrusion or material

preparation that exhibit roundish morphologies on a surface can be shared across processes.

3.2 Defect data preparation and embedding

The dataset includes ten defect classes with five samples per class. All defect data, along
with their labels, were collected and categorized into training and testing datasets. Some
or all samples in the testing data are not present in the training data, making them un-
seen. The training data only includes seen classes that share common attributes and class
embedding with unseen classes. For data with unseen classes, one part is reserved for fine-
tuning the ontology. The rest is for testing the performance. The algorithm learns to map
the features extracted from training samples to their respective attribute-based embedding.
Shared attributes between seen and unseen classes exist, allowing the algorithm to extrap-
olate information on unseen classes based on their class embedding during training. The
algorithm focuses on the attributes of the shared attributes of seen classes. The algorithm
is then tested to determine the label of the unseen classes, and the prediction is compared
against the actual label. Traditional classification metrics such as accuracy, F1 score, and
confusion matrix are still applicable to evaluate the algorithm’s performance in determining
the unseen class label.

The case study uses different percentages of available classes to define classes unseen in

the training phase, including 10%, 20%, 30%, 40%, and 50%. Figure 7 shows an example
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of seen vs. unseen class split, by which the ZSL classifier will be trained on 70% (7 seen
classes) and tested for 30% of available classes (3 unseen classes on the right column). Each
class has its unique property in shape, texture, or color. Sharing attributes between seen
and unseen classes is vital for ensuring the good performance of ZSL. Below lists some

examples of shared features:

e Irregular pore-1 shares the attribute “grey colored surface” with Large pore-2 and the

attribute “irregular shaped pores” with Irregular pore-2.

e Large pore-1 shares the attribute “reddish surface with small red dots” with Tiny

crack-1 and the attribute “large circular pores” with Large pore-2.

Training data (Seen classes) Testing data (Unseen
classes)

i T |
¢ R, |

bt # }

2 >
Tiny crack - 1 Tiny crack - 2

maII re -2

Large crack - 1 Large crack - 2

Figure 7: An example of split for seen classes and unseen classes in the dataset.

In the testing/implementation phase, the defect classes can include seen and/or unseen
classes. This study will focus on two scenarios : (1) all classes in the testing data are unseen
to demonstrate the potential of the ontology-guided attribute learning, and (2) a mixture
of seen and unseen classes in the testing data that may lead to lower classification accuracy
due to more candidate classes included.

Feature extraction was performed to obtain 8(x) from defect images. This study uses
Img2Vec python library for image embedding based on a ResNet50 model and its weights
pre-trained on the ImageNet dataset (Deng et al. (2009)). Supplementary S5 outlines the
details of the pre-trained network used for feature extraction and why its suitable for the

proposed methodology.
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This study also employed the "BERT BASE Uncased” variant of the BERT model to
convert sentences generated from multiple walks into contextualized embedding vectors (¢)
of size 768. The tokenization process was performed using the open-source python library
"TransformerWordEmbeddings.” The BERT BASE model used in the study is the smaller
variant of the BERT model, designed for lowercase sentences. The "BERT BASE Uncased”
variant consists of 12 transformer blocks, each containing a multi-head self-attention mech-
anism, 768 hidden layers, and 12 attention heads. To embed defect classes, the model takes
a sentence as input, tokenizes it into individual words, and generates a vector embedding
for each token. The embedding of each defect class token captures the meaning and context

of the sentence that describes the class.

3.3 Results and discussion

One outcome of this study is to build an ontology of defects that promotes the sharing of
defect attributes. Since not all features are equally relevant to learning the classifier, the
algorithm should learn to re-structure the defect ontology and fine-tune the representation
of attributes shared between seen and unseen classes. This section presents the results
on (1) the optimized tuning of the defect ontology structure, (2) the ZSL accuracy of the
defect classification achieved by ontology-guided attribute learning, (3) the analysis of how
ontology exploration rate in the optimization impacts testing accuracy, (4) the robustness
of the methodology against noises in the data, and (5) comparative study against baseline

transfer learning methodologies.

