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Abstract

A long-standing problem in the study of topological phases of matter has been to under-
stand the types of fractional topological insulator (FTI) phases possible in 3+1 dimen-
sions. Unlike ordinary topological insulators of free fermions, FTI phases are charac-
terized by fractional Θ-angles, long-range entanglement, and fractionalization. Starting
from a simple family of�N lattice gauge theories due to Cardy and Rabinovici, we develop
a class of FTI phases based on the physical mechanism of oblique confinement and the
modern language of generalized global symmetries. We dub these phases oblique topo-
logical insulators. Oblique TIs arise when dyons—bound states of electric charges and
monopoles—condense, leading to FTI phases characterized by topological order, emer-
gent one-form symmetries, and gapped boundary states not realizable in 2+1-D alone.
Based on the lattice gauge theory, we present continuum topological quantum field the-
ories (TQFTs) for oblique TI phases involving fluctuating one-form and two-form gauge
fields. We show explicitly that these TQFTs capture both the generalized global symme-
tries and topological orders seen in the lattice gauge theory. We also demonstrate that
these theories exhibit a universal “generalized magnetoelectric effect” in the presence
of two-form background gauge fields. Moreover, we characterize the possible bound-
ary topological orders of oblique TIs, finding a new set of boundary states not studied
previously for these kinds of TQFTs.
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1 Introduction

There has been much interest over the past two decades in symmetry-protected topological
(SPT) phases of free fermions, so much so that many simple models have been developed,
and a complete classification of such states has been achieved [1–3]. The classic example
of a 3D SPT phase is the 3D time-reversal invariant topological insulator (TI), which has a
bulk response given by U(1) gauge theory with theta angle, Θ = π [4], and has surfaces
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hosting a single free massless Dirac fermion [5]. In addition, using functional bosonization,
a hydrodynamic effective field theory with a theta term for a fluctuating U(1) gauge field has
been developed [6,7]. Bosonic analogues of TIs have also been constructed, which generically
host interacting boundary states [8–11].

The study of 3D topological phases involving strong interactions, long-range bulk entan-
glement, and topological order is far less mature. Such symmetry-enriched topological (SET)
phases are governed by an interplay of symmetry protection and topological order, and may
be thought of as generalizations of the fractional quantum Hall effect to 3D [12, 13]. Of spe-
cial interest are fractional topological insulators (FTIs), a class of SET phases in which a 3D
bulk is described by a gauge theory with fractional Θ-angle. However, attempts to construct
models of FTIs have relied either on specially tailored lattice models [14–17] or parton con-
structions [18–22], where the charge fractionalization is put in by hand, and the mean field
behavior of the partons closely parallels the physics of electrons in a non-interacting TI. It
is therefore of great importance to understand whether other microscopic mechanisms and
models can realize FTI physics.

Here we focus on a lattice gauge theory originally developed by Cardy and Rabinovici [23,
24] that involves aZN gauge field on a 4D Euclidean lattice, with a lattice analogue of aΘ-term.
As a result, test magnetic charges acquire an electric charge by the Witten effect [25], hence
becoming dyons. In ordinary gauge theories, the condensation of monopoles corresponds to
confinement of charges [26,27], but in the presence of a Θ-term, the condensation of one type
of dyon leads to confinement of others. This phenomenon is referred to as oblique confinement
[28], and it gives rise to a rich phase diagram of different oblique confining phases. In analogy
with the fractional quantum Hall effect, the global phase diagram is organized by the modular
group, PSL(2,Z), which here is generated by periodicity of Θ and exchange of electric and
magnetic charges. A similar structure was proposed later as a phenomenological explanation
of the superuniversality of quantum Hall transitions in two-dimensional electron fluids in large
magnetic fields [29–31]. Although it has since been understood [32–34] that oblique confining
phases of the Cardy-Rabinovici (CR) model possess anyonic braiding of point charges with
vortex lines—and thus topological order—a detailed understanding of the precise topological
order, boundary states, and topological response for a generic oblique confining phase has
been lacking.

