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1. Introduction

It has been well-understood for many decades that below four dimensions random
impurities in a material will ‘pin’ the U (1) phase of an incommensurate charge density
wave (ICDW) [1]. The pinning leads to a frustration that prevents a well-defined CDW
state with a uniform phase θ from forming [2]. In fact, this destruction of long-range
symmetry breaking order by random fields (when not forbidden by gauge invariance)
is a general feature in systems with a global U (1) symmetry. The special case of two
spatial dimensions is particularly subtle since a state with long-range order is already
forbidden at finite temperature by the Mermin–Wagner theorem [3]. In the absence of
quenched random field disorder, the Berezinskii–Kosterlitz–Thouless (BKT) transition,
which involves the proliferation of topological defects (vortices in magnets with planar
anisotropy, and dislocations in the case of 2D ICDWs), is special since it separates a
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(critical) phase with power law correlations and a disordered phase with unbroken U (1)
symmetry [4, 5]. The question of how the critical phase is destroyed by a quenched ran-
dom field has been understood only qualitatively.

Over the last four decades, a significant amount of work has been done to attempt
to answer this question. Initially, advances were made using perturbative field-theoretic
renormalization group (RG) techniques [6–8]. Those authors studied the random field
XY model as an idealization of, among other systems, two-dimensional CDWs in sys-
tems with charge disorder. They found that the original BKT transition separating
the high temperature neutral vortex plasma and low temperature power law correl-
ated phases was destroyed by disorder due to impurities becoming (RG) relevant at
an intermediate temperature. However, the nature of the low temperature impurity-
dominated state remained undetermined, spurring the application of non-perturbative
techniques. For example, the functional RG was used to disprove the long-standing
dimensional reduction hypothesis [9–11]. To this day, the nature of the low temperature
state remains hotly debated, with some proposing the ground state to be a so-called
‘Bragg glass’ of dislocations [12, 13], while others claim that this state is featureless
and lacks any form of order [14]. Despite the disagreements, it is now evident that non-
perturbative techniques are necessary for shedding light on the physics of the disordered
system [15–19].

Interest in disordered ICDWs has not purely been driven by the theoretical chal-
lenges described above. The cuprate high-temperature superconductors, which have
focused the attention of much of the condensed matter physics community, are strongly
layered compounds which display quasi-two-dimensional charge order proximate to the
superconducting phase [20–24]. The possibility of intertwined [25, 26] charge and super-
conducting orders makes understanding the role of CDW order crucial to the physics of
high-Tc superconductors. Recently, significant experimental advances have been made
in x-ray scattering [27–29], scanning electron microscopy and spectroscopy [24, 30] and
momentum-resolved electron energy loss spectroscopy (M-EELS) [31, 32]. The increased
resolution of measurements has allowed for precise determination of dynamic charge cor-
relations in CDW materials.

Nevertheless, despite the intense theoretical and experimental interest, a full theor-
etical treatment of the interplay of thermal and quantum fluctuations in the presence
of random disorder is an open problem. In this paper, we introduce a model which is
exactly solvable in a suitable large-N limit even in the presence of a quenched random
field. Our results apply to the specific case of an ICDW in two dimensions which we will
take to be unidirectional. Although our main motivation stems from the experimentally
observed ICDWs in the lanthanum cuprates [33–35], the problem is of much broader
interest since such CDWs are seen in many systems, including the dichalcogenides and
many other quasi-2D materials. In this paper we will focus on the classical theory,
leaving the quantum theory to another publication.

The order parameter of a unidirectional CDW is the Fourier component of the local
charge density ρ(x) at the ordering wave vector Q:

ρ(x) = ρ0 (x)+ ρQ (x) eiQ·x+ ρ−Q (x) e−iQ·x+higher harmonics, (1.1)
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where ρ0(x) is the slowly-varying uniform component and the also slowly-varying field
ρQ(x) = ρ*−Q(x) is the CDW order parameter. Here we will assume that the order-
ing wave vector is incommensurate with the underlying lattice and that we have an
ICDW. A CDW, commensurate or not and regardless of which microscopic mechanism
is responsible for it, is a phase of an electronic system in which ⟨ρQ(x)⟩ ̸= 0. This state
breaks translation invariance and the point group symmetry of the underlying lattice.
States of this type are inherently fragile to disorder since a local (effectively random)
electrostatic potential Vimp(x) due to charged impurities couples linearly to the local
charge density ρ(x) and, consequently, disorder couples linearly to the CDW order para-
meter. In what follows, we will denote the complex field of the ICDW order parameter
as ρQ(x)≡ σ(x) and the ordering wave vector Q will be left implicit.

In this work, we present a non-perturbative approach to treating the physics of a
U (1) order parameter coupled to quenched disorder. Our method is based on the well-
known large-N technique (see, for example, [36–39]). The large-N approach has been
used to investigate the O(N ) model in a random field by Nie et al [16], who applied
their results to the case of randomly pinned ICDWs. Taken literally, their results apply
to dimensions d > 2, since in the absence of a random field the 2D O(N ) model does
not have long-range order. For this reason, we were motivated to explore other large-N
models that are, in principle, able to capture unique aspects of 2D physics, including
the BKT transition (in the absence of disorder), even in the regime where N is large.

To address this problem, in this paper we consider a theory of a two-component
generalization of the CPN model with a global U (1) symmetry between the two com-
ponents. This global symmetry characterizes the order parameter manifold of interest.
Our generalized model includes an interaction term between the two components which
is solvable in the large-N limit. Here we use the fact that the large-N limit of the CPN

model is well understood [40, 41], and show that this coupled theory is also solvable in
the large-N limit. In the absence of disorder, the N =∞ ground state we find appears to
spontaneously break the U (1) symmetry, but we show that the inclusion of the leading
order fluctuations about the N =∞ ground state is sufficient for a BKT phase trans-
ition to emerge. In fact, we show explicitly that the BKT transition appears as a 1/N
correction to the N =∞ transition.

Having confirmed that the clean theory behaves as expected, we then include
quenched disorder and solve this model exactly in the N =∞ limit as a function of
disorder and of the coupling strength between the two components. Similarly to the
clean theory, the disordered theory appears to have a broken symmetry phase. However,
we again demonstrate that allowing for fluctuations about the large-N state necessarily
restores the symmetry. The large-N limit of the model predicts a complex phase dia-
gram in the presence of quenched random fields. While in the strong disorder regime
we find a phase with short-range order (as expected), in the weak disorder regime the
naive large-N limit is the same as in the clean theory. We also derive explicit results
for the order parameter correlator in the strong disorder regime (to leading order in
the 1/N expansion) and show that it has the same functional form as found in earlier
theories of the random field Ising model [42] and O(N ) model with a random field [16,
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17]. Finally, an analysis of the 1/N corrections reveals that the correlation functions
have essentially the same behavior in the weak and strong disorder regimes, resolving
the naive disagreement with the Imry–Ma argument [2], and implying the existence of
a subtle crossover between the two regimes.

The rest of this paper is structured as follows: In section 2 we present the model
we will be using in this work. We demonstrate our method for studying a U (1) order
parameter with the large-N technique by solving the model exactly in the N =∞
limit (section 2.2) and then showing how the BKT transition emerges at order 1/N
(section 2.3). In section 3 we begin by coupling our model to quenched disorder and
then derive the phase diagram of the theory at N =∞ (section 3.2). Finally, we resolve
the apparent inconsistencies of the mean field limit with the Imry–Ma condition by
incorporating the effects of fluctuations (sections 3.3 and 3.4). Section 4 presents our
conclusions. Technical details and pedagogical reviews of known material are presen-
ted in a number of appendices. Appendix A supports the results of section 2.3 and
appendix B reviews the effects of quenched disorder in O(N ) models, appendix C does
the same for the conventional CPN model, and appendix D supports the results of
section 3.3.

2. Two-component CPN model for a U(1) order parameter

2.1. The model and its symmetries

To apply the non-perturbative large-N technique to a theory with a global U (1) sym-
metry, we wish to construct a model with an internal symmetry group G with dimension
scaling as N and a U (1) subgroup which can subsequently be spontaneously broken. A
simple approach is a theory of two N -component complex scalar fields z and w , each of
which transforms under the fundamental representation of U (N ); the larger symmetry
group is then G= U(N)×U(N) and each of the U (N ) products contributes a U (1)
subgroup. The particular model we have chosen to study is a two flavor generalization
of the CPN model, and is described by the action

S =
1

g

ˆ
ddx

(
|Dµ [a]z|2+ |Dµ [a]w|2− K

g
|z* ·w|2

)
, |z|2 = |w|2 = 1, (2.1)

where aµ is a fluctuating U (1) gauge field and Dµ[a] = ∂µ+ iaµ. Importantly, we take
both z and w to be coupled to aµ, as opposed to two independent fluctuating gauge
fields. This model has a formal similarity with the chiral Gross–Neveu model which has
a well-understood large-N limit [43, 44]. It will be convenient to work in a representation
where the U(1)×U(1)⊂G subgroup is generated by two types of transformations:

(i) diagonal (local) z (x)−→ eiϕ(x)z (x) , w (x)−→ eiϕ(x)w (x) , (2.2a)

aµ (x)−→ aµ (x)− ∂µϕ(x) ,

(ii) relative (global) z (x)−→ eiϕz (x) , w (x)−→ e−iϕw (x) , (2.2b)
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Note that the quartic interaction term is invariant under the global relative U (1)
symmetry (ii) which can be spontaneously broken (with the usual caveats on the restric-
tions imposed by the Mermin–Wagner theorem).

