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Abstract. The nature of the interplay between fluctuations and quenched ran-
dom disorder is a long-standing open problem, particularly in systems with a
continuous order parameter. This lack of a full theoretical treatment has been
underscored by recent advances in experiments on charge density wave materi-
als. To address this problem, we formulate an exactly solvable model of a two-
dimensional randomly pinned incommensurate charge density wave, and use the
large-N technique to map out the phase diagram and order parameter correla-
tions. Our approach captures the physics of the Berezinskii-Kosterlitz—Thouless
phase transition in the clean limit at large N. We pay particular attention to
the roles of thermal fluctuations and quenched random field disorder in destroy-
ing long-range order, finding a novel crossover between weakly- and strongly-
disordered regimes.
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1. Introduction

It has been well-understood for many decades that below four dimensions random
impurities in a material will ‘pin’ the U (1) phase of an incommensurate charge density
wave (ICDW) [1]. The pinning leads to a frustration that prevents a well-defined CDW
state with a uniform phase 6 from forming [2]. In fact, this destruction of long-range
symmetry breaking order by random fields (when not forbidden by gauge invariance)
is a general feature in systems with a global U(1) symmetry. The special case of two
spatial dimensions is particularly subtle since a state with long-range order is already
forbidden at finite temperature by the Mermin—-Wagner theorem [3]. In the absence of
quenched random field disorder, the Berezinskii-Kosterlitz—Thouless (BKT) transition,
which involves the proliferation of topological defects (vortices in magnets with planar
anisotropy, and dislocations in the case of 2D ICDWs), is special since it separates a
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(critical) phase with power law correlations and a disordered phase with unbroken U(1)
symmetry [4, 5]. The question of how the critical phase is destroyed by a quenched ran-
dom field has been understood only qualitatively.

Over the last four decades, a significant amount of work has been done to attempt
to answer this question. Initially, advances were made using perturbative field-theoretic
renormalization group (RG) techniques [6-8]. Those authors studied the random field
XY model as an idealization of, among other systems, two-dimensional CDWs in sys-
tems with charge disorder. They found that the original BKT transition separating
the high temperature neutral vortex plasma and low temperature power law correl-
ated phases was destroyed by disorder due to impurities becoming (RG) relevant at
an intermediate temperature. However, the nature of the low temperature impurity-
dominated state remained undetermined, spurring the application of non-perturbative
techniques. For example, the functional RG was used to disprove the long-standing
dimensional reduction hypothesis [9-11]. To this day, the nature of the low temperature
state remains hotly debated, with some proposing the ground state to be a so-called
‘Bragg glass’ of dislocations [12, 13|, while others claim that this state is featureless
and lacks any form of order [14]. Despite the disagreements, it is now evident that non-
perturbative techniques are necessary for shedding light on the physics of the disordered
system [15-19].

Interest in disordered ICDWSs has not purely been driven by the theoretical chal-
lenges described above. The cuprate high-temperature superconductors, which have
focused the attention of much of the condensed matter physics community, are strongly
layered compounds which display quasi-two-dimensional charge order proximate to the
superconducting phase [20-24]. The possibility of intertwined [25, 26] charge and super-
conducting orders makes understanding the role of CDW order crucial to the physics of
high- T, superconductors. Recently, significant experimental advances have been made
in x-ray scattering [27-29], scanning electron microscopy and spectroscopy [24, 30] and
momentum-resolved electron energy loss spectroscopy (M-EELS) [31, 32]. The increased
resolution of measurements has allowed for precise determination of dynamic charge cor-
relations in CDW materials.

Nevertheless, despite the intense theoretical and experimental interest, a full theor-
etical treatment of the interplay of thermal and quantum fluctuations in the presence
of random disorder is an open problem. In this paper, we introduce a model which is
exactly solvable in a suitable large- N limit even in the presence of a quenched random
field. Our results apply to the specific case of an ICDW in two dimensions which we will
take to be unidirectional. Although our main motivation stems from the experimentally
observed ICDWs in the lanthanum cuprates [33—35], the problem is of much broader
interest since such CDWs are seen in many systems, including the dichalcogenides and
many other quasi-2D materials. In this paper we will focus on the classical theory,
leaving the quantum theory to another publication.

The order parameter of a unidirectional CDW is the Fourier component of the local
charge density p(x) at the ordering wave vector Q:

p(x) = po(x) + pq (%) e ¥Y* 4+ p_q (x) e *¥* 4 higher harmonics, (1.1)
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where pg(x) is the slowly-varying uniform component and the also slowly-varying field
pq(x) = piQ(x) is the CDW order parameter. Here we will assume that the order-
ing wave vector is incommensurate with the underlying lattice and that we have an
ICDW. A CDW, commensurate or not and regardless of which microscopic mechanism
is responsible for it, is a phase of an electronic system in which (pq(x)) # 0. This state
breaks translation invariance and the point group symmetry of the underlying lattice.
States of this type are inherently fragile to disorder since a local (effectively random)
electrostatic potential Vin,(x) due to charged impurities couples linearly to the local
charge density p(x) and, consequently, disorder couples linearly to the CDW order para-
meter. In what follows, we will denote the complex field of the ICDW order parameter
as pq(x) = o(x) and the ordering wave vector Q will be left implicit.

In this work, we present a non-perturbative approach to treating the physics of a
U(1) order parameter coupled to quenched disorder. Our method is based on the well-
known large-N technique (see, for example, [36-39]). The large-N approach has been
used to investigate the O(N) model in a random field by Nie et al [16], who applied
their results to the case of randomly pinned ICDWs. Taken literally, their results apply
to dimensions d > 2, since in the absence of a random field the 2D O(N) model does
not have long-range order. For this reason, we were motivated to explore other large- N
models that are, in principle, able to capture unique aspects of 2D physics, including
the BKT transition (in the absence of disorder), even in the regime where N is large.

To address this problem, in this paper we consider a theory of a two-component
generalization of the CPY model with a global U(1) symmetry between the two com-
ponents. This global symmetry characterizes the order parameter manifold of interest.
Our generalized model includes an interaction term between the two components which
is solvable in the large- N limit. Here we use the fact that the large-N limit of the CP
model is well understood [40, 41], and show that this coupled theory is also solvable in
the large- N limit. In the absence of disorder, the N = oo ground state we find appears to
spontaneously break the U(1) symmetry, but we show that the inclusion of the leading
order fluctuations about the NV = oo ground state is sufficient for a BK'T phase trans-
ition to emerge. In fact, we show explicitly that the BKT transition appears as a 1/N
correction to the N = oo transition.

Having confirmed that the clean theory behaves as expected, we then include
quenched disorder and solve this model exactly in the N = oo limit as a function of
disorder and of the coupling strength between the two components. Similarly to the
clean theory, the disordered theory appears to have a broken symmetry phase. However,
we again demonstrate that allowing for fluctuations about the large- N state necessarily
restores the symmetry. The large-N limit of the model predicts a complex phase dia-
gram in the presence of quenched random fields. While in the strong disorder regime
we find a phase with short-range order (as expected), in the weak disorder regime the
naive large-N limit is the same as in the clean theory. We also derive explicit results
for the order parameter correlator in the strong disorder regime (to leading order in
the 1/N expansion) and show that it has the same functional form as found in earlier
theories of the random field Ising model [42] and O(N) model with a random field [16,
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17]. Finally, an analysis of the 1/N corrections reveals that the correlation functions
have essentially the same behavior in the weak and strong disorder regimes, resolving
the naive disagreement with the Imry—Ma argument [2], and implying the existence of
a subtle crossover between the two regimes.

The rest of this paper is structured as follows: In section 2 we present the model
we will be using in this work. We demonstrate our method for studying a U(1) order
parameter with the large-N technique by solving the model exactly in the N = o0
limit (section 2.2) and then showing how the BKT transition emerges at order 1/N
(section 2.3). In section 3 we begin by coupling our model to quenched disorder and
then derive the phase diagram of the theory at N = oo (section 3.2). Finally, we resolve
the apparent inconsistencies of the mean field limit with the Imry-Ma condition by
incorporating the effects of fluctuations (sections 3.3 and 3.4). Section 4 presents our
conclusions. Technical details and pedagogical reviews of known material are presen-
ted in a number of appendices. Appendix A supports the results of section 2.3 and
appendix B reviews the effects of quenched disorder in O(N) models, appendix C does
the same for the conventional CPY model, and appendix D supports the results of
section 3.3.