3.3.1 Optimized tuning of the defect ontology structure

This section presents the optimized tuning of the ontology that can facilitate the sharing
of attributes between seen and unseen classes and its effect on defect classification perfor-
mance. Figure 8 illustrates an example of optimized tuning of a 2D ontology structure in
a tabular format when certifying processes with ten possible defect classes (assuming six
seen classes in the training and four unseen classes in the blue cells with bold text present
in the testing data). A light yellow cell with “x” label indicates that a particular attribute
is selected for the corresponding defect class in the ontology configuration, and a grey cell

means that the corresponding candidate attribute is not selected.
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Legend Defect
ON | OFF | Crack Pores
X | | Tiny Wide Irregular small Large
Tiny crack | Tiny | Wide | wide |Irregular|irregular| Small | small | Large | Large
5 crack 2 |erack1 |crack2 | porel | pore2 | porel | pore 2 | parel | pore 2
Black and white
Brownish X I
Colour
Grey |
Redish ] | | | X
Circular holes X | X X X
Crates X I
Motpfiology.| {Shage Irregular holes =
Zigzag ¥ L
Rough I | [x ]
Sandy I I
i — | | | | ]
linevers [ | | |

Figure 8: An example of the optimized ontology through attribute selection.

Figure 8 illustrates how the morphological information in the ontology enables knowl-
edge sharing and transferability between seen and unseen classes. For example, even though
Wide crack-1 is an unseen class, the attribute learner extrapolates how it might appear
because it shares “zigzag-shaped” morphology with seen classes Tiny crack-2 and Wide
crack-2. Similarly, Irregular pore-1 is unseen but shares an “irregular pore” attribute with
Irregular pore-2. In addition, both Small pore-1 and Large pore-1 are unseen classes, each
with a unique set of attributes. They both share an attribute “circular holes,” which is the
shape of the defect with the seen class Small pore-2. The tuned ontology in Figure 8 is a key
enabler in performing ZSL of unseen defects by generating appropriate class embeddings

for seen and unseen classes.

3.3.2 Application of the ontology: Zero-shot defect classification

The ontology-guided attribute classifiers are trained and tested under different hypothetical
scenarios with different splits between seen vs. unseen classes. Results in Table 2 (column
3) show that the algorithm successfully identified defects with unseen classes only. The
methodology was tested for a range of scenarios from one unseen class to five unseen classes
out of ten. It can be seen that the ZSL based on the tuned defect ontology achieved an
accuracy of 100% when one unseen class is mixed with seen classes in the testing data
(column 4). The accuracy decreased as more unseen classes are included for both scenarios.
It should be noted that the inclusion of more classes in the training data may potentially

contribute to the defect ontology, thus improving the learning accuracy. The case study
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includes ten classes in total, limiting the accuracy when the percentage of unseen classes
increases in the testing data. However, an accuracy of 0.66% (worst result) is still far better

than a random selection of one class out of ten, even if 50% of the classes are unseen.

Table 2: Comparison of our model to existing ZSL methods

Proposed ALE accurac ALE Accurac
No. of [No. of |[Proposed method P Y . v
method accuracy [for unseen for mixed seen
seen un seen |accuracy for .
mixed seen and classes only and unseen
classes |classes [unseen classes
unseen classes classes
9 1 1 1 1 0.88
8 2 1 0.9 0.5 0.75
7 E] 0.87 0.86 0.33 0.5
6 4 0.8 0.76 0.25 0.66
5 5 0.64 0.66 0.4 0.52

In Table 2 (columns 5 and 6), the ontology-guided attribute learning was compared
against a recent ZSL method called ALE Akata et al. (2015) in computer vision. It performs
image classification based on the classes embedded by contextualized language processing
models. In a ZSL situation, the ALE outperforms the conventional Direct Attribute Pre-
diction Lampert et al. (2009) baseline approaches on the Animals With Attributes Lampert
et al. (2009), and Caltech-UCSD-Birds Wah et al. (2011) datasets. The results in Table
2 show that the proposed ontology-guided attribute learning outperforms ALE in both
testing scenarios, demonstrating the importance of class embedding of defects. When the
defect classes are embedded by applying general language models to the text dataset in
ALE, the ZSL learning accuracy achieved by ALE can sometimes be as worse as a random
experiment (flat accuracy across all classes). With the class embedding improved by the
proposed ontology-guided optimization, the performance is significantly improved.

Figure 9 shows a confusion matrix for the true and predicted labels when only three
unseen classes are present in the testing data, and Figure 20 in Supplementary S9 illustrates
the scenario when seen and unseen classes are mixed in the testing data. Both achieve an
accuracy above 0.72. The three unseen class ZSL task only involves the classification of three
unseen classes, while the mixture of seen and unseen classes includes all ten classes in the
testing dataset. Therefore, the classification in the unseen-only scenario is less challenging
than that in the mixed-class scenario. The lower accuracy obtained in the mixed class
scenario is expected because the algorithm is presented with images from all ten classes,

making the decision harder. However, this study does not intend to compare the results
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between seen-only classes.