2.2. Large-N solution

We will now demonstrate that this model has the desired properties. The partition
function for the theory is

Z =

ˆ
Dλ1Dλ2DaµDzDw exp

(
−S−

ˆ
ddx

[
λ1
g

(
|z|2− 1

)
+
λ2
g

(
|w|2− 1

)])
, (2.3)

where λ1 and λ2 are Lagrange multiplier fields imposing the constraints |z|2 = |w|2 = 1.
Additionally, the quartic interaction term |z* ·w|2 can be decoupled using a Hubbard–
Stratonovich (HS) transformation:

exp

(ˆ
ddx

K

g
|z* ·w|2

)
=

ˆ
Dσ exp

(
−
ˆ

ddx
[ g
K
σ*σ−σz* ·w−σ*z ·w*

])
. (2.4)

Since the Gaussian integral over σ is peaked around the value σmax = (K/g)z ·w*, we
identify the complex field σ as an emergent U (1) order parameter. In fact, invariance
of the right hand side of equation (2.4) under a relative U (1) transformation imposes
the transformation rule σ→ e2iϕσ. After the HS transformation, the functional integrals
over z and w become Gaussian, and hence, can be performed exactly to obtain

Z =

ˆ
Dλ1Dλ2DaµDσe−Seff , (2.5a)

Seff/N = tr ln

(
−D2

µ [a] +λ1 −σ
−σ* −D2

µ [a] +λ2

)
+

ˆ
ddx

[
σ*σ

K0
− λ1+λ2

g0

]
, (2.5b)

where we have defined g = g0/N and K =K0/N . As N →∞, the partition function
can be evaluated exactly within mean field theory. We then take the spatially uniform
ansatz σ(x) = σ0, λ1(x) = λ2(x) =m2 (since the theory also has a Z2 symmetry which
exchanges the z and w fields) and aµ(x) = 0 (by gauge invariance). Then,

Z = e−NV Ueff , (2.6a)

Ueff =

ˆ Λ ddq

(2π)d
ln
([

q2+m2
]2− |σ0|2

)
+

|σ0|2

K0
− 2m2

g0
, (2.6b)

where V is the volume of d -dimensional space and Λ denotes some regulator; e.g. a UV
cutoff.
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We will now specialize to the case d =2. The effective potential (2.6b) is logarith-
mically ultraviolet divergent, but renormalization of the coupling constant g0 suffices
to cure this. Defining

1

g0
=

1

gR

(
1+ gR

ˆ Λ ddq

(2π)d
1

q2+µ2

)
, (2.7)

for some renormalization scale µ, the regulator Λ can then be removed from
equation (2.6b), yielding a renormalized effective potential:

UR =
m2

4π

[
2− ln

(
m4− |σ0|2

µ4

)]
+

|σ0|
4π

ln

(
m2− |σ0|
m2+ |σ0|

)
+

|σ0|2

K0
− 2m2

gR
. (2.8)

The ground state values of m2 and |σ0| are then obtained by minimizing the potential.
First,

m4− |σ0|2 = µ4e−8π/gR . (2.9)

Next, it is straightforward to check that for K0 <Kc = 4πµ2e−4π/gR , the potential is
minimized by a vanishing order parameter σ0 = 0. However, for K0 >Kc, the magnitude
of σ0 is determined by a Curie–Weiss type transcendental equation

|σ̃|= K0

Kc
sinh−1 (|σ̃|) , (2.10)

where |σ̃|= |σ0|/(µ2e−4π/gR), which is well-known to yield a β = 1/2 critical exponent
in the limit |σ̃| ≃ 0. Since the effective potential equation (2.8) is invariant under the
relative U (1) symmetry, a mean-field solution σ0 spontaneously breaks this symmetry.
However, it is evident that in d =2 this spontaneous symmetry breaking (SSB) is an
artifact of the large-N limit, since the Mermin–Wagner theorem forbids SSB [3]. This
signals the need to include fluctuations around the mean-field limit, for which the large-
N technique provides a systematic method.

2.3. Fluctuations & BKT transition

Since we are primarily interested in the infrared physics of this model, we can focus
on the Goldstone manifold of degenerate ground states parameterized by the U (1)
phase θ of the complex order parameter field; σ(x)≡ ρ(x)eiθ(x), where ρ(x) is the (real)
amplitude of the order parameter (not to be confused with the charge density). By
freezing ρ(x) = ρ0 and allowing θ(x) to vary slowly in space, the leading corrections to
the effective action will be determined by a gradient expansion. However, θ ∈ [0,2π) is
a compactified boson, and its periodicity allows the existence of vortices [4, 5].

Following the usual analysis (see, for example, [45]), the periodicity is imposed by a
non-fluctuating source of vorticity Aµ which satisfies

εµν∂µAν (x) = 2π
∑
j

mjδ
(2) (x−xj) , (2.11)
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for some configuration {mj} of vortices with topological charge mj ∈ Z. This source is
then minimally coupled to the relative U (1) symmetry, so that the partition function
equation (2.5) becomes

Z =
∑
{mj}

ˆ
Dλ1Dλ2DaµDρDθe−Seff [A], (2.12a)

Seff [A]/N = tr ln

(
−D2

µ [a+A] +λ1 −ρeiθ

−ρe−iθ −D2
µ [a−A] +λ2

)
+

ˆ
ddx

[
ρ2

K0
− λ1+λ2

g0

]
,

(2.12b)
where the sum is over all possible configurations of vortices. Expanding to quadratic
order in θ, Aµ, and their derivatives, yields

Seff [A]≃
γθ
2

ˆ
d2x(∂µθ+2Aµ)2+

1

4e2

ˆ
d2x(F µν)2 , (2.13)

where F µν = ∂µAν − ∂νAµ, e2 = ρ20/(2m
2γθ) is the effective coupling constant for the

‘electrodynamic’ response of Aµ, γθ is the phase stiffness

γθ =
N

4πρ0

[
m2 tanh−1

( ρ0
m2

)
− ρ0

]
=

N

4π ρ̃

[√
1+ ρ̃2 sinh−1 (ρ̃)− ρ̃

]
, (2.14)

and ρ̃= ρ0/(µ
2e−4π/gR); see appendix A for the derivation of these quantities. Note that

σ has U (1) charge q =2 (not to be confused with the topological charge of a vortex)
since it is a charged composite of q =±1 fields.

This result implies a critical value of the phase stiffness γBKT = 2/(πq2) = 1/2π such
that vortices/dislocations proliferate for γθ < γBKT (see appendix A). Since γBKT is of
order 1/N relative to generic values of γθ(ρ̃), for large enough N we can safely approx-
imate γBKT ≃Nρ̃2BKT/12π, where ρ̃BKT is the value of ρ̃ which solves the equation

γBKT = 1/2π. Substituting ρ̃BKT ≃ 6/
√
N into the saddle point equation (2.10) and

expanding to first order in 1/N yields one of our first main results:

KBKT

Kc
=

ρ̃BKT

sinh−1 (ρ̃BKT)
= 1+

1

N
+O

(
N−2

)
. (2.15)

That is, we have explicitly shown how the BKT transition emerges at order 1/N relative
to the mean-field transition; Kc remains the point at which the amplitude of the con-
densate forms, but only exponentially-short range order exists for Kc <K <KBKT. The
fluctuation-dominated regime between Kc and KBKT is narrow in the large-N regime
and it is expected to become broad for smaller values of N. The existence of this fluctu-
ational regime is a feature of two-dimensional physics; this behavior is analogous to the
situation in (quasi-)two-dimensional superconductors, where the condensate develops
at a higher temperature than the onset of zero resistivity. The results of this section are
summarized in the phase diagram in figure 1. Finally, we note that the apparent contra-
diction with the Mermin–Wagner theorem is resolved at this order in the fluctuations,
since the critical Goldstone phase K >KBKT also has no long-range order, though with
power-law decaying correlations. This is unsurprising given that the Mermin–Wagner
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Figure 1. Phase diagram corresponding to the action equation (2.1). For K0 >
KBKT dislocations are confined, leading to quasi-long-range order and power law
correlations with exponent α> 0. For Kc <K0 <KBKT there is a condensate but
dislocations proliferate; correlations of σ decay exponentially with length ξ1. For
K0 <Kc no U (1) condensate forms, so correlations of σ decay exponentially with
different length ξ2. KBKT is split from Kc to order 1/N .

theorem is fundamentally a statement of the importance of fluctuations in low dimen-
sions. This behavior is closely analogous to what was found long ago in the chiral
Gross–Neveu model, though, importantly, the phase stiffness in that model is a pure
number that cannot be tuned [44].