In this work, we show that oblique confinement represents a natural microscopic mecha-
nism for realizing FTI phases using the illuminating example of the CR model. Unlike previous
FTI models, generic oblique confining phases of the CR model are not traditional SPT phases
protected by an ordinary global symmetry. Rather, we find that they constitute FTI phases char-
acterized by an emergent global one-form symmetry [35], under which the charged objects
are dyon world lines. This symmetry is a particular instance of the generalized global sym-
metries [35] that have attracted much recent attention in high energy and condensed matter
physics. We explicitly derive a low-energy effective topological quantum field theory (TQFT)
for these models, in which a two-form hydrodynamic field, bµν, corresponding to monopole
flux, couples to the flux of an emergent gauge field, aµ, as

Seff =
∫ (

iK
4π

b ∧ b+
ip
2π

b ∧ da
)

, Θ = −2π
p2

K
, (1)

where Θ/2π = −p2/K is a rational number in the oblique confining phase. Note that while a
Maxwell term for aµ is allowed by power counting, we show in this work that its presence can
be neglected deep in the oblique confining phase. We refer to states described by Eq. (1) as
oblique topological insulators, and they generically display both topological order and symme-
try protection. A crucial feature of oblique TI phases is the existence of an emergent one-form
symmetry, which is only partially broken by the bulk topological order. The presence of a re-
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Figure 1: Emergence of the oblique TI phase from a UV lattice gauge theory. When
a dyon condenses, the emergent one-form symmetry, G, is broken to a non-trivial
subgroup, Goblique ⊂ G. The resulting topological order is that of a (zero-form) gauge
theory with gauge group, Ggauge = G/Goblique, but now equipped with the residual
global symmetry, Goblique.

maining unbroken one-form symmetry in the bulk is connected to many of their exotic universal
properties (see Figure 1).

Theories of the type in Eq. (1) have been explored in some detail in work on generalized
symmetries [35–38] and as a continuum description of Walker-Wang models [15,16,32], and
aspects of their relationship with oblique confinement [39] and FTIs [15, 40, 41] have been
discussed in the past. Here we present an explicit derivation of such theories for general
oblique confining phases of the CR model, and we show that the action of modular symmetry,
PSL(2,Z), on these theories allows one to traverse the global phase diagram of CR models.

In the presence of a boundary, there is a gauge anomaly associated with gauge transfor-
mations of bµν and aµ, necessitating the introduction of new gauge fields on the boundary.
As a result, oblique TIs host exotic topologically ordered boundary states that are analogues
of fractional quantum Hall phases not realizable in 2D alone. In fact, we show that there are
distinct possible boundary terminations preserving different global one-form symmetries of
the bulk theory, resulting in a circumstance where multiple boundary topological orders are
possible for the same bulk oblique TI phase. In particular, each such boundary state can be
characterized by a different fractional Hall conductivity. We further show that these different
boundary states can be interpreted in terms of “electromagnetic duality,” or exchanging the
roles of charges and monopoles.

Finally, in analogy with the quantized magnetoelectric effect of ordinary TIs, we show that
the oblique TI phases described by Eq. (1) possess a universal response to two-form probe
fields, Bµν, of the bulk one-form symmetry,

Sresponse =
iΘ

8π2

∫
B ∧ B + · · · . (2)

Such response generalizes the ordinary magnetoelectric effect to FTIs governed by emergent
one-form symmetries. Similar types of generalized responses have also been discussed in
higher dimensional examples [42]. Note that while Eq. (2) is a universal index describing
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the bulk theory, it does not correspond to a unique boundary state. Indeed, two different
oblique TI phases may have the same bulk topological order but different boundary Hall con-
ductivities.

