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Abstract—The ever-growing data scale and computation com-
plexity raise tremendous concerns about computer systems’
efficiency (i.e., lower hardware overhead and power consump-
tion). Orthogonal to the advancement in semiconductor man-
ufacturing technologies, approximate computing provides an
alternative paradigm to reduce the hardware cost and power
dissipation by relaxing computation quality for error-resilient
applications. Voltage over-scaling (VOS) and approximate logic
design (ALD) have become two mainstream approaches of
approximate computing due to their superior performance in
efficiency-critical designs. VOS reduces the power in quadratic
by scaling down supply voltage while ALD saves hardware
overhead by redesigning an approximate version of a given
circuit (e.g., trimming less significant circuitry). However, these
primitive approximate circuits (PAC) inevitably introduce notable
errors and require additional error compensation circuits (ECC)
to preserve computation accuracy. In existing works of ECC
design, there lacks a systematic method that can generalize
well to different approximate computing approaches. In this
paper, we present a data-driven feature selection framework
for approximate circuit design, which is applicable to both
VOS and ALD. We propose novel algorithms that profoundly
analyze the correlation between input data and output errors
and select the most critical features to generate compensation
circuits. Extensive evaluations are performed over a variety of
circuits using approximate finite impulse response (FIR) filters
and the prevalent approximate computing benchmark AxBench.
The experimental results show that the proposed approach
achieves superior compensation performance, boosting the circuit
accuracy while only introducing trivial area overhead.

Index Terms—Approximate Computing, Error Correction,
Feature Selection, Computer-Aided Circuit Design

I. INTRODUCTION

Computer systems and electronic devices that can process
large-scale data are emerging with the unprecedented develop-
ment of information technology and the cumulative increment
of data. However, these systems and devices are compu-
tationally expensive and energy-consuming to handle ever-
increasing sophisticated tasks. Circuit overhead and power ef-
ficiency have become major bottlenecks in computer hardware
design. A recent survey [1] shows that it is challenging and
essential to significantly reduce hardware cost and improve
energy efficiency for emerging workloads to keep pace with
rapid information growth. The evolving semiconductor man-
ufacturing technologies provide possible directions to tackle
these issues. However, as Moore’s law is nearing its end [2],
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it is imminent to exploit alternatives. To this end, approximate
computing in hardware design has emerged as one promising
workaround by slightly sacrificing the accuracy of the compu-
tational result in exchange for a large amount of power/area
reduction [3]. The underlying reason behind this computing
paradigm is that a large body of prevailing resource-hungry
applications such as machine learning [4] and image process-
ing are error-resilient [S]. For example, deep neural networks
are elastic to parameter perturbations induced by rounding
errors and preserve model accuracy even when transforming
the representation of parameters from 32-bit floating-point
numbers into 4 bits. This indicates that a tolerable amount
of error in these applications can be potentially exploited
to trade for reductions in hardware complexity and energy
consumption. Plenty number of prior works have shown the
effectiveness of approximate circuits in various levels ranging
from transistors to architectures [3], [6]-[13].

In the existing literature, voltage over-scaling (VOS) [14]-
[18] and approximate logic design (ALD) [3], [19]-[28] have
been investigated for approximate computing. VOS scales
the supply voltage to reduce power dissipation while ALD
redesigns an approximate variant of a logic circuit to save
circuit area. Despite the significant reduction in power and
area, such approximate circuits inevitably render non-trivial
computation errors. In consideration of the inclination to avoid
“Robbing Peter to Pay Paul”, researchers proposed distinctive
error compensation strategies to optimize the performance of
VOS and ALD [29]-[31], [31]-[35]. It is common practice
for VOS to manually analyze computation errors and design
hardware implementations that achieve better accuracy. On the
other hand, the line of works of error compensation for ALD
can be broadly divided into two categories according to the
design strategies: manual designs and automatic approaches.
Manual designs usually require analyzing the resiliency of
each component in a target circuit, while automatic counter-
parts focus on developing general methodologies for designing
low error approximate circuits. However, there lacks a system-
atic method that can generalize well to different approximate
computing paradigms. We, for the first time, attempt to tackle
this issue and propose a general data-driven framework of
automatic error compensation circuits (ECC) design for both
VOS and ALD.

It is worth noting that most of the existing approximate
computing designs in the literature [7]-[9] assume a uniform
input distribution, which might not always be the case in
practice. In particular, many computational tasks are data-
oriented such that they mainly operate on a unique data
pattern. In fact, capturing the input distribution is currently



a very popular problem in the field of deep learning [36].
Therefore, it is imperative to take the data-driven perspective
into account when designing approximate logic circuits. In this
paper, we propose novel algorithms to automatically design
the compensation circuit, a hardware block used to mitigate
computational error, for a given approximate circuit with a
specific input distribution. This framework is able to cooperate
with the existing approximate computing approaches to further
improve their performance. This work is an extended version
of our prior work [23], which builds upon the concept of
using feature selection to design compensation circuits for
approximate circuits and develops a more robust method by
incorporating data-driven considerations into the approximate
circuit design. The main contributions of this paper are sum-
marized as follows:

o We extend the design concept of our prior work [23]
and propose a data-driven framework that is applicable to
both voltage over-scaling and approximate logic design,
for automatic error compensation circuit design.

o We develop modified Forward Stepwise Selection and
Backward Stepwise Selection algorithms for selecting the
feature subset, which significantly improves the comput-
ing accuracy of the generated approximate circuit.

o We consider optimized strategies to determine candidate
features by differentiating the characteristics of VOS and
ALD. We employ primary inputs as features for VOS
and expand the candidate features to internal nodes of a
circuit to further optimize the performance for ALD.

o Our approach achieves superior performance under the
comprehensive evaluation using approximate finite im-
pulse response (FIR) filters and approximate computing
benchmark AxBench. It yields significant reduction in
multiple error metrics while only incurring a minimal
hardware overhead and power consumption.