2. Two-component CPN model for a U(1) order parameter

2.1. The model and its symmetries

To apply the non-perturbative large- N technique to a theory with a global U(1) sym-
metry, we wish to construct a model with an internal symmetry group G with dimension
scaling as N and a U(1) subgroup which can subsequently be spontaneously broken. A
simple approach is a theory of two N-component complex scalar fields z and w, each of
which transforms under the fundamental representation of U(N); the larger symmetry
group is then G =U(N) x U(N) and each of the U(N) products contributes a U (1)
subgroup. The particular model we have chosen to study is a two flavor generalization
of the CPY model, and is described by the action

1 K *
S:E/ddx (|D“[a]z|2+|D“[a]w\2—;\z 'w\2>, 2P =lwl*=1, (2.1)

where a” is a fluctuating U(1) gauge field and D#[a] = 0" +ia”. Importantly, we take
both z and w to be coupled to a”, as opposed to two independent fluctuating gauge
fields. This model has a formal similarity with the chiral Gross—-Neveu model which has
a well-understood large- N limit [43, 44]. It will be convenient to work in a representation
where the U(1) x U(1) C G subgroup is generated by two types of transformations:

(i) diagonal (local) z(x) — 9™z (x), w(x) — eCw(x), (2.2q)
' (x) — a" (x) = 0"¢ (x),

(ii) relative (global) z(x) — €2 (x), w(x) — e Pw(x), (2.20)
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Note that the quartic interaction term is invariant under the global relative U(1)
symmetry (ii) which can be spontaneously broken (with the usual caveats on the restric-
tions imposed by the Mermin—-Wagner theorem).

2.2. Large-N solution

We will now demonstrate that this model has the desired properties. The partition
function for the theory is

Z= /D)\lD)\gDa“Dszexp (—S — /ddx l% (Jz*—1) + % (Jw|* - 1)]) ; (2.3)

where \; and Ay are Lagrange multiplier fields imposing the constraints |z|*> = |w|*> = 1.
Additionally, the quartic interaction term |z* -w|? can be decoupled using a Hubbard—
Stratonovich (HS) transformation:

K, « * * * *
exp (/ddx—|z .w\z) :/Daexp (—/ddx [%a c—0z W—0 Z-W ]) (2.4)
g

Since the Gaussian integral over o is peaked around the value ooy = (K/g)z-w’, we
identify the complex field o as an emergent U(1) order parameter. In fact, invariance
of the right hand side of equation (2.4) under a relative U(1) transformation imposes
the transformation rule o — e??o. After the HS transformation, the functional integrals
over z and w become Gaussian, and hence, can be performed exactly to obtain

Z= /DAlD)\QDa“DUe_Se”, (2.5a)
—D?[a] + M\ —0 oo A+

Se/N =trln o —|—/ddx{ — }, 2.5b

H/ ( —0 —Di [a] + )\2 KO qgo ( )

where we have defined g =gy/N and K = K;/N. As N — oo, the partition function
can be evaluated exactly within mean field theory. We then take the spatially uniform
ansatz o(x) = 09, A\1(x) = Xa(x) = m? (since the theory also has a Z, symmetry which
exchanges the z and w fields) and a*(x) =0 (by gauge invariance). Then,

Z = NVUer (2.6a)
A d 2 2
dq 2 lool*  2m
V= [ L (g2 o) + 1222 260
-~ o () =) + 2= == (2.60)

where V is the volume of d-dimensional space and A denotes some regulator; e.g. a UV
cutoff.
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We will now specialize to the case d =2. The effective potential (2.6b) is logarith-
mically ultraviolet divergent, but renormalization of the coupling constant g, suffices
to cure this. Defining

11 A dlg 1

9o 9r (2m)"q” +p
for some renormalization scale pu, the regulator A can then be removed from
equation (2.60), yielding a renormalized effective potential:

m2 m4—\00\2 ’O’()’ m2—|00\ |O’0’2 2m2
Up=—|2—-In| ———— | — . 2.8
7 4r [ n( pt )1 = n<m2+|ao\)+ Ky  gr (2:8)

The ground state values of m? and |o| are then obtained by minimizing the potential.
First,

m* —|oo|? = ple /9. (2.9)

Next, it is straightforward to check that for Ky < K, = 4w u?e*7/9% the potential is
minimized by a vanishing order parameter oy = 0. However, for Ky > K., the magnitude
of oy is determined by a Curie—Weiss type transcendental equation

K
6] = %sinh’l(w), (2.10)

where |G| = |oo|/(u2e~*7/9%), which is well-known to yield a 8= 1/2 critical exponent
in the limit |6]| ~ 0. Since the effective potential equation (2.8) is invariant under the
relative U(1) symmetry, a mean-field solution o spontaneously breaks this symmetry.
However, it is evident that in d =2 this spontaneous symmetry breaking (SSB) is an
artifact of the large-N limit, since the Mermin—-Wagner theorem forbids SSB [3]. This
signals the need to include fluctuations around the mean-field limit, for which the large-
N technique provides a systematic method.

2.3. Fluctuations & BKT transition

Since we are primarily interested in the infrared physics of this model, we can focus
on the Goldstone manifold of degenerate ground states parameterized by the U(1)
phase 6 of the complex order parameter field; o(x) = p(x)e”™, where p(x) is the (real)
amplitude of the order parameter (not to be confused with the charge density). By
freezing p(x) = py and allowing 0(x) to vary slowly in space, the leading corrections to
the effective action will be determined by a gradient expansion. However, 6 € [0,27) is
a compactified boson, and its periodicity allows the existence of vortices [4, 5].

Following the usual analysis (see, for example, [45]), the periodicity is imposed by a
non-fluctuating source of vorticity A* which satisfies

A (x) =2m Y m;o® (x —x;), (2.11)
J
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for some configuration {m;} of vortices with topological charge m; € Z. This source is
then minimally coupled to the relative U(1) symmetry, so that the partition function
equation (2.5) becomes

z=>" / DA\ DAy DaDpDh e %Al (2.12a)
{m;}
—Dila+Al+ M —pe’? PP At
S [A] /N =trl : . dix |- — ,
wlAl/ ' n( —pe" —D?[a— Al + Xy +/ X[Ko 90 ]
(2.12b)

where the sum is over all possible configurations of vortices. Expanding to quadratic
order in #, A*, and their derivatives, yields

1
St [A] :? / x (0" +24")° + / d2x (F1)?, (2.13)

where FM = 9rAY — 0V A", €* = p3/(2m?vy) is the effective coupling constant for the
‘electrodynamic’ response of A*, ~y is the phase stiffness

Yo N [mQ tanh ™! (%) - pg} = L [\/ 1+ p?sinh ™ (p) — /3] ,  (2.14)

B 47 po 41 p

and p = py/(pu2e=*7/97); see appendix A for the derivation of these quantities. Note that
o has U(1) charge ¢=2 (not to be confused with the topological charge of a vortex)
since it is a charged composite of ¢ = £1 fields.

This result implies a critical value of the phase stiffness vgxr = 2/(7¢*) = 1/27 such
that vortices/dislocations proliferate for vy < vpkr (see appendix A). Since ypkr is of
order 1/N relative to generic values of v5(p), for large enough N we can safely approx-
imate ypgr ~ N ﬁ%KT /12m, where ppgr is the value of p which solves the equation
BT = 1/27. Substituting ppxr ~ 6/ VN into the saddle point equation (2.10) and
expanding to first order in 1/N yields one of our first main results:

Kgkr PBKT 1 9
= =1+—4+0O(N . 2.15
Kc Sinh_1 (ﬁBKT) N ( ) ( )

That is, we have explicitly shown how the BKT transition emerges at order 1/ N relative
to the mean-field transition; K. remains the point at which the amplitude of the con-
densate forms, but only exponentially-short range order exists for K. < K < Kpgr. The
fluctuation-dominated regime between K, and Kpkr is narrow in the large-N regime
and it is expected to become broad for smaller values of N. The existence of this fluctu-
ational regime is a feature of two-dimensional physics; this behavior is analogous to the
situation in (quasi-)two-dimensional superconductors, where the condensate develops
at a higher temperature than the onset of zero resistivity. The results of this section are
summarized in the phase diagram in figure 1. Finally, we note that the apparent contra-
diction with the Mermin—-Wagner theorem is resolved at this order in the fluctuations,
since the critical Goldstone phase K > Kpkr also has no long-range order, though with
power-law decaying correlations. This is unsurprising given that the Mermin-Wagner
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G(x) ~ |x| 7 KekT

~1/N
G(X) ~ e_|x|/£1

Figure 1. Phase diagram corresponding to the action equation (2.1). For K, >
Kpkr dislocations are confined, leading to quasi-long-range order and power law
correlations with exponent a > 0. For K. < Ky < Kggt there is a condensate but
dislocations proliferate; correlations of o decay exponentially with length &;. For
Ky < K. no U(1) condensate forms, so correlations of o decay exponentially with
different length &;. Kpkr is split from K, to order 1/N.

theorem is fundamentally a statement of the importance of fluctuations in low dimen-
sions. This behavior is closely analogous to what was found long ago in the chiral
Gross—Neveu model, though, importantly, the phase stiffness in that model is a pure
number that cannot be tuned [44].