We emphasize that, unlike the types of FTI phases discussed in the past, which exhibit a
fractional magnetoelectric effect for ordinary electromagnetic (EM) fields, oblique TIs instead
exhibit a fractional response to probes of an emergent one-form symmetry, as they lack a global
U(1) charge conservation symmetry in the bulk. Indeed, if one wishes to think of the CR model
as arising at low energies from some more microscopic model of interacting particles with unit
charge, then the one-form symmetry is absent at that ultraviolet (UV) scale and should be
regarded as an emergent, low-energy symmetry. We view the presence of a fractional response
to emergent global symmetries as one of the unique and novel features of oblique TIs, and for
our purposes we will view the “microscopic” global symmetries as those of the CR model,
which has an exact ZN one-form symmetry.

We proceed as follows. In Section 2, we review the physics of the Witten effect and oblique
confinement. In Section 3, we introduce the CR model and review its global symmetries and
phase diagram. In Section 4, we describe the topological orders of the oblique confining phases
of the CR model. We then explicitly show in Section 5 that the different oblique confining
phases of the CR lattice model are captured by Eq. (1), and we discuss the properties of these
theories in detail. In Section 6, we develop the notion of the higher-form magnetoelectric
effect, Eq. (2), in oblique TI phases. We then derive possible boundary states in Section 7.
Finally, in Section 8, we discuss electromagnetic duality in the lattice model and TQFT, and
we describe the action of PSL(2,Z) on these models. In our appendices, we review general-
ized global symmetries (Appendix A), present canonical quantization of the effective TQFT
(Appendix B), discuss the effective field theory of the fermionic Cardy-Rabinovici model (Ap-
pendix C), examine how the boundary states transform under electromagnetic duality (Ap-
pendix D), and determine the effective TQFT and boundary states of the 1+1-D analogue of
the Cardy-Rabinovici model, which has parafermion boundary modes (Appendix E).

2 Oblique confinement and generalized symmetries

The physical mechanism underlying the FTI phases we develop in this work is known as oblique
confinement. The concept of oblique confinement was introduced by ’t Hooft in the context
of SU(N) gauge theory with a Θ-term [28]. Here we review the basic physics of oblique
confinement in continuum models. Throughout we use the modern language of generalized
global symmetries [35], reviewed in Appendix A. We additionally note that there is an analogue
of oblique confinement in 1+1-D [23, 24], which we review in Appendix E. There, we also
determine a corresponding 1+1-D effective field theory and discuss its boundary states, which
have parafermions.

Consider a 4D U(1) gauge theory with a Θ-term, broken to a ZN subgroup by the conden-
sation of a charge N complex scalar field with conserved current, Jµ.

S =
∫

d4 x
[
−

1
4g2

fµν f µν +
Nθ

32π2
ϵµνλσ fµν fλσ + N Jµaµ + . . .

]
, (3)

where the bulk Θ-angle is Θ = Nθ and . . . denote additional terms in the matter action. Deep
in the condensed regime, Jµ fluctuates wildly, Higgsing aµ to ZN . Below, we will denote the
dual field strength as f̃ µν = 1

2ϵ
µνλσ fλσ. This theory has the remarkable property, known as

the Witten effect [25], that a magnetic monopole of charge qm inserted into the bulk acquires
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Figure 2: Charge lattice for the example of Z4 gauge theory (i.e., N = 4), represent-
ing possible electric charges, Nqe ∈ Z, and magnetic charges, qm ∈ Z. The red points
denote dynamical charges in the UV theory, and the blue dots represent the left over
“static” probes. When a dyon with charges (qe, qm) = (1,2) is condensed, the dyons
that lie along the green line are deconfined, and all others are confined.

an electric charge,1

q′e =
θ

2π
qm . (4)

A simple way of seeing this involves considering the effect on Maxwell’s equations of adiabat-
ically turning on θ from θ (t = 0) = 0 to θ (t = t0) = θ over some time, t0. As a result, any
charge-monopole composite, known as a dyon, having charges (qe, qm) in a vacuum (θ = 0)
will inherit a charge,

(q′e, qm) =
(

qe +
θ

2π
qm, qm

)
. (5)

Because any monopole inserted into the system becomes a dyon, it is natural in any system with
θ ̸= 0 to consider phases in which some dyons condense and others confine, a phenomenon
known as oblique confinement.