The rest of the paper is organized as follows: In Section
I, we present a brief overview of related works. We then
describe the proposed framework and algorithms in details
in Section III. Section IV presents the experimental results.
Finally, Section V concludes this paper.

II. RELATED WORK

VOS is exceptionally effective in energy saving since power
dissipation is quadratically correlated to supply voltage for
CMOS circuits. In contrast to conventional voltage scaling
techniques that scale the clock frequency simultaneously, VOS
intentionally causes timing violations of critical paths. It
is widely used in error-resilient applications such as video
processing, data mining, and wireless communications. There
has been a series of works to optimize the performance of
VOS. [16] proposed an analytical method to select the proper
computer arithmetic architecture in VOS signal processing
systems by estimating the statistics of computation errors. [17]
reduced the error caused by VOS in meta-functions (compu-
tational kernels) through dynamic segmentation with multi-
cycle error compensation. [37] optimized trade-off between
energy efficiency and error margin via modeling approximate
operators using different operating triads. However, these

works require carefully manual design and do not generalize
well to more scenarios.

On the other hand, ALD produces an approximate version
(e.g., truncate less significant sub-circuitry, skip carry using
carry prediction, etc.) based on a full-precision logic circuit,
which shows superior results in the area and power reduc-
tion. Both manual and automatic methodologies have been
proposed to retain better accuracy for ALD. Manual design
strategies have achieved excellent performance on arithmetic
elements (e.g., adders [3], [6], [7] and multipliers [8]-[11])
by inspecting the characteristics of these building blocks
and revising the original circuit design. Automatic designs,
such as approximate logic synthesis (ALS) [21], have been
developed to automatically synthesize a Boolean function into
either a two-level [22], [38], [39] or multi-level [21], [25],
[40]-[42] approximate version under given error constraints.
Other techniques, such as probabilistic pruning, have also
been proposed to obtain approximate circuits by pruning the
internal nodes selectively at the gate-level [43], [44]. Another
emerging technique is the high level synthesis for approximate
computing [45], [46] that makes use of approximate circuits
at system level [47] and incorporates with HLS toolchains to
automatically generate inexact circuits [48]. Note that these
approaches are designed explicitly for ALD and barely con-
sider the importance of input data distribution in circuit design.
Our recent work [20] developed an algorithm that exploited
the input-error pattern to automatically generate a lightweight
compensation block to optimize a given approximate cir-
cuit and achieved surprisingly good performance, revealing
a worthwhile direction of incorporating data distribution into
approximate circuit designs.

III. METHODOLOGY
A. General Design Flow

We denote the approximate circuits that start with VOS or
ALD as the Primitive Approximate Circuit (PAC). Note that
PACs often carry relatively large amounts of errors, which
requires the design of lightweight compensation circuits to
mitigate the accuracy drop. Our goal is to design effective
error compensation circuits that preserve high accuracy at the
minimum overhead. No prior approaches can comply with
the approximate design of both VOS and ALD. Our idea
is inspired by the fact that many applications are designed
for specific needs. Input data of such applications usually
have unique distributions or patterns, and the outputs are
highly correlated to particular inputs. Hence, we propose a
general framework for approximate circuit design that can be
generalized to different paradigms. Our approach generates the
error compensation circuits offline, which does not require the
continuous collection of new features nor iteratively modify
the compensation circuit design. This is a once-for-all solu-
tion that significantly reduces development costs. A concrete
account of the design flow is given in Fig. 1.

The proposed framework is a data-driven approach that
incorporates with feature selection algorithms to automatically
generate compensation circuits for all PACs. It is composed
of three main phases: error collection, feature selection, and
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Fig. 1: General Design Flow

compensation circuit generation. In the error correction phase,
we gather the highly-biased outputs of PACs with given input
data. We then seek the intrinsic connection between inputs and
error outputs using tailored feature selection algorithms based
on different compensation schemes due to the distinct PAC
mechanisms (i.e., forward stepwise selection for ALD PACs
and backward stepwise selection for VOS PACs). Finally,
we generate the truth tables of control signals upon the
selected features and corresponding responses and synthesize
the compensation circuit accordingly. We present the detailed
compensation schemes, feature selection algorithms, and con-
trol logic design of PACs generated by ALD and VOS in III-B
and III-C, respectively.

B. Approximate Logic Design

In this work, we consider truncated circuits as the PACs,
which is one of the most representative approaches of ALD.
Since ALD usually revises the original circuit design (e.g.,
trims the less significant sub-circuitry) and produces a PAC
with a modified structure, the circuit’s internal signals are as
important as the input samples, as the circuit functionality is
highly correlated to both (some of the internal signals reflect
how the circuit is modified). Therefore, we incorporate data
distributions as well as delay considerations into the design
of compensation circuits. Both input samples and internal
signals (i.e., the netlist) of PACs are required for initiating
the proposed methodology. The overall design flow is shown
in Fig. 1, which is explained in detail below.

1) Compensation Scheme: The proposed methodology first
determines the dynamic range of the error based on the input-
error patterns of the PAC, , which decides the bit-length
of the compensation output, k. In contrast to the additive
compensation circuit in [20], we introduce an XOR gate to
control the correction signal of each PAC’s output bit within
the error range. We use pac; and ct; to represent PAC’s i-th
output bit and its corresponding error control bit, respectively.
The schematic of the compensation scheme is shown in Fig. 2,
where ct; and pac; are the two inputs of the XOR gate and the
corrected output, indicated as op; is the XOR gate’s output.
According to the XOR logic, if pac; needs a correction (i.e.,
from 1 to O or from 0 to 1), ct; will be set to 1.
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v

Fig. 2: Compensation Structure for ALD

The control circuit comprises k£ control subcircuits and
generates all the error control bits. It is built iteratively from
the error dynamic range’s most significant bit (MSB), k£ — 1,
to the least significant bit (LSB), 0, as shown in Fig. 1. Since
the procedure in each iteration is identical, without the loss of
generality, we use the i-th iteration (the construction of i-th
control subcircuit) as an example to illustrate the methodology.