3. The role of disorder

3.1. Coupling to quenched disorder

Having established that our model reproduces the salient features of a U (1) order
parameter within the large-N limit, we turn to the primary focus of this work: disorder.
Any quenched disorder must couple only to gauge invariant combinations of fluctuating
fields. With our model, we are spoilt for choice with possibilities, not all of which are
physically interesting. For example, the simplest option, a complex scalar disorder field
coupled linearly to the emergent U (1) order parameter z* ·w, can be easily shown to
produce a trivial large-N limit since the dimension of the disorder field does not scale
with N. As such, it is useful to draw inspiration from the conventional CPN model,
the large-N solution of which is presented in appendix C. We find that it is natural to
consider ‘adjoint disorder’

L(1)
dis = za (x)z*α (x)τ

a
αβzβ (x)+wa (x)w*

α (x)τ
a
αβwβ (x) , (3.1)

where, for simplicity and without loss of generality, we take the disorder za(x) and
wa(x) to be N 2 component real vectors in the adjoint representation of U (N ), with
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generators τ a satisfying τ aαβτ
a
γδ =Nδαδδβγ (implied summation over repeated indices),

and distributed with variance η21 according to

za (x) =wa (x) = 0, za (x)zb (y) =wa (x)wb (y) = η21δ
abδ(d) (x−y) , (3.2)

where overlines denote averaging over disorder configurations. Note that
cross-correlations between za(x) and wa(x) are generally allowed by symmetry, but
we do not observe any qualitative impact as a result of this added model complexity.
A general approach, however, should also include the new gauge invariant bilinear

L(2)
dis = ha (x)z*α (x)τ

a
αβwβ (x)+ ha* (x)w*

α (x)τ
a
αβzβ (x) , (3.3)

where ha(x) is a N 2 component complex random vector with variance η22:

ha (x) = 0, ha (x)hb (y) = 0, ha* (x)hb (y) = η22δ
abδ(d) (x−y) . (3.4)

The coupling to the disorder shown in equation (3.3) is manifestly invariant under the
local symmetry of diagonal U (1) transformations and transforms non-trivially under
the global symmetry of the relative U (1) transformations (see equations (2.2)). Thus,
for each realization of the disorder, the random fields explicitly break the relative global
symmetry, but it remains unbroken in the ensemble of the distribution of equation (3.4).
In this way, this second form of disorder has the same U (1) symmetry properties as a
disorder field coupled linearly to z* ·w. We will see in a later section that symmetry-
breaking disorder is vital to the physics of fluctuations, while the neutral disorder is
important for stabilizing the ground state of the theory. Other forms of disorder are
certainly possible, but the adjoint disorder presented here provides useful mathematical
simplifications, and, we believe, is the most physically motivated and natural choice
leading to a non-trivial large-N limit.

Since we are interested in thermodynamic observables that are independent of any
specific realization of the disorder, we use the replica trick:

Zn =

ˆ
DzDwDh exp

(
−
ˆ

ddx

[
z2+w2

2η21
+

|h|2

η22

])
Z [z,w,h]n

=

ˆ
Dλ1,jDλ2,jDaµjDzjDwj

n∏
j=1

e−Sj

× exp

N
2

ˆ
ddx

n∑
i̸=j=1

[
η21

(
|z*
i · zj|2+ |w*

i ·wj|2
)
+2η22

(
z*
i · zj

)(
wi ·w*

j

)] ,

(3.5)

where Sj are the replicas of the original action equation (2.1). We are excluding the terms
with i = j from the sum in the last line because the unit vector constraints |zi|= |wi|= 1
render them trivial constants. Note that the novelty of quenched disorder in CPN -
type models is the generation of quartic inter-replica interaction terms, reminiscent of
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the Sherrington-Kirkpatrick model of spin glasses [46]. We will see that this produces
fundamentally different large-N solutions compared to O(N ) models (see appendix B).

3.2. Large-N solution

Next, we must take some care with the Hubbard–Stratonovich transformation to avoid
over-counting the effective degrees of freedom in the theory. We start by introducing
the collective coordinates ζ ij and ωij for i ̸= j
ˆ

DζijDωij δ
(
ζij − zi · z*

j

)
δ
(
ωij −wi ·w*

j

)
× exp

(
N

2

ˆ
ddx

[
η21

(
|z*
i · zj|2 + |w*

i ·wj|2
)
+2η22

(
z*
i · zj

)(
wi ·w*

j

)])
=

ˆ
DζijDωijDκijDψij exp

(
−N
ˆ

ddx
[
κji

(
ζij − zi · z*

j

)
+ψji

(
ωij −wi ·w*

j

)])
× exp

(
N

2

ˆ
ddx

[
η21 (ζijζji+ωijωji) + 2η22ωijζji

])
, (3.6)

and fix ζii = ωii = 0 for the reason discussed just above. Since this expression is quadratic
in ζ ij and ωij , the Lagrange multipliers κij and ψij can be eliminated exactly by the
saddle point equations

κij = η21ζij + η22ωij, ψij = η21ωij + η22ζij. (3.7)

Therefore, the interaction term can be expressed as

exp

N
2

ˆ
ddx

n∑
i̸=j=1

[
η21

(
|z*
i · zj|2+ |w*

i ·wj|2
)
+2η22

(
z*
i · zj

)(
wi ·w*

j

)]
=

ˆ
DζijDωij exp

− 1

2N

ˆ
ddx

n∑
i̸=j=1

[
η21 (ζijζji+ωijωji)+ 2η22ωijζji

]
× exp

ˆ ddx
n∑

i̸=j=1

[
z*
i · zj

(
η21ζij + η22ωij

)
+w*

i ·wj

(
η21ωij + η22ζij

)] ,

(3.8)

after rescaling ζ ij and ωij by 1/N . The z and w fields can then be integrated out of
the partition function to obtain the effective action

Seff/N =Tr ln

[
diag

(
−D2

µ [a] +λ1 −σ
−σ* −D2

µ [a] +λ2

)
−
(
η̃21 ζ̂ + η̃22ω̂ 0

0 η̃21ω̂+ η̃22 ζ̂

)]
+tr

ˆ
ddx

[
η̃21
2

(
ζ̂2+ ω̂2

)
+ η̃22 ζ̂ω̂+

1

K0
diag

(
|σ|2
)
− 1

g0
diag(λ1+λ2)

]
, (3.9)

https://doi.org/10.1088/1742-5468/ad17b3 11

https://doi.org/10.1088/1742-5468/ad17b3


An exactly solvable model of randomly pinned charge density waves in two dimensions

J.S
tat.

M
ech.(2024)

013104

where we have rescaled (ζ,ω)→ g0(ζ,ω), and defined g = g0/N , K =K0/N , and η1,2 =
η̃1,2/g0 to obtain a well-defined large-N limit. Tr( ·) includes the functional operator
trace as well as the trace over replica indices, diag( ·) denotes a matrix which is diagonal

in replica indices, and ζ̂ and ω̂ are the matrices with elements ζ ij and ωij , respectively.
We note that this effective action is positive definite as long as η̃1 > η̃2. While the
disorder averaged action equation (3.5) is bounded from below regardless of the disorder
strengths, maintaining η̃1 > η̃2 is necessary if one wishes to avoid spontaneously breaking
the replica permutation symmetry, which is beyond the scope of this work. Then, observe
that the HS disorder fields inherit the transformation rules

(i) diagonal ζjk (x)−→ ei(ϕj(x)−ϕk(x))ζjk (x) , ωjk (x)−→ ei(ϕj(x)−ϕk(x))ωjk (x) ,
(3.10a)

(ii) relative ζjk (x)−→ ei(ϕj−ϕk)ζjk (x) , ωjk (x)−→ e−i(ϕj−ϕk)ωjk (x) . (3.10b)

Therefore, the η1 disorder is neutral under all U (1) transformations, while the η2
disorder explicitly breaks the replicated relative global U(1)n symmetry down to its
replica-diagonal U (1) subgroup; a non-zero expectation value of ζ ij and ωij will also
spontaneously break the entire U(1)n×U(1)n symmetry group (see appendix C for a dis-
cussion of the symmetries of the conventional CPN model). This means that the natural
replica-symmetric and Z2 exchange-symmetric saddle point ζij(x) = ωij(x) = ω0(1− δij)
is actually a privileged choice and expanding around this specific configuration loses
information about the global phase diagram. However, this assumption allows us to
obtain a closed-form expression for the disorder-averaged effective potential. We will
first derive this effective potential and then show that the replica-symmetric configura-
tion is stable in the regime of interest η̃1 > η̃2.

We then take the spatially uniform and replica-diagonal ansatz σi(x) = σ0, λ1,i(x) =
λ2,i(x) =m2, aµi (x) = 0, and for convenience, ζij(x) = ωij(x) = ω0(1− δij)/(η

2
1 + η22)

(suppressing tildes from hereon for notational clarity). Next, one can simplify the block
matrix structure in the effective action to obtain the replicated effective potential

Un
eff =

ˆ
ddq

(2π)d
lndet

([(
q2+m2+ω0

)
Î −ω0M̂

]2
− |σ0|2Î

)
+n(n− 1)

ω2
0

η21 + η22
+n

|σ0|2

K0
−n

2m2

g0
, (3.11)

where Î is the n ×n identity matrix and M̂ is the n ×n matrix of ones. After the same
renormalization procedure as in all the previous cases, it follows that the disorder-
averaged physical effective potential is
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UR =

ˆ
ddq

(2π)d

[
ln

((
q2+m2+ω0

)2− |σ0|2

q4

)
−

2ω0

(
q2+m2+ω0

)
(q2+m2+ω0)

2− |σ0|2

− 2m2

q2+µ2

]
− ω2

0

η21 + η22
+

|σ0|2

K0
− 2m2

gR
. (3.12)

In d =2 this evaluates to

UR =
m2

4π

[
2− ln

((
m2+ω0

)2− |σ0|2

µ4

)]
+

|σ0|
4π

ln

(
m2+ω0− |σ0|
m2+ω0+ |σ0|

)
+
ω0

2π
− ω2

0

η21 + η22
+

|σ0|2

K0
− 2m2

gR
. (3.13)

The full multivariate structure is complicated, so we first consider the case σ0 = 0.
This reduces the problem to two decoupled CPN models with disorder strength η21 + η22 ≡
η2tot (see appendix C); the lack of any dependence on the relative magnitudes of η1 and
η2 is a result of the replica-symmetric ansatz. The saddle point equations for ω0 and
m2 are, respectively,

m2+ω0 =
η2tot
4π

,
ω0

m2+ω0
− ln

(
m2+ω0

µ2

)
=

4π

gR
. (3.14)

However, there is an apparent problem with these equations, as they seem to imply that
ω0 < 0 for η2tot < η2c,0 = 4πµ2e−4π/gR ; if this were the case, the scalar field propagator in
equation (3.9) would not be positive-definite. However, in this problem regime, the
configuration with ω0 = 0 is more energetically favorable, being the global extremum
(maximum, because of the effectively negative number of degrees of freedom of ζ ij and
ωij when n→ 0) [47]. This implies that ηc,0 is a crossover scale which divides a ‘clean’
or weakly-disordered regime from a strongly-disordered regime:

m2+ω0 =

{
η2c,0/4π, ηtot < ηc,0,

η2tot/4π, ηtot ⩾ ηc,0.
ω0 =

0, ηtot < ηc,0,
η2tot
2π

ln

(
ηtot
ηc,0

)
, ηtot ⩾ ηc,0.

