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Abstract— Wearable sensor data analysis with persistence fea-

tures generated by topological data analysis (TDA) has achieved

great success in various applications, and however, it suffers

from large computational and time resources for extracting

topological features. In this article, our approach utilizes knowl-

edge distillation (KD) that involves the use of multiple teacher

networks trained with the raw time series and persistence images

(PIs) generated by TDA. However, direct transfer of knowledge

from the teacher models utilizing different characteristics as

inputs to the student model results in a knowledge gap and

limited performance. To address this problem, we introduce

a robust framework that integrates multimodal features from

two different teachers and enables a student to learn desirable

knowledge effectively. To account for statistical differences in

multimodalities, an entropy-based constrained adaptive weight-

ing mechanism is leveraged to automatically balance the effects

of teachers and encourage the student model to adequately

adopt the knowledge from two teachers. To assimilate dissimilar

structural information generated by different style models for

distillation, batch and channel similarities within a mini-batch are

used. We demonstrate the effectiveness of the proposed method

on wearable sensor data.

Index Terms— Knowledge distillation (KD), topological data

analysis (TDA), wearable sensor data.

I. INTRODUCTION

C
ONVERTING wearable sensor data to impactful health
applications continues to be challenging. The sources

of variability in the raw sensor data include: 1) sensor-level
noise characteristics; 2) drifts in sampling rates; 3) gaps in
recorded sensor data; 4) intrinsic variability in physiological
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signals; and 5) variability due to sensor placement and par-
ticular human movements. These issues make training robust
machine learning models with small datasets that much harder,
calling for new approaches to describe and account for such
variabilities. In this context, topological data analysis (TDA)
has been used for representing time-series data with robustness
to many types of signal perturbation [2], [3]. These methods
have achieved great success in various fields, such as human
activity recognition [4], [5], disease classification [4], [6], and
shape and texture classification [7]. In particular, persistence
images (PIs) have been widely used for representations that
are stable to signal perturbations. However, extracting PIs
by TDA requires large computational and time resources,
which are particularly difficult for small devices with limited
computational power and real-time systems on CPU [8].

Beyond just the computational load of TDA, it has also
been found that the TDA features have many different data
structures such as barcodes and persistence diagrams (PDs),
which can be featurized in many ways, but their integration
with contemporary machine learning techniques has required
independently computing the features and fusing with deep
features later [2], [9]. Also, TDA features are computationally
difficult to integrate with time-series features to create a
unified model because of their heterogeneous dimension sizes
and statistical characteristics [5]. However, careful use of
knowledge distillation (KD) can address both of these issues
by creating an integrated student model that blends the benefits
of both TDA features and deep features without requiring
separate computation at test time.

In this article, we address these issues by employing KD,
which is a promising solution to produce a compact model
(student) from a larger model (teacher). KD has been demon-
strated to be effective in activity recognition and wearable
sensor data analysis [10], [11], [12], [13], [14], [15]. Also,
KD has been broadly used to design a real-time system [16],
[17], [18], [19]. Incorporating multiple teachers in KD has
been shown to improve the performance by leveraging various
features [15], [20], [21], which are generally implemented
in a unimodal manner. We utilize multiple teacher networks
trained with the raw time series and PIs generated by TDA.
Importantly, a single student is implemented with only time-
series data as an input. However, we found two significant
challenges in utilizing different teachers in KD.

1) The large discrepancy between the 1-D time-series and
2-D TDA feature representations makes it difficult to
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Fig. 1. Overview of CADTP. A compact student model is trained by using two teachers, which are learned with different representations of the same raw
time-series data. BCF denotes batch and channel similarity features.

effectively fuse multimodal features and run models on
a unified framework.

2) Due to the different architectural designs of teachers and
student (e.g., 1-D convolutional neural networks (CNNs)
versus 2-D CNNs), it is challenging to extract similar
structural features that allow the student to benefit from
distillation.

To address these problems, we propose a new framework,
named constrained adaptive distillation based on topological
persistence (CADTP), which uses multimodal inputs in KD
using two different teachers and a single student. An overview
of the proposed method is presented in Fig. 1. First, to obtain
topological features, PIs are extracted from PDs. We train
two models with time-series data and PIs. In the second
step, the pretrained models serve as teacher models in KD
to distill a single student. Logits from two teachers are
used independently for distillation. To address the knowledge
discrepancy between two teachers, an entropy-based adaptive
weighting mechanism is employed to measure the confidence
of knowledge and give more weight to the teacher with lower
entropy values for each sample. To preserve desirable effects
from both teachers, we propose a novel adaptive weighting
mechanism with constraints to balance the contribution of
teachers. The weights are initialized but gradually increase or
decrease as the epoch number grows. This enables a student to
learn to be more confident and keep beneficial knowledge from
different teachers by placing more weight on the confident
knowledge between the two. In the third step, to integrate
different structural information from different models and to
provide strong supervision, we utilize the batch and channel
correlation maps of intermediate representations within a mini-
batch, which aids in matching different dimensional sizes
of knowledge. Batch and channel similarity features capture
distinct activations, providing complementary information to
each other.

The contributions of this article are given as follows.
1) We propose a new framework with KD, which transfers

time-series and topological features to a student using
time-series data only as an input.