The first step of building the i-th control subcircuit is to
determine the goal value of its error control bit, indicated as
CT;, for every input sample. Let the PAC’s output bit-length
be w, we denote the PAC and the original circuit’s w-bit output
as P and P, respectively. In order to correct the output of each
sample as close to the original output as possible, we use the
following scheme to determine CT; for every sample:

P[z‘]@ﬁ[z’] P[w—lzi]zrj[w—l:z‘]
CT;={1¢P[i] Plw—-1:4>Plw—-1:4 (1)
O@f’[i} P[w—l:i]<f’[w—1:i}

where f’[w — 1: ] represents the partial binary number from
the MSB to the i-th bit of P.

2) Modified Forward Stepwise Selection: For the purpose of
saving the hardware overhead, we only select a small fraction
(i.e., a subset) of nodes (features) to generate each control
subcircuit. We denote the overall candidate feature pool as F
and a single feature in F as ft. We expand F by including
the internal nodes of the PAC to enrich the feature diversity.
This feature pool expansion significantly improves the control
circuit’s performance as we observe in the experiment that the
majority of selected features are indeed these internal nodes.

In [20], x? univariate feature selection technique is used
to rank each feature individually according to its correlation
with CT;. However, it may not be able to capture the
inter-correlation among the features in the subset due to its
greedy nature. To address this problem, we propose a modified
Forward Stepwise Selection (FSS) algorithm for feature subset
selection. The detailed procedures are presented in Algorithm
1. The conventional FSS begins with a null feature subset,
and then adds features to the subset one by one, until meeting
a stopping criteria [49]. In our revised version, we set the
maximum number of selected features as the stopping crite-
ria. Note that this value can also be considered as a user-
defined parameter for trading off between error and hardware



Algorithm 1: Modified Forward Stepwise Selection

Input: Candidate feature pool F, error control value
CT,, number of subsets h, number of selected
features m, cost function C (-)

Output: Selected feature subset F

1 for x < 1t h do

2 reset F' to initial;

3 let }3;.70 denote the null subset;

4 for < 0tom—1do

5 if j #0and C (F,;) = C (F, ;) then

6 remove last added feature from both F,
and F;

7 j—ji—1

8 end

9 else

10 ft = argming C(Zs“x,j U ft);

1 Fpjy1 o U ft;

12 end

13 end

14 end

15 Select FT] with lowest C as F;

16 return F

complexity, as more selected features usually indicates higher
hardware complexity. FSS requires the performance evaluation
of a selected feature subset as a whole at each step of feature
selection. In our method, we employ a cost function, C(-), as
expressed in Equation (2):

C(F) =||CT; — TT(F)|lo (2)

where F' is the selected feature subset and 777 is the generated
truth table for F', which will be explained in Section III-B3.

Based upon the conventional FSS, we modify the feature se-
lection procedure specifically for our methodology according
to the following two observations.

a) Observation 1: For a model whose features and response
variables are both binary, conventional FSS sometimes settles
at a local minimum. In particular, we empirically find that the
feature with the highest score (i.e., cost function reduction)
converges to a local minimum by directly employing the
conventional FSS algorithm. There is no further reduction
on the cost function by adding any additional feature, which
also terminates the selection procedure. In addition, due to the
binary representations, many features yield the same scores.
Thus, we argue that always selecting the feature with the
highest score at each step might not always be optimal.
We present the cost function distribution from exhaustively
pairing 15 feature candidates in Fig. 3(a) to illustrate this
local optimum phenomenon. In this figure, each of the features
individually reduces the cost function value to 0.236. In other
words, any of these features may be selected at the first
iteration of FSS. However, feature #13 (point A) is a local
minimum, since pairing with any additional features does not
reduce the cost function, indicating by the black dashed line.
On the other hand, feature #10 (point B) and feature #7
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Fig. 3: Two Observations on Forward Stepwise Selection

(point C) are not local minima because the cost function
can be further optimized by adding an additional feature into
the feature subset. As shown in Algorithm 1, we propose a
modification such that when a local minimum is found, it is
removed from both the feature subset (F) and the candidate
feature pool (F) to escape from the local minimum. This
approach gradually avoids bad local minima and eventually
results in a better feature subset.

b) Observation 2: As prior mentioned, there are usually
multiple candidate features that can achieve a same cost
function reduction under the Boolean logic setting. Since it
is challenging to predict which feature could yield the best
performance in the subsequent feature selections, we repeat the
modified FSS for h times and hence build h different feature
subsets. We then select the best one from h subsets. In general,
the larger h is, the better feature subset can be obtained. Note
there is a trade-off between the feature subset’s quality and the
algorithm’s running time. However, the feature subset’s quality
is critical to the performance of the error correction circuit, it
is recommended to build as many feature subsets as possible
and pick the best one. We present an example to showcase the
importance of sampling multiple feature subsets in Fig. 3(b),
where we generate 3 different feature subsets with 5 selected
features for each subset. Although the first 2 selected features
for all the 3 feature subsets have the same cost function values,
they progress differently in the subsequent steps and yield
different cost function reduction in the end. In the completion
of all the iterations, we select the best feature subset with the
lowest cost function among the & subsets as the final F (e,
the 3rd feature subset in this example).



TABLE I: Reduced Truth Table Generation

(a) Original CT; Truth Table (b) Reduced Truth Table

Feature F Response Feature ' | Response
fta fts  ftc ftp CT; fta ftp ct;
0 0 0 0 0 0 0 |0ll=1
0 0 1 0 1 0 1 0
0 0 1 1 0 1 0 0
0 1 0 0 1 1 1 1
1 1 0 0 0
1 1 1 1 1
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(a). Compensation circuit of orginal
truth table

(b). Compensation circuit of reduced
truth table

Fig. 4: Compensation circuits corresponding to the truth table.

3) Control Logic Design: We introduce the procedure of
generating the reduced truth table for the selected feature
subset ct; in this subsection. This procedure is used in the
selection of the feature subset as well as the construction of
the final control logic (ct;) truth table.