(3.15)

Observe that m2 and ω0 are continuous at ηc,0, and that for η0 < ηc,0, m= µe−2π/gR

has the same value as in the theory without disorder.
For σ0 ̸= 0, the full saddle point equations cannot be solved explicitly, so we simply

state them here for completeness:

m2+ω0 =
1

8π

(
η2tot+

√
η4tot+64π2|σ0|2

)
, (3.16a)

ω0

(m2+ω0)
2− |σ0|2

− 1

2
ln

((
m2+ω0

)2− |σ0|2

µ4

)
=

4π

gR
, (3.16b)

|σ0|
(
4π

K0
− ω0

(m2+ω0)
2− |σ0|2

)
= tanh−1

(
|σ0|

m2+ω0

)
. (3.16c)
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Figure 2. N =∞ phase diagram of the theory with quenched disorder. ω0 = 0
everywhere to the left of the dashed line. σ0 = 0 everywhere below the solid blue
line. Kc,0 is the critical coupling in the clean limit and ηc,0 is the critical disorder
in the absence of condensate.

The phase boundary for the onset of a condensate density |σ0| follows from the
non-trivial solution to equation (3.16c):

Kc (ηtot) =


Kc,0, ηtot < ηc,0,

(ηtot/ηc,0)
2

1+2ln(ηtot/ηc,0)
Kc,0, ηtot ⩾ ηc,0,

(3.17)

whereKc,0 = η2c,0 = 4πµ2e−4π/gR is the critical coupling for the mean-field U (1) transition
in the clean limit (ηtot = 0). Therefore, at the mean-field level, the disorder only shifts the
boundary for the onset of the condensate; a larger coupling K 0 is required to overcome
increasing amounts of disorder. Importantly, however, the disorder does not eliminate
the condensate (at least at the mean-field level). Similarly, the boundary for the disorder-
driven crossover is shifted at finite condensate density:

ηc (K0) =

{
ηc,0, K0 <Kc,0,

ηc,0
(
1+ |σ̃ (K0)|2

)−1/4
, K0 ⩾Kc,0,

(3.18)

where σ̃ = σ0/(µ
2e−4π/gR), and since ω0 = 0 on the phase boundary, σ̃(K0) is determined

by the clean saddle point equation (2.10). The above results are summarized in the
phase diagram in figure 2.

Just as the large-N solution in the absence of disorder appeared to violate
the Mermin–Wagner theorem, our present solution appears to violate the Imry–Ma
condition [2]; in dimensions d < 4, any infinitesimal amount of disorder should not only
destroy long-range order, but correlations must decay at least exponentially; i.e. the
existence of a Goldstone phase with power law correlations must also be eliminated.
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Note that a condensate of ω0 does not break any physical symmetries of the non-
replicated theory, and hence, is not problematic. In the following section, we will show
that in the dirty regime ω0 > 0 the contradiction with Imry–Ma is directly resolved
by the inclusion of fluctuations to leading order in N. This will mirror the resolution
of the Mermin–Wagner theorem in the clean theory. Next, we will demonstrate that
sub-leading order fluctuations in the clean regime ω0 = 0 must be included, and gen-
erate qualitatively the same interactions which are responsible for the destruction of
long-range order in the dirty regime.

3.3. Strong disorder regime

3.3.1. Correlations in the symmetric phase. We begin with the case σ0 = 0 and ω0 > 0.
The physical observable of most interest in this regime is the correlation function of
the order parameter. The natural parameterization here is the Cartesian form σj(x) =
σRj (x)+ iσIj (x). Expanding the effective action equation (3.9) to quadratic order in the

σR and σI yields

Seff =
N

2

∑
a=R,I

n∑
i,j=1

ˆ
d2xd2yσ

(a)
i (x)

[
Π(1)
σ (x−y;n) Î −Π(2)

σ (x−y;n)M̂
]
ij
σ
(a)
j (y) ,

(3.19)

where the full integral expressions for the kernels Π(1)(x−y;n) and Π(2)(x−y;n) are
given in appendix D. It follows directly from the matrix structure of this action that
the propagator for σi is

⟨σi (p)σ*
j (−p)⟩= 2

 δij

Π
(1)
σ (p;n)

+
Π

(2)
σ (p;n)

Π
(1)
σ (p;n)

[
Π

(1)
σ (p;n)−nΠ

(2)
σ (p;n)

]
 , (3.20)

and hence, that the disorder-averaged propagator is

⟨σ (p)σ* (−p)⟩= lim
n→0

1

n
tr⟨σi (p)σ*

j (−p)⟩= 2

 1

Π
(1)
σ (p;0)

+
Π

(2)
σ (p;0)[

Π
(1)
σ (p;0)

]2
 . (3.21)

Immediately, we see that the Imry–Ma condition holds: if Π
(2)
σ (0;0) ̸= 0, the replica-

diagonal kernel Π
(1)
σ (p;0) must be gapped for all d < 4, barring any pathological

momentum dependence. Specifically, in d =2 we find for small momentum

Π(1)
σ (p;0) =

[
2

K0
− m2+2ω0

2π (m2+ω0)
2

]
+

m2+3ω0

12π (m2+ω0)
3p

2+O
(
p4
)
, (3.22a)

Π(2)
σ (p;0) =

ω2
0

6π (m2+ω0)
3 −

ω2
0

10π (m2+ω0)
4p

2+O
(
p4
)
. (3.22b)
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Note that the pole mass of the order parameter is proportional to the square-
bracketed term in equation (3.22a); substituting the saddle-point values for m2 and
ω0 recovers the critical value Kc(ηtot) above which the σ0 = 0 state becomes unstable.
To compare this propagator with the disorder averaged propagator of an O(N ) model
(see appendix B), we can put the propagator into canonical form by rescaling σ by the
coefficient of p2. Then, using the small momentum expansion of the kernels,

⟨σ (p)σ* (−p)⟩ ≃ 1

p2+m2
σ

+
η2σ

(p2+m2
σ)

2 , (3.23)

where the effective mass and (static) disorder strength are

m2
σ =

12π
(
m2+ω0

)3
m2+3ω0

[
2

K0
− m2+2ω0

2π (m2+ω0)
2

]
, (3.24a)

η2σ =
2ω2

0

m2+3ω0
. (3.24b)

Therefore, the propagator has the well-known [42, 48] double-Lorentzian form; any
approximation of the double-Lorentzian term in powers of momentum should at least
respect the double-pole structure. A potentially surprising feature of this result, com-
pared to the momentum-independent numerator of the propagator in the O(N ) model,
is the ‘disorder kernel’ Π(2)(p). We note that this momentum dependence is simply a
consequence of the fact that σi is a bound state of the z i and w i , and not of the com-
posite nature of the disorder fields ζ ij and ωij , since to this order in N fluctuations of
σ do not couple to fluctuations of the disorder fields.

3.3.2. Nature of the symmetry-breaking phase. Here we consider the regime σ0 ̸= 0
and ω0 > 0. In the absence of explicit symmetry breaking (η2 disorder), the low energy
degrees of freedom of the effective action equation (3.9) are the n gapless Goldstone
modes corresponding to long-wavelength distortions of the replicated relative symmetry
phases θi(x)

σj (x)≃ ρ0e
iθj(x), ζjk (x)≃

ω0

η2tot
ei(θj(x)−θk(x))/2, ωjk (x)≃

ω0

η2tot
e−i(θj(x)−θk(x))/2, (3.25)

where the phases θi are scaled so as to correspond to the replicated order parameter
phase. With the U(1)n global symmetry explicitly broken down to the replica-diagonal
U (1) subgroup, n − 1 of these modes will become gapped. However, as long as the
symmetry breaking disorder is sufficiently weak, other gapped modes will remain frozen
out at comparatively higher energies. Given these considerations, the infrared sector of
the effective action in d =2 is

Seff ≃ 1

2

n∑
i,j=1

ˆ
d2xθi

[
−γθ∂2Î +

(
−Γθ∂

2+m2
θ

)(
Î − 1

n
M̂

)]
ij

θj, (3.26)
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where the three parameters γθ(n), Γθ(n) and mθ(n) depend explicitly on the number
n of replicas. The derivation of this effective action and the full (rather uninstructive)
expressions for the three parameters are given in appendix D. Note that themθ term also
naively appears to break the periodicity of the θj . This is forbidden, since equation (3.9)
is invariant under shifts θj → θj +2π, so the constant term must actually be the total
contribution to quadratic order from terms in the ‘true’ IR effective theory of the form

L= L0+
∞∑
p=1

Lp, Lp =−αp
n∑

i,j=1

cos(p(θi − θj)) , (3.27)

where p ∈ N are the degrees of p-fold anisotropy and L0 is the part of the theory which
remains fully U(1)n invariant (the gradient terms in equation (3.26)). Our conventional
1/N expansion does not give us direct access to the coefficients αp , but it is clear that
the full effective theory should respect the periodicity of the θi .