Consider the effect of condensing dyons of charge (n, m). Condensing this dyon means that
any dyon of charge (qe, qm) that divides (n, m) is deconfined, while any charges not in units
of the condensed dyon charge are confined [23,43]. In other words, a test charge, (qe, qm), is
deconfined if it satisfies

qm n− qe m= 0 . (6)

The concept of confinement due to condensation of dyons is known as oblique confinement.
This notion takes on life particularly in ZN theories, where only a discrete number of charges,
given by L = gcd(Nn, m), satisfy Eq. (6) (see Figure 2). Thus, oblique confinement results
in a different state from the deconfined phase of ordinary ZN gauge theory, with L distinct
deconfined loop operators. Indeed, this state has a bulk topological order resembling the
deconfined phase of ordinary ZL gauge theory (with θ = 0).2

1Note that we write electric charges in units of N , the dynamical charge in the UV theory in Eq. (3). The dyon
(qe, qm) thus has electric charge Nqe ∈ Z and magnetic charge qm ∈ Z.

2As we will discuss in Section 4.1.3, since magnetic charge can transmute statistics of electric charges [44], in
certain cases, the bulk topological order can be a “twisted” ZL gauge theory, which contains deconfined fermionic
point excitations. This situation arises when the dyon (n/L, m/L) is a fermion. Otherwise, if (n/L, m/L) is bosonic,
the bulk topological order is the same as the deconfined phase of ordinary ZL gauge theory.
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Oblique confining phases have interesting global properties when viewed through the lens
of generalized global symmetries [35,36]. (See Appendix A and Ref. [45] for reviews on gen-
eralized global symmetries intended for a condensed matter audience.) The theory in Eq. (3)
possesses a global electric ZN one-form symmetry, which acts on Wilson loops, WΓ = ei

∮
Γ a, as

aµ→ aµ +αµ/N , WΓ → ei
∮
Γ α/N WΓ , (7)

where α is a flat connection satisfying
∮
Γ α ∈ 2πZ and Γ is a closed loop. This symmetry should

be viewed as emergent: it is explicitly broken by any gapped degrees of freedom with charge
smaller than N , which we always allow to exist at high energies.

When dyons with charge (n, m), n, m ∈ Z, condense, the global properties of the gauge
theory are reorganized at long wavelengths. The charge-N electric charges become energeti-
cally costly: They are now confined and are projected out of the spectrum. Instead, the low
energy charged fluctuations—the dyons—have electric charge, Nn, as in Figure 2. This re-
sults in an emergent ZNn one-form symmetry,3 which is larger than the original ZN . This new
emergent global symmetry is broken in the IR, in the sense that there are deconfined loops
that transform non-trivially under Eq. (7). Because the minimally charged deconfined dyon
has electric charge Nn/L, the residual global one-form symmetry associated with the confined
dyon loops is

Goblique = ZNn/L . (8)

The topological order realized by the L deconfined loops is that of Ggauge = ZN/ZNn/L = ZL
gauge theory. The presence of the remaining one-form global symmetry, Goblique, distinguishes
an oblique confining phase from the deconfined phase of an ordinary ZP gauge theory with
θ = 0 and P = L, which has essentially the same topological order. Such a phase would
correspond to the choice of N = P, n = 1, and m = 0, meaning that L = gcd(P, 0) = P, and
the residual global one-form symmetry then becomes Goblique = Z1, which is trivial. In other
words, the ZP one-form symmetry is broken completely.

