
Geometry of Radial Basis Neural Networks for
Safety Biased Approximation of Unsafe Regions

Ahmad Abuaish†, Mohit Srinivasan‡, Patricio A. Vela†

Abstract— Barrier function-based inequality constraints are a
means to enforce safety specifications for control systems. When
used in conjunction with a convex optimization program, they
provide a computationally efficient method to enforce safety
for the general class of control-affine systems. One of the
main assumptions when taking this approach is the a priori
knowledge of the barrier function itself, i.e., knowledge of
the safe set. In the context of navigation through unknown
environments where the locally safe set evolves with time,
such knowledge does not exist. This manuscript focuses on the
synthesis of a zeroing barrier function characterizing the safe
set based on safe and unsafe sample measurements, e.g., from
perception data in navigation applications. Prior work formu-
lated a supervised machine learning algorithm whose solution
guaranteed the construction of a zeroing barrier function with
specific level-set properties. However, it did not explore the
geometry of the neural network design used for the synthesis
process. This manuscript describes the specific geometry of the
neural network used for zeroing barrier function synthesis, and
shows how the network provides the necessary representation
for splitting the state space into safe and unsafe regions.

I. INTRODUCTION

Invariant set-based safe control synthesis [1] has become
a favorable technique to enforce safety, as it provides the-
oretical guarantees when used to augment base controllers
[2]. For closed dynamical systems, the invariant set is
represented by the zero and positive level-sets of a con-
tinuously differentiable implicit function, typically termed
zeroing barrier function (ZBF). Subsequently, for controlled
systems, control barrier functions (CBFs) are introduced
to represent the invariant set. In safety-critical applications,
CBF-based controllers are designed to render safe regions
in the state space a positively invariant set. Prevailing use
of CBFs is in a point-wise optimization program solved via
quadratic programming (QP) [3]. CBF-based QPs have been
used in a wide range of applications in robotics such as
collision avoidance [4], [5], multi-robot coordination and task
satisfaction [6], [7], [8], and automotive applications [3].

Usually, a CBF is handcrafted based on a priori knowledge
of the safe regions in the state space. However, there are
applications where the safe regions evolve with time, with
navigation being one. In these applications, it is critical to
synthesize the CBF online using sensor measurements. Un-
fortunately, determining the true invariant region defined by a
CBF is generally an NP-hard problem, but some techniques

This work was supported in part by the National Science Foundation
under Award S&AS #1849333, by DARPA PAI, and by KACST Fellowship.

† School of Electrical and Computer Engineering, Georgia In-
stitute of Technology, Atlanta, USA aabuaish@gatech.edu,
pvela@gatech.edu

‡ Ford Motor Company, Dearborn, USA mohit.s@ieee.org

exist that can estimate the invariant region [9]. Since the
existence of a zeroing barrier function is needed to formally
confirm the existence of a CBF, this manuscript solely
focuses on zeroing barrier function synthesis to separate state
space into safe and unsafe regions. The ZBF is constructed
from a two-layer kernel machine network trained from a
labeled dataset of safe and unsafe samples. Further, the
geometry of the kernel functions in the network is explored
to efficiently partition the space. The approach is motivated
by the Kolmogorov–Arnold representation theorem, which
implies that two-layer neural networks may be capable of
approximating continuous functions [10].

Recently, several data-driven approaches for constructing
a CBF were proposed to account for uncertainties in either
the system dynamics, unsafe regions, or both. One approach
category for learning CBF’s involves supervised offline learn-
ing. Instances include imitation learning where training data
is generated by an expert actor or optimal control simulations
[11], [12]. The offline nature lacks the ability to accommo-
date real-time changes in the environment. In contrast, self-
supervised approaches permit online learning. Initial work
on self-supervised Bayesian learning system of uncertain
dynamics [13] with known barrier functions was merged with
[14] to learn the system dynamics and an implicit function
representation of the unsafe region [15]. In [14], a signed
distance function representing obstacles is modeled as a deep
neural network trained from range sensor data via stochas-
tic gradient descent (SGD) with replay memory. Similarly,
[16] presented the construction of a probabilistic occupancy
map from a kernel-based logistic regression model trained
from range sensor data via SGD. However, there were no
hard constraints on misclassifying unsafe data points in the
underlying SGD optimization process, which nullifies any
possible theoretical safety guarantee.

Our previous work focused on creating a ZBF for nav-
igation applications based on data collected from LiDAR
sensors [17]. A two-layer network with Gaussian radial basis
functions (GRBFs) was synthesized from this data. The first
layer used sparsely distributed (over the domain) GRBF
centers, while the second GRBF layer was learnt during
the kernel support vector machine (kSVM) optimization pro-
cess. The kSVM optimization specifications provided formal
guarantees regarding the partitioning of the domain into safe
and unsafe regions. However, the work did not discuss the
geometry and associated properties of the GRBF network.
This work analyzes the geometry of the two-layer network
and the structure of the optimization problem to prove the
existence of a ZBF with known partitioning properties.

IEEE Control Systems Letters paper presented at
2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

979-8-3503-2806-6/$31.00 ©2023 AACC 1459

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

The manuscript organization is as follows: Section II
discusses the geometry of Gaussian kernel functions with
respect to the first layer. Section III covers the second
layer construction, geometry, and optimization specifications.
Section IV discusses the qualification of the two-layer kernel
machine network to be a zeroing barrier function along with
a kernel basis selection strategy. Sections V and VI present
case studies and concluding remarks, respectively.