We will now unpack this result. The spectrum of the inverse propagator is

e0 = γθp
2, multiplicity 1, φ0 =

1

n

(
1 1 . . . 1

)T
, (3.28a)

ei = (γθ+Γθ)p
2+m2

θ, multiplicity n− 1, φ1 =
1

2

(
1 −1 0 . . . 0

)T
, (3.28b)

φ2 =
1

4

(
1 1 −2 0 . . . 0

)T
,

. . . ,

where the φi are orthogonal eigenvectors of the kernel in the basis of the θi , and their
normalization is chosen to preserve the compactification radius (L1 norm). The single
remaining gapless mode φ0 corresponds to in-phase fluctuations of all the replicas;
the gapped modes correspond to the n − 1 linearly independent out-of-phase motions,
where, to leading order in the replica number n,

m2
θ ≃ nN

(1−∆)ω2
0

4π

[
m2+ω0

(m2+ω0)
2− ρ20

− 1−∆

ρ0
tanh−1

(
ρ0

m2+ω0

)]
, (3.29)

and ∆ = (η21 − η22)/(η
2
1 + η22). Since m2

θ > 0 for η1 > η2, this result confirms that the
ground state obtained in the large-N limit is stable.

Next, we must address the nature of physical observables in this dirty regime and
compatibility with Imry–Ma. It is useful to consider an effective disorder-averaged phase
stiffness. To this end, we first project equation (3.26) into the ‘deep IR’ scale below the
mass gap mθ,

Seff ≃ nγθ (n)

2

ˆ
d2x(∂µφ0)

2 . (3.30)

We again emphasize that the factor of n is needed to preserve the compactification radius
on changing basis from θi to φ0. Next, we impose a uniform static twist φ0(x) =Q ·x.
Finally, the phase stiffness should be identified with the usual thermodynamic helicity
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modulus, determined from the disorder-averaged effective potential in the presence of
the twist:

γθ =∇2
QUR (Q)

∣∣∣
Q=0

= lim
n→0

γθ (n)

=
N

4πρ0

[
m2 tanh−1

(
ρ0

m2+ω0

)
− ρ0

m2
(
m2+ω0

)
− ρ20

(m2+ω0)
2− ρ20

]
. (3.31)

We could repeat our analysis from the clean theory to determine what this expression
predicts for the evolution of the BKT transition as a function of disorder. However, it
is well-understood that γθ controls the relevance (in the renormalization group sense)
of the disorder-induced p-fold anisotropy equation (3.27) [6, 8]. Since the theory can
be tuned to make ω0 small, we can treat disorder as a perturbation to the sine-Gordon
representation of the clean theory (see equation (A.9)). Then, the results of [6] imply
that order-p anisotropy is a relevant perturbation when γθ > p2/16π. Therefore, the
BKT transition at γθ = 1/2π is actually preempted by random field (p =1) and random
bond (p=2) anisotropy. Unfortunately, our large-N analysis does not reveal the nature
of the disorder-dominated phase. However, it is clear that the conventional Goldstone
phase with power law correlations cannot survive, and the BKT vortex plasma is known
to have exponentially-decaying correlations.

To determine the boundary of the disorder dominated phase Kdis(ηtot), we begin by
using the saddle point equations (3.16), to write γθ as a function of only the dimension-
less parameters ρ̃= ρ0/(µ

2e−4π/gR) and ηtot/ηc,0. Expanding the resulting expression to
quadratic order in ρ̃ yields

γθ ≃

[
1+4ln(ηtot/ηc,0)

(ηtot/ηc,0)
4

]
Nρ̃2

12π
. (3.32)

Similarly, the saddle point equation (3.16c) can be expressed entirely in terms of ρ̃,
ηtot/ηc,0 and K0/Kc,0. Expanding the result to quadratic order in ρ̃ yields

K0

Kc,0
≃ (ηtot/ηc,0)

2

1+2ln(ηtot/ηc,0)
+

1+12ln(ηtot/ηc,0)

6(ηtot/ηc,0)
2 [1+ 2ln(ηtot/ηc,0)]

2 ρ̃
2. (3.33)

Solving γdis = p2/16π for ρ̃dis and substituting into the saddle point equation yields

Kdis (ηtot)

Kc (ηtot)
≃ 1+

1+12ln(ηtot/ηc,0)

1+ 6ln(ηtot/ηc,0)+ 8ln2 (ηtot/ηc,0)

p2

8N
. (3.34)

Predictably, for ηtot ≫ ηc,0 the vortex-dominated BKT phase eventually vanishes, though
only logarithmically slowly. The surprising feature of this result is its non-monotonicity;
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the vortex phase is actually slightly extended to a maximum valueKdis(ηmax)/Kc(ηmax)≈
(1+ 0.17p2/N) at ηmax/ηc,0 ≈ 1.2; see figure 4. Note that this result is not an artifact of
the expansion in powers of ρ̃ as it can be confirmed by solving the equation γdis = p2/16π
numerically. It may seem counter-intuitive for small amounts of disorder to extend the
BKT phase relative to the impurity-dominated phase. However, this simply reflects the
fact that the disorder initially has a stronger effect on the condensate density than on
the phase stiffness.

3.4. Weak disorder regime

In the previous section, the primary role of disorder was to mediate interactions between
replicated fields via the N =∞ z and w field propagator

Ĝ−1
0 (p) =

((
p2+m2+ω0

)
Î −ω0M̂ −σ0Î

−σ*
0 Î

(
p2+m2+ω0

)
Î −ω0M̂

)
. (3.35)

Naively, it might appear as though the system is blind to disorder in the regimes where
ω0 = 0. In this section, we will show that this is not the case and that fluctuations which
are sub-leading in 1/N generate qualitatively the same inter-replica couplings as in the
strong disorder regime. To demonstrate this, it will suffice to consider the case where
σ0 = 0.

In the strong disorder regime, the propagator had the double-Lorentzian form char-

acteristic of disordered systems due to the replica-mixing kernel Π
(2)
σ (p,n). If we can

show that this kernel is actually non-zero even when ω0 = 0, then the same conclusions
as before will hold. We can write the kernel extremely generally in the form

−Π
(2)
σ,ij (p) =

ˆ
d2q

(2π)2
Γabi,k1k2 (p,−p−q,q)Γcdj,ℓ1ℓ2 (−p,p+q,−q)

×Gac
k1ℓ1 (p+q)Gbd

k2ℓ2 (q) (3.36)

where a,b,c,d= 1,2 denote either z or w , respectively, and i,k1,k2,ℓ1,ℓ2 are replica
indices, with implied summation over repeated indices. Gab

ij (p) is the exact z , w propag-

ator, and Γabi,jk(p,q,k) is, similarly, the exact three-point vertex between σi and the z
and w fields with replica indices j and k ; within the large-N method, both these quant-
ities have a perturbative expansion in powers of 1/N . In the N =∞ limit, that is, at tree
level, the propagator is simply the bare propagator equation (3.35), and the three-point
vertex is

(Γi,jk)
ab =

(
0 1
1 0

)
ab

δijδik, (3.37)

independent of momentum and completely replica-diagonal. At this level, the necessary
replica off-diagonal terms only appear when ω0 > 0. However, within the 1/N expansion,
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Figure 3. One-loop self energy and three-point vertex contributions from fluctu-
ations of ζ ij and ωij .

both the propagator and the vertex functions receive corrections due to fluctuations
of all the collective fields. For example, when σ0 = 0, the propagator can acquire off-
diagonal components which couple the z i and w i fields together due to fluctuations of
the σi . Similarly, when ω0 = 0, the three-point vertex can acquire contributions which
are off-diagonal in the replica indices due to fluctuations of the ζ ij and ωij . At least
at one-loop level, the propagator cannot acquire replica off-diagonal components when
ω0 = 0 (see figure 3).

A quantitatively correct calculation of the 1/N corrections to physical observables,
such as the order parameter correlation function, requires the inclusion of self energy
and vertex corrections from every fluctuating field. This is not a particularly instructive
calculation, so we will content ourselves with examining the replica-mixing contribution
to the three-point vertex, as shown in figure 3. To leading order, this involves the order-
N contribution to the propagator for the ζ ij and ωij fields. Expanding equation (3.9)
to quadratic order in these fields yields

Seff ≃ N

2

n∑
i,j=1

ˆ
d2xd2y

(
ζij (x) ωij (x)

)(Π(1)
ω (x−y) Π

(2)
ω (x−y)

Π
(2)
ω (x−y) Π

(1)
ω (x−y)

)(
ζji (y)
ωji (y)

)
, (3.38)

where the matrix of kernels in momentum space is (recall that we are setting σ0 = 0),

Π̂ω (p) =

(
η21 η22
η22 η21

)
−
(
η41 + η42 2η21η

2
2

2η21η
2
2 η41 + η42

)ˆ
d2q

(2π)2
1

(q2+m2)
[
(p+q)2+m2

] , (3.39)

and there is no dependence on n when ω0 = 0. This yields a contribution to the three-
point function

Γ12
i,jk (p1,p2,−p1−p2) = Γ21

i,jk (p1,p2,−p1−p2)

=
1

N

ˆ
d2k

(2π)2
(1− δij)δjk[

(k+p1+p2)
2+m2

][
(k+p2)

2+m2
] (η41 + η42

)
Π

(2)
ω (k)− 2η21η

2
2Π

(1)
ω (k)[

Π
(1)
ω (k)

]2
−
[
Π

(2)
ω (k)

]2 .

(3.40)
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Next, observe that the leading 1/N contribution in an expansion of equation (3.36)
comes from the two ways of inserting a single copy of the replica-mixing contribution
above,

Π
(2)
σ,ij (p)≃−2

ˆ
d2q

(2π)2
Γ12
i,jj (p,−p−q,q)

(q2+m2)
[
(p+q)2+m2

] . (3.41)

As noted in the previous section, when deriving the double-Lorentzian propagator we

are primarily interested in Π
(2)
σ,ij(p= 0), and since Γ12

i,jj(0,−q,q)→ 0 as |q| →∞, the
kernel is largely determined by the value of the vertex function at q= 0, which we find
to be

Γ12
i,jj (0,0,0)≃

1

N

(1− δij)3πm
2 (∆− 1)η2tot

[24π2m4− 7πm2 (1+∆)η2tot+2∆η4tot]
2

[
24π2m4− 7πm2 (1+∆)η2tot

+ 2∆η4tot+
1

2

(
2πm2 (1+∆)η2tot −∆η4tot

)
ln

(
2πm2 (1+∆)η2tot −∆η4tot

3(4πm2− η2tot)(4πm
2−∆η2tot)

)]
.