3. The role of disorder

3.1. Coupling to quenched disorder

Having established that our model reproduces the salient features of a U(1) order
parameter within the large- N limit, we turn to the primary focus of this work: disorder.
Any quenched disorder must couple only to gauge invariant combinations of fluctuating
fields. With our model, we are spoilt for choice with possibilities, not all of which are
physically interesting. For example, the simplest option, a complex scalar disorder field
coupled linearly to the emergent U(1) order parameter z"-w, can be easily shown to
produce a trivial large- N limit since the dimension of the disorder field does not scale
with N. As such, it is useful to draw inspiration from the conventional CPY model,
the large- N solution of which is presented in appendix C. We find that it is natural to
consider ‘adjoint disorder’

1 a * a a * a
L8] = 5% (x) 20 (%) 78525 (x) + 07 (x) wyy (%) T85w5 (%), (3.1)

where, for simplicity and without loss of generality, we take the disorder 3%(x) and
?(x) to be N? component real vectors in the adjoint representation of U(N), with
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generators 7 satisfying 75,775 = Ndagopy (implied summation over repeated indices),
and distributed with variance n? according to

() =wi(x) =0,  3°(x)5"(y) = we (x)w’(y) = nfo?6@ (x —y), (3.2)

where overlines denote averaging over disorder configurations. Note that
cross-correlations between 3%(x) and r“(x) are generally allowed by symmetry, but
we do not observe any qualitative impact as a result of this added model complexity.
A general approach, however, should also include the new gauge invariant bilinear

LY =1 (x) 20, (%) T5w5 (%) + 57" (%) wy, (%) 78525 (%), (3.3)

where h%(x) is a N? component complex random vector with variance 73:

hi(x)=0, b (x)bP(y)=0, b7 (x)ht(y) =m0 D (x—y). (3.4)

The coupling to the disorder shown in equation (3.3) is manifestly invariant under the
local symmetry of diagonal U(1) transformations and transforms non-trivially under
the global symmetry of the relative U(1) transformations (see equations (2.2)). Thus,
for each realization of the disorder, the random fields explicitly break the relative global
symmetry, but it remains unbroken in the ensemble of the distribution of equation (3.4).
In this way, this second form of disorder has the same U (1) symmetry properties as a
disorder field coupled linearly to z*-w. We will see in a later section that symmetry-
breaking disorder is vital to the physics of fluctuations, while the neutral disorder is
important for stabilizing the ground state of the theory. Other forms of disorder are
certainly possible, but the adjoint disorder presented here provides useful mathematical
simplifications, and, we believe, is the most physically motivated and natural choice
leading to a non-trivial large- N limit.

Since we are interested in thermodynamic observables that are independent of any
specific realization of the disorder, we use the replica trick:

2 2 2
Zn — /Dg,Dme) exp (—/ddx [5 +;U + %1) Z3,0,b]"
2my U

= / DAy ;DX jDa Dz Dw; [ [ e

Jj=1

N n i} . . .
X exp E/ddx Z [77% (‘Zz zi” + |w; ‘wj‘z) +2n; <Zi 'zj) (wi 'wjﬂ ’
i#j=1
(3.5)

where S are the replicas of the original action equation (2.1). We are excluding the terms
with ¢ = j from the sum in the last line because the unit vector constraints |z;| = |w;| =1
render them trivial constants. Note that the novelty of quenched disorder in CPY-
type models is the generation of quartic inter-replica interaction terms, reminiscent of
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the Sherrington-Kirkpatrick model of spin glasses [46]. We will see that this produces
fundamentally different large- N solutions compared to O(N) models (see appendix B).
3.2. Large-N solution

Next, we must take some care with the Hubbard—Stratonovich transformation to avoid
over-counting the effective degrees of freedom in the theory. We start by introducing
the collective coordinates (; and wy; for ¢ #j

/DQJ'DMUCS (Cz‘j -z Z:) d (wij —w; wj)

X exp (g/ddx [77% (\z: 2P+ |lw; -wj\2> + 215 (z: 'Zj> <wz wj)])
- /Dg‘iijiijjDz/JU exp (—N/ddx [Iiﬂ (C@j -z Z;k) + i (wij - Wi wj)])

N
X exp (5 / d’x [0} (CijCji + wijwii) + 2773%-@-1-]) ; (3.6)

and fix (;; = wy; = 0 for the reason discussed just above. Since this expression is quadratic
in ¢ and wy;, the Lagrange multipliers x; and ;; can be eliminated exactly by the
saddle point equations

Kij =11 Gij + mhwij, Vi = mwij + 155 (3.7)

Therefore, the interaction term can be expressed as

N " * * * *
exp E/ddx Z [77% <|Zz -zl 4 |w; 'wj|2> + 215 (zi 'Zj> (wi w]ﬂ

i#j=1
1

= / DGijDwij oxp | =577 / A% Y [nf (GiGii + wijwsi) + 2n3wi il
i#j=1

n
X exp /ddX > [Zf -z (G + mhwij) +w; - w, (n%wij+77§§ij)} ;
i#j=1
(3.8)

after rescaling (; and w;; by 1/N. The z and w fields can then be integrated out of
the partition function to obtain the effective action

. (—D?la]+\ —0 ) (ﬁ2§+ﬁ2a 0 )}
Ser/N = Tr In |dia A — (" 2 .
«/ [ i ( —o" =DZ[a]+ X 0 o+

P2 s 1 1
—i—tr/ddx ﬁ(g%w?) + i3l + —diag (|o]2) — —diag (M + )|, (3.9)
2 Ky 90
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where we have rescaled ({,w) — go(¢,w), and defined g = go/N, K = Ko/N, and n; 2 =
M12/g0 to obtain a well-defined large-N limit. Tr(-) includes the functional operator
trace as well as the trace over replica indices, diag( - ) denotes a matrix which is diagonal
in replica indices, and f and @ are the matrices with elements (;; and w;;, respectively.
We note that this effective action is positive definite as long as 7; > 1p. While the
disorder averaged action equation (3.5) is bounded from below regardless of the disorder
strengths, maintaining 7; > 7)2 is necessary if one wishes to avoid spontaneously breaking
the replica permutation symmetry, which is beyond the scope of this work. Then, observe
that the HS disorder fields inherit the transformation rules

(3.10a)
(ii) relative Cin (x) — @725 (x), wik (x) — 7@ (x). (3.100)

Therefore, the n; disorder is neutral under all U(1) transformations, while the 7,
disorder explicitly breaks the replicated relative global U(1)" symmetry down to its
replica-diagonal U(1) subgroup; a non-zero expectation value of (;; and w;; will also
spontaneously break the entire U(1)" x U(1)" symmetry group (see appendix C for a dis-
cussion of the symmetries of the conventional CPY model). This means that the natural
replica-symmetric and Zs exchange-symmetric saddle point (;;(x) = w;;(x) = wo(1 — d;;)
is actually a privileged choice and expanding around this specific configuration loses
information about the global phase diagram. However, this assumption allows us to
obtain a closed-form expression for the disorder-averaged effective potential. We will
first derive this effective potential and then show that the replica-symmetric configura-
tion is stable in the regime of interest 7; > 7.

We then take the spatially uniform and replica-diagonal ansatz o;(x) = 0, A\1i(x) =
Aoi(x) =m?, af(x)=0, and for convenience, (;;(x)=w;;j(x)=uwo(l—3d;)/(n}+n3)
(suppressing tildes from hereon for notational clarity). Next, one can simplify the block
matrix structure in the effective action to obtain the replicated effective potential

_ dd . 12 .