2) We propose a technique for adaptive distillation that
balances the influence of different teachers based on

entropy to effectively transfer knowledge despite the
statistical difference in their features.

3) We utilize batch and channel similarities from inter-
mediate layers and an annealing strategy to integrate
diverse knowledge from multiple teachers, allowing a
single student to effectively learn desirable features.

4) We rigorously evaluate the effectiveness of the pro-
posed method in various aspects using different
teacher–student combinations and feature visualization
on wearable sensor data for human activity recognition.

The rest of this article is organized as follows. In Section II,
we provide a brief overview of creating PIs, KD techniques,
and an annealing strategy. In Section III, we introduce the
proposed new framework for KD. In Section IV, we describe
our experimental results and analysis. In Section V, we discuss
our findings and conclusions.

II. BACKGROUND

A. Topological Feature Extraction

The integration of TDA with machine learning has shown
robust performance in many applications [9], [22], [23]. TDA
aims to capture the intricate shape of complex data—persistent
homology is one of the popular algorithms, which is able
to capture variations in topologically meaningful structures
over multiple scales of the data, formed by the interlinking
of points, edges, and triangles, and in general simplicial
complexes, by a dynamic thresholding process called filtration
[24]. From this filtration, the birth and death of these topolog-
ical cavities can be described as a point (x , y) in the PD,
where x and y are the coordinates of planar scatter points [2],
[9]. Applying PDs directly to complex machine learning tasks
is challenging because they have intrinsically heterogeneous
statistical characteristics. PDs are multisets on R2 implying the
number and locations of the scatter points that can be different
in the presence of perturbations on the underlying data, which
require more expressive representations. Ordering the scatter
points based on their persistence (lifetime) is a common way
to vectorize PDs, which makes it suitable for machine learning
tasks.
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Fig. 2. (a) PD and (b) its corresponding PI. In PD, based on weighting
function, points with higher lifetime appear brighter.

PI is a different type of vector representation of a PD.
To construct the PI, PD is first projected onto a persistence
surface (PS) ⇢ : R ! R2, which is defined by a normalized
symmetric Gaussian function as well as a weighting function
[2], [8]. The PS is discretized over a standard grid. PI is gener-
ated by incorporating the PS over the grid and is represented
as a matrix of pixel values. Higher values of a PI indicate
high persistence points in the PD. Fig. 2 shows an example
of a PD and its PI. However, due to the high computational
complexity required to extract PIs by TDA [5], this method
is difficult to use on small devices with limited power and
computational resources. To solve this issue, in this article,
we propose a framework based on KD that trains a smaller
single student model with topological knowledge to generate
good performance as a larger model.

B. Application of TDA for Activity Recognition
There are a lot of works utilizing topological knowledge

in applications for activity recognition [5], [6], [25]. These
methods use vectorized topological features from PI as inputs
to machine learning methods, generally resulting in robustness
to signal perturbation. Nawar et al. [6] encoded values in
PI with forces and moments of data and utilized SVM for
classification, which showed better performance than using
time-series data. However, the method requires various pre-
processing steps for training as well as testing to extract
topological features by TDA and transform knowledge into
manually defined terms. PI-Net [5] is to generate PI through
CNNs to utilize topological features efficiently instead of using
conventional protocols running on the CPU. To adopt topolog-
ical features and improve performance, the method combines
both time-series and topological features simultaneously to
train and test a model. However, running separate models
and concatenating features increase the complexity of the
model and time consumption. Based on these insights, in this
article, we propose a framework to generate a single small
model using time-series data only, which does not require
preprocessing to generate PI, nor needing to run different
models separately at test time.

C. Knowledge Distillation
KD is the process of training a smaller model from the

knowledge of a larger model. KD was first introduced by
Buciluǎ et al. [26] and further developed by Hinton et al.

[27]. During the KD process, soft labels from the outputs
of a teacher network are utilized, which have more useful
information than just a hard label and enable the student
network to easily encode the knowledge of the teacher [27].
For traditional KD, the loss function for training a student is

L = (1 � �)LCE + �LKD (1)

where LCE is the cross-entropy loss, LKD is the KD loss, and
� is a hyperparameter; 0 < � < 1. By the cross-entropy loss,
the difference between the output of the softmax layer for a
student network and the ground-truth label is penalized

LCE = Q(� (tS), y) (2)

where Q(·) is a cross-entropy loss function, � (·) is a softmax
function, tS is the logits of a student, and y is a ground-truth
label. The outputs of student and teacher are matched by the
Kullback–Leibler (KL) divergence loss

LKD = ⌧ 2KL(pT , pS) (3)

where pT = � (tT /⌧ ) is a softened output of a teacher network,
pS = � (tS/⌧ ) is a softened output of a student, and ⌧ is a
hyperparameter, ⌧ > 1. Vanilla KD utilizes a fully trained
teacher. Cho and Hariharan [28] investigated the effects of
early stopping for KD (ESKD) to distill a better student.
To obtain the best performance, we use ESKD that improves
the efficacy of KD [28].