II. GEOMETRY OF THE KERNEL HILBERT SPACE

GRBF Neural Networks (GRBF-NNs) have several prop-
erties ideal for zeroing barrier function creation. First they
are universal approximators [18], second they exhibit locality
[19], and third they partition space. Since the last property
is less frequently mentioned, but often used, this section
devotes attention to space partitioning, as it is essential for
data-driven safe set generation.

The focus of this section is on GRBF-NNs as kernel
machines whose kernel functions are radial basis functions
(RBFs), which generally take the following form,

k(xi, xj) = φ(||xi − xj || ;σ), for φ : R+ → R+, (1)

where xi, xj ∈ Rnd , ||·|| is a norm and σ is the scalar
bandwidth, which influences the sensitivity of the basis
function φ. A kernel machine based on radial basis functions
generates a mapping through the use of multiple kernel
function mappings with fixed argument elements cj in a
center set C. For cj ∈ C the kernel mapping is

k⃗ : Rnd → Hnc , x 7→ [k(x, c1) · · · k(x, cnc)]
T . (2)

where nc = |C| and H· indicates that the output space is
a Hilbert space. For this kernel machine to define a scalar
function requires specifying α ∈ Rnc such that

fKM(x) =
〈
α , k⃗(x)

〉
= αT k⃗(x). (3)

Kernel machines permit more general function classes than
RBFs in Rnd (subsequent sections will use polynomial kernel
functions). That said, RBFs have geometric properties that
are implicitly exploited in kernel machine learning applica-
tions. Specializing to the case of the Gaussian radial basis
function (or Gaussian kernel), let the kernel function be

kG(x, c) = exp

(
−||x− c||2

σ2

)
. (4)

Theorem 1. The kernel mapping, with nc Gaussian kernels,
maps the input domain D ⊂ Rnd into a surface in the Hilbert
space Hnc ⊂ Rnc when nc ≥ nd + 1 and there are nd + 1
centers capable of defining a coordinate system in nd.

Proof. Showing that the kernel mapping is 1-1 establishes
this property. The pre-image, k−1(·, ci), of each coordinate’s
kernel mapping is a sphere in the input space. The intersec-
tion of all spheres for all coordinate mappings establishes the
pre-image point, which is unique only if the intersection is
unique. Finite solutions for the intersections has been proven
in the context of rigid body geometry for nc = nd [20],

with nc ≥ nd + 1 necessary for a single valid solution.
The requirement for the centers is that they lead to a basis
of nd vectors when using one of the points as the origin
and using nd other points to obtain the basis vectors relative
to that origin. Each pre-image imposes a constraint on the
degrees of freedom of the input point x ∈ Rnd , such that the
nd+1 intersecting pre-image spheres do so at a single point.
When nc > nd + 1, the additional pre-image constraints are
redundant and effectively impose no constraints. The rank
of the mapping is nd < nc, hence it maps to a surface of
dimension nd.

Theorem 1 applies to any RBF with infinite support; an
RBF with finite support will have similar properties but will
include an ϵ-covering constraint. Basis functions generated
from other norms also have similar properties but may
require more centers to induce a 1-1 mapping. If the kernel
is differentiable, then the 1-1 mapping is an embedding.
Safe set generation with an appropriate kernel mapping will
involve defining the concept of a kernel embedding1 and its
associated kernel embedding inducing data set.

Definition 1. The kernel mapping k⃗ : Rnd → Hnc is a
kernel embedding if the center set C ⊂ D generating the
kernel mapping are such that it is 1-1 and the kernel function
k : Rnd × Rnd → R is differentiable. The set of centers is
called the kernel embedding inducing set (KEI set).

Corollary 1. Consider a finite set of points Xp ⊂ R2 with
an associated triangulation. Under a kernel embedding, each
triangular region maps to a surface in Hnc homeomorphic
to a 2-simplex.

Corollary 2. Consider a finite set of points Xp ⊂ R3 with
an associated tetrahedralization. Under a kernel embedding,
each tetrahedron maps to a surface in Hnc homeomorphic
to a 3-simplex.

If the domain D ⊂ Rnd is a set of disconnected regions
excluding points at infinity, then a kernel embedding will
map to a set of disconnected surfaces. Similarly, a collection
of non-intersecting triangulations/tetrahedralizations maps to
a set of disconnected surfaces under a kernel embedding.

1) Geometry of a Kernel Embedding: The Gaussian ker-
nel mapping outputs lie in the unit cube of Hnc ⊂ Rnc . Each
center ci in the set C maximizes its associated coordinate
(evaluates to 1), which means that there is a neighborhood
of ci in D for which this same coordinate is also maximal
for all points in the neighborhood. Points tending to infinity
map to the origin in Hnc since the Gaussian radial basis
function tends to zero as the input radius tends to infinity.

Corollary 3. For a kernel embedding defined using the
Gaussian kernel, a compact domain D maps to a compact
surface whose points lie outside of a ball centered at the
origin. Furthermore, k⃗(Rnd) ∪ {⃗0} is a compact surface.

1Not to be confused with the kernel mean embedding which is for
probability distributions [21].

1460

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Depiction of the input domain and the associated Hilbert space
along with the GRBF centers and the separating boundaries and surfaces.