Ue”ﬁ:/—qdlndet([(q2+m2+w0)l—woM] —\00|2I)
(2m)

2

wd +n]ag]2 _n2m

+n(n—1)
M+ Ko 90

: (3.11)

where I is the n x n identity matrix and M is the n x n matrix of ones. After the same
renormalization procedure as in all the previous cases, it follows that the disorder-
averaged physical effective potential is

https://doi.org/10.1088/1742-5468 /ad17b3 12


https://doi.org/10.1088/1742-5468/ad17b3

An exactly solvable model of randomly pinned charge density waves in two dimensions

— /ddq [ ((q2—|—m2—|—w0)2—|00|2> 2wy (q® +m? + wy)
UR: In _<

(27)° q* Q@+ m? +wp)? — |og)?
2m? } W loo)> 2m? (3.12)
a?+p?] ni+n Ko o gr '
In d =2 this evaluates to
— 2 m? +wp)” — |o|? 2 —
UR:E 2 _In ( 0) | 0| + |00|1n m* + wo |00|
47t pt 47 m? + wg + | oo
wo__w oo 2m? (3.13)

2t ni+m3 | Ko gr

The full multivariate structure is complicated, so we first consider the case oy = 0.
This reduces the problem to two decoupled CP" models with disorder strength n? 4+ 12 =
nZ, (see appendix C); the lack of any dependence on the relative magnitudes of n; and
72 is a result of the replica-symmetric ansatz. The saddle point equations for wy and

m? are, respectively,

2 2 4
m? 4wy = ot _Wo (M twe) AT (3.14)
4 m? + wy p? 9gr

However, there is an apparent problem with these equations, as they seem to imply that
wo < 0 for N2, < 77(2370 = 47 p®e~*7/9x; if this were the case, the scalar field propagator in
equation (3.9) would not be positive-definite. However, in this problem regime, the
configuration with wy =0 is more energetically favorable, being the global extremum
(maximum, because of the effectively negative number of degrees of freedom of (;; and
w;; when n — 0) [47]. This implies that 1. is a crossover scale which divides a ‘clean’
or weakly-disordered regime from a strongly-disordered regime:

2 471,7 < Neo, 07 Ntot < 7,0,
m? 4wy = 77370/ ot =Tl wo = 77t20t ot (3.15)
Mot/ 47, Ntot = Me,0- o In ﬂ ; Ntot = Me,0-

Observe that m? and wy are continuous at Ne,0, and that for ny < n., m = pe=2r/9r
has the same value as in the theory without disorder.

For o( # 0, the full saddle point equations cannot be solved explicitly, so we simply
state them here for completeness:

1
m’ +wy = 3 <77t20t + \/nglot + 647T2|00|2> ’ (3.16a)
2
1 24 — |oo|? 4

= (L “’01 Gl (3.16b)

(m?4wo)” —|ool> 2 Iz 9R

47‘(’ wo ) 1 ( ’0’0| >

o —_— — = tanh — . 3.16¢

’ 0| <K0 (m2 +w0)2 — |0'0|2 m2 —|—UJO ( )
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K,
0 e K.

\ oo # 0

wO:O wO%O

|

|

|

|

| Ui

tot

Tlc,0
Figure 2. N = oo phase diagram of the theory with quenched disorder. wy =0
everywhere to the left of the dashed line. oy = 0 everywhere below the solid blue

line. K is the critical coupling in the clean limit and 7. is the critical disorder
in the absence of condensate.

The phase boundary for the onset of a condensate density |oy| follows from the
non-trivial solution to equation (3.16¢):

Kc,07 Ntot < 7ec,0,
Kc (ntot) = (77‘50’5/770,0>2 0 nt . > 7’] 0 (317)
1 —l— 21n (’)’hot//)’lqo) Cc,Uy ot = c,Uy

where K.y = 77270 = 47 p?e~47/97 is the critical coupling for the mean-field U (1) transition
in the clean limit (7, = 0). Therefore, at the mean-field level, the disorder only shifts the
boundary for the onset of the condensate; a larger coupling K is required to overcome
increasing amounts of disorder. Importantly, however, the disorder does not eliminate
the condensate (at least at the mean-field level). Similarly, the boundary for the disorder-
driven crossover is shifted at finite condensate density:

7,0, Ky < Ky,
UE (K()) = ~ 9 _1/4 (318)
T)e,0 (1+|U(KO)| ) ) KO >Kc.,07

where & = 0 /(u?e~*/9%), and since wy = 0 on the phase boundary, &(K) is determined
by the clean saddle point equation (2.10). The above results are summarized in the
phase diagram in figure 2.

Just as the large-N solution in the absence of disorder appeared to violate
the Mermin—-Wagner theorem, our present solution appears to violate the Imry—Ma
condition [2]; in dimensions d < 4, any infinitesimal amount of disorder should not only
destroy long-range order, but correlations must decay at least exponentially; i.e. the
existence of a Goldstone phase with power law correlations must also be eliminated.
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Note that a condensate of wy does not break any physical symmetries of the non-
replicated theory, and hence, is not problematic. In the following section, we will show
that in the dirty regime wy > 0 the contradiction with Imry-Ma is directly resolved
by the inclusion of fluctuations to leading order in N. This will mirror the resolution
of the Mermin—-Wagner theorem in the clean theory. Next, we will demonstrate that
sub-leading order fluctuations in the clean regime wy =0 must be included, and gen-
erate qualitatively the same interactions which are responsible for the destruction of
long-range order in the dirty regime.

3.3. Strong disorder regime

3.3.1. Correlations in the symmetric phase. We begin with the case oy =0 and wy > 0.
The physical observable of most interest in this regime is the correlation function of
the order parameter. The natural parameterization here is the Cartesian form o;(x) =
af(x) + iaj[ (x). Expanding the effective action equation (3.9) to quadratic order in the
o and o' yields

N & 2 12 (a) (1) .
SBH_E Z Z/d xd“yo;” (x) [II;) (x —y;n)

a=R,Ii,j=1

~>
|
=
T
0
|
<
S
<
Q
=
<

(3.19)

where the full integral expressions for the kernels IV (x — y:n) and II®) (x — y;n) are
given in appendix D. It follows directly from the matrix structure of this action that
the propagator for o, is

* 0ij 1 p;n
(oi(P)oj (=P) =2 | —7 "+ — 5 (pin) B . (3.20)
o (pin) 1L (psn) |Ils” (pin) — nlls (psn)
and hence, that the disorder-averaged propagator is
(2)
* . 1 * 1 HU pao
(0 (®)o" (p)) = lim “tr (o, (p) o (~p) =2 LA LA PR

n—0n

I (p:0) 11 ps0)]

Immediately, we see that the Imry—Ma condition holds: if H((,Q)(O;O) # 0, the replica-
diagonal kernel Hgl)(p;O) must be gapped for all d <4, barring any pathological

momentum dependence. Specifically, in d =2 we find for small momentum

2 m2—|—2w0 m2+3w0
Y (p;0) = | — — + 2+0(pY), (3.22a
(P ) Ko 27T(m2+w0)2 127r(m2+w0)3p (P) ( )
w2 w2
1% (p;0) = L — 0 p*+0(ph). (3.220)

6w (m2+w)® 107 (m? +wq)
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Note that the pole mass of the order parameter is proportional to the square-
bracketed term in equation (3.22a); substituting the saddle-point values for m? and
wo recovers the critical value K.(1t) above which the oy = 0 state becomes unstable.
To compare this propagator with the disorder averaged propagator of an O(N) model
(see appendix B), we can put the propagator into canonical form by rescaling o by the
coefficient of p2. Then, using the small momentum expansion of the kernels,

@) (Pt (3.23)
P P me T e me)” '

where the effective mass and (static) disorder strength are

3
g2 = 2r(mwn) 12 mi 2 (3.240)
7 m? + 3w Ko 2w (m?+ w0)2 ’
2 2
R — (3.24)

 m2 43wy

Therefore, the propagator has the well-known [42, 48] double-Lorentzian form; any
approximation of the double-Lorentzian term in powers of momentum should at least
respect the double-pole structure. A potentially surprising feature of this result, com-
pared to the momentum-independent numerator of the propagator in the O(N) model,
is the ‘disorder kernel’ II® (p). We note that this momentum dependence is simply a
consequence of the fact that o; is a bound state of the z; and w;, and not of the com-
posite nature of the disorder fields (;; and w;;, since to this order in N fluctuations of
o do not couple to fluctuations of the disorder fields.