Given the selected feature subset, we can construct its
reduced truth table for the control subcircuit, 77 . The error
control bit value for each entry of the truth table is determined
by the larger appearance between 0’s and 1’s to minimize the
overall error as expressed in Equation (3):

0 Pr(0)> Pr(1)
TT; =41 Pr(0) < Pr(l). 3)
X Pr(0)= Pr(1)

where T'T); represents the response value for the jth entry, and
Pr(0), Pr(1) are the appearance percentages of 0’s and 1’s,
respectively. We assign don’t cares when Pr(0) and Pr(1) are
equal or close, which could be exploited in logic optimization
for reducing the hardware cost. We use an example in Table
I and Fig. 4 to illustrate the basic idea. Fig. 4 demonstrates
the compensation circuits corresponding to the truth tables in
Table I. Our ultimate goal is to generate a highly accurate
compensation circuit with minimal hardware overhead for all
output bits that need to be corrected (i.e., each output bit has a
specific control bit ct;). Thus, we need to reduce the truth table
from the original one and find the best features representing
most of the output scenarios. Such optimization may cause
minor errors, which is inevitable. For example, in the original
truth table, we have a total number of 4 candidate features
and 1 response, which is the value of the i-th error control
bit, CT;. Suppose features ft4 and ftp are selected to build
a reduced truth table for ct;. As it can be seen in Table I
that when {fta, ftp} = 01, ct; is 0, regardless the values of
ftp and ftc. When {fta, ftp} = 00, Pr(1) = 2, which is

Algorithm 2: Control Circuit Generation

Input: P, P and E;
Output: 77 and F for all correction bit;

for i=k—1to 0 do
for each sample do
| assign CT; according to Equation (1);
end
Feature Selection: Modified FSS;
Construct truth table 77 for ct;;
if i = 0 then break;
for each sample do
\ Update P by Equation (4);
end

end

larger than Pr(0) = 1. Therefore, when {ft4, ftp} = 00,
we choose ct; to be 1 (i.e., all values of CT}; in the original
truth table are converted to 1 in the reduced truth table). In this
example, one out of six rows in the original true table does
not match the reduced truth table (i.e., the first row). Thus,
according to Equation (2), we obtain C({fta, ftp}) = §. As
shown in Fig. 4, the hardware implementation of the reduced
truth table is more lightweight than the compensation circuit
derived from the original truth table. Every output bit has a
control bit ct; and the corresponding compensation circuit.
The output bit is connected with the control bit via an XOR
gate to produce the final corrected result.

4) Correction Data Update: After the circuit for ct; is
determined, we need to update PAC’s corresponding i-th
output bit, i.e., 15[1], since the current bit may not be corrected
completely thus may affect the compensation scheme of lower
bits. We update these compensation values for each sample as:

Pli] = Pli| ® TT(F) (4)

After the completion of the current iteration, the algo-
rithm moves on to the next lower bit. The overall design
methodology is presented in Algorithm 2. After the logic
for all the control sub-circuits are determined, the generated
compensation circuit is synthesized and connected to the PAC
as shown in Fig. 2.

C. Voltage Over-Scaling

Any circuit under VOS can be considered as the PACs. The
data samples of PACs and HSPICE files that contain the error
information are fed as initial inputs. The overall design flow is
similar to ALD and shown in Fig. 1, but the correction update
is not required for VOS PACs due to the different feature
selection strategies. Next, we explain the detailed procedures.

1) Compensation Scheme: We follow a similar compensa-
tion strategy where we employ an XOR gate to correct the
output bit of each PAC. However, we propose several non-
trivial modifications to fit the VOS design. First, as can be
seen in Fig. 6, we only consider the error pattern between
input and output rather than taking intermediate signals into
account. Unlike the truncated PACs that partially trim the
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circuit and break the internal structure, VOS PACs keep the
original circuit design, rendering circuitry functionality the
same. Therefore, the circuit output primarily relies on the
input samples and the interior signals of VOS PACs play a
less significant role in influencing the output. Second, we
compensate a part of error outputs for VOS PACs (following
the order of significance of these signals) while correcting all
output signals for truncated PACs. Note that truncated PACs
usually have fewer error bits (i.e., two least significant bits)
while VOS PACs have much more incorrect bits (i.e., all output
bits). Therefore, the feature selection and error correction
circuit design are more challenging. To accommodate the
design change, we propose the Backward Stepwise Selection
algorithm to select the most significant features, as described
below.

2) Backward Stepwise Selection: The proposed Backward
Stepwise Selection (BSS) is the reverse version of the FSS.
Recall that in FSS, we start from an empty (null) set and
perform the feature selection algorithm to add features to the
subset and set the maximum number of selected features as
the stopping criteria. In BSS, we begin with a complete feature
set (i.e., a group with all input bits), eliminate elements from
the collection, and choose the maximum number of remaining
features as the stopping criteria. A concrete account of the
BSS algorithm is given in Algorithm 3. Note that in BSS,
it is important to determine the order of compensated bits
in circuitry outputs (i.e., which bit has a higher priority to
be compensated given area overhead constraints). Thus, we
propose a rule to designate the priority of each bit by assigning
different weights to them. In a nutshell, bits with a higher
weight (i.e., more important) are always compensated before
those with lower weights. The principle of weight assignment
is based on the following two observations.

a) Observation 1: Bit significance matters. The signifi-
cance of each bit is different. The most significant bit plays
a more critical role than the least significant bit in all cases.
An error that occurs in the most significant bit renders more
severe accuracy degradation and compensation towards such
bit is more important. To this end, we assign different weights
to different bits to signify their importance, a more influen-
tial bit will be compensated ahead of those less important

Algorithm 3: Backward Stepwise Selection

Input: Candidate feature pool F, error control value
CT,;, number of subsets h, number of selected
features m, cost function C (-)

Output: Selected feature subset F

1 for x <+ 1to h do

2 let FL 1, denote the full feature set;

3 for j< Lto L—m+1do

4 ft = argming C(Fw)j \ ft);

5 Fx,jfl%Fx,j \fts

6 end

7 end

8 Select Fz,Lme with lowest C as F;

9 return F'

Input
Data

Approximate
Circuit

IS

=" D

Control
Circuit

Fig. 6: Compensation Structure for VOS

ones. The weight of each bit can be simply represented as
w = 2bit_position‘

b) Observation 2: Error occurrence frequency matters.
As shown in Fig. 5, the error occurrence frequency (EOF) of
each bit is different. The EOF depends on the propagation
delay caused by VOS and varies across different circuits. We
compute the error occurrence frequency for each circuit and
multiply EOF with the bit weight to determine the priority of
bits for compensation. Thus, the final order of compensated
bits follows the ranking of FOF x w of each bit. We show
in our experiments that by using the proposed scheme to
determine the order of compensation, the proposed method
achieves the best performance at the cost of minimal overhead.