(3.42)

This expression was obtained by using a Padé approximant of order (0,2) for the (ζ,ω)
propagator in equation (3.40). This result has two important features: i) It vanishes
for ∆ = 1, that is, η2 = 0. Therefore, some symmetry breaking disorder is necessary to
generate replica-mixing interactions. ii) It diverges at the phase boundary η2c,0 = 4πm2

(the dependence of m2 on model parameters will be shifted to order 1/N even if the
phase boundary equation appears unchanged in this form). This divergence originates
from the infrared divergence in equation (3.40) due to gapless ζ ij and ωij fluctuations.
However, a similar IR divergence must occur in the calculation of the replica-diagonal

kernel Π
(1)
σ (p). Therefore, the effective disorder strength will not be infinite.

Finally, the result of this section shows that the order parameter correlation function
will still have a double-Lorentzian form in the weak disorder regime ω0 = 0,

⟨σ (p)σ* (−p)⟩ ≃ 1

p2+m ′2
σ

+
η ′2
σ

(p2+m ′2
σ )2

, (3.43)

albeit with modified parameters m ′2
σ and η ′2

σ . It is also clear that this analysis carries
over to the σ0 ̸= 0 regime. Therefore, whether ω0 is zero or not does not fundamentally
alter the nature of the ground state, but simply determines whether the effect of disorder
is suppressed by an additional factor of 1/N . All of the previous analysis is summarized
in the phase diagram shown in figure 4. In closing this section we re-emphasize that the
presence of the double-Lorentzian term in the disorder-averaged two-point correlator of
equation (3.43) implies a stronger infrared singularity in the averaged susceptibility. In
turn, this behavior implies the absence of long-range order below four dimensions even
in the weak disorder regime, as expected from the Imry–Ma argument [2].
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Figure 4. Schematic phase diagram of the theory with quenched disorder, includ-
ing the effects of fluctuations. For K0 <Kc there is a featureless symmetric phase
(σ0 = 0) with double-Lorentzian correlations equation (3.23). For Kc <K0 <Kdis

the ground state is a BKT-type vortex plasma (σ0 ̸= 0); disorder is RG irrelevant;
this region is narrow when N is large. For K0 >Kdis disorder is RG relevant and
the (unknown) ground state is dominated by impurities. The light gray dashed
line represents the mean-field disorder-driven transition, which does not affect the
nature of the ground state.

4. Discussion

In this paper we have introduced a new model, solvable in the large-N limit, to under-
stand the interplay of thermal fluctuations and quenched random disorder in two-
dimensional systems with a phase transition in the clean limit. While we were motivated
by the existence of charge-ordered states in the cuprate high-Tc superconductors, the
formalism we have developed is completely general and can, in principle, be applied
to any system described by a U (1) order parameter coupled to random field disorder.
Previous studies [16] using the large-N technique did not capture the physics of the
BKT phase transition because the order parameter was encoded on a manifold with
dimension that scaled with N, which, for any N > 2, does not have a phase transition
in 2D in the clean limit. In contrast, we held the U (1) manifold fixed as a subgroup
of the larger symmetry group U(N)×U(N). Naively, this produced an inconsistency
with the Mermin–Wagner theorem [3] in the absence of disorder, and the Imry–Ma
theorem [2] in the presence of random field disorder. Throughout this paper, we have
shown that including fluctuations about the N =∞ ground state resolves any apparent
contradictions.

Our first main result demonstrated how these fluctuations produce a BKT trans-
ition split from the mean-field transition in the clean theory at order 1/N ; the vortex
plasma phase is narrow when N is large. Next, we derived the N =∞ phase diagram
of the model as a function of the disorder strength and the coupling between the two
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CPN components. This revealed a novel disorder-driven transition between a weakly-
and a strongly-disordered regime. We then derived an explicit expression for the order
parameter correlation function in the strongly-disordered symmetric phase of the the-
ory, finding agreement with the well-known double-Lorentzian distribution [42, 48]. In
the strongly-disordered phase with a U (1) condensate, we derived an infrared effective
theory which had the form of a random field XY model. By mapping our expression
to known results [6, 8], we were able to derive the phase boundary between a vortex-
dominated BKT-like phase and the contentious [12–14] impurity-dominated phase.

Finally, we proved that fluctuations are sufficient for ensuring agreement with the
Imry–Ma condition in the weakly-disordered regime by showing that the order para-
meter correlation function again has the double-Lorentzian form. We note that non-
analytic contributions that are non-perturbative in the 1/N expansion are not included
in our analysis. These include rare configurations of the disorder [49], which may
also play a role, for example, by rounding the disorder-driven transition into a broad
crossover.

In this paper, we have considered a purely classical theory. This suitably describes
static correlations in materials when quantum effects are weak, such as when electron-
electron interactions are strong enough to form an insulating CDW state. A complete
theory of dynamic correlations in randomly pinned ICDWs necessarily requires the
inclusion of quantum fluctuations. Luckily, the approach used in this work lends itself
well to such a generalization. Investigating the N =∞ ground state properties at T =0
will require little more than changing the dimension from d =2 to d =3 in all of the
calculations presented, due to the usual quantum–classical correspondence. However,
being quenched, disorder also introduces significant temporal non-locality into the sys-
tem, which will lead to richer behavior of dynamic order parameter correlations. It
would also be interesting to study conducting systems, in which case the CDW order
parameter will experience Landau damping [50]. This would provide a unified theoret-
ical picture of the role of disorder in a wide range of physical systems, and help answer
many of the questions raised by modern experiments.
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Appendix A. Response of two-component CPN model without disorder to a
background U(1) gauge field

In this appendix, we sketch the calculation of the response of the two-component CPN

model to a U (1) background gauge field. We start from the effective action with a back-
ground field Aµ minimally coupled to the (previously global) relative U (1) symmetry

Seff [A]/N = tr ln

(
−D2

µ [a+A] +λ1 −ρeiθ
−ρe−iθ −D2

µ [a−A] +λ2

)
+

ˆ
ddx

[
ρ2

K0
− λ1+λ2

g0

]
.

(A.1)

The leading order behavior of the sector corresponding to the relative U (1) symmetry
involves only θ and Aµ. All other couplings are either forbidden by symmetry or sub-
leading in 1/N . Expanding the tr ln to quadratic order in these fields yields the following
two-point kernels:

Πθθ (p) = 2Nρ20

ˆ
ddq

(2π)d

(
q2+m2

)[
q2− (q+p)2

]
[
(q2+m2)2− ρ20

]([
(q+p)2+m2

]2
− ρ20

) , (A.2a)

Πµ
Aθ (p) =−2iNρ20

ˆ
ddq

(2π)d

(2qµ+ pµ)
[
q2− (q+p)2

]
[
(q2+m2)2− ρ20

]([
(q+p)2+m2

]2
− ρ20

) , (A.2b)

Πµν
AA (p) = 2N

ˆ
ddq

(2π)d

(2qµ+ pµ)(2qν + pν)

[
ρ20−

(
q2+m2

)[
(q+p)2+m2

]2]
[
(q2+m2)2− ρ20

]([
(q+p)2+m2

]2
− ρ20

)
+4Nδµν

ˆ
ddq

(2π)d
q2+m2

(q2+m2)2− ρ20

=Πµν
aa (p)+ 4Nρ20

ˆ
ddq

(2π)d
(2qµ+ pµ)(2qν + pν)[

(q2+m2)2− ρ20

]([
(q+p)2+m2

]2
− ρ20

) , (A.2c)

where Πµν
aa(p) is (two times) the well-known electrodynamic response of the CPN model

[40, 41], which in d =2 is

Πµν
aa (p) =

(
δµνp2− pµpν

)[ Nm2

6π (m4− ρ20)
+O

(
p2
)]

. (A.3)

Since Aµ couples to matter (θ), the kernel Πµν
AA will have both transverse Πµν

T and
longitudinal Πµν

L responses. One finds that

Πθθ (p) = p2Λ
(
p2
)
, Πµ

Aθ (p) =−2ipµΛ
(
p2
)
, Πµν

L (p) = 4δµνΛ
(
p2
)
, (A.4)
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where the kernel Λ(p2) can be evaluated exactly in d =2,

Λ
(
p2
)
=

Nρ20
2πp2

tanh−1
( ρ0
m2

)

− 2ρ0√
(p2)2+4(m2p2+ ρ20)

tanh−1


√

(p2)2+4(m2p2+ ρ20)

p2+2m2


= γθ+O

(
p2
)
, (A.5)

where γθ is the phase stiffness

γθ =
N

4πρ0

[
m2 tanh−1

( ρ0
m2

)
− ρ0

]
. (A.6)

The transverse vorticity response is

Πµν
T =

(
δµνp2− pµpν

)[2m2γθ
ρ20

+O
(
p2
)]

. (A.7)

Note that since γθ ∝ ρ20 in the vicinity of the critical point Kc, the transverse response
does not vanish. Instead, it simply becomes equal to Πµν

aa(p) for K0 ⩽Kc. Therefore, in
the long-wavelength limit, we have

Seff [A]≃
γθ
2

ˆ
d2x (∂µθ+2Aµ)2+

1

4e2

ˆ
d2x (F µν)2 , (A.8)

where e2 = ρ20/(2m
2γθ) is the effective coupling constant of the probe field and F µν =