3.3.2. Nature of the symmetry-breaking phase. Here we consider the regime o # 0
and wp > 0. In the absence of explicit symmetry breaking (7, disorder), the low energy
degrees of freedom of the effective action equation (3.9) are the n gapless Goldstone
modes corresponding to long-wavelength distortions of the replicated relative symmetry
phases 0;(x)

10 (x W i(0;(x)—0k(x W —i(0;(x)—0(x
tot tot

where the phases 6; are scaled so as to correspond to the replicated order parameter
phase. With the U(1)" global symmetry explicitly broken down to the replica-diagonal
U(1) subgroup, n—1 of these modes will become gapped. However, as long as the
symmetry breaking disorder is sufficiently weak, other gapped modes will remain frozen
out at comparatively higher energies. Given these considerations, the infrared sector of
the effective action in d =2 is

1 — R 1.
Seff ™ 3 Z /dQXQi [_%521+ (=T90* +mj) <I— 5M>L 6;, (3.26)

ij=1 ¥
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where the three parameters vy(n), I'y(n) and my(n) depend explicitly on the number
n of replicas. The derivation of this effective action and the full (rather uninstructive)
expressions for the three parameters are given in appendix D. Note that the my term also
naively appears to break the periodicity of the 6;. This is forbidden, since equation (3.9)
is invariant under shifts 6; — 0; + 27, so the constant term must actually be the total
contribution to quadratic order from terms in the ‘true’ IR effective theory of the form

L=Lo+ ) Ly, L,=—a, Y cos(p(6; —0))), (3.27)

p=1 i,j=1

where p € N are the degrees of p-fold anisotropy and L is the part of the theory which
remains fully U(1)" invariant (the gradient terms in equation (3.26)). Our conventional
1/N expansion does not give us direct access to the coefficients a,, but it is clear that
the full effective theory should respect the periodicity of the 6;.

We will now unpack this result. The spectrum of the inverse propagator is

1
) multiplicity 1, po=—(1 1 ', (3.284)
n
1
¢ =(y+T)p’ +mj,  multiplicity n—1,  @1=_(1 —1 0 0)", (3.280)
1 T
9@2_1(1 1 -2 0... 0),

‘e

where the ¢, are orthogonal eigenvectors of the kernel in the basis of the ;, and their
normalization is chosen to preserve the compactification radius (L' norm). The single
remaining gapless mode ¢y corresponds to in-phase fluctuations of all the replicas;
the gapped modes correspond to the n — 1 linearly independent out-of-phase motions,
where, to leading order in the replica number n,

m? + w 1-A 1 00
(m?4+wo)” — p§ Po m= + wo

(1-A)u3
47

mg ~nN

. (3.29)

and A= (n? —n3)/(n}+n3). Since mj >0 for 1 >y, this result confirms that the
ground state obtained in the large-N limit is stable.

Next, we must address the nature of physical observables in this dirty regime and
compatibility with Imry—Ma. It is useful to consider an effective disorder-averaged phase
stiffness. To this end, we first project equation (3.26) into the ‘deep IR’ scale below the
mass gap mg,

Seff = MHT(TL)/CI%( (8"p0)? . (3.30)

We again emphasize that the factor of n is needed to preserve the compactification radius
on changing basis from 6; to ¢y. Next, we impose a uniform static twist ¢p(x) = Q - x.
Finally, the phase stiffness should be identified with the usual thermodynamic helicity
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modulus, determined from the disorder-averaged effective potential in the presence of
the twist:

¥ =VaUr(Q)

= limy (n)
n—0

N 2 (m2 4 wo) — o2
= m?tanh™! (2&) —pom (m w;)) ol (3.31)
47 po m? 4 wy (m?+wy)” — p?

‘Q:O

We could repeat our analysis from the clean theory to determine what this expression
predicts for the evolution of the BKT transition as a function of disorder. However, it
is well-understood that 7, controls the relevance (in the renormalization group sense)
of the disorder-induced p-fold anisotropy equation (3.27) [6, 8]. Since the theory can
be tuned to make wy small, we can treat disorder as a perturbation to the sine-Gordon
representation of the clean theory (see equation (A.9)). Then, the results of [6] imply
that order-p anisotropy is a relevant perturbation when 75 > p?/167. Therefore, the
BKT transition at 75 = 1/27 is actually preempted by random field (p = 1) and random
bond (p =2) anisotropy. Unfortunately, our large-N analysis does not reveal the nature
of the disorder-dominated phase. However, it is clear that the conventional Goldstone
phase with power law correlations cannot survive, and the BK'T vortex plasma is known
to have exponentially-decaying correlations.

To determine the boundary of the disorder dominated phase Kgis(7ot), Wwe begin by
using the saddle point equations (3.16), to write 75 as a function of only the dimension-
less parameters p = pg/(u?e~*"/9%) and 1ot /7e0. Expanding the resulting expression to
quadratic order in p yields

e (3.32)

(ntot/nc,0)4 127 '

1+4In (Wtot/nc,o)] Np?

Similarly, the saddle point equation (3.16¢) can be expressed entirely in terms of p,
Mot/Ne0 and Ko/ K p. Expanding the result to quadratic order in p yields

Ko ("Itot/”)c,o)2 1+ 121n (9ot /Ne0) 9

~ (3.33)
Keo 1420 (0iot/10) 6 (Mot /Me0)” [T+ 210 (Dot /7e0)]

Solving g = p?/167 for pgis and substituting into the saddle point equation yields

Kis (Mot ) ~1 1 +121n (9ot /1c0) p_2
KC (ntot) 1 —+ 6111 (ntot/nc,O) + 81112 (ntot/nc,O) 8N

Predictably, for ni. > 1.0 the vortex-dominated BKT phase eventually vanishes, though
only logarithmically slowly. The surprising feature of this result is its non-monotonicity;

(3.34)
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the vortex phase is actually slightly eztended to a maximum value Kgis(Mmax)/ Ke(Mmax) =
(1+0.17p*/N) at Nuax/Neo ~ 1.2; see figure 4. Note that this result is not an artifact of
the expansion in powers of p as it can be confirmed by solving the equation g = p*/167
numerically. It may seem counter-intuitive for small amounts of disorder to extend the
BKT phase relative to the impurity-dominated phase. However, this simply reflects the
fact that the disorder initially has a stronger effect on the condensate density than on
the phase stiffness.

3.4. Weak disorder regime

In the previous section, the primary role of disorder was to mediate interactions between
replicated fields via the N = oo z and w field propagator

Gyt (p) = (p2+m2+i021_w0M Tl ) (33
—ool (P +m? 4+ wy) I —wyM

Naively, it might appear as though the system is blind to disorder in the regimes where
wp = 0. In this section, we will show that this is not the case and that fluctuations which
are sub-leading in 1/N generate qualitatively the same inter-replica couplings as in the
strong disorder regime. To demonstrate this, it will suffice to consider the case where
oy = 0.

In the strong disorder regime, the propagator had the double-Lorentzian form char-
acteristic of disordered systems due to the replica-mixing kernel H((TQ)(p,n). If we can
show that this kernel is actually non-zero even when wy = 0, then the same conclusions

as before will hold. We can write the kernel extremely generally in the form

d2q u .
—Hff,?j (p) = / —(%)2 re ., (p,—p—q,q) F]‘flgng (-p,p+49,—q)
x Gy (p+q) Gy, () (3.36)

where a,b,c,d =1,2 denote either z or w, respectively, and i,kq,ko,¢1,05 are replica
indices, with implied summation over repeated indices. G?}’(p) is the exact z, w propag-
ator, and F?bk(p,q, k) is, similarly, the exact three-point vertex between o; and the z
and w fields with replica indices j and k; within the large- N method, both these quant-
ities have a perturbative expansion in powers of 1/N. In the N = oo limit, that is, at tree
level, the propagator is simply the bare propagator equation (3.35), and the three-point
vertex is

a 0 1
(i k) = (1 0) 0ij0ik, (3.37)
ab

independent of momentum and completely replica-diagonal. At this level, the necessary
replica off-diagonal terms only appear when wy > 0. However, within the 1/N expansion,
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(Gij wiy)
// \\

Figure 3. One-loop self energy and three-point vertex contributions from fluctu-
ations of (;; and wy;.

both the propagator and the vertex functions receive corrections due to fluctuations
of all the collective fields. For example, when oy =0, the propagator can acquire off-
diagonal components which couple the z; and w; fields together due to fluctuations of
the ;. Similarly, when wy =0, the three-point vertex can acquire contributions which
are off-diagonal in the replica indices due to fluctuations of the (; and w;. At least
at one-loop level, the propagator cannot acquire replica off-diagonal components when
wp =0 (see figure 3).