The results demonstrate the potential of the proposed ontology-guided attribute learn-
ing in accelerating process certification based on very few measurements from a new process
of interest by leveraging the data from different processes and literature. This study is
among the first attempts to deal with zero observations/measurements of the defects from
the target process of interest. This learning challenge is beyond the capability of popular
classification algorithms, transfer learning, or semi-supervised learning approaches that still

anticipate measurements in the training data from the target process.

Predicted label Total number| _S2MPIES

Irregular |Large Small Class classsfied to | Accuracy | Precision | Recall
of samples

pore -1 pore -1 pore -1 the class

F1
Score

Irregular

Irregular ;
3 0 2 0
pore -1 i 5 <} 86.67% 1 06 | 075
True |Large Large i
100% 1 i 1

label pore -1 0 5 0 pore -1 . =

Small Small

0 0 5 5 7 86.67 0.71 1 0.83
pore -1 pore -1

Figure 9: Confusion matrix, accuracy, precision, recall, and F1 score of ZSL to classify

three unseen classes only

3.3.3 Effect of ontology exploration rate

The ontology exploration rate 0 < Tho < 1 in the two-stage optimization can determine
how likely the ontology would be re-structured to import new information. Compared
to the tuning of class embedding, the ontology update implies a more drastic change in
searching for new information. This section discusses the effect of the ontology exploration
rate on the ZSL accuracy so that an appropriate range of Tho can be determined. All
other parameters, such as epochs and cut-off values for terminating the iterations, were
kept constant at the optimal level previously discovered.

A high exploration rate means a high frequency of ontology re-structuring to generate
very different embeddings, thus searching along more directions to seek optimal solutions.
By contrast, the optimization on a lower exploration rate relies more on tuning class em-
bedding and initial ontology. Figure 10 shows the 95% confidence interval (CI) of average
accuracy estimated from multiple samples for each Tho. The results indicate that a lower

rate of ontology exploration (0.1-0.4) resulted in lower average accuracy. As Tho increases,
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Ontology exploration rate vs. Average accuracy
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Figure 10: The effect of ontology exploration rate on the performance of the classifier.

the average accuracy increases; however, it does not exhibit a statistical difference when
Tho > 0.5. The median accuracy is relatively close when Tho > 0.7. It is also noticed that
the highest Tho may also lead to larger variability in the average accuracy. Therefore, a
value around 0.7is recommended for Tho in this case. In practice, the selection of ontology
exploration can be affected by the selection of the initial ontology. An initial ontology
capturing more common attributes between seen and unseen classes may be expected to
work better with a lower value of Tho. As such, a mid-range value for Tho is recommended

considering the balance of all possible scenarios.

3.3.4 Robustness against data noises

A robustness study was conducted by adding noises at different levels to existing images.
Gaussian white noise variance ranging up to 1.2 was added to every image. Figure 11 (lower
panels) shows an example of a noise-free reference image against four levels of added noises.
The added noises can reduce any common features among classes and images. Also, added
noises reduce visibility by removing fine details and making images blurry.

The noisy data include seven training classes and three unseen testing classes and each
run was repeated ten times. Boxplot in Figure 11 shows the interquartile range (IQR) and
the median of classifier accuracy at each noise level for testing only unseen classes (upper left

panel) and a mix of seen and unseen classes (upper right panel). In general, the accuracy of
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Figure 11: Effect of noise on accuracy for unseen classes only and mixed seen/unseen classes.

the proposed methodology decreases as the images become increasingly blurred. We notice
that the algorithm’s performance for mixed classes of seen and unseen classes exhibits a
rapid decline in performance due to the bias toward the seen classes during training. This
pattern occurred because the number of classes to be classified could significantly affect the
accuracy consistency as the noise level increases. Thus, the accuracy in the classification of
ten seen-unseen classes shows low variability (very narrow IQR boxplot), indicating that the
performance is becoming consistently worse. By contrast, the accuracy in the classification

of three unseen classes exhibits larger variability (wide IQR).

3.3.5 Comparative study against transfer learning

The proposed methodology was also compared against three benchmark methods under
a transfer learning framework. It should be noted that traditional transfer learning is

incapable of dealing with ZSL. Thus, this comparison was made for one-shot and two-shot

learning, i.e., classes with only one or two samples observed in training data. In this study,
three popular pre-trained CNN’s for image classification were employed, including AlexNet,

VGG, and ResNet50. Supplementary S6 outlines details of the transfer learning networks.