With the surface geometry of the kernel embedding k⃗ for
a given KEI set C established, the next step is to consider
partitions of the surface in Hnc . Given that the unbounded
input space maps to a compact surface, defining a partition of
the space is equivalent to defining a cutting surface transverse
to the compact surface that divides space into positive and
negative regions. The intersection of the compact surface
with the cutting surface in the Hilbert space maps back to
separating boundaries in the original space. The objective
will be to define cutting surfaces by specific level-sets of an
implicit function in the Hilbert space. In short, safe region
generation in the input space involves construction of an
implicit function in the Hilbert space based on sampled
points with safe / unsafe labels.

The observation leading to Corollary 3 hints that the
geometry induced by the KEI set plays a role in establishing
the surface image in the Hilbert space. Here, we connect the
KEI set to coverings of the input domain. For the sets and
spaces defined here, define an ϵ-covering as follows:

Definition 1. For Rnd with the Euclidean norm (2-norm), let
D ⊂ Rnd . For ϵ > 0, the set C ⊂ D is an ϵ-cover for D if for
every x ∈ D there exists a ci ∈ C such that ||x− ci|| ≤ ϵ.
Equivalently, D ⊂

⋃
i Bϵ(ci).

In the context of a Gaussian radial basis neural network
or Gaussian kernel machines, ϵ-covers partition the original
space in a predictable manner in the kernel mapped Hilbert
space. An equivalent ϵ-cover specification is the following
∞-norm inequality applied to the kernel mapping output:

C =
{
x ∈ Rnd |

∣∣∣∣∣∣⃗k(x)∣∣∣∣∣∣
∞

≥ φ(ϵ;σ) = e−ϵ2/σ2
}
. (5)

If the KEI set is defined based on an ϵ-cover of D ⊂ Rnd ,
then the kernel map will map points in D to points in Hnc

on a surface some minimal distance from the origin. Points
in Rnd receding from D will tend towards the origin in Hnc .

The top row in Figure 1 depicts a 2D example consisting
of a collection of safe (blue +) and unsafe (orange ◦) points
generated from a nonlinear separating boundary (dashed

black curve), as well as three GRBFs (black *) centered in
the unsafe region, X u ⊂ D, that are an ϵ-cover. These three
centers create a mapping of the 2D domain into a 3D Hilbert
space, depicted in the bottom row where the orange surface
is the unsafe region surface k⃗(U∗) and the blue surface is
the safe region surface k⃗(S∗). The cutting surface sought is
one that separates points “near” to the origin from those
in k⃗(U∗). Two such surfaces are depicted in the second
and third columns (bottom row) along with their level-set
boundaries in the input space (top row). The next section
describes how to derive cutting surfaces from solutions to
constrained optimization problems.

III. CUTTING SURFACES AND PARTITIONS

This section exploits the geometry of the kernel mapping
to define cutting hyperplanes in its output Hilbert space.
These hyperplanes translate to partitions of the input space.
Initially, the cutting hyperplanes will be in the original
Hilbert space and are defined by a single-layer kernel ma-
chine network. Next, a second layer is added to the kernel
machine network to create cutting hyperplanes that translate
to elliptical volumes in the original Hilbert space. More
complex cutting surfaces are then explored based on the
inclusion of positive (unsafe) and negative (safe) samples.

A. Single-Layer Kernel Machine Network Partitions

Constructing an implicit partition function with barrier
function properties with a single-layer kernel machine in-
volve identifying a cutting hyperplane for the collection of
safe and unsafe data. Consider a kernel embedding built
using the unsafe data where C is a KEI set and covering
of the unsafe set for some ϵ. One cutting hyperplane results
from the following linear program:

min
α∈Rnc

1⃗ Tα

s.t. αT k⃗(xi) ≥ 1, ∀i ∈ { l | xl ∈ X u }
αj ≥ 0, ∀j = 1, . . . , nc

(6)

where 1⃗ = [1 · · · 1]T ∈ Rnc , and α ∈ Rnc are the
coefficients of the separating hyperplane. The one level-set
of fKM(x) = αT k⃗(x) defines the hyperplane in the positive
hyperoctant that is furthest from the origin and places all
unsafe points in X in the positive half-plane. The linear
program is guaranteed to have a solution:

Theorem 2. Given a kernel embedding k⃗ defined from an
ϵ-covering of X u, there is a hyperplanar splitting of Hnc

described by

S =
{
x ∈ D |

〈
b⃗ , k⃗(x)

〉
< 1

}
(7)

where S ⊂ S∗ ⊂ D and X u ⊂ S̄ .

Proof. Consider the covering set of centers C. Generate a
clustering of the unsafe data points X u based on the cluster
assignment function xu ∈ X u 7→ argmaxi k(x

u, ci) for
ci ∈ C. For each cluster set X u

i find the minimum value
yi = k(x, ci) for x ∈ X u

i . Each cluster minimum defines the

1461

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

i-th coordinate intercept for a cutting plane in the Hilbert
space, which defines b⃗. All unsafe points X u lie on the non-
negative side, possibly with some safe points from X s. Only
safe points in X s lie on the negative side (it is half-plane
containing origin).

Corollary 4. By virtue of defining a splitting with a kernel
embedding, this same operation generates a splitting of the
original domain D, and likewise the full space Rnd .