3) Control Logic Design & Correction Data Update: We
adopt the same approach as for ALD for the logic control
design. Given the selected feature subset, we determine the
control logic circuit ct; following Equation (3) and update the
corresponding output bit using Equation 4. Once all the control
signals are finalized, we synthesize and generate the entire
compensation circuit according to Algorithm 2, and connect
it to the VOS PAC, as shown in Fig. 6.

IV. EXPERIMENTS
A. Experimental Setup

Experiment Settings for ALD: We implement the pro-
posed design methodology in Python and employ scikit-learn



[50], a well-known machine learning library, to perform the 2
feature selection as our baseline method. We conduct experi-
ments on two real-world datasets, ALYA and GADGET [51],
to demonstrate the advantage of the proposed data-driven
method for compensation circuit generation. We randomly
select 10000 samples (a small fraction of the entire dataset)
from ALYA and all 601 samples from GADGET to create
input-error patterns. We consider a relatively small sample
size for two reasons: 1). The underlying assumption of data-
driven approaches is that data are not uniformly distributed
and have specific patterns. Thus, a small number of data can
reflect the common pattern in the entire dataset; 2). Data
collection is costly in real-world scenarios. We attempt to
select features that can be well generalized to all data from
the small fraction of the dataset. All the circuits including
PACs and the final approximate circuits in our experiments
are synthesized into netlists using a 32nm technology node.
We use the Synopsys Verilog Compiler and Simulator (VCS)
to generate the Value Change Dump (VCD) file and obtain
features from it. The VCD file is an ASCII-based format
file storing circuit signal transitions, where we can extract
signal state information. Mean absolute error (MAE) and error
rate (ER) are considered as the error metrics to evaluate the
performance of the generated approximate logic circuits.

Experiment Settings for VOS: Similarly, the feature selec-
tion algorithm is implemented in Python. We employ 16-bit
and 32-bit adders from the widely-used approximate comput-
ing benchmark AxBench [52] as PACs in the experiment.
For each circuit, we randomly generate 4000 (if not specified)
samples as input. We synthesize the PACs into netlist using
a 32nm technology node first and then use Synopsys IC
Validator to convert the source Verilog netlists (.v file) to
the HSPICE netlists (.sp file), which is the ASCII file that
contains an HSPICE Simulation Deck for circuit simulation.
The standard voltage is set to 1.05V while down-scaling to
0.8V for VOS. We perform the simulation and collect circuit
errors using Synoposys HSPICE. We evaluate the performance
of the compensated approximate circuits in three dimensions:
mean squared error (MSE), relative mean error (RME) and
average bit-wise error (BWE).

B. Evaluation on ALD PACs

1.) Comparison between the Modified FSS and Y2
Feature Selection

We first compare the performance on the feature subset
selection algorithm between our modified FSS and x? used
in [20]. Fig. 7 demonstrates the cost function trends for the
3rd and 2nd LSBs in the design of a 12-bit approximate
multiplier. Both methods achieve better performance than
randomly selecting features. However, the x? feature selection
may converge to a bad local minimum due to its greedy nature,
as showed in Fig. 7(a). In contrast, the proposed modified FSS
tends to escape these local minima and achieve lower cost
function values by gradually eliminating these features from
the candidate pool.

2.) Approximate Fixed-width Multiplier Design

To assess the effectiveness of our proposed method, we
generate the compensation circuits for a truncated fixed-width
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Fig. 7: Comparison between the Modified FSS and x? Feature
Selection on a 12-bit Truncated Fixed-width Multiplier: (a) the
3rd LSB, (b) the 2nd LSB

radix-4 booth multipliers under various settings based on
three input data: ALYA, GADGET and UNIFORM (uniformly
distributed inputs). We use UNIFORM to build reference
circuits, which corresponds to the data-independent compensa-
tion circuits. Since different input data result in different error
distributions, the number of compensation bits is determined
by the error dynamic range and the final approximate circuit
is generated as described in Section III.

The performance over different input data and the corre-
sponding hardware costs of compensated circuits (i.e., power,
area consumption and delay) are summarized in Table II
and Fig. 8, respectively. “Original” represents the completed
multiplier without approximation, “Truncated” represents the
approximated multiplier (i.e., the PAC) that partially trims
the original circuit, and DD-ALYA, DD-GADGET and DD-
UNIFORM are compensated multipliers generated by our
proposed method with different data features. PACs usually
have low hardware consumption and high error compared to
completed circuits. Our target is to improve the accuracy of the
PAC with a minimal increment in hardware overhead. It can
be seen that the error is significantly reduced from the PAC
(Table II) while only introducing small hardware overheads
(Fig. 8) using our proposed method. In the design of DD-
AYLA, the delay of the compensated circuit would remain
unchanged if we constrain the candidate feature pool to the
internal nodes close to the primary inputs. However, if we
sample multiple feature subsets to find the optimal one by
considering all the internal nodes into the candidate feature
pool, the delay might slightly increase (e.g., DD-GADGET
and DD-UNIFORM) when some of the selected features locate
near to the output of the circuit. In this case, the propagation



TABLE II: Comparison of the Approximate Multipliers on Different Input Data: MAE (ER%)