These general considerations indicate that oblique confinement leads to both topological
order and non-trivial emergent global symmetries, and one of the goals of this work is to
concretely establish the universal topological and global content of these states, as encoded
in an effective topological quantum field theory, and a theory of their response. Moreover,
we will see that the existence of a residual global one-form symmetry, Goblique, means that
these topological orders also exhibit symmetry protection, hence furnishing a new type of FTI
phase that we dub an oblique TI. Indeed, these properties together present a clear paradigm
for oblique TIs as FTI phases equipped with an emergent global one-form symmetry. We now
proceed to develop this paradigm starting from ZN lattice gauge theory models at θ ̸= 0
originally studied by Cardy and Rabinovici.

3 The Cardy-Rabinovici model

3.1 Lattice gauge theory and Coulomb gas representation

Our focus in this work is on a class of lattice gauge theory models first studied by Cardy
and Rabinovici [23, 24]. Consider a compact U(1) lattice gauge theory on a 4D Euclidean
hypercubic lattice, with gauge field aµ living on links, ℓ. Coupling the theory to a charge-
N matter current, nµ ∈ Z, in a condensed phase spontaneously breaks U(1) → ZN . The

3There is also an emergent Zm magnetic one-form symmetry associated with the monopoles. This symmetry
has a mixed anomaly with the electric ZNn one-form symmetry, and we will discuss it further in Section 4.
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properties and phase structure of ZN gauge theory (without a Θ-angle) were first studied
in Refs. [46–50]. In the Villain approximation, the partition function we consider has both
Maxwell and Θ ≡ Nθ terms,4

Z =
∫
[daµ]

∑
{nµ,sµν}

δ(∆µnµ) e
−S[nµ,aµ,sµν] , (9)

S =
1

4g2

∑
P

F2
µν +

iNθ
16π2

∑
r,R

Fµν(r)K(r − R) F̃µν(R)− iN
∑
ℓ

nµaµ . (10)

Here Fµν = ∆µaν − ∆νaµ − 2πsµν is the lattice field strength, valued on plaquettes of the
direct lattice (denoted P), which has sites r, and F̃µν =

1
2ϵµνλσFλσ is the dual field strength,

valued on plaquettes of the dual lattice, which has sites R. The integer variables, sµν ∈ Z, are
defined on plaquettes and enforce compactness of the gauge theory such that we may allow
aµ ∈ R. The first term is the usual Maxwell term of lattice QED, with coupling strength, g. The
second term is meant to be a lattice approximation to the Θ-term, and thus involves a non-
local product of field strengths on the direct and dual lattices. The non-locality is encoded in
the short-ranged kernel, K(r − R), normalized such that

∑
x K(x) = 1 [23]. Since we do not

expect the precise form of K(x) to affect any physics in the continuum limit, we assume it to
simply give a delta function in the continuum.

The partition function is invariant under U(1) gauge transformations,

aµ→ aµ +∆µχ . (11)

We may therefore define the gauge invariant Wilson loop operator,

WΓ =
∏
ℓ∈Γ

ei a(ℓ) , (12)

which is the basic gauge invariant observable of the theory.
This lattice gauge theory contains both dynamical charges and monopoles. In Eq. (9), the

integer-valued world line variables, nµ, represent dynamical charge-N electric matter.5 By
summing over the integer-valued fields nµ, we see that the vector potential aµ is Higgsed such
that exp(iaµ) is an N th root of unity and hence takes values in ZN . As a result, the theory is
invariant under a global ZN electric one-form symmetry,

aµ→ aµ +
2π
N
ηµ , (13)

where ηµ ∈ Z and ∆µην −∆νηµ = 0. This global symmetry acts on Wilson loops as

WΓ →ωWΓ , (14)

whereω is an N th root of unity, and hence we will say thatω ∈ ZN . In addition, as in compact
QED, the theory contains dynamical integer-valued magnetic monopoles, with world lines
given by the flux of the integer-valued Kalb-Ramond fields, sµν,

mµ =
1
2
ϵµνλσ∆νsλσ . (15)

4Aspects of four-dimensional Abelian lattice gauge theories with Θ-terms (in particular, the presence or absence
of periodicity in the Θ-angle) have been discussed recently in Ref. [51] and references therein.