The second column of Figure 1 depicts the separating
hyperplane, generated by the linear program in (6). The
bottom plot shows the hyperplane (yellow surface) in the
Hilbert space, and the top plot shows the separating boundary
(yellow closed contour) in the input domain.

B. Two-Layer Neural Network Partitions

The Hilbert space splitting based on a separating hyper-
plane may not capture the true classification boundary in
the Hilbert space. Consequently, a richer decision boundary
based on a nonlinear separating surface should create a split-
ting with fewer misclassified points. Consider the problem
of defining a quadratic safety volume in the Hilber space
specified by a quadratic boundary

ζTA2ζ + bT2 ζ + c2 = 0, (8)

where elements below the surface (evaluate to less than 0) are
guaranteed to be safe, and unsafe elements are guaranteed to
be above the surface (evaluate to greater than 0). Now, the
optimization problem becomes a quadratically constrained
linear program (QCLP), which is an NP-hard problem in
theory [22], [23]. Although relaxation techniques for solving
QCLPs exist, such optimization problems should be avoided
when possible. Adding a quadratic polynomial kernel as a
second layer to the network will preserve the LP formulation
in (6) for the cutting surface optimization problem.

1) A Quadratic Polynomial Layer: Using a quadratic
polynomial kernel of the form p2(x, y) = (xT y + λ)2 leads
to quadratic cutting surfaces in Hnq where nq is the number
of kernels. The mapping is now p⃗2 ◦ k⃗ : D → Hnq , where

p⃗2(x) =
[
p2(x, y1) · · · p2

(
x, ynq

)]T
. (9)

For the quadratic polynomial layer, the parametric degrees
of freedom are the vectors yi such that each kernel coordinate
is p2(x, yi;λ). For simplicity, let nq ≥ nc such that yi = ei
for i ∈ { 1, . . . , nc } where ei is the ith unit coordinate vector.
The remaining vectors yi, if any, for nc < i ≤ nq can be
any basis elements that support the task at hand (typically
selected based on the training data). Creating a separating
boundary is equivalent to establishing the coefficients αi for
the following constraint equation,

zT

(∑
i

αiyiy
T
i

)
z+2λ

(∑
i

αiy
T
i

)
z+λ2

(∑
αi

)
= 0,

(10)
where z ∈ Hnc . The structure of (10) matches that of (8).
Note that due to the limited number of kernels, and thus
limited number of basis vectors yi, (10) can only represent a

subset of solutions generated by (8). However, the trade-off
is that the optimization problem for solving the coefficients
of kernel machines remains a linear program:

min
α∈Rnq

1⃗ Tα

s.t. αT p⃗2 ◦ k⃗(xi) ≥ 1, ∀i ∈ { l | xl ∈ X u }
αj ≥ 0, ∀j = 1, . . . , nq

(11)

Theorem 3. Given a kernel embedding k⃗ defined from an
ϵ-covering of X u, there is a hyperspherical splitting of Hnc

described by

S =
{
x ∈ D |

∣∣∣∣∣∣⃗k(x) + λ1⃗
∣∣∣∣∣∣
2
< ρP for x ∈ X u

}
(12)

where S ⊂ S∗ ⊂ D, λ ≥ 0, ρP = min
(∣∣∣∣∣∣⃗k(x) + λ1⃗

∣∣∣∣∣∣
2

)
for

x ∈ X u, and X u ∈ S̄ .

Proof. The theorem asserts the existence of a feasible
quadratic surface with hard unsafe constraints for splitting
the Hilbert space using the 2-norm. The 2-norm operation is
equivalent to setting λ = 0, αi = ρ−2

P for i ≤ nc, and αi = 0
for nc < i ≤ nq (should such i exist) for the polynomial
quadratic kernel problem specified by (11). Thus, the set of
feasible solutions to (11) for λ = 0 has at least one element
in it. For λ > 0, ρP = min

(∣∣∣∣∣∣⃗k(x) + λ1⃗
∣∣∣∣∣∣
2

)
and gives a

hyper-sphere centered at −λ1⃗.

The theorem establishes the existence of a solution to
the linear program defined in (11), thereby showing that
the solution space is non-empty when λ ≥ 0. The case of
λ < 0 is possible but trickier to solve for, and may lead to
poor solutions when −1 < λ < 0. Referring again to the
example in Figure 1, the third column depicts the separating
quadratic surface, solved by the linear program in (11). The
bottom plot shows the quadratic surface (yellow surface)
in the Hilbert space, and the top plot shows the separating
boundary (yellow closed contour) in the input domain. There
are slightly fewer misclassified safe data points compared to
the linear hyperplane results in the second column.

Higher order polynomial kernels may be used to partition
the space. Doing so should provide more space carving
degrees of freedom but will require a policy for selecting
the kernel basis elements (beyond the unit coordinate vectors
of the Hilbert space). Solving for the second layer as a
kernel SVM using a sequential minimal optimization (SMO)
algorithm [24] will provide a solution that identifies the basis
elements and solves for their coefficients, much like in [17].
This section focused on a constructive approach to guarantee
a non-empty solution space; it can be augmented with an
SMO-like basis expansion solver to obtain nq > nc.