∂µAν − ∂νAµ is the Maxwell tensor for Aµ.
In the above discussion we ignored the fact that the phase field is actually defined

mod 2π and that the full computation of the partition function is dominated by the
contributions of vortices and anti-vortices. Such contributions can be computed by
regarding the local flux of the gauge field Aµ as representing vortices and anti-vortices
(for a recent discussion see [51]). It is well understood that the leading contributions
to the partition function come from dilute configurations of vortices and anti-vortices,
and that in terms of the Cauchy-Riemann dual ϑ of the phase field, which satisfies
∂µϑ= εµν∂νθ, the effective action is mapped to the sine-Gordon theory [52–54]. In the
present case,

Seff =

ˆ
d2x

[
1

2
(∂µϑ)2− v0 cos(β0ϑ)

]
, (A.9)

where β2
0 = (4π)2γθ, v0 = 2e−Ecore/a2, Ecore is the core energy of a vortex, a∼ µ−1 is an

ultraviolet cutoff, and ϑ has been rescaled by 2
√
γθ to bring the action into canonical

form.
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Appendix B. Review of O(N) model with a quenched random field

In this appendix, we review the large-N analysis of O(N ) models in a quenched random
field for the purpose of aiding comparison with the main results in this paper. The O(N )
nonlinear sigma model (NLSM) is described by the action

S =

ˆ
ddx

[
1

2g
(∂µn)

2−h ·n
]
, n2 (x) = 1, (B.1)

where h(x) is a fixed external source. Suppose now that h(x) = h(x) is a random field
drawn locally from a Gaussian distribution such that

ha (x) = 0, ha (x)hb (y) = η2δabδ
(d) (x−y) , (B.2)

where the overline denotes an average over the disorder configurations, and the variance
η2 represents the strength of the disorder. Using the replica trick formalism, we consider,
for n ∈ Z,

Zn =

ˆ
Dh exp

(
−
ˆ

ddx
h2

2η2

)
Z [h]n

=

ˆ n∏
j=1

DnjDλj exp

−
n∑

i,j=1

ˆ
ddx

1

2g

[
(∂µnj)

2+λj
(
n2
j − 1

)]
δij −

η2

2
ni ·nj

 ,

(B.3)

where n j and λj (the Lagrange multiplier imposing the unit vector constraint), for
j = 1, . . . ,n are the replicated fields corresponding to each factor of Z[h]. Because the
theory remains quadratic in the replicated O(N ) fields n j , they can be integrated out
exactly:

Seff =
N

2
Tr ln

[
−∂2Î +diag(λ)− gη2M̂

]
−

n∑
j=1

ˆ
ddx

λj
2g

, (B.4)

where Tr( ·) denotes the functional operator trace as well as the trace over replica

indices, and Î is the n ×n identity matrix, M̂ is the matrix with a 1 in every entry and
diag(λ) = diag(λ1, . . . ,λn) is the diagonal matrix of Lagrange multipliers. The remaining
functional integrals over each λj can be performed using steepest descent, which becomes
exact in the limit N →∞. To make this limit precise, we define g = g0/N and η2 =Nη20,
keeping g0 and η0 fixed as N →∞. We then look for a replica-symmetric saddle point
where λ1 = · · ·= λn =m2, which yields the self-consistent equation

tr

ˆ
ddp

(2π)d
1

(p2+m2) Î − g0η20M̂
=
n

g0
, (B.5)

https://doi.org/10.1088/1742-5468/ad17b3 26

https://doi.org/10.1088/1742-5468/ad17b3


An exactly solvable model of randomly pinned charge density waves in two dimensions

J.S
tat.

M
ech.(2024)

013104

where tr( ·) denotes a trace over only the replica indices. Since M̂ is an idempotent

matrix (M̂ 2 = nM̂), finding the inverse matrix in the integrand is straightforward:

1

n
tr

ˆ
ddp

(2π)d

[
Î

p2+m2
+

g0η
2
0M̂

(p2+m2)(p2+m2−ng0η20)

]
=

1

g0
, (B.6)

and hence, taking the replica limit n→ 0,

ˆ
ddp

(2π)d

[
1

p2+m2
+

g0η
2
0

(p2+m2)2

]
=

1

g0
. (B.7)

While explicitly solving this equation for m2 requires renormalization of the coupling
constant g0, it will suffice for our purposes to simply make the following remarks: (i)
for any amount of disorder (η20 > 0) in d⩽ 4 there is an infrared singularity in the above
integral equation unlessm2 > 0. This implies the absence of any broken symmetry phase,
providing an exact, non-perturbative realization of the Imry–Ma argument [2]. (ii) The
disorder-averaged propagator of the n field has the double-Lorentzian form

G(p) =
1

p2+m2
+

g0η
2
0

(p2+m2)2
. (B.8)

Appendix C. Review of CPN model with a quenched random field

In the main body of this work, we investigate a two-component generalization of the
CPN model. Here, we present a summary of the physics of the simpler model in a
quenched random field for pedagogical purposes.

In the CPN model, quenched disorder can only couple to gauge invariant combina-
tions of the scalar field. The natural coupling originates in the Hopf map from O(3) unit
vectors to elements of CP 1, h ·n→ haz*ατ

a
αβzβ, where τ

a are the generators of SU (2).
Therefore, we consider the partition function

Z [h] =

ˆ
DλDaµDz exp

(
−1

g

ˆ
ddx

[
|Dµ [a]z|2+λ

(
|z|2− 1

)]
+

ˆ
ddxhaz*ατ

a
αβzβ

)
,

(C.1)

where τ a are the generators of SU (N ), ha is a real (N 2− 1)-component random field
transforming under the adjoint (vector) representation of SU (N ) and drawn from the
locally Gaussian distribution

ha (x) = 0, ha (x)hb (y) = η2δabδ(d) (x−y) , (C.2)

η2 is the variance (strength) of the disorder and overlines denote averaging with respect
to disorder configurations. For quenched disorder averages, we use the replica trick
formalism,
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Zn =

ˆ
Dh exp

(
−
ˆ

ddx
h2

2η2

)
Z [h]n

=

ˆ
DλjDaµjDzj exp

−
n∑

i,j=1

ˆ
ddx

1

g

[
|Dµ [aj]zj|2+λj

(
|zj|2− 1

)]
δij

− Nη2

2
|z*
i · zj|2

)
, (C.3)

where we have used the identity τ aαβτ
a
γδ =Nδαδδβγ − δαβδγδ [implied summation over

repeated indices; working in the convention tr(τ aτ b) =Nδab], and dropped the unim-
portant constant terms proportional to |zi||zj|= 1. The quartic interaction between
the replicated z j fields can then be decoupled using a Hermitian Hubbard–Stratonovich

field ωij = ω*
ji; since z is a unit vector, we also have ωii = 0. Therefore,

Zn =

ˆ
DωijDλjDaµjDzj exp

−
n∑

i,j=1

ˆ
ddx

1

g

[
|Dµ [aj]zj|2δij +λj

(
|zj|2− 1

)
δij

− gωijz
*
i · zj

]
− 1

2Nη2

n∑
i,j=1

ˆ
ddxω*

ijωij

 . (C.4)

The field ωij has a simple physical interpretation by comparison with the O(N ) non-
linear sigma model with quenched disorder, equation (B.3). Evidently the amplitude of
ωij plays the role of an effective disorder strength for the SU (N ) scalars z . The crucial
difference is that ωij must be allowed to fluctuate to ensure gauge invariance is respec-
ted. After rescaling ωij → ωij/g, defining g = g0/N and η = η0/g0, and integrating out
the z j , one obtains an effective action

Seff/N =Tr ln
[
−diag

(
D2
µ [a]

)
+diag(λ)− ω̂

]
+tr

ˆ
ddx

[
ω̂2

2η20
− diag(λ)

g0

]
, (C.5)

where diag( ·) denotes a matrix which is diagonal in replica indices, ω̂ is the matrix with
elements ωij , and Tr includes a trace over functional configurations and replica indices.

Before proceeding, we briefly comment on the symmetries of the replicated theory.
The original non-replicated theory has a local U (1) gauge symmetry with the trans-
formation rules

z (x)−→ eiθ(x)z (x) , aµ (x)−→ aµ (x)− ∂µθ (x) . (C.6)

The replicated theory has an enlarged U(1)n gauge symmetry which allows for inde-
pendent gauge transformations on each replicated field

zj (x)−→ eiθj(x)zj (x) , aµj (x)−→ aµj (x)− ∂µθj (x) . (C.7)

As a consequence, the disorder Hubbard–Stratonovich field inherits the transformation

ωjk (x)−→ ei(θj(x)−θk(x))ωjk (x) , (C.8)
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transforming as a tensor under U(1)n. Since a replica-symmetric ground state should be
invariant under the permutation group Sn, we might have assumed this would uniquely
constrain ωij = ω0, independent of i,j. However, the manifold of gauge-equivalent
ground states is U(1)n/Sn; i.e. ωij = ω0 is simply a particular representative of the
equivalence class of configurations obtained from ω0 by gauge transformations.