A quantitatively correct calculation of the 1/N corrections to physical observables,
such as the order parameter correlation function, requires the inclusion of self energy
and vertex corrections from every fluctuating field. This is not a particularly instructive
calculation, so we will content ourselves with examining the replica-mixing contribution
to the three-point vertex, as shown in figure 3. To leading order, this involves the order-
N contribution to the propagator for the ¢; and wy; fields. Expanding equation (3.9)
to quadratic order in these fields yields

n (1) (5 — @) (5 _ )
&ﬁ:gzz/&mw@ﬂgcwgnch( y)H%( w)CigD’ (3.38)

where the matrix of kernels in momentum space is (recall that we are setting oy = 0),

2 2 4 4 4 2,2 2
. + 2 d°q 1
IIw (p) (nl 172) - (T]l {2 e ) / ) (339)

ot 2083 i+ @mﬂ¥+m%thy+mﬂ

and there is no dependence on n when wy = 0. This yields a contribution to the three-
point function

% (P1, P2, —P1 — P2) = I} 5 (P1, P2, —P1 — P2)

_ L / d’k (1—6,)9; (ni -+ n$) I (k) — 2n2n311L) (k)
NI n et prbpo)t 4 me ) [ktpo +m2| 00 ] - 02 a0]”
(3.40)
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Next, observe that the leading 1/N contribution in an expansion of equation (3.36)
comes from the two ways of inserting a single copy of the replica-mixing contribution
above,

?q  Ti5;(p,—p-q,q)
(2) (p) 2_2/< JJ (3.41)

2m)° (a2 +m?) |(p+a)” +m?|

As noted in the previous section, when deriving the double-Lorentzian propagator we
are primarily interested in HgQZJ (p=0), and since Fﬁ.j(o,—q, q) — 0 as |q| — oo, the
kernel is largely determined by the value of the vertex function at q =0, which we find

to be

_ 5. 2 o 2
(0,0,0) ~ — (1= 0y) 3mm™ (A = 1) er . [247r2m4—7mn2(1+A)n§0t

N [24n2m4 — Tem? (1 4+ A)n, + 2408, ]
2rm? (14 A)nk, — Angy )]

3 (47T m? — ntzot) (47T m? — AT’tzot)
(3.42)

I

0,3]

1
+ 2A77‘é10t + 5 (27T m2 (1 + A) T]t?ot - An?o‘r) hl <

This expression was obtained by using a Padé approximant of order (0,2) for the ({,w)
propagator in equation (3.40). This result has two important features: i) It vanishes
for A =1, that is, 7, = 0. Therefore, some symmetry breaking disorder is necessary to
generate replica-mixing interactions. ii) It diverges at the phase boundary 7?2, = 47 m?
(the dependence of m? on model parameters will be shifted to order 1/N even if the
phase boundary equation appears unchanged in this form). This divergence originates
from the infrared divergence in equation (3.40) due to gapless (;; and wy; fluctuations.
However, a similar IR divergence must occur in the calculation of the replica-diagonal
kernel Hgl)(p). Therefore, the effective disorder strength will not be infinite.

Finally, the result of this section shows that the order parameter correlation function
will still have a double-Lorentzian form in the weak disorder regime wy =0,

; 1 U
(o(p)o” (—p)) ~ o Em? + e (3.43)

albeit with modified parameters m/? and n/%. It is also clear that this analysis carries
over to the oy # 0 regime. Therefore, whether wy is zero or not does not fundamentally
alter the nature of the ground state, but simply determines whether the effect of disorder
is suppressed by an additional factor of 1/N. All of the previous analysis is summarized
in the phase diagram shown in figure 4. In closing this section we re-emphasize that the
presence of the double-Lorentzian term in the disorder-averaged two-point correlator of
equation (3.43) implies a stronger infrared singularity in the averaged susceptibility. In
turn, this behavior implies the absence of long-range order below four dimensions even
in the weak disorder regime, as expected from the Imry—Ma argument [2].
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0 Kdis

impurity
dominated phase

vortex plasma

featureless
symmetric phase

Ttot

Figure 4. Schematic phase diagram of the theory with quenched disorder, includ-
ing the effects of fluctuations. For Ky < K, there is a featureless symmetric phase
(00 =0) with double-Lorentzian correlations equation (3.23). For K. < Ky < Kgis
the ground state is a BKT-type vortex plasma (o( # 0); disorder is RG irrelevant;
this region is narrow when N is large. For Ky > Ky disorder is RG relevant and
the (unknown) ground state is dominated by impurities. The light gray dashed
line represents the mean-field disorder-driven transition, which does not affect the
nature of the ground state.

4. Discussion

In this paper we have introduced a new model, solvable in the large-N limit, to under-
stand the interplay of thermal fluctuations and quenched random disorder in two-
dimensional systems with a phase transition in the clean limit. While we were motivated
by the existence of charge-ordered states in the cuprate high- 7. superconductors, the
formalism we have developed is completely general and can, in principle, be applied
to any system described by a U(1) order parameter coupled to random field disorder.
Previous studies [16] using the large-N technique did not capture the physics of the
BKT phase transition because the order parameter was encoded on a manifold with
dimension that scaled with N, which, for any N > 2, does not have a phase transition
in 2D in the clean limit. In contrast, we held the U(1) manifold fixed as a subgroup
of the larger symmetry group U(N) x U(N). Naively, this produced an inconsistency
with the Mermin—Wagner theorem [3] in the absence of disorder, and the Imry—Ma
theorem [2] in the presence of random field disorder. Throughout this paper, we have
shown that including fluctuations about the N = oo ground state resolves any apparent
contradictions.

Our first main result demonstrated how these fluctuations produce a BKT trans-
ition split from the mean-field transition in the clean theory at order 1/N; the vortex
plasma phase is narrow when N is large. Next, we derived the N = oo phase diagram
of the model as a function of the disorder strength and the coupling between the two
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CP" components. This revealed a novel disorder-driven transition between a weakly-
and a strongly-disordered regime. We then derived an explicit expression for the order
parameter correlation function in the strongly-disordered symmetric phase of the the-
ory, finding agreement with the well-known double-Lorentzian distribution [42, 48]. In
the strongly-disordered phase with a U(1) condensate, we derived an infrared effective
theory which had the form of a random field XY model. By mapping our expression
to known results [6, 8], we were able to derive the phase boundary between a vortex-
dominated BKT-like phase and the contentious [12-14] impurity-dominated phase.

Finally, we proved that fluctuations are sufficient for ensuring agreement with the
Imry—Ma condition in the weakly-disordered regime by showing that the order para-
meter correlation function again has the double-Lorentzian form. We note that non-
analytic contributions that are non-perturbative in the 1/ N expansion are not included
in our analysis. These include rare configurations of the disorder [49], which may
also play a role, for example, by rounding the disorder-driven transition into a broad
Crossover.