5If the underlying microscopic matter degrees of freedom described by nµ are fermions, then N must be even
(only even numbers of fermions can form a boson and condense), but if they are bosons, then N can be even or
odd. We will primarily focus in this work on the case of bosonic matter unless otherwise noted (all of our results
can be extended to the case of fermionic matter, see Appendix C).
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m

n

Dirac string

Θ

Figure 3: The statistical interaction in the Coulomb gas representation. If the
monopole current, mµ(R), describes a vortex string extending vertically in the z-
direction, and nµ(r) describes a static charge with world line in the Euclidean “time”
direction, τ, then Θµν(R− r) is the angle r − R forms with the vortex world sheet in
the (x , y)-plane.

Therefore, sµν may be thought of as a configuration of world sheets of Dirac strings, which
end on monopoles with world lines described by the integer variables, mµ.

To determine the phase diagram of the theory, it is useful to pass to the Coulomb gas
representation by integrating out the gauge field, aµ. This leads to a new effective theory of
interacting charges and vortices,

Z =
∑
{nµ,mµ}

exp


−2π2

g2

∑
R,R′

mµ(R)G(R− R′)mµ(R
′)

−
1
2

N2 g2
∑
r,r ′

(
nµ(r) +

θ

2π
mµ(r)

)
G(r − r ′)

(
nµ(r

′) +
θ

2π
mµ(r

′)
)

+iN
∑
R,r

mµ(R)Θµν(R− r)nν(r)

]
,

(16)

where G is the lattice propagator for aµ in Feynman gauge (∆2aµ = 0), and Θµν is an angle
defined as [23]

Θµν(R− r) = 2πεµνλσ uλ(u ·∆)−1∆(r)σ G(R− r) , (17)

for a unit vector u. The first term in Eq. (16) represents interactions between monopoles, and
the second term describes interactions of electric charges, which notably are shifted from nµ
by the Witten effect, nµ→ nµ + (θ/2π)mµ.

The final term in Eq. (16) is the most important and describes a statistical interaction
between the electric charges and vortices depicted in Figure 3. In 3+1-D, vortices are lines
in space and may be understood as Dirac strings ending on monopoles. Whenever an electric
charge crosses the world sheet of a vortex, the angle Θµν changes by 2π.

3.2 Oblique confinement in the Cardy-Rabinovici model

Equipped with the Coulomb gas representation, one can see that the model, Eq. (9), displays
a rich array of oblique confining phases by studying the minima of the free energy. We show in
Section 4 that these phases generically exhibit topological order and are invariant under the
one-form global symmetry in Eq. (8), making them oblique TIs.

To determine the phase diagram, Cardy and Rabinovici [23,24] used standard free energy
arguments to compare the energy cost of exciting a dyon loop to the entropy gained by the

9

https://scipost.org
https://scipost.org/SciPostPhys.14.2.023


SciPost Phys. 14, 023 (2023)

system, finding that a condensate of a dyon of charge6 (n, m) is stable if it satisfies

2π
N g2

m2 +
N g2

2π

(
n+

θ

2π
m
)2

<
C
N

, (18)

where C ∼ 1/G(0) is a non-universal constant. If no dyon satisfies Eq. (18), as occurs only for
sufficiently large N , then nothing condenses, and the theory is in a Coulomb phase. If multiple
dyons satisfy Eq. (18), then the bosonic dyon with the lowest free energy condenses. Although
the constant, C , in Eq. (18) is not precisely determined, the exact value does not dictate the
possible phases but only establishes where the phase transitions occur. Moreover, there is a
2D analogue of the Cardy-Rabinovici model, reviewed in Appendix E, for which it is possible
to derive a precise bound for the energetic stability of a given phase.