Given the above considerations, we are free to expand around the replica-symmetric
saddle point ωij(x) = ω0. Also taking the replica-symmetric ansatz λj(x) =m2, and
fixing aµj (x) = 0, the replicated effective potential in the N =∞ limit is

Un
eff =

ˆ
ddq

(2π)d
lndet

[(
q2+m2+ω0

)
Î −ω0M̂

]
+n(n− 1)

ω2
0

2η20
−n

m2

g0
, (C.9)

where Î is the n ×n identity matrix and M̂ is the matrix with a 1 in every entry.
Using the same coupling constant renormalization as in equation (2.7) to cure the UV
divergence, we recover the physical (renormalized) effective potential by taking the
replica limit

UR = lim
n→0

Un
R

n

=

ˆ
ddq

(2π)d

[
ln

(
1+

m2+ω0

q2

)
− ω0

q2+m2+ω0
− m2

q2+µ2

]
− ω2

0

2η20
− m2

gR
. (C.10)

In d =2 this evaluates to

UR =
m2

4π

[
1− ln

(
m2+ω0

µ2

)]
+
ω0

4π
− ω2

0

2η20
− m2

gR
. (C.11)

The values of m2 and ω0 are then obtained from the saddle point equations, though a
subtlety occurs for ω0, as the corresponding equation has two solutions. Note that since
ωij has n(n− 1) complex degrees of freedom, in the replica limit n→ 0, the negative
number of effective degrees of freedom require us to maximize the effective potential
[47]. This yields a crossover scale η2c = 4πµ2e−4π/gR such that

m2+ω0 =

{
η2c/4π, η0 < ηc,

η20/4π, η0 ⩾ ηc.
ω0 =

0, η0 < ηc,
η20
2π

ln

(
η0
ηc

)
, η0 ⩾ ηc.

(C.12)

We emphasize that this crossover does not break any ‘physical’ symmetries; i.e. those
of the non-replicated theory. It is also likely that this apparent mean-field transition
would be rounded by [possibly non-perturbative O(e−N )] corrections to the saddle point
equations. Note that this behavior is not an artifact of the absence of a phase transition
in the clean d =2 theory; consider the case of d =3, where equation (C.10) evaluates
to

UR =
1

12π

[(
ω0− 2m2

)√
m2+ω0+3µm2

]
− ω2

0

2η20
− m2

gR
. (C.13)
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It is simple to check that the ‘clean’ symmetry breaking state m2 = ω0 = 0 is also never
energetically favorable.

For the purposes of this paper, it suffices to note that the 1/N expansion reveals that
the Higgs mechanism takes place for η0 > ηc, with n − 1 of the replicated gauge fields aµj
becoming massive; as expected from the form of the disorder, only the replica-diagonal
U (1) subgroup is unaffected, with the corresponding gauge field remaining gapless.

Appendix D. Fluctuation kernels in disordered two-component CPNmodel

In this appendix, we present the details of calculations referred to in section 3.3. We
start from the effective action equation (3.9) and derive the leading order fluctuation
contributions in the strong disorder regime where ω0 > 0. The propagator for the z and
w fields is

Ĝ−1
0 (p) =

((
p2+m2+ω0

)
Î −ω0M̂ −σ0Î

−σ*
0 Î

(
p2+m2+ω0

)
Î −ω0M̂

)
, (D.1)

the components of which we will denote Gij
αβ(p). For example, Gij

zz(p) is the amplitude
for the hybridization of z i and z j .

First, the case σ0 = 0: The kernels in equation (3.19) are given by the integrals

Π(1)
σ (p;n)−Π(2)

σ (p;n) =
2

K0
− 2

ˆ
d2q

(2π)2
Gii
zz (q)G

ii
zz (p+q) (D.2a)

Π(2)
σ (p;n) = 2

ˆ
d2q

(2π)2
Gij
zz (q)G

ij
zz (p+q) . (D.2b)

In practice, we only need to evaluate these kernels for n =0, so we have

Π(1)
σ (p;0)−Π(2)

σ (p;0) =
2

K0
− 2

ˆ
d2q

(2π)2

[
1

q2+m2+ω0
+

ω0

(q2+m2+ω0)
2

]

×

 1

(p+q)2+m2+ω0

+
ω0[

(p+q)2+m2+ω0

]2
 , (D.3a)

Π(2)
σ (p;0) = 2

ˆ
d2q

(2π)2
ω2
0

(q2+m2+ω0)
2
[
(p+q)2+m2+ω0

]2 , (D.3b)

which are straightforward to evaluate using the usual methods (e.g. Feynman
parametrization of the loop integrals).

Next, the case σ0 ̸= 0. Following the same notation as above, we write the effective
action in the form

Seff =
N

2

n∑
i,j=1

ˆ
d2xd2yθi (x)

[
Π

(1)
θ (x−y;n) Î −Π

(2)
θ (x−y;n)M̂

]
ij
θj (y) . (D.4)
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However, there are now contributions from three sources

σj (x)≃ ρ0e
iθj(x), ζjk (x)≃

ω0

η2tot
ei(θj(x)−θk(x))/2, ωjk (x)≃

ω0

η2tot
e−i(θj(x)−θk(x))/2.

(D.5)

After some algebra, we obtain

Π
(1)
θ (p;n)−Π

(2)
θ (p;n)

= 2ρ20

ˆ
d2q

(2π)2
[
Gii
zw (q)G

ii
zw (p+q)−Gii

zz (q)G
ii
zz (p+q)

]
+2ρ0

ˆ
d2q

(2π)2
Gii
zw (q)

+ (n− 1)ω2
0∆

2

ˆ
d2q

(2π)2
[
Gii
zw (q)G

ii
zw (p+q)−Gii

zz (q)G
ii
zz (p+q)

+ (n− 2)Gii
zw (q)G

ij
zw (p+q)− (n− 2)Gii

zz (q)G
ij
zz (p+q)

+(n− 1)Gij
zz (q)G

ij
zz (p+q)− (n− 1)Gij

zw (q)G
ij
zw(p+q)

]
+(n− 1)ω0

ˆ
d2q

(2π)2
Gij
zz(q)+ 4(n− 1)ρ0ω0∆

ˆ
d2q

(2π)2
[Gii

zw(q)G
ij
zz(p+q)

−Gij
zw(q)G

ii
zz(p+q)], (D.6a)

Π
(2)
θ (p;n)

= 2ρ20

ˆ
d2q

(2π)2
[
Gij
zz (q)G

ij
zz (p+q)−Gij

zw (q)G
ij
zw (p+q)

]
−ω2

0∆
2

ˆ
d2q

(2π)2
[
Gii
zz (q)G

ii
zz (p+q)−Gii

zw (q)G
ii
zw (p+q)

+ (n− 2)Gii
zz (q)G

ij
zz (p+q)− (n− 2)Gii

zw (q)G
ij
zw (p+q)

−(n− 1)Gij
zz (q)G

ij
zz (p+q)+ (n− 1)Gij

zw (q)G
ij
zw (p+q)

]
+ω0

ˆ
d2q

(2π)2
Gij
zz(q)− 4ρ0ω0∆

ˆ
d2q

(2π)2
[
Gij
zw(q)G

ii
zz(p+q)−Gii

zw(q)G
ij
zz(p+q)

]
.

(D.6b)

These kernels can be shown to have the following power series expansion in p,

N
[
Π

(1)
θ (p;n)−Π

(2)
θ (p;n)

]
≃mθ (n)

2+ [γθ (n)+Γθ (n)]p
2, (D.7a)

nNΠ
(2)
θ (p;n)≃mθ (n)

2+Γθ (n)p
2, (D.7b)

which yields the effective action equation (3.26). The leading order-n contribution to
m2
θ is given in equation (3.29), and to order n the coefficients of the gradient terms are

γθ (n)≃ γθ+nN
ρ20ω

2
0

4π
[
(m2+ω0)

2− ρ20

]2 , (D.8a)
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Γθ (n)≃ nN
ω2
0

8πρ20

(
[6−∆(6−∆)]

[
m2+ω0

ρ0
tanh−1

(
ρ0

m2+ω0

)
− 1

]
− 2ρ0 (1−∆)

(m2+ω0)
2− ρ20

)
,

(D.8b)

where γθ is the disorder-averaged phase stiffness given in equation (3.31). Note that while
Γθ(n) is not strictly positive for all ranges of parameters, the spectrum of the kernel
only depends on the combination γθ(n)+Γθ(n), which is positive for all −1⩽∆⩽ 1.
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[34] Hücker M, Zimmermann M v, Gu G D, Xu Z J, Wen J S, Xu G, Kang H J, Zheludev A and Tranquada J M

2011 Stripe order in superconducting La2−xBaxCuO4 (0.095⩽ x⩽ 0.155) Phys. Rev. B 83 104506
[35] Lee S et al 2022 Generic character of charge and spin density waves in superconducting cuprates Proc. Natl

Acad. Sci. USA 119 e2119429119
[36] Stanley H E 1968 Spherical model as the limit of infinite spin dimensionality Phys. Rev. 176 718
[37] Amit D J 1980 Field Theory, the Renormalization Group and Critical Phenomena (McGraw Hill)
[38] Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena (International Series of Monographs in

Physics) 4th edn (Oxford University Press)
[39] Fradkin E 2021 Quantum Field Theory: An Integrated Approach (Princeton University Press)
[40] Witten E 1979 Instatons, the quark model and the 1/N expansion Nucl. Phys. B 149 285
[41] Coleman S 1985 Aspects of Symmetry (Cambridge University Press)
[42] Pytte E, Imry Y and Mukamel D 1981 Lower critical dimension and the roughening transition of the random-field

ising model Phys. Rev. Lett. 46 1173
[43] Gross D J and Neveu A 1974 Dynamical symmetry breaking in asymptotically free field theories Phys. Rev. D

10 3235
[44] Witten E 1978 Some properties of the (ψ̄ψ)2 model in two dimensions Nucl. Phys. B 142 285
[45] Kardar M 2013 Statistical Physics of Fields (Cambridge University Press)
[46] Sherrington D and Kirkpatrick S 1975 Solvable model of a spin-glass Phys. Rev. Lett. 35 1792
[47] Parisi G 1984 An introduction to the statistical mechanics of amorphous systems Recent Advances in Field
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