As an extension of response-based knowledge using logits,
feature-based KD has been used to improve the performance
[15], [29], [30], [31]. First, the intermediate representations
were introduced in Fitnets [29]. The key idea behind feature
matching in KD is to directly match the features of the teacher
and student. Many different variants have been proposed to
achieve this indirectly, such as the approach of Tung and
Mori [31], which utilizes similarity between a mini-batch of
samples to transfer knowledge. The dimensions of the teacher
and student are the same, which is defined by the size of
the mini-batch. To calculate the batch similarity, the activation
map A 2 Rb⇥b is produced as follows:

A = Fb · F>
b ; Fb 2 Rb⇥chw (4)

where Fb is reshaped features from an intermediate layer of a
model, b is the size of a mini-batch, c is the number of output
channels, and h and w are the height and width of the output,
respectively. These methods using intermediate representations
have been popularly used in KD, and however, they generally
focus on utilizing a single teacher in a unimodal manner.

To transfer more useful information, the use of multiple
teachers has been proposed [15], [20], [21]. Since different
teachers can produce diverse knowledge, richer knowledge
can be leveraged to improve the performance of a student
[15]. Despite initial attempts [32], [33], the problem remains
difficult to solve. Combining knowledge from various teachers
in KD poses a challenge as it can result in loss of charac-
teristics of each and having them affect each other as noise
components. Also, a data sample or label for training a teacher
cannot always be used to train or test a student. Furthermore,
different modalities in KD increase the knowledge difference
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between a teacher and a student, which results in performance
degradation [15].

To advance beyond these problems, we develop a framework
in KD using a constrained adaptive weighting mechanism,
based on entropy, to control the effects of two teachers trained
with time-series and topological features. This allows for the
transfer of richer information effectively to a single student,
which uses the raw time-series data only as an input. The
details of the proposed method are described in Section III.

D. Simulated Annealing in KD
Kirkpatrick et al. [34] introduced simulated annealing,

which has been applied to various fields, including machine
learning for solving optimization problems [35]. Jafari et al.
[36] introduced an annealing KD to use two stages to address
the capacity gap problem between the outputs of teacher and
student networks. In the first stage, while the difference in
logits between teacher and student is reduced in a regression
task, a temperature parameter decreases as the epoch number
increases. In the second stage, the student is fine-tuned with
the hard labels by cross-entropy loss. Dong et al. [37] also used
two stages in KD. A student learns from a teacher when the
teacher model outperforms; otherwise, the student is trained
by hard labels. To avoid the teacher’s limited accuracy issue,
a dynamic annealing weight is used, which increases linearly
as fine-tuning epochs increase. An annealing strategy of the
proposed method has different aspects, compared to prior
studies [36], [37], [38]. For the proposed method, multiple
teachers are trained with different modalities—time-series and
PI data—but only one type of data is used to train and test
a single student. Since the features from teachers and their
contributions are different, we apply an annealing strategy
that reduces the search space and forces the student to learn
enjoyable features for better performance by using the weights
of a model trained from scratch. The overall strategy is to
initialize the student model with weight values from a model
learned from scratch, instead of randomly chosen values. This
allows the student to preserve desirable features for improved
performance—the final model operates only on raw time-series
data as input. In this way, the knowledge gap between the
teachers and the student is also mitigated.

III. PROPOSED APPROACH

The proposed method utilizes two teachers trained with
different data to train a student. First, PIs are extracted
from time-series data through TDA to incorporate topological
features. The two teachers are trained with the raw time-
series data and the extracted PIs. Second, logits of teacher and
student networks are used to calculate entropy for balancing
the effects of two teachers, considering statistical differences in
multimodalities. Third, correlation maps for batch and channel
similarities within a mini-batch are utilized for distillation
to provide plentiful information, which allows for the use
of differently designed teachers and student. In addition,
an annealing strategy for KD is applied to optimize the
weight of the student model. Finally, a robust single student
is distilled. The details of the proposed method are explained
in the following.

A. PI Extraction

To compute PIs, first, we utilize the Scikit-TDA python
library [39] and the Ripser package for generating PDs,
as described in [5]. Level-set filtration PDs for time-series
data are computed, which creates a summary representation
of different peaks in the signal. PIs are generated in the form
of a grid representing birth-time versus lifetime information.
The dimension size of one PI is m ⇥ m ⇥ c, where m and c
are a constant value and the number of channels for a sample,
respectively. Second, we train a model with the extracted PIs
with supervised learning, where the model is used as a teacher
model, transferring topological features to a student model.

B. KD With Multiple Teachers

To generate PIs, TDA requires a large amount of com-
putational resources, which is one of the critical burdens at
test time. To this end, we adopt KD to distill a small model
using time-series data alone as an input, to acquire beneficial
topological features from a teacher.

1) Distillation With Logits of Different Teachers: Since the
proposed method uses two teachers transferring knowledge of
logits separately, no additional function, such as concatenation
or hidden layers, is necessarily needed. KD loss to utilize logit
features of two teachers is

LKDm = ⌧ 2�↵KL(pT1 , pS) + (1 � ↵)KL(pT2 , pS)
�

(5)

where ↵ is a hyperparameter to control the losses from
different teachers and pT1 and pT2 are softened outputs of
teachers learned with time-series data and PIs, respectively.