An asymptotic picture for the phase diagram can be obtained by considering limits of
Eq. (18). In the weak coupling limit, g2→ 0, the first term in Eq. (18) dominates, preventing
dyons with any magnetic charge, m ̸= 0, from condensing. The only possibility is for electric
charges (1,0) to condense, resulting in a Higgs phase, the deconfined phase of ZN gauge the-
ory at θ = 0. This phase has ZN topological order and is represented by a BF topological field
theory at level N , whose action is given in Eq. (A.8).

Because of the Witten effect, the fate of the theory in the strong coupling limit, g2→∞,
depends on the value of θ . At θ = 0, the g2 → ∞ limit leads to condensation of (0, 1)
monopoles and confinement of electric charges. On the other hand, at θ ̸= 0, dyon condensa-
tion becomes preferable. For example, if there exist integers p, q with gcd(p, q) = 1 such that
θ/2π = −p/q, then Eq. (18) predicts that dyons of charge (n, m) = (p, q) will condense as
g2→∞. For finite values of g2 at fixed rational θ ̸= 0, the theory generally passes through a
sequence of oblique confining phases until the limiting phase predicted at g2→∞ is reached.
Finally, if θ/2π is irrational, the theory does not approach any particular asymptotic regime
as g2 →∞, and the theory passes through an infinite sequence of oblique confining phases
as g2 is increased [23,24].

Note that the above argument assumes that any condensed dyons are bosons, since only
bosons can condense [32]. However, magnetic charge transmutes the statistics of particles,
meaning that some of the dyons are actually fermions [44]. Indeed, the statistics of a particular
dyon depend on whether the microscopic charge-1 matter degrees of freedom are fermions or
bosons (i.e. whether the gauge field aµ is spinc or not). In a theory of microscopic fermions
(the spinc case), the statistical phase of a (n, m) dyon is (−1)Nnm+Nn. In this case, we must
require N to be even so that the charge-N objects that condense to give the ZN gauge theory
in the first place are bosons. Consequently, the charge (n, m) dyons are always bosons if the
microscopic charges are fermions.

On the other hand, if the microscopic charges are bosons, a (n, m) dyon has statistical
phase (−1)Nnm, so charge (n, m) dyons are bosons if Nnm is even and fermions if Nnm is odd.
As a result, for fermionic dyons, what we may have expected to be a (n, m)-condensed phase
will instead be a superconductor in which the dyons pair to give a (2n, 2m)-condensed phase.

3.3 Modular invariance and phase diagram

A more detailed understanding of the phase diagram can be obtained by exploiting the self-
duality of the Coulomb gas description. Indeed, the partition function of the CR model is in-
variant under a set of duality transformations that generate the modular group, PSL(2,Z) [24].

6We adopt a convention of denoting a dyon’s charges by their values (n, m) prior to accounting for the Witten
effect and with the electric charge defined in units of the condensed charge, N . In this notation, the true electric
charge of the dyon is then N[n+ (θ/2π)m].
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(1,0) (1,0)

(0,1) (−1,1)(1,1)

(1,2) (−1,2)

−1 0 1

1

−1 0 1

1(1,0) (1,0)

(0,1) (−1,1)(1,1)

(1,2) (−1,2)

2π

Ng2

θ

2π

1

Figure 4: The phase diagram for the Cardy-Rabinovici model with N/C <
p

3/2 [23,
24]. Pink curves denote phase boundaries. The phases are labeled by (n, m), indicat-
ing that a dyon of electric charge Nn (without the additional polarization charge of
the Witten effect) and magnetic charge m condenses. For larger N , Coulomb phases
appear, separating the gapped condensed phases.