To implement transfer learning, a pre-trained CNN network was downloaded from an

open-source repository (Falbel (2022)). Then, the last fully-connected and softmax layers
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were replaced with a new custom fully connected layer containing ten output neurons.
During training, the pre-trained weights were frozen and not updated, but the added final
layer was trained using the AM defect data. In this research, transfer learning techniques
such as AlexNet, ResNet50, and VGG were compared with the proposed method for one-
shot and two-shot learning scenarios where only one or two samples of a class were present
in the training data. The box plots of accuracy for the one-shot learning tests are shown in
the left panel of Figure 12, and the results of two-shot learning experiments are reported in
the right panel. For both cases, the proposed method statistically outperformed the other

transfer learning methods, with ResNet being the worst.

Comparison on one-shot learning Comparison on two-shot learning
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Figure 12: Comparison of attribute learning against three transfer learning methods during

one-shot (left panel) and two-shot (right panel) experiments

4 Conclusion

The scarcity of measurement data during new printing process development may prevent
scale-up production or commercialization within a short time. This study aims to address
the challenge of limited measurements and experiments to be conducted for new printing
process development. By leveraging published data and literature, this research establishes
an ontology-guided attribute learning methodology to identify defects that are completely
unobserved in training data. The method tackles the zero-shot learning (ZSL) challenge by
mimicking how humans learn a new concept by recognizing attribute combinations. The
proposed algorithm learns the attributes of a defect based on developing/learning a defect
ontology and how attributes are shared across seen and unseen classes.

The proposed attribute learning first establishes an initial defect ontology to facilitate
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uniform knowledge representation and attribute sharing, representing the morphology, ma-
terials, and process parameters related to defects. This procedure is guided by engineering
knowledge from published data and literature and facilitated by an annotation tool, owl, to
build a defect ontology. An algorithm for exploring the ontology structure is developed and
combined with a pre-trained BERT, thus parsing the ontology into defect class embedding
(attributes). By compatibility mapping, the attributes are correlated to the features ex-
tracted from input data, such as microscopic images by Imgavec embedding. In the training
phase, attribute learning involves a joint decision-making problem by maximizing the com-
patibility mapping between the input features and defect attribute combinations extracted
from the defect ontology. The compatibility mapping is found by stochastic gradient de-
scent in stage (1) optimization. In stage (2), a metaheuristics was developed to explore
and exploit ontology structures and class embedding. The testing phase finds the most
compatible classes with testing images based on the trained mapping and class embedding.
A case study is conducted on classifying defects for a direct-ink-writing of nanocom-
posites. A simplified defect ontology based on morphologies was established and tuned to
facilitate attribute extraction for attribute learning. The shared attributes between seen
and unseen classes of defects resulted in better classification performance when identifying
unseen defect classes. The results show an accuracy of 0.76, 0.86, and 0.9 achieved when
testing four, three, and two unseen classes, respectively, when both seen and unseen testing
samples are mixed. The study also discusses the relationship between the ontology explo-
ration rate and testing accuracy to help identify an appropriate value for it. The results
from the case study show that accuracy is low at lower exploration rates. A steady increase
in performance has been recorded as the ontology exploration rate increases. This increase
in performance is because higher rates result in a frequent change of attribute combinations,
which increases the probability of finding the most optimal one. Furthermore, analyses were
also carried out to investigate the robustness of the method by adding noises of different
levels to every image in the dataset.
The proposed methodology’s accuracy decreases with increasingly blurred images. Per-
formance decline is observed in the algorithm when dealing with mixed classes of seen and
unseen classes compared to tests containing only unseen classes. This decline is due to bias

toward seen classes during training and the impact of increased class numbers on accuracy
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consistency as noise levels increase.

Future research directions include: (1) improving and refining defect ontology by in-
corporating more process parameters and their value ranges, such as printing speed and
temperature, to facilitate the discovery of process-defect relationships; (2) Using ontology-
guided attribute learning to establish process windows for new process qualification given
limited measurements; (3) developing a pipeline of algorithms based on a search engine,
adaptively scraping published data online by topic modeling, such as latent Dirichlet alloca-
tion (LDA), to extract most relevant attributes for class embedding in ZSL; (4) leveraging
the emerging Generative Pre-trained Transformers (GPT) or other large language mod-
els to improve the attribute embedding based on their models pre-trained from massive
literature data (refer to Supplementary S10); and (5) developing a self-supervised learn-
ing framework for ZSL where defect knowledge is organized under ontology and labels are

generated without human supervision before ontology fine-tuning and attribute learning.

5 Data availability statement

The data and code used in this study is here (https://github.com/FAMU-FSU-IME/Ontology-
guided-Attribute-Learning.git).
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