2) Entropy-Based Constrained Adaptive Distillation: The
proposed method uses two teachers trained with different
data and designs, which generate statistically heterogeneous
features that may interfere with each other. To transfer effec-
tive knowledge from multiple teachers, we use the entropy
of teachers, which can be utilized as an uncertainty indi-
cator [33]. However, since teachers are implemented with
multimodalities, two models generate statistically dissimilar
features and the entropy values between them are significantly
different. This can produce a large discrepancy between the
two entropy values, resulting in biased balancing and poor
adjustment of losses from the two teachers. To this end,
we propose constrained adaptive distillation based on entropy.
If the entropy value of labels is smaller, the effect of the KD
loss is more important [33], [40]. Based on this factor, the
weight of a teacher is made larger if the model produces
smaller entropy. To make a function to adjust the weights
gradually, we adopt a part of sigmoid curve whose input is
over 0. The weight value ↵ for teacher losses begins at 0.5 and
is adjusted dynamically as the epoch number increases. ↵ is
defined within the specified range. Since different teachers
perform differently at each input data, we set ↵ at each sample.
The weight ↵ is determined according to the following rule:

↵i =
(

0.5 +
�
1/(1 + e�epoch/�) � 0.5

�
/ ifH(t i

T1
) < H

�
t i
T2

�

0.5 �
�
1/(1 + e�epoch/�) � 0.5

�
/ otherwise

(6)
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where H(t i
T1

) and H(t i
T2

) denote the entropy of t i
T1

and t i
T2

for a sample i , respectively. � and  are constant values to
manage the saturation point by the epoch number. KD loss
with constrained adaptive weights based on entropy of two
teachers can be written as

LKDent = 1
n

nX

i=1

⌧ 2�↵i KL
�

pi
T1

, pi
S
�
+ (1 � ↵i )KL

�
pi

T2
, pi

S
��

(7)

where n is the number of samples. Therefore, more knowledge
is transferred to the student from teachers that have lower
entropy values.

3) Extracting Features of Different Teachers: To provide
more comprehensive knowledge from the teachers, we use
intermediate features also in distillation. However, since two
teachers are trained with different modalities, and teachers and
the student have different architectures, it is difficult to transfer
the information directly. To accommodate heterogeneous fea-
tures from networks with different structures, we use a method
similar to that in [31], which can easily make features match
the dimensions of activation maps from different models,
as defined in (4). The batch similarity matrices A 2 Rb⇥b have
the same size for teachers and the student. The pattern of the
activation map is determined according to the same or different
classes. Specifically, if two samples are in the same category,
a model generates similar activation maps, which enables a
student to acquire beneficial knowledge from a teacher.

Although the batch similarity provides considerable infor-
mation, more diverse contexts can still be transferred to
distill a superior student model in KD. To leverage different
contexts, we extract channel similarity that highlights the
channel relationship within a mini-batch, which can be simply
obtained by reshaping the features of the intermediate layer.
To calculate the channel similarity, the activation map G 2
Rc⇥c is produced as follows:

G = Fc · F>
c ; Fc 2 Rc⇥bhw (8)

where Fc is the reshaped feature from an intermediate
layer of a model. G can have different sizes for different
layers.

Fig. 3 shows the batch and channel similarity maps from two
teachers. The similarity maps highlight differently and show
dissimilar patterns. Thus, these maps can transfer complemen-
tary information to each other. Also, two teachers generate
very different patterns for both activation maps. This is due
to the fact that the two models are trained with different
modalities and produce dissimilar features, which can provide
misinformation to the student [15], [33]. By using fused
knowledge, the effects of noise from the teachers can be
reduced and the student can better interpret context. To inte-
grate the information, we utilize the calculated weight ↵. These
maps are generated within a mini-batch, and the average of
their ↵ is used. The merged map of batch similarity from
teachers with the averaged weight value ↵avg is given as
follows:

A(l)
T = ↵avg A(lT1 )

T1
+ (1 � ↵avg)A(lT2 )

T2
(9)

Fig. 3. Examples of activation similarity maps A and G produced by a
layer for the indicated stage of the network for a batch on GENEActiv. High
similarities for samples within the batch are shown with high values. The
blockwise pattern is more prominent for batch similarity maps using PI. The
maps with different modalities and similarities represent dissimilar patterns,
which implies that these maps can capture the diverse semantics of the dataset.
(a) Batch similarity maps. (b) Channel similarity maps.

where A(l)
T 2 Rb⇥b is the generated map from the activation

maps of a layer pair (lT1 and lT2 ) of two teachers AT1 and AT2 .
The merged map of channel similarity from teachers is given
as follows:

G(l)
T = ↵avgG(lT1 )

T1
+ (1 � ↵avg)G

(lT2 )
T2

(10)

where G(l)
T 2 Rc(l)⇥c(l) is the generated map from the acti-

vation maps of a layer pair (lT1 and lT2 ) of two teachers
GT1 and GT2 . If GT1 and GT2 have different sizes, the
larger one is resized to match the smaller one. By merging
the maps, the similarities between two teachers are more
highlighted.