(a) ALYA
Truncated DD-ALYA DD-GADGET DD-UNIFORM
Circuits Circuits Circuits Circuits
10-bit | 0.9114 (84.94%) | 0.4613 (39.93%) | 0.5452 (48.32%) | 1.4636 (70.55%)
12-bit | 0.9242 (85.46%) | 0.4641 (39.63%) | 1.0924 (94.05%) | 0.5480 (48.04%)
16-bit | 0.9242 (86.27%) | 0.4623 (40.08%) | 1.3041 (93.91%) | 1.4492 (70.43%)
(b) GADGET
Truncated DD-ALYA DD-GADGET DD-UNIFORM
Circuits Circuits Circuits Circuits
10-bit | 1.4792 (96.38%) | 1.444 (94.84%) | 0.6772 (49.75%) | 1.0183 (70.38%)
12-bit | 1.6855 (96.33%) | 1.7154 (96.83%) | 0.8136 (56.57%) | 0.9617 (76.04%)
16-bit | 2.7704 (99.80%) | 2.7221 (98.66%) | 0.9417 (62.56%) | 1.0881 (72.21%)
(¢) UNIFORM
Truncated DD-ALYA DD-GADGET DD-UNIFORM
Circuits Circuits Circuits Circuits
10-bit | 1.8653 (97.53%) | 1.8586 (93.72%) | 2.4257 (84.21%) | 1.0525 (65.38%)
12-bit | 2.2464 (99.03%) | 2.2474 (98.05%) | 1.8789 (83.77%) | 1.0907 (68.72%)
16-bit | 2.9999 (99.80%) | 2.9836 (99.36%) | 1.6411 (77.66%) | 1.1342 (70.84%)
™ Original ¥ Truncated DD-ALYA W Original M Truncated DD-ALYA m Original Truncated DD-ALYA
DD-GADGET B DD-UNIFORM DD-GADGET m DD-UNIFORM DD-GADGET B DD-UNIFORM
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Fig. 8: Hardware Consumption Comparison between Different Compensated Approximate Multipliers: Truncated: multiplier
PAC; DD-ALYA: compensated multiplier with ALYA data as features; DD-GADGET: compensated multiplier with GADGET
data as features; DD-UNIFORM: compensated multiplier with uniformly distributed data as features. Y axis: normalized
hardware consumption to the original circuit. X axis: different input bit widths. All the compensation circuits generated using
our approach have much lower hardware overhead than the original multiplier while only introducing trivial power, area, and

delay consumption compared to the multiplier PAC.

delay of the compensation block added into the path from
the primary inputs to the selected internal nodes exceeds the
critical path of the PAC. Therefore we suggest limiting the
candidate feature pool to only internal nodes close to the
primary inputs for applications where the delay is a primary
concern.

The proposed data-driven methodology shows superior per-
formance on all of the approximate logic circuits in terms of
accuracy when tested on data with a similar pattern, which
is indicated by the bold numbers in Table II. Our method
achieves a 45.68%, 41.21%, and 30.47% accuracy improve-
ment on ALYA, GADGET, and uniformly distributed datasets,
respectively. It can also be observed that the approximate
circuits designed without considering data patterns are sub-
optimal in applications that have specific input distributions.
For example, both ALYA and GADGET datasets yield larger

errors on the 10-bit DD-UNIFORM approximate multiplier
than the uniformly distributed data. Therefore, it is crucial to
consider the input data distribution in the design of approxi-
mate logic circuits for data-oriented tasks.

3.) Approximate FIR Filter

We then scale up the circuit complexity to demonstrate
the effectiveness of the proposed method on designing larger
and more sophisticated approximate circuits, which is one key
merit of the proposed data-driven methodology compared to
manual analysis. Note that the final output may accumulate to
an intolerable error magnitude if we construct a large circuit
with approximate arithmetic elements. For instance, we build
an approximate 10-bit 4-tap finite impulse response (FIR)
filter circuit and replace the multipliers using the manually
designed approximate multiplier in [9]. As shown in Table III,
the original FIR represents the completed circuit without



TABLE III: Compensation performance on an approximate 4-tap FIR filter

Original [9] DD-GADGET
FIR FIR FIR
Area 5074.94 3640.77 3859.39
Power 902.075 682.69 723.82
MAE (ER%) | 0 (0%) | 0.4732 (39.96%) | 0.3013 (23.92%)

TABLE IV: Compensation Performance on

16-bit Brent Kung and Kogge Stone Adders

Mean Squared Error
1bit [ 2bit | 3bit | 4bit 5bit 6bit | 10bit | 12bit [ 17bit
BK (VOS) MSE = 1.700 (x10%)
BK (Compensated) | 1.679 0.983 0.647 0.613 0.613 0.614 0.611 0.611 0.610
Perf. Gain 1.28% | 42.19% | 61.93% | 63.93% | 63.93% | 63.87% | 64.07% | 64.06% | 64.14%
KS (VOS) MSE = 2.133 (x10%)
KS (Compensated) | 2.124 1.383 0.893 0.825 0.818 0.817 0.814 0.814 0.814
Perf. Gain 041% | 35.16% | 58.14% | 61.33% | 61.63% | 61.69% | 61.82% | 61.83% | 61.83%
Relative Mean Error
1bit 2bit 3bit 4bit Sbit 6bit 10bit 12bit 16bit
BK (VOS) RME = 10.25%
BK (Compensated) | 10.20% | 7.87% | 493% | 4.56% | 448% | 430% | 3.96% | 3.94% | 3.94%
Perf. Gain 0.51% | 23.25% | 51.91% | 55.48% | 56.27% | 58.06% | 61.42% | 61.55% | 61.55%
KS (VOS) RME = 18.63%
KS (Compensated) | 18.60% | 16.39% | 9.19% | 7.78% | 7.55% | 7.33% | 6.69% | 6.94% | 6.94%
Perf. Gain 0.16% | 12.01% | 50.67% | 58.27% | 59.45% | 60.68% | 62.66% | 62.74% | 62.75%
Average Bit-Wise Error
1bit 2bit 3bit 4bit 5bit 6bit 10bit 12bit 16bit
BK (VOS) BWE = 1.80
BK (Compensated) 1.79 1.70 1.59 1.52 1.48 1.40 0.92 0.69 0.55
Perf. Gain 0.68% | 545% | 11.95% | 15.36% | 18.08% | 22.01% | 49.17% | 61.65% | 69.44%
KS (VOS) BWE = 2.18
KS (Compensated) 2.16 2.06 1.85 1.70 1.64 1.56 1.05 0.81 0.61
Perf. Gain 1.00% | 531% | 15.06% | 22.00% | 24.56% | 28.44% | 51.94% | 62.63% | 72.06%