C. Two-Layer Partitions with Safe and Unsafe Samples

The linear programs for the splitting hyperplane and
hyperellipsoid in the lifted Hilbert space Hnc attempt to
find the furthest hyperplane or largest hyperellipsoid. They
may be conservative relative to other options for synthesizing
such a boundary due to the curvature of the Hilbert space

1462

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

or the shape of the separating boundary. As a result, mis-
classification of safe points as unsafe will occur, as seen
in Figure 1. Richer surfaces exist that better capture the
regions misclassified by the linear and ellipsoidal cutting
surfaces. However, the linear program establishing the model
coefficients α will require knowledge of what parts of the
mapped space should be considered safe versus unsafe, and
require having sufficient samples of both classes. These
samples permit recovery of more complex cutting surfaces.

The coordinate vectors, yi, for the polynomial kernels
in the multi-order polynomial layer should at least include
nc basis unit vectors for each polynomial order (i.e., the
minimum LP problem size grows linearly with the maxi-
mum polynomial order). These can be complemented with
a specialized or task-specific basis expansion criteria. The
polynomial kernel mapping is the following,

p⃗(z) = [(yT1 z + λ1) · · · (yTnc
z + λ1) · · ·

(yT1 z + λpi)
pi · · · (yTnc

z + λpi
)pi · · ·]T ,

(13)

where pi ∈ { 1, . . . , np }, np is the maximal polynomial
order used, and Np is the total number of polynomial kernels
used across all orders. The minimum basis elements require-
ment means that Np ≥ npnc. The linear-in-α constraint
equation for a multi-order polynomial surface cut is

αT p(z) =
∑
i

αi

(
yTi z + λpi

)pi
= 0. (14)

Per [17], the inclusion of positive and negative samples
should involve hard constraints on the unsafe points and soft
constraints for the safe points

min
α∈RNp ,ξ∈Rns

1⃗ T ξ (15)

s.t. αT p⃗ ◦ k⃗(xi) ≥ 1, ∀i ∈ { l | xl ∈ X u }
αT p⃗ ◦ k⃗(xj) ≤ −1 + ξj ,

ξj ≥ 0 ∀j ∈ { l | xl ∈ X s }

Theorem 4. Defining the two layer neural network f = p⃗◦k⃗
with np ≥ 2 and performing a hyper-planar partitioning of
the space in the output space provides an equivalent or better
splitting of the space, based on safe misclassification counts.

Proof. The solution space for (15) contains the linear and
quadratic cases by setting the appropriate coefficients βi to
zero. The optimization problem will either return one of these
options or it will find a better one. By virtue of having a
slack minimizing cost, better solutions will involve either
the same slack or smaller. If more slack variables evaluate
to zero, there will be less safe point classification errors.

The original two-layer formulation in [17] uses a 2-
layer GRBF network created using a kernel-SVM process
for the second layer. The Gaussian kernel in the second
layer defines an alternative nonlinear space for generating
the cutting surface, which may provide a richer cutting
surface solution space. The theorems and corollaries here
provide a more formal analysis of the partitioning properties

(a) (b) (c)

np = 2 np = 3

Fig. 2. Depiction of cutting surfaces and separating curves for two-layer,
multi-order polynomial partitions using safe and unsafe data points.

of the 2-layer kernel machine, which is an instance of a
shallow layer kernel machine (SKM), and the specification of
learning problems on the output layer that are linear program
formulations with a non-empty solution space. Similar results
apply for a Gaussian kernel second layer.

a) Discussion: The provision of negative (safe) sam-
ples changes the structure of the problem by adding a point
set complementary to the unsafe set, deemed to be safe.
Incorporating this data into the optimization problem adds
information about what regions of the Hilbert space Hnc

should lie on the negative side of the boundary, thereby
pushing the boundary outwards when there are negative
samples on the other side of the hyperplanar or hyperel-
lipsoidal splitting (based on available degrees of freedom in
the polynomial kernel layer). Solutions should improve the
accuracy of the estimated bound and reduce the quantity of
safe misclassification errors, per Theorem 4.

Figure 2 depicts the cutting surfaces for the case of np = 2
(left plot) and np = 3 (middle plot), and their input domain
boundaries (right plot) for the same example problem data
of Figure 1. Both surfaces were generated using positive and
negative samples per (15). There are less misclassified safe
data points, with the np = 3 case achieving zero slack cost.

b) Maximally Flexible Shallow Network Design: The
constructions to date are based on a covering of the positive
set (unsafe set). For potentially more accurate results, addi-
tional basis centers can be chosen from the negative (safe)
set. Extremizing coordinates associated to these centers indi-
cate movement towards safe regions and away from unsafe.
Their inclusion changes the structure of the optimization
since these are points in the Hilbert space surface to avoid.
The optimization problem specification should seek to gen-
erate a cutting surface that carves out such regions. Because
of the flipped nature, a bias term will be needed. The bias
term can be easily appended to the multi-order polynomial
layer mapping, updating p⃗ from (13) to

p⃗(z) = [(yT1 z + λ1) · · · (yTnc
z + λ1) · · ·

(yT1 z + λpi
)pi · · · (yTnc

z + λpi
)pi · · · 1]T ,

(16)

where, pi ∈ {1, . . . , np}. The optimization formulation (15)
still applies. Repeating the earlier analysis will show that

1463

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

(15) has at least one point in the solution space for sepa-
rating hyperplanes (and one for separating hyperellipsoids).
Consequently, (15) has a non-empty solution space.