4) Transferring Features From Multiple Teachers: fAT
and fGT are obtained by normalization as: AT /kAT k2 and
GT /kGT k2, respectively. fAS and fGS are normalized maps
from the student AS and GS , respectively. If GT and
GS have different sizes, the larger one is resized to meet
the size of the smaller one. The overview of transferring
knowledge with similarity maps is described in Fig. 4.
By minimizing the difference between the teachers and the
student, the information from similarity maps is transferred as
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Fig. 4. Framework of extracting and transferring similar features from
different teachers. A0 and B0 denote mini-batch features at a layer of Teacher1
and Teacher2, respectively. C0 denotes mini-batch features at a layer of
Student.

follows:

Lsim = 1
|L|

X

(l,l S)2L

✓
�b

b2

���gA(l)
T � gA(l S)

S

���
2

F

+ �c

c2
(l)

���gG(l)
T � gG(l S)

S

���
2

F

◆
(11)

where L collects the layer pairs (l and l S), �b and �c are
hyperparameters to balance the effects of batch and channel
similarities, c(l) is the size of G(l)

T , and k · kF is the Frobenius
norm [31]. In this way, the student can get the beneficial
diverse knowledge from multiple teachers with the raw time-
series and topological representations. The overall learning
objective of the proposed method can be written as

LCADTP = (1 � �)LCE + �LKDent + ⌘Lsim (12)

where ⌘ is a hyperparameter to control the effect of loss Lsim.

C. Annealing Strategy for KD
Since teachers and student have different architectures and

are trained with different data, they generate dissimilar fea-
tures, which produce statistical gaps and cause degradation
in KD [15], [36]. To mitigate the effects of the knowledge
gap, we use an annealing strategy in KD for the proposed
framework. First, a small model that has the same architecture
as a student is learned from scratch. Second, when the weight

values of a student model are initialized for the training pro-
cess in KD, the values are determined by the pretrained model,
instead of randomly chosen values. Then, the knowledge
difference between teachers and student is reduced, and the
search space for optimization is decreased. Also, the strategy
enables the student to preserve more desirable features for
implementing with time-series data, while teachers transfer
their own features.

IV. EXPERIMENTS

In this section, we describe datasets used for evaluation and
experimental settings. We demonstrate the proposed method
with various teacher–student combinations on wearable sensor
data. We analyze the proposed method under different noise
levels and various hyperparameters. Furthermore, we investi-
gate the effectiveness of CADTP with visualization of feature
maps and generalizability analysis. Finally, we compare and
contrast the computational time with different methods.

A. Data Description and Experimental Settings
1) Data Description: We evaluate the proposed method

with wearable sensor data on GENEActiv and PAMAP2
datasets.

1) GENEActiv: It is an experimental device calibration
dataset [41] collected with GENEActiv sensor, which
is a lightweight, waterproof, and wrist-worn triaxial
accelerometer with a sampling frequency of 100 Hz.
The dataset was comprised of over 150 generally healthy
adults roughly balanced by sex, age (18–64 years of
age), and body mass index. All participants provided
consent prior to participation. We use 14 daily activities
used as in [14]. Each activity class has over 900 samples.
We use a full nonoverlapping window size of 500 time
steps (5 s). The numbers of subjects for training and
testing are 131 and 43, respectively. The numbers of
samples for training and testing are approximately 16k
and 6k, respectively.

2) PAMAP2: It is a publicly accessible dataset [42],
which includes measurements of heart rate, temper-
ature, accelerometer, gyroscopes, and magnetometers
with 100-Hz sampling frequency for nine subjects
(24–32 years of age). The sensors were placed on hands,
chest, and ankles of the subjects. We use 12 daily
activities with 40 channels, which were recorded from
the heart rate and four inertial measurement units
(IMUs), where activities are lying, sitting, standing,
walking, and so on. To compare with previous meth-
ods, the recordings are downsampled to 33.3 Hz. The
evaluation protocol on this dataset follows leave-one-
subject-out. Data dropping and connection loss occurred
because data were collected using wireless sensors,
so missing data are included. The dataset has a nonuni-
form distribution. We utilize 100 time steps (3 s) of
a sliding window for a sample with 22 time steps
(660 ms) of step size for segmenting the sequences,
which allows semi-nonoverlapping sliding windows with
78% overlapping [42].
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TABLE I
DETAILS OF TEACHER AND STUDENT NETWORK ARCHITECTURES. THE COMPRESSION RATIO IS CALCULATED WITH TWO TEACHERS