Modular transformations of the CR model act on the complex coupling constant,

τ=
θ

2π
+ i

2π
N g2

. (19)

In terms of τ, the partition function, Eq. (16), in the Coulomb gas picture is

Z[τ] =
∑
{nµ,mµ}

exp

[
−

2πiN
τ−τ

∑
r,r ′

[
nµ(r) +τmµ(r)

]
G(r − r ′)

[
nµ(r

′) +τmµ(r
′)
]

+ iN
∑
R,r

mµ(R)Θµν(R− r)nν(r)

]
,

(20)

where τ is the complex conjugate of τ. The partition function is manifestly invariant under
the transformations7

SCR :

TCR :

τ 7→ −
1
τ

,

τ 7→ τ+ 1,

(nµ, mµ) 7→ (−mµ, nµ) ,

(nµ, mµ) 7→ (nµ −mµ, mµ).
(21)

Invariance of the partition function, Eq. (9), under SCR may also be shown using the Poisson
summation formula. Together, SCR and TCR generate the modular group PSL(2,Z),

τ 7→
aτ+ b
cτ+ d

, (22)

where a, b, c, d ∈ Z and ad − bc ̸= 0.
The transformation, SCR, can be loosely understood as a kind of electromagnetic duality,

as it exchanges charge and monopole world lines, and TCR simply reflects the periodicity of θ .
The free energy of each oblique condensate is also invariant under these transformations, as
can be seen by observing the invariance of the energy of a single dyon loop in Eq. (18).

7The label ‘CR’ for the transformations of Eq. (20) anticipates the fact that in Section 8 we will uncover different
transformations with the same formal algebraic properties but with different physical content.
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Phase transitions between different oblique confining phases correspond to the so-called
modular fixed point values of τ, which are invariant under some modular transformation.
The modular descendants of the fixed points then correspond to daughter phase transitions,
leading to the rich structure of the phase diagram in Figure 4. In particular, along the θ = 0
axis (for small enough N such that there is no Coulomb phase), the transition between the
Higgs and confinement phases occurs at the self-dual point, τ = i (g2 = 2π/N), which is
invariant under SCR. This transition then extends along the curve |τ| = 1 until θ = π, where
the curve meets itself under a TCR transformation. The rest of the phase diagram may then be
constructed by repeatedly applying SCR and TCR. Each oblique confining phase is therefore an
image of the Higgs phase under some modular transformation. For any phase of condensed
(n, m), n and m are necessarily relatively prime8 since gcd(n, m) is invariant under SCR and
TCR, and we have for the Higgs phase that gcd(n, m) = gcd(1, 0) = 1.

Throughout the rest of this work, we will refer to the duality transformations in Eq. (21)
as the Cardy-Rabinovici (CR) modular transformations, since these transformations leave the
partition function, but not necessarily correlation functions, invariant. Hence, they map dis-
tinct oblique phases into one another. As we will discuss in Section 8, a different set of modular
transformations furnish genuine self-duality transformations of the CR theory.

4 Oblique TI phases of the Cardy-Rabinovici model

Having established the basic properties of the Cardy-Rabinovici model and its phase diagram,
in this section we will now establish the topological orders and global symmetries of each of its
oblique confining phases. In doing so, we will see that such states generically furnish a special
class of FTI phases protected by one-form symmetries, which we call oblique TI phases.

4.1 Oblique topological order: Lattice gauge theory

4.1.1 Loop operators

We begin by establishing the topological order of a phase in which a (n, m) dyon condenses.
The basic gauge invariant electric observables are Wilson loops,

WΓ =
∏
ℓ∈Γ

eia(ℓ) , (23)

where Γ is a closed loop on the links of the Euclidean lattice. The magnetic observables are ’t
Hooft loops, TΓ , which can be represented in terms of a dual gauge field, ã(ℓ̃), living on links
of the dual lattice,

TΓ =
∏
ℓ̃∈Γ

eiã(ℓ̃) . (24)

The ’t Hooft loops do not