approximation, the FIR built upon [9] is the approximated FIR
without compensation (i.e., the PAC), and DD-GADGET FIR
is the compensated FIR using the proposed method. The MAE
and ER of the corresponding approximate 4-tap FIR filter
get accumulated to 0.4732 and 39.96%, which indicates the
drawback of the manual design in building large approximate
circuits with approximate arithmetic elements. On the other
hand, our proposed data-driven method achieves a significantly
better performance to further compensate this approximate FIR
filter. Our method yields a design with nearly a 16% error
reduction and only a 5.6% hardware overhead compared to
the PAC. Also, the area and power consumption are signif-
icantly lower than the original FIR. Furthermore, compared
to manual design strategies, this proposed systematic method
dramatically reduces the design workload..

C. Evaluation on VOS PACs

1.) Brent Kung and Kogge Stone Adders

We first evaluate our proposed method on VOS using 16-
bit Brent Kung (BK) and Kogge Stone (KS) adders from
AxBench. To thoroughly assess the effectiveness of our pro-
posed method, we compensate different numbers of bits and

compare their performance. For each bit, only ten out of
thirty-two features are selected to generate the compensation
circuit. As shown in Table IV, “1bit” means only one output
bit is compensated while “17bit” means all output bits are
compensated (i.e., a 16-bit unsigned adder has 17-bit output).
We follow the rule discussed in Section III-C2 to decide the
order of compensated bits. For both circuits, we observe the
same trend in all three evaluation metrics that the more bits are
compensated, the better accuracy we can retain. For example,
we can significantly reduce the MSE of the BK adder from
1.7 x 108 to 0.61 x 108, achieving a 64.14% performance
gain. More importantly, our approach can reach a good-enough
performance by only compensating a small number of bits
(e.g., 3-4 bits), which greatly saves the hardware overhead of
the compensation circuits. Specifically, it achieves a 63.93%
and a 61.33% performance gain on MSE, a 55.48% and a
58.27% performance gain on RME when only four output bits
are compensated for BK and KS adders, respectively. Note
these circuits are complex, and hence keeping the accuracy of
such circuits is challenging under the constraint of a limited
hardware budget. Thus, the proposed approach is particularly
useful in real-world scenarios where the chip size is always



TABLE V: Compensation Performance on a Larger Circuit (32-bit Brent Kung Adder)

Mean Squared Error
4bit 5hit 6bit \ 7hit 8bit 10bit \ 16bit \ 24bit \ 33bit
BK (VOS) MSE = 7.259 (x1017)
BK (Compensated) | 4.295 4.256 5.190 4.269 4.264 4.262 4.262 4.262 4.262
Perf. Gain 40.83% | 43.05% | 28.51% | 41.19% | 41.25% | 41.28% | 41.28% | 41.28% | 41.28%
Relative Mean Error
4bit | 5bit | 6bit [ 7bit [ 8bit | 10bit | 16bit | 24bit | 32bit
BK (VOS) RME = 10.21%
BK (Compensated) | 6.58% | 581% | 635% | 574% | 5.72% | 5.72% | 5.71% | 571% | 5.71%
Perf. Gain 35.54% | 43.05% | 37.79% | 43.78% | 43.95% | 43.95% | 44.01% | 44.01% | 44.01%
Average Bit-Wise Error
4bit \ Sbit \ 6bit \ 7bit \ 8bit \ 10bit \ 16bit \ 24bit \ 32bit
BK (VOS) BWE = 4.09
BK (Compensated) 3.80 3.65 3.58 3.48 3.41 3.28 2.75 1.96 1.42
Perf. Gain 7.11% | 10.78% | 12.46% | 1491% | 16.76% | 19.91% | 32.83% | 52.02% | 65.20%
TABLE VI: Compensation Performance on Different Data Size (32-bit Kogge Stone Adder)
Mean Squared Error
4bit 5bit 6bit \ 7bit 8bit 10bit \ 16bit \ 24bit \ 33bit
KS (VOS) MSE = 1.938 (x10'7)
KS (Compensated) | 0.024 0.020 0.018 0.018 0.018 0.018 0.017 0.017 0.017
Perf. Gain 98.72% | 98.94% | 99.08% | 99.08% | 99.09% | 99.10% | 99.10% | 99.10% | 99.10%
Relative Mean Error
4bit 5bit 6bit 7hit \ 8bit \ 10bit 16bit 24bit 32bit
KS (VOS) RME = 3.10%
KS (Compensated) | 0.23% | 0.19% | 0.15% | 0.16% | 0.13% | 0.12% | 0.11% | 0.11% | 0.11%
Perf. Gain 92.69% | 93.82% | 9531% | 94.82% | 95.65% | 96.04% | 96.39% | 96.39% | 96.39%
Average Bit-Wise Error
4bit | Sbit | 6bit | 7bit | 8bit | 10bit | 16bit | 24bit [ 32bit
KS (VOS) BWE = 1.44
KS (Compensated) 1.33 1.32 1.31 1.30 1.28 1.24 0.77 0.27 0.22
Perf. Gain 7.63% | 846% | 9.43% | 9.85% | 11.51% | 14.15% | 46.60% | 81.55% | 84.47%

concerned. One last observation from Table IV is that we
achieve relatively low-performance gain on BWE when few
output bits are compensated compared to its fully compensated
counterparts, which is dissimilar to MSE and RME. This is
because different bits contribute differently to errors (e.g., the
flip of the four most important bits may cause over 70%
errors). Therefore, the slopes of the performance gain of MSE
and RME are not linearly correlated to that of BWE.