2) Experimental Settings: To extract PIs, for GENEActiv,
the Gaussian function parameter in PD is 0.25 and the birth-
time range for PI is determined between �10 and 10, which
are the same as in the previous study [5]. For PAMAP2, the
Gaussian function parameter and the birth-time range are set
as 0.015 and [�1, 1], respectively. Each PI is normalized by
its maximum intensity value. m is set to 64 for both datasets.
To train network models in experiments, we set the total
number of epochs as 200, using stochastic gradient descent
(SGD) with momentum of 0.9, 64 as the batch size, and a
weight decay as 1 ⇥ 10�4. We have different strategies for
training models with time-series and image representations.
The model trained with time-series data is incorporated with
1-D convolutional layers, and on the other hand, the one
trained with image data is designed with 2-D convolutional
layers. To train a model with time-series data, the initial
learning rate is 0.05, which decreases by 0.2 at ten epochs
and drops down by 0.1 every [t/3], where t is the total
number of epochs. For image data, a model is trained with
0.1 of the initial learning rate, which decreases by 0.5 at
ten epochs and drops down by 0.2 at 40, 80, 120, and
160 epochs. To evaluate the performance of the proposed
method, we use WideResNet (WRN) [43] to construct different
combinations of teachers and student, which is popularly used
in the validation of KD [14], [28]. Also, WRN has been used
to design real-time system [44], [45], [46]. As the previous
works do [14], ⌧ and � are set as 4 and 0.7 for GENEActiv
and as 4 and 0.99 for PAMAP2, respectively. We run three
times and the best averaged accuracy and standard deviation
are reported for the following experiments. We perform base-
line comparisons with traditional KD [27], attention transfer
(AT) [30], similarity preserving (SP) KD [31], and simple
KD (SimKD) [47], which are popularly used for distillation.
↵AT and �SP are set as 1500 and 1000 for GENEActiv and
3500 and 700 for PAMAP2, respectively. Also, we compare
with DIST [48], which considers intraclass and interclass rela-
tionships for knowledge transfer. In addition, we compare with
multiteacher-based approaches, such as AVER [32], EBKD
[33], CA-MKD [21], Base [1], and AdTemp [1]. Since we use
different dimensional input data and structured teachers, only
the outputs from the last layer (logits) are used for baselines
in distillation. ↵ for baselines is set as 0.5. For Base, ↵ is
0.7 and 0.3 for GENEActiv and PAMAP2, respectively.

B. Various Capacities of Teachers
In this section, we evaluate the proposed method with

various capacities of teachers that are trained with time-series

TABLE II
ACCURACY (%) WITH VARIOUS KD METHODS FOR DIFFERENT CAPACI-

TIES OF TEACHERS ON GENEACTIV

data and PIs. WRN16-1 (1-D CNNs) is used as a student
model. �b is 1. Details of models for teachers and a student,
used for experiments, are summarized in Table I, representing
model complexity and the number of trainable parameters. The
results with various teachers on GENEActiv are described in
Table II. Note, “time series” and “PImage” denote results of
KD methods with Teacher1 trained with time-series data and
Teacher2 trained with PIs, respectively. “TS,” “Ann.,” “Ent.”
denote using a teacher trained with time-series data, applying
an annealing strategy, and using entropy-based constrained
adaptive distillation, respectively. “Ba.” and “Ch.” denote
using batch and channel similarity features in distillation. The
numbers in brackets for Teacher1, Teacher2, and Student are
their accuracy. ⌘ is 700. � and  are 1.5 and 2.5, respectively.
The �c values of the teachers in Table II are 0.2, 0.01, 0.01,
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TABLE III
ACCURACY (%) FOR RELATED METHODS ON

GENEACTIV WITH SEVEN CLASSES

TABLE IV
ACCURACY (%) WITH VARIOUS KD METHODS FOR DIFFERENT

CAPACITIES OF TEACHERS ON PAMAP2

and 0.2, from left to right. As shown in Table II, CADTP
(with entropy-based constrained adaptive distillation) shows
the best results in all cases. Ann. performs better than AVER,
indicating that the annealing strategy is useful in improving
the performance. In most of the cases, CADTP (w/o Ent.)
also performs better than other baselines (Ann., Ann. + Ba.,
and Ann. + Ch.), that is, as more information is provided,
the more improvement is seen. Next, using larger teachers
does not guarantee a better student, which corroborates the
previous observations [28]. To investigate with different sizes
of window lengths and more previous methods, we test the

TABLE V
ACCURACY (%) FOR RELATED METHODS ON PAMAP2

methods with seven classes of GENEActiv dataset, as do the
previous study [14], [50]. � and  are 1.0 and 1.5, respectively.
⌘ parameters are 900 for a window size of 500 and 100 for a
window size of 1000. �c values are 0.2, 0.003, 0.2, and 0.02 for
teachers of WRN16-1 for 500 window length, WRN16-3 for
500 window length, WRN16-1 for 1000 window length, and
WRN16-3 for 1000 window length, respectively. In Table III,
CADTP achieves the best performing results, indicating that
the proposed method aids in performance improvement. The
results on PAMAP2 are described in Table IV. � and  are
0.3 and 2.5, respectively. ⌘ is 200. The �c values of the
teachers in Table IV are 0.02, 0.02, 0.2, and 0.2, from left
to right. In all cases, CADTP (with Ent.) produces the best
results. For this dataset, in most of the cases, CADTP (w/o
Ent.) performs better than other baselines (Ann., Ann. + Ba.,
and Ann. + Ch.). Furthermore, as shown in Table V, CADTP
outperforms the baselines. As a result, the proposed method
improves the performance while also allowing for effective
model compression.