In this paper, we have considered a purely classical theory. This suitably describes
static correlations in materials when quantum effects are weak, such as when electron-
electron interactions are strong enough to form an insulating CDW state. A complete
theory of dynamic correlations in randomly pinned ICDWSs necessarily requires the
inclusion of quantum fluctuations. Luckily, the approach used in this work lends itself
well to such a generalization. Investigating the N = oo ground state properties at T'=0
will require little more than changing the dimension from d =2 to d =3 in all of the
calculations presented, due to the usual quantum-—classical correspondence. However,
being quenched, disorder also introduces significant temporal non-locality into the sys-
tem, which will lead to richer behavior of dynamic order parameter correlations. It
would also be interesting to study conducting systems, in which case the CDW order
parameter will experience Landau damping [50]. This would provide a unified theoret-
ical picture of the role of disorder in a wide range of physical systems, and help answer
many of the questions raised by modern experiments.
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Appendix A. Response of two-component CP"Y model without disorder to a
background U(1) gauge field

In this appendix, we sketch the calculation of the response of the two-component CP
model to a U(1) background gauge field. We start from the effective action with a back-
ground field A* minimally coupled to the (previously global) relative U(1) symmetry

—D?la+ A+ )\ —pe? o [P A+
_ I : _
Seff [A] /N =trIn ( et D2 A4 /d X - ol
(A1)

The leading order behavior of the sector corresponding to the relative U(1) symmetry
involves only # and A*. All other couplings are either forbidden by symmetry or sub-
leading in 1/N. Expanding the tr In to quadratic order in these fields yields the following
two-point kernels:

: (A.2a)

, [ diq (q® +m?) [QQ —(a+ p)ﬂ
I ( ) =2Np 2
o0 / (27 [(qQ +m2)? — pg] <[(q—|—p)2 —|—m2} — P%)
dlq 20" +7) o - (a+)’

(2m)" (a2 +m?)” = gt ([(‘H p)* +m - pg) |

1L}, (p) = 207, [ (A.20)

(2¢" +p") (24" + ") [p% = (@ +m?) |(a+p) +m?] 2}

v — d'q
", (p) = 2N/ (27T)d [(qz n m2)2 _ pg} ([(q-l— p)2 + mz} 2 _ p(Q))
d

2 2
+4N5W/ a g +m
ey @+ -7

(2¢" +p") (2¢" +p")

>+ m2) = i ([(q+p)2 +m2]2 —p%)

d
— 11 (p) + 4N/} [ (j ‘){l[ . (A20)
" Hq

where I/ (p) is (two times) the well-known electrodynamic response of the CPY model
[40, 41], which in d =2 is
Nm?

I (p) = (5p* — p'p") {mm(w)]. (A3)

Since A* couples to matter (), the kernel IT}y, will have both transverse II}” and
longitudinal II}” responses. One finds that

Iy (p) = p°A (P%), Iy, (p) = —2ip"A (p°) 7 (p) =46" A (p°), (A4)
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where the kernel A(p?) can be evaluated exactly in d =2,

A(p?) = 0 | ant (£9)

21 p m2
2
I (VA
21 9m?2
V(02 + 4 (m2p2 + 2) p-+2m
=7+ 0O (p?), (A.5)
where vy is the phase stiffness
- 2tanh ' (£2) - (A.6)
Yo = T m*tan -~ pol - .
The transverse vorticity response is
124 p 2 oV 2m2’79 2
I = (6" p* — p'p”) e +0(p?)]. (A.7)
0

Note that since vy o pg in the vicinity of the critical point K., the transverse response
does not vanish. Instead, it simply becomes equal to II#”(p) for Ky < K. Therefore, in
the long-wavelength limit, we have

1
St [A] ~ g / dx (9"0+ 24" + - / d2x (F™)?, (A.8)

where €2 = p3/(2m?vy) is the effective coupling constant of the probe field and F* =
O AY — 0" A* is the Maxwell tensor for A*.

In the above discussion we ignored the fact that the phase field is actually defined
mod 27 and that the full computation of the partition function is dominated by the
contributions of vortices and anti-vortices. Such contributions can be computed by
regarding the local flux of the gauge field A" as representing vortices and anti-vortices
(for a recent discussion see [51]). It is well understood that the leading contributions
to the partition function come from dilute configurations of vortices and anti-vortices,
and that in terms of the Cauchy-Riemann dual ¢ of the phase field, which satisfies
O = et 9", the effective action is mapped to the sine-Gordon theory [52-54]. In the
present case,

aﬁz/fxgwwf—mmumm, (A.9)

where (3 = (47)%yp, vo = 2e %< Ja?| E.ope is the core energy of a vortex, a ~ p~! is an
ultraviolet cutoff, and ¥ has been rescaled by 2,/7y to bring the action into canonical
form.

https://doi.org/10.1088/1742-5468 /ad17b3 25


https://doi.org/10.1088/1742-5468/ad17b3

An exactly solvable model of randomly pinned charge density waves in two dimensions

Appendix B. Review of O(N) model with a quenched random field

In this appendix, we review the large- N analysis of O(N) models in a quenched random
field for the purpose of aiding comparison with the main results in this paper. The O(N)
nonlinear sigma model (NLSM) is described by the action

S = /dd [ 8an —h-n|, n®(x) =1, (B.1)

where h(x) is a fixed external source. Suppose now that h(x) = h(x) is a random field
drawn locally from a Gaussian distribution such that

b (x) =0, b (x) b (y) = 006 (x —y), (B.2)

where the overline denotes an average over the disorder configurations, and the variance
n? represents the strength of the disorder. Using the replica trick formalism, we consider,
forn e Z,

Z_:/Dbexp(—/dd h; )zm

/HDnJD)\ exp Z/ddx— 3 nj) +Aj ( )}5 —%m n; |,

7,j =1

where n; and \; (the Lagrange multiplier imposing the unit vector constraint), for
j =1,...,n are the replicated fields corresponding to each factor of Z[h]. Because the
theory remains quadratic in the replicated O(N) fields n;, they can be integrated out
exactly:

N , Yy
Seff = ETI ln[ 0 I+d1ag( Z/d (B.4)

where Tr(-) denotes the functional operator trace as well as the trace over replica
indices, and I is the n x n identity matrix, M is the matrix with a 1 in every entry and
diag(A) = diag(A1,...,A,) is the diagonal matrix of Lagrange multipliers. The remaining
functional integrals over each \; can be performed using steepest descent, which becomes
exact in the limit N — oo. To make this limit precise, we define g = go/N and n> = N,
keeping g¢ and 7y fixed as N — co. We then look for a replica-symmetric saddle point
where \; = --- =\, = m?, which yields the self-consistent equation

d
1
tr / P =2 (B.5)
2m)" (p2+m2) I — go2M 9o
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where tr(-) denotes a trace over only the replica indices. Since M is an idempotent
matrix (M? =nM), finding the inverse matrix in the integrand is straightforward:

1t / d’p I L gongM
—tr

n ) @n)!|p2+m? " (p?+m?)(p?+m? —ngon;)
and hence, taking the replica limit n — 0,

d? 1 ; 1
P L =—. (B.7)
d |52 2 2
2m)" LP*+m*  (p?+m?) 9o

1
=—, B.6
90 ( )

While explicitly solving this equation for m? requires renormalization of the coupling
constant g, it will suffice for our purposes to simply make the following remarks: (i)
for any amount of disorder (n? > 0) in d < 4 there is an infrared singularity in the above
integral equation unless m? > 0. This implies the absence of any broken symmetry phase,
providing an exact, non-perturbative realization of the Imry—Ma argument [2]. (ii) The
disorder-averaged propagator of the n field has the double-Lorentzian form

o 1 gon?
G = + . B.8
)= o+ (5.3)

Appendix C. Review of CP"N model with a quenched random field

In the main body of this work, we investigate a two-component generalization of the
CPY model. Here, we present a summary of the physics of the simpler model in a
quenched random field for pedagogical purposes.

In the CPY model, quenched disorder can only couple to gauge invariant combina-
tions of the scalar field. The natural coupling originates in the Hopf map from O(3) unit
vectors to elements of CP!, h-n — haz;Tfﬂ,Zﬁ, where 7% are the generators of SU(2).

Therefore, we consider the partition function

1 .
Z[h] = /DADCL’“‘DZ exp <—§/ddx [|D"[a] 2>+ X (|z]* = 1)] +/dde“ZaTﬁﬁzﬁ),
(C.1)
where 7¢ are the generators of SU(N), h? is a real (N? — 1)-component random field

transforming under the adjoint (vector) representation of SU(N) and drawn from the
locally Gaussian distribution

b (x) =0, b (x) bP (y) = 00" (x —y), (C.2)

n? is the variance (strength) of the disorder and overlines denote averaging with respect
to disorder configurations. For quenched disorder averages, we use the replica trick
formalism,
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ﬁ:/pbexp(—/dd h; )Z[h]

/D)\ ‘Da){Dz; exp Z /ddx— | D" [aj] 21>+ A; (1257 — 1)] 65

i,j=1
N 772 * 2
- 5|z -zil7 ), (C.3)
where we have used the identity 7 TapTys =N 0as0py — 0apd~s [implied summation over
repeated indices; working in the conventlon tr (797°) = N6*’], and dropped the unim-

portant constant terms proportional to |z;||z;| =1. The quartic interaction between
the replicated z; fields can then be decoupled using a Hermitian Hubbard-Stratonovich

field w;; = ws: since z is a unit vector, we also have w;; = 0. Therefore,

JZ’

Z”—/DwUDA Dd!Dz; exp Z/dd [1D* [a;] 2265 + A (125> — 1) &
i,j=1

_ gwmz Zj} — 2N772 Z /ddxwzjww . (C.4)

i,j=1

The field w;; has a simple physical interpretation by comparison with the O(N) non-
linear sigma model with quenched disorder, equation (B.3). Evidently the amplitude of
w;; plays the role of an effective disorder strength for the SU(N) scalars z. The crucial
difference is that w;; must be allowed to fluctuate to ensure gauge invariance is respec-
ted. After rescaling w;; — wj;/g, defining g = go/N and n=1y/go, and integrating out
the z;, one obtains an effective action

w? diag()\)} 7 (C.5)

Set/N = Tr In [—diag (Di [a]) + diag (A) — @] + tr /dd [
25 9o

where diag(-) denotes a matrix which is diagonal in replica indices, @ is the matrix with
elements w;;, and Tr includes a trace over functional configurations and replica indices.