2.) Generalizability

Next, we evaluate the generalizability of the proposed
framework to more complex circuits. We scale up the complex-
ity and use a 32-bit Brent Kung adder in this experiment. The
results are summarized in Table V. Since the 32-bit adder has
more bits to compensate, we increase the minimum number
of compensated bits from 1 bit to 4 bits. Note that the number
of gates dramatically boosts with the increment of circuit
complexity while the candidate features for each output bit
only increase from 32 to 64. Moreover, we only select ten
out of sixty-four features to generate the compensation circuit
to minimize the hardware overhead. Compared to the 16-
bit BK adder, the performance merely slightly drops under

such strict constraints, indicating strong generalizability to
more sophisticated designs. Another observation from Table V
is that the proposed method may overcompensate in some
rare cases (i.e., “6bit”), rendering a worse performance gain.
However, this can be avoided by increasing the number of
features.

3.) Different Data Sizes

Data size is a critical factor that affects the effectiveness
of our method. In this experiment, we show that it performs
particularly well on small data sizes. In the previous assess-
ment, we generate 4000 samples as the input of BK and KS
adders, which is a relatively large data size, and it demonstrates
decent compensation performance. However, in many real-
world scenarios where approximate circuits can be applied,
the data size is usually limited to a small number. We down-
scale the input data size from 4000 to 1000 and present its
capability on a smaller data size in Table VI using a 32-bit
KS adder. The proposed approach reveals surprisingly good
performance in such a scenario and achieves up to 99.10% and
96.39% performance gain on MSE and RME. The rationale
behind this is that the features selected by the feature selection



TABLE VII: Compensation Performance on Different Voltages

KS MSE (x107) RME

VOS | Compensated | Gain VOS Compensated | Gain
0.5V | 1.463 1.041 28.85% | 64.75% 41.32% 36.18%
0.6V | 1.377 0.666 51.63% | 63.90% 34.30% 46.32%
0.7V | 0.743 0.388 47.48% | 57.89% 29.31% 49.37%
0.8V | 0.213 0.083 61.33% | 18.63% 7.78% 58.27%
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Fig. 9: Loss change over selection of different number of
features (KS-16)

algorithm cover the majority of errors caused by the most
weighted bits. The results again validate the effectiveness of
the Backward Stepwise feature selection design.

4.) Impact of Number of Features

Another factor that affects the compensation performance is
the number of features for each output bit. In general, the more
features we select, the better performance we can achieve.
However, we only pick a small portion of features from the
candidate pool (i.e., 10/32 for 16-bit adders and 10/64 for 32-
bit adders) due to the overhead constraint. We evaluate the
impact of the number of features and present the loss function
value change of the four bits with the highest weight under
the different number of features in Fig. 9. We conduct the
experiment using the 16-bit KS adder and vary the number of
features from 4 to 14. The results show that the loss constantly
drops with the increasing number of features. Although 10
features already yield a decent loss reduction, there is still a
non-trivial improvement from 10 to 14 features. Undoubtedly,
we can further improve the performance by selecting more
features (e.g., increasing the number of features from 10 to
14). However, there is always a trade-off between the number
of features and the area increment of compensation circuits.
The Backward Stepwise Selection algorithm in the proposed
method consistently selects the most influential features, which
significantly improves the efficiency and effectiveness of error
compensation circuits while only introducing minimal area
overhead.

5.) Different Voltages

We also evaluate the effectiveness of our method when
different voltages are applied. We use the KS 16-bit adder as
the VOS PAC and compensate for four output bits. The results
are summarized in Table VII. It can be seen that the absolute
error increase with lower voltage as expected (i.e., 0.5V and

0.6V have larger MSE than 0.7V and 0.8V). Although voltages
yield different errors, our proposed method can always reduce
the error by a large margin, rendering at least a 28.85%
and a 36.18% improvement in MSE and RME, respectively.
Note that 0.5V is only 50% of the standard working voltage,
which can drastically lower the power consumption of a
circuit. Our method achieves a decent error compensation in
such an extreme case, indicating good generalizability and
effectiveness.

V. DISCUSSION

Since we are the first to consider compensating approximate
circuits from the data-driven perspective, we acknowledge
the limitations of the proposed method and honestly discuss
them in this section. First, like many widely-used optimization
techniques in machine learning, such as stochastic gradient
descent, our feature selection algorithms have no guarantees
of reaching a global minimum. However, we attempt to
avoid local minima by running the feature selection algorithm
multiple times (e.g., h times) and keeping features that yield
the lowest loss, as we show in Algorithm 1 and Algorithm 3.
Such a process does not guarantee the global minimum but
can effectively result in a better feature subset. In principle,
it is straightforward to enumerate all possible feature subsets
and compare the loss to find the global optima. Yet the
optimization problem is intractable due to the complexity of
computation. Thus there is a trade-off between the feature sub-
set’s quality and the algorithm’s run time. It is recommended
to build as many feature subsets as possible depending on
the time budget and pick the best one. Additionally, although
the proposed method significantly reduces the error rate of
PACs, the compensation performance may vary and depends
on circuits, voltages, datasets, and feature sets. We encourage
future work to improve our baseline.

VI. CONCLUSIONS

This paper presented a data-driven feature selection frame-
work of compensation circuit generation for both approximate
logic design and voltage over-scaling. We proposed forward
stepwise and backward stepwise feature selection algorithms
for these two approximate computing paradigms, respectively.
The design of the proposed approach and the algorithm
analysis are discussed in detail. We extensively evaluate the
proposed approach over various circuits and our experimental
results show that the proposed approach achieves superior
performance, which indeed indicates the need for developing
scalable data-driven approximate computing methods.
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