C. Various Combinations of Teachers
To explore the effects of different architectures for teach-

ers, we test with different depths and widths of WRNs,
as described in Tables VI and VII. For GENEActiv, �c
of (Teacher1, Teacher2) is 0.07 for (WRN16-3, WRN16-1)
and (WRN28-3, WRN40-1); otherwise, the value is 0.2.
As shown in Table VI, CADTP produces the best student
in almost all cases. When the depth of Teacher1 is larger
than Teacher2, Ann. + Ba. can generate a better student.
For PAMAP2, ⌘ is 200 and �c of (Teacher1, Teacher2) is
0.02 for (WRN28-1, WRN16-1), (WRN16-1, WRN28-1), and
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TABLE VI
ACCURACY (%) WITH VARIOUS KD METHODS FOR DIFFERENT STRUCTURES OF TEACHERS ON GENEACTIV

TABLE VII
ACCURACY (%) WITH VARIOUS KD METHODS FOR DIFFERENT STRUC-

TURES OF TEACHERS ON PAMAP2

(WRN28-1, WRN16-3); otherwise, the value is 0.2. As shown
in Table VII, CADTP shows the better results than Ann. in all
cases. Both tables also show that in most cases, CADTP
performs better when Teacher1 has a smaller or the same
depth of model than Teacher2 (e.g., WRN16-1 Teacher1 and
WRN16-3 Teacher2). In some cases, Ann. + Ba. does not
show much improvement, compared to the other baselines,
while CADTP still shows good performance. In distillation
with multiple teachers, even though the performance can be
affected by the knowledge difference, CADTP alleviates the
negative effect and even produces a better student than its
teachers. These findings also support the notion that having
larger teachers is not always a good way to improve student
performance [28].

D. Ablations and Sensitivity Analysis
In this section, we explore the sensitivity of the proposed

method. We evaluate CADTP under different settings of cor-
ruption to figure out its ability to withstand noise. To better
understand the performance, we investigate the effects of

hyperparameters and visualize feature maps. Also, we analyze
the generalizability of models.

1) Analysis of Invariance From Noise: To investigate the
ability of models to be robust to different types of noise,
we conducted experiments with noisy testing data by inject-
ing continuous missing and Gaussian noise [14], [57], [58].
To account for unknown noise models, noise parameters are
determined at random; (R , �G) denotes the percentage of the
window size to be removed and the standard deviation for
Gaussian noise, respectively. The exact parameters are chosen
randomly and are less than the defined values. Both noises
are applied simultaneously, and the variations are set as three
levels: Level 1 (0.15, 0.06), Level 2 (0.22, 0.09), and Level 3
(0.30, 0.12). Note that the classifiers were trained with the
original training set.

As shown in Fig. 5, CADTP (with Ent.) shows better
performance than baselines in all cases. In most of the cases,
student models by AVER perform better than the one from
KD trained with time-series data alone, which implies that
topological features complement features from the raw time-
series data and help improve the robustness to noise. When
Teacher1 and Teacher2 have different depths or widths, the
gap between CADTP and AVER is large. When the capacity
or structure between teachers is different, knowledge transfer
is more difficult. Thus, CADTP helps a student get beneficial
features and improves noise robustness.

2) Effect of Distillation Hyperparameters on CADTP: �c
and ⌘ are major components of the proposed method to
balance the losses for batch and channel similarity maps in
distillation. To investigate the sensitivity with respect to these
hyperparameters, we conduct the following experiments.

A student (WRN16-1) is trained with two teachers by
using different �c and ⌘ values, as shown in Fig. 6. In
Fig. 6(a) and (b), the other hyperparameters are set as in
Section IV-A. All results of CADTP (with entropy-based
constrained adaptive distillation) outperform baselines. Their
best is shown near �c = 0.01. For PAMAP2, their best are also
shown the similar. The results with various ⌘ are presented in
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Fig. 5. Accuracy (%) with various KD methods for different noise severity levels on GENEActiv. Brackets denote (Teacher1, Teacher2). Students are
WRN16-1 (1-D CNNs). (a) (WRN16-1, WRN16-1). (b) (WRN28-1, WRN28-1). (c) (WRN28-1, WRN28-3). (d) (WRN16-1, WRN40-1).

Fig. 6. Sensitivity to �c and ⌘ of the proposed method for WRN16-1 students
on GENEActiv. (a) Results on �c from WRN16-3 teachers. (b) Results on
�c from WRN28-1 teachers. (c) Results on ⌘ from WRN16-3 teachers.
(d) Results on ⌘ from WRN28-1 teachers.

Fig. 6(c) and (d) with �c = 0.02. The best results are shown
when ⌘ = 700. For PAMAP2, the smaller number of ⌘ (200)
shows the best. When the window size is small and the number
of channels is large, small ⌘ (500) can be more effective.
As shown in these results, to obtain the best result, setting the
proper hyperparameters of �c and ⌘ is important.

3) Analysis of Constrained Adaptive Distillation: To con-
sider the different feature-level properties of multiple teachers,
the proposed method uses constrained adaptive weights based
on entropy. To investigate the effects of the constrained adap-
tive distillation, we compare the results between those with
and without constraints.

Fig. 7 shows the averaged probability by logits from models
for testing samples of class 0 [walking (treadmill at 1 mi/h,
0% grade)] on GENEActiv, which are trained with time
series and PIs. Since two models create completely different
distributions, the difference in the ratio of entropy values
between the two models is very large.

Evaluation results for training with or without constraints
based on entropy are shown in Fig. 8. �c is 0.2 for WRN16-1
and WRN28-1 teachers and 0.02 for WRN16-3 and WRN28-3
teachers. As shown in these results, models trained with
constraints perform better than the ones without constraints

Fig. 7. Probability distributions for models trained with different modalities.
Testing samples of class 0 are used to measure the probability. (a) Time-series
data. (b) PI.