Before proceeding, we briefly comment on the symmetries of the replicated theory.
The original non-replicated theory has a local U(1) gauge symmetry with the trans-
formation rules

z(x) — "™z (x), a' (x) — at (x) — 0" (x). (C.6)

The replicated theory has an enlarged U(1)" gauge symmetry which allows for inde-
pendent gauge transformations on each replicated field

zj(x) — 1™z (x), al (x) — af (x) — 0"0; (x). (C.7)
As a consequence, the disorder Hubbard—Stratonovich field inherits the transformation

Wik (x) — e OI=0 ) (x) | (C.8)
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transforming as a tensor under U(1)". Since a replica-symmetric ground state should be
invariant under the permutation group 5, we might have assumed this would uniquely
constrain w;; = wp, independent of %,j. However, the manifold of gauge-equivalent
ground states is U(1)"/S,; i.e. w;j =wp is simply a particular representative of the
equivalence class of configurations obtained from wy by gauge transformations.

Given the above considerations, we are free to expand around the replica-symmetric
saddle point w;;(x)=uwy. Also taking the replica-symmetric ansatz \;(x)=m?, and
fixing af (x) = 0, the replicated effective potential in the N = oo limit is

- dq . - w? m2
U :/ Indet | (q® +m2+wy) I —woM | +n(n—1)—% —n—, (C.9

where I is the n x n identity matrix and M is the matrix with a 1 in every entry.
Using the same coupling constant renormalization as in equation (2.7) to cure the UV
divergence, we recover the physical (renormalized) effective potential by taking the
replica limit

n

Up = lim —£

n—0 N

dd 2 2 2 2

e e B e ] Rt S AT
(27) q Q°+m*tw  q+p 25 9r

In d =2 this evaluates to

— m? m? + wy wo wi m?
Up=—|1-In| —— =_=_ C.11
" 47r{ n( e )}ﬂm 205 gr (G-1)

The values of m? and w are then obtained from the saddle point equations, though a
subtlety occurs for wy, as the corresponding equation has two solutions. Note that since
w;; has n(n—1) complex degrees of freedom, in the replica limit n — 0, the negative
number of effective degrees of freedom require us to mazximize the effective potential
[47]. This yields a crossover scale n? = 4 p?e~*™/9% such that

2 A7 < 07 Mo < Ne,
m2 +wy = 77;/ ’ 10 < Tlcs wo = 7]8 o (Cl?)
mo/4m, 1o = e Py W) e
c

We emphasize that this crossover does not break any ‘physical’ symmetries; i.e. those
of the non-replicated theory. It is also likely that this apparent mean-field transition
would be rounded by [possibly non-perturbative O(e~V)] corrections to the saddle point
equations. Note that this behavior is not an artifact of the absence of a phase transition
in the clean d =2 theory; consider the case of d =3, where equation (C.10) evaluates
to

L 1 2 2
Up=— [(w0—2m2) \/m2+wo+3um2} —w—og—ﬂ- (C.13)
127 215 9r
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It is simple to check that the ‘clean’ symmetry breaking state m? = wy = 0 is also never
energetically favorable.

For the purposes of this paper, it suffices to note that the 1/ N expansion reveals that
the Higgs mechanism takes place for 1y > 7., with n — 1 of the replicated gauge fields a"f
becoming massive; as expected from the form of the disorder, only the replica-diagonal
U(1) subgroup is unaffected, with the corresponding gauge field remaining gapless.

Appendix D. Fluctuation kernels in disordered two-component CPVmodel

In this appendix, we present the details of calculations referred to in section 3.3. We
start from the effective action equation (3.9) and derive the leading order fluctuation
contributions in the strong disorder regime where wy > 0. The propagator for the z and
w fields is

A

A (p2+m2+w0)f—w0M —Uof A .
—ol (p2+m2+w0)f—w0M ’

Gy (p) = (D.1)

the components of which we will denote Gifﬁ (p). For example, G (p) is the amplitude
for the hybridization of z; and z;.
First, the case o0yp = 0: The kernels in equation (3.19) are given by the integrals

2 d? . .
1Y (i) ~ T (pim) = 72— 2 / (2;;‘2 G ()G (p+q) (D.2a)
(2) d*q ij ij
2 (psn) = 2 / O @G ). (D.2b)

In practice, we only need to evaluate these kernels for n =0, so we have

2 2 1
HSI)(p;O)—HSQ)(p;O)Zf%/ . lq + = )z]
0

(2r)® La> +m? +wo (g% +m?+wp
1 wo
g (p+a)+m2+w " 2 2 21’ (D-3a)
0 [(p+q) +m +wo]
d2 2
e (p;O):2/ d ] -, (D.3b)

(27)° (g2 4 m? + wp)? [(p +q)” +m? + WO]

which are straightforward to evaluate using the usual methods (e.g. Feynman
parametrization of the loop integrals).

Next, the case o # 0. Following the same notation as above, we write the effective
action in the form

N ¢ : -
Su="y Y [ @xyt, 6o [0 (x—yin) -1 - yim) 0] 03(v). (D)

17‘]:1
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However, there are now contributions from three sources

i0: (x W i w (05 (x)— B0 (x
g;(x) ~ poe'®i ™), ik (x) =~ U oi(6;(x)—0k(x))/2 7 wip (x) ~ 20 o~ (05 (x)=01(x)) /2.
ntOt ntot (D 5)

After some algebra, we obtain

11, (p;n) — 117 (pim)

= 2p; / (d? (G2, () GL, (p+a) — G2 (@) GY (P +q)] +2p0 / (;1:;2(?% (q)
+(n—1)wjA’ / (;32 [GL, (@) GY,(p+a) — G2 (q) GL (p+q)

+(n—2)GY(q)GY, (p+q) — (n—2)GZ (q) GZ, (p+q)

+(n—1)GL(q) G (p+q) — (n—1)G%,(q )Gi’w(erq)}
d2q d*q | i

Do [ 55562 ) +4 poWoaf G ()G (p+q)

—-GY,(@)GL(p+q)l, (D.6a)
11 (p;n)
2
=20t [ 55 (62 @G (b +a) - 6L @G+ )
2A2 d2q iz 7 1 i

+(n—-2)G%, (q) G, (p+q) — ( 2)GY,(9) G, (p+q)

—(n—-1)GL(q)GL(p+aq)+(n—1)GY, (q) G, (p+q)]

T / (d 3G (@) — dpnnd / ‘; (G ()G (p+a) — GI ()G (p+a)]

(D.6b)

These kernels can be shown to have the following power series expansion in p,

N [Hél) (pn) — 11,7 (p;n)] ~mg (n)” + [v9 (n) + Ty (n)] p*, (D.7a)
nNTIY (pin) ~ my (n)* + Ty (n) p?, (D.7b)

which yields the effective action equation (3.26). The leading order-n contribution to
mj3 is given in equation (3.29), and to order n the coefficients of the gradient terms are

2 92
Poo

29
g [(m? +wo)” — )]

Yo (n) ~7g +nN (D.8a)
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2

? 2p0(1— A
Ty (n) = nN—00 [ [6—A(6—A)] {m_*“’otanh—l (%) _1} ~ 2po( : )
87 g po m*+wo (m?+wo)” — p§

(D.8b)

where 7y is the disorder-averaged phase stiffness given in equation (3.31). Note that while
['p(n) is not strictly positive for all ranges of parameters, the spectrum of the kernel
only depends on the combination 7g(n) 4 I'y(n), which is positive for all —1 <A < 1.
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