IV. CONSTRUCTION OF THE BARRIER FUNCTION

The previous sections described methods to synthesize
level-set functions for approximating the boundary of the
safe set from labeled, sampled data. The level-set functions
have the necessary properties to serve as zeroing barrier
functions after a constant shift and rescaling. We call the
barrier function designed from concatenated kernel machines
a shallow kernel machine-zeroing barrier function (SKM-
ZBF). An additional extended class K outer function ψ ∈ Ke

may be needed to adjust the sensitivity based on the appli-
cation, e.g., h(x) = ψ0 ◦ h̄(x), where h̄(·) is the SKM-ZBF.
This section connects the cutting surface layer with ZBF
properties and concludes with some practical considerations
for implementing the SKM-ZBF.

A. Suitability as Zeroing Barrier Functions

To serve for safety-critical control applications, there are
conditions on the level-set function to be a valid ZBF.

a) Monotonicity: ZBFs must be monotonic when eval-
uated across the boundary. The specification of the boundary
as a cutting surface constraint means that the domain surface
and the constraint surface are transverse to each other. The
intersection of the two surfaces occur at the zero level-set.
Movement on the (Hilbert space) domain surface away from
the boundary necessarily has monotonic behavior, locally.
The hard constraint in (15) for the unsafe samples ensures
local monotonicity, at least from the -1 to +1 level-sets (0
to +2 for the equivalent SKM-ZBF) and for some non-trivial
band away from their boundaries. Figure 3 depicts SKM-
ZBF as a color map for various architectures, all of which
exhibit monotonicity across the boundary.

b) Continuously Differentiable: The canonical control
barrier function constraint used for safety depends on the
gradient of the barrier function [2]. The function needs to be
continuously differentiable to avoid undesirable behavior in
the constraint. The Gaussian and polynomial layers consist
of smooth basis functions, thus their composition and linear
combination is also smooth, thereby resulting in smooth
gradients of the ZBF. The gradient has a closed form solution
based on equations (2) and (16) which can be used in the
CBF constraint [2] to enforce safety.

c) Dead Gradients: Based on the CBF constraint dis-
cussed in [2], vanishing gradients for h(x) for x ∈ D may
lead to loss of control [25], which is undesirable in safety
critical applications. Monotonicity in the vicinity of the zero
level-set guarantees no vanishing gradients in that region.
Due to the nature of the first layer and the mapping of
Rnd to a compact surface in Hnc , the function has known
limits, which give local extrema. One such will be the output
of z = 0 (points at infinity in the original input space).
These points will tend to the same ZBF value (visible as
nearly constant regions in the level-set plots of Fig. 3).
At the other extreme will be the center locations; they

locally maximize distance from z = 0 in Hnc , and may
have similar extremizing properties relative to the transverse
cutting surface. These points may be local extrema of the
ZBF, in which case the gradients will vanish there (visible as
local minima in the level-set plots of Fig. 3). Since the focus
of this SKM-ZBF construction is on spatially meaningful or
location-based ZBFs related to navigation, the existence of
the aforementioned extrema on sets of measure zero do not
have a strong impact as for other use cases of ZBFs. Due
to the possible topology of unsafe space, attempts to define
one signed distance function for all disconnected regions will
result in an extrema set of zero measure (related to junctions
in the Voronoi partition).

d) Guarantees on the Safe Set: The ability to capture
the interface between safe and unsafe regions is a function of
the measurement density. There is an operating assumption
of an ϵ-covering for the unsafe regions where the ϵ value is
related to the bandwidth of the Gaussian kernels, σ. If the
sensor resolution is too coarse to capture boundary variation,
then the unsafe set may not lie within the resulting covering
and the asserted guarantees cannot hold. It is impossible to
guarantee safety when the sensors cannot measure or sample
the space as needed (unless it is known how much the local
structure can change for small changes in sample location).

The optimization problem guarantees that h(X u) ⊂ R−,
which implies the existence of a point-dependent closed
covering C̄(X u) of the unsafe points for which h(C̄(X u)) ⊂
R−. Assuming that the sensor can indeed measure and
capture the local structure, and the GRBF layer reflects it,
then U∗ ⊂ C̄(X u) ⊂ D and S ⊂ S∗ ⊂ D.

B. Practical Method for Barrier Function Synthesis

The standard kernel machine mapping consists of a single
spatial scale, which places a limit on the boundary that can
be captured for a given ϵ-cover. This limit is related to the
Fourier spectral properties of the functions generated by the
kernel machine [26]. Multi-scale implementations improve
this limitation [27], with each Gaussian center of the first
layer having a bandwidth parameter chosen from a finite set.

In effect, each ci has a bandwidth σi ∈ {β1, . . . , βNb
}

where Nb is the number of unique bandwidths used. For
multiple Gaussian bandwidths the ϵ-cover concept changes to
be a Gaussian kernel cover extending the single-bandwidth
version. The same equation (5) is used but the equivalent
balls Bϵi(x) in the original input space will have differing
radii ϵi based on the kernel function bandwidth βi for the
ith kernel coordinate mapping, similar to how pi varies for
a multi-order polynomial layer. These (radius variable) balls
should cover the space of interest. The cover C from (5)
satisfies

D ⊂ C =
⋃
i

Bϵi(ci) for ϵi ∈ { ε1, . . . , εNb
} , (17)

and each εj depends on βj . The same linear programs for
hyperplanar, hyperellipsoidal, and multi-order polynomial
cutting surfaces apply, as do the existence of at least one
solution in the feasible space for each LP specification.

1464

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

Linear Quadratic Multi-Poly-2 Multi-Poly-3 Multi-Scale-Poly-2

(a) (b) (c) (d) (e)

Fig. 3. Depiction of SKM-ZBF values as a color map along with its zero level-set (yellow contour) for different network constructions. (a) and (b) are
replica of Figure 1(b,c) (top row); (c) and (d) are replica of Figure 2(c); (e) is the same as (c) but with multi-scale Gaussian kernels.

Earlier work [28] established a greedy selection policy for
recovering a domain covering center set C for optimized
function approximation. A similar policy applies to the case
of multi-scale, first layer synthesis from data, modified with
finer bandwidth values based on residual error minimization
of the coarser single layer basis functions. Likewise, regres-
sion or function recovery from Gaussian kernel machines
operate best when capturing the deviation from some known
parametric model [29], leading to a semi-parametric first
layer (fixed + data-adaptive elements).

V. EXAMPLES AND IMPLEMENTATION

A. Curved Lane Modeling

This case study shows how the proposed method generates
a suitable SKM-ZBF that models curved lanes, as shown in
the low-speed driving scenario of Figure 4(a). Closed-form
expressions for curved roads can be challenging to determine,
and thus, using control barrier function policy synthesis
frameworks for such applications can be difficult. To that
end, we show SKM-ZBF synthesis alleviates this issue. The
safe and unsafe data points used for network training are
shown in Figure 4(b) and are generated synthetically. In
practice, such points would be generated from visual sensing
and processing, such as from semantic segmentation of data
from a forward-facing camera on the car.

A simple strategy for choosing the GRBFs centers is to
uniformly place them along the center line of the lane. Seven
GRBFs with a bandwidth of σ = 2wr/

√
log(2) are used in

this case study, as shown in Figure 4(b) by the black (*);
where wr is the width of the road. The synthesized SKM-
ZBF boundary is shown in Figure 4(c) as the yellow dashed
line and as a surface in Figure 4(d). The SKM-ZBF compute
time was 10 msec (MATLAB, Ubuntu 20.04, Intel i7-8750H
CPU), which supports a 100 Hz update rate.

B. Planar Mobile Robot Navigation in ROS STDR Simulator

This study involves a differential drive robot equipped with
a LiDAR sensor navigating a 2D environment with obstacles,
see Figure 5. The robot tracked a predetermined, dynami-
cally feasible, collision-free trajectory. Ideal localization was
assumed to be available for the robot. The procedure to
generate the dataset of safe and unsafe LiDAR samples was
done similar to [17]. Global and local SKM-ZBF synthesis
was performed. Global synthesis aggregated all of the sensor
data and applied either a multi-polynomial second layer,

Figure 5(a), or a Gaussian second layer via kernel SVM
optimization [17], Figure 5(b). The latter generates a richer
solution space and will be more accurate. The first layer used
a fixed 5× 8 uniform grid. Local SKM-ZBF synthesis used
a fixed robot-centered 4× 4 grid for three locations, shown
as gray dots in the global maps. The zero level-set of the
locally and globally synthesized SKM-ZBFs are shown as
yellow curves. Notice that the local SKM-ZBF zero level-set
cuts into some sides of obstacles that do not have LiDAR
measurements. However, once measurements are taken on
those sides the SKM-ZBF will include them.

To further improve the accuracy of the SKM-ZBF in
capturing the domain, multi-scale kernels can be added to
the first layer in addition to the fixed grid kernels. The
centers and bandwidths of the multi-scale kernels are turned
according to the adaptive strategy described in section IV.B.

The global SKM-ZBF compute time was 3.9 sec for the
multi-polynomial SKM-ZBF and 4.3 sec for the Gaussian
SKM-ZBF when solved using the SMO solver in the LIB-
SVM package (dual QP formation takes 18 sec). The local
SKM-ZBF compute time averaged 18 msec, which supports a
50 Hz update rate. The training time of the local SKM-ZBF
using the proposed LP formulation is significantly shorter
than the training time of neural network-based ZBFs. For
example, the training time of a Softplus-based deep neural
network via gradient descent for local ZBF synthesis was 98
msec on GPU and 407 msec on CPU [14].

VI. CONCLUSION

This paper presented a zeroing barrier function synthesis
method based on a two-layer shallow kernel machine net-
work architecture. The first layer is constructed from Gaus-
sian kernels whose geometry in the associated Hilbert space
was analyzed while considering positive samples (unsafe
points) only. The analysis provided theoretical guarantees on
the existence of a separating hyperplane, synthesized via a
linear program (LP), that splits the Hilbert space into safe and
unsafe regions via its level-sets. A second layer was added
to the network that uses polynomial kernels and negative
samples (safe points) to reduce misclassifications, while
also maintaining the LP formulation. The cutting surface
geometry of this second layer also applies to the previous
work [17]. Two case studies demonstrate the efficacy of the
SKM-ZBF architecture in generating valid zeroing barrier
functions for motion planning applications. Future work will

1465

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)

Fig. 4. Curved lane modeling using SKM-ZBF. (a) curved road; (b) road with labels for synthesized safe (blue) and unsafe (red) points along with GRBF
center locations (black *); (c) synthesized zero level-set of SKM-ZBF (dashed yellow lines); (d) synthesized SKM-ZBF as a 3D surface plus zero level-set.

(c) (d) (e)(b)(a)

Fig. 5. Mobile robot planar navigation problem. Synthesis of a global SKM-ZBF using (a) multi-polynomial second layer and (b) Gaussian kernel second
layer, to define unsafe region boundaries (yellow contours). Local navigation SKM-ZBF generated at three marked locations (gray dots) in the global maps,
are depicted in (c), (d), and (e). Orange dots are LiDAR points, the purple circle is the robot’s location, and the yellow contour is the SKM-ZBF boundary.

explore optimized construction of SKM-ZBFs for boundary
estimation accuracy in navigation contexts.

REFERENCES

[1] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[2] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conference, pp. 3420–3431, 2019.

[3] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[4] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Trans. on Robotics, vol. 33,
no. 3, pp. 661–674, 2017.

[5] L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based
maneuvers for teams of quadrotors using differential flatness,” in IEEE
International Conference on Robotics and Automation, pp. 3293–3298,
2017.

[6] P. Pierpaoli, A. Li, M. Srinivasan, X. Cai, S. Coogan, and M. Egerstedt,
“A sequential composition framework for coordinating multirobot
behaviors,” IEEE Trans. on Robotics, vol. 37, no. 3, pp. 864–876,
2021.

[7] M. Srinivasan and S. Coogan, “Control of mobile robots using
barrier functions under temporal logic specifications,” IEEE Trans.
on Robotics, vol. 37, no. 2, pp. 363–374, 2021.

[8] L. Lindemann and D. V. Dimarogonas, “Decentralized control barrier
functions for coupled multi-agent systems under signal temporal logic
tasks,” in European Control Conference, pp. 89–94, June 2019.

[9] Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames, “Backup
control barrier functions: Formulation and comparative study,” in IEEE
Conference on Decision and Control, pp. 6835–6841, 2021.

[10] J. Schmidt-Hieber, “The kolmogorov–arnold representation theorem
revisited,” Neural Networks, vol. 137, pp. 119–126, 2021.

[11] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas,
S. Tu, and N. Matni, “Learning control barrier functions from expert
demonstrations,” in Conference on Decision and Control, pp. 3717–
3724, 2020.

[12] Y. Meng, Z. Qin, and C. Fan, “Reactive and safe road user simu-
lations using neural barrier certificates,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 6299–6306, 2021.

[13] V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov,
“Control barriers in bayesian learning of system dynamics,” IEEE
Trans. on Automatic Control, pp. 1–1, 2021.

[14] K. Long, C. Qian, J. Cortés, and N. Atanasov, “Learning barrier
functions with memory for robust safe navigation,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 4931–4938, 2021.

[15] K. Long, V. Dhiman, M. Leok, J. Cortés, and N. Atanasov, “Safe
control synthesis with uncertain dynamics and constraints,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 7295–7302, 2022.

[16] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” The International Journal
of Robotics Research, vol. 35, no. 14, pp. 1717–1730, 2016.

[17] M. Srinivasan, A. Dabholkar, S. Coogan, and P. A. Vela, “Synthesis
of control barrier functions using a supervised machine learning
approach,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 7139–7145, 2020.

[18] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Computation, vol. 3, no. 2, pp. 246–
257, 1991.

[19] D. B. McDonald, W. J. Grantham, W. L. Tabor, and M. J. Murphy,
“Global and local optimization using radial basis function response
surface models,” Applied Mathematical Modelling, vol. 31, no. 10,
pp. 2095–2110, 2007.

[20] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,
and Control. USA: Cambridge University Press, 1st ed., 2017.

[21] K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf,
“Kernel mean embedding of distributions: A review and beyond,”
Foundations and Trends in Machine Learning, vol. 10, no. 1-2, pp. 1–
141, 2017.

[22] J. Linderoth, “A simplicial branch-and-bound algorithm for solving
quadratically constrained quadratic programs,” Mathematical Pro-
gramming, vol. 103, pp. 251–282, Jun 2005.

[23] K. Chatterjee, H. Fu, A. K. Goharshady, and E. K. Goharshady, “Poly-
nomial invariant generation for non-deterministic recursive programs,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, p. 672–687, 2020.

[24] J. Platt, “Sequential minimal optimization: A fast algorithm for train-
ing support vector machines,” Tech. Rep. MSR-TR-98-14, Microsoft,
April 1998.

[25] M. Srinivasan, N.-s. P. Hyun, and S. Coogan, “Weighted polar finite
time control barrier functions with applications to multi-robot sys-
tems,” in IEEE Conference on Decision and Control, pp. 7031–7036,
2019.

[26] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Computation, vol. 7, no. 2, pp. 219–
269, 1995.

[27] H. Wendland, Scattered Data Approximation. Cambridge Monographs
on Applied and Computational Mathematics, Cambridge University
Press, 2004.

[28] H. Kingravi, P. Vela, and A. Gray, “Reduced set KPCA for improving
the training and execution speed of kernel machines,” in SIAM
International Conference on Data Mining, pp. 441–449, 2013.

[29] A. Chang, C. Hubicki, J. Aguilar, D. Goldman, A. Ames, and P. Vela,
“Learning terrain dynamics: A Gaussian process modeling and optimal
control adaptation framework applied to robot jumping,” IEEE Trans.
on Control Systems Technology, vol. 29, no. 4, pp. 1581–1596, 2020.

1466

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 24,2024 at 15:58:54 UTC from IEEE Xplore. Restrictions apply.