Fig. 8. Accuracy (%) of the proposed method with or without constraints
on GENEActiv. Students are WRN16-1 (1-D CNNs). “Const.” denotes
constraints.

in all cases. This implies that features contain significant
meaningful properties for performance improvements not only
when entropy is low but also when it is high. Thus, the
constraints empower the student to learn adequate knowledge
from different modalities.

4) Visualization of Feature Maps: To understand the details
of activations for batch and channel similarities, both maps
from teachers (WRN16-3) and a student (WRN16-1) are
visualized in Figs. 9 and 10, highlighting similarity with high
values for input samples. A student by CADTP is trained with
entropy-based constrained adaptive distillation. A student of
KD is trained with time-series data and is the result of a
model trained from scratch. The merged map is generated with
constrained ↵ by the entropy of two teachers. The maps of two
teachers are dissimilar, and the merged map is also different
from the student, implying the knowledge gap between them.
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Fig. 9. Activation batch similarity maps produced by a layer for the indicated stage of the network for a batch on GENEActiv. High similarities for samples
of the batch are represented with high values.

Fig. 10. Activation channel similarity maps produced by a layer for the indicated stage of the network for a batch on GENEActiv. High similarities for
samples of the batch are represented with high values.

For batch similarity, intuitively, the blockwise patterns are
more prominent for the model (Teacher2) trained with PIs,
compared to the one (Teacher1) with time-series data. For
channel similarity, the maps from models trained with time-
series data and PIs show contrast in some rows and columns
differently. Furthermore, batch and channel maps show large
differences, implying that they can convey various types of
information. Thus, these can contain a variety of knowledge
for the dataset, and it is very important to transfer this knowl-
edge well to students. The merged maps have characteristics
of Teacher1 and Teacher2. A student model trained with
CADTP generates maps that show more contrastive patterns
compared to baselines, representing blockwise patterns for
batch similarity and rowwise or columnwise patterns for
channel similarity. This suggests that the proposed method
helps a student learn diverse desirable features from different
modalities.

5) Analysis of Model Reliability: To explore the generaliz-
ability and regularization effects, we calculated the expected
calibration error (ECE) [59] and negative log likelihood
(NLL) [59]. ECE measures calibration error, which repre-
sents the reliability of the model. The probabilistic quality
of a model can be computed by NLL. We used students
trained by teachers of WRN16-3 and WRN28-1. ECE and
NLL with various methods on GENEActiv and PAMAP2
are shown in Tables VIII and IX, respectively. In both cases,
the results of AVER outperform KD and a model learned
from scratch (Student). This implies that using topologi-
cal features improves generalizability. CADTP (with Ent.)
generates the lowest ECE and NLL in almost all cases.
Thus, utilizing topological features in distillation improves the
performance, not only for accuracy but also for reliability.
Finally, the proposed method aids in generating a better student
model.
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TABLE VIII
ECE (%) AND NLL FOR VARIOUS KD METHODS ON GENEACTIV.

TEACHERS ARE WRN16-3 AND WRN28-1. STUDENTS ARE
WRN16-1 (1-D CNNS)

TABLE IX
ECE (%) AND NLL FOR VARIOUS KD METHODS ON PAMAP2. TEACHERS

ARE WRN16-3 AND WRN28-1. STUDENTS ARE
WRN16-1 (1-D CNNS)

TABLE X
PROCESSING TIME OF VARIOUS MODELS ON GENEACTIV

E. Computational Time
We measured the computational time of various methods for

testing set on GENEActiv. The models were run on a desk-
top with a 3.50-GHz CPU (Intel1 Xeon1 CPU E5-1650 v3),
48-GB memory, and an NVIDIA TITAN Xp graphic card
(3840 NVIDIA1 CUDA1 cores and 12-GB memory) [60].
We evaluated approximately 6k samples with a batch size
of 1. In Table X, the considered accuracy is the best one
from Tables II and VI. Since generating PIs by TDA is imple-
mented on the CPU, a model trained from scratch with PIs
takes the largest amount of time in the table. A WRN16-1
(1-D CNNs) student from CADTP takes the lowest time with
the best accuracy. The model takes 2.89 ms in averaged time
on CPU. If a smaller network is used as a student or a smaller
sample window of data is used, it takes much less time.
The CPU result further highlights why a model compression
method such as KD is needed for running on small devices
with limited power and computational resources.

V. CONCLUSION

In this article, we proposed a new framework for constrained
adaptive KD using topological representations on wearable
sensor data, utilizing various similarity features and an anneal-
ing strategy. We demonstrated the proposed method, CADTP,
with various combinations of teachers and student in classi-
fication. We also analyzed the effectiveness of CADTP with

1Registered trademark.

experiments on invariance from noise and feature map visu-
alization. The proposed method showed robust performance
in classification and efficiency, which is better than baselines
and important in various applications needing implementations
on small devices. In future work, the proposed method can
include more diverse teachers, which are learned with different
representations, such as Gramian angular fields (GAFs) and
Markov transition field (MTF)-based images encoded by time-
series data. Finally, investigating the effects of augmentation
methods on the image representations to leverage multiple
teachers is also a potential avenue for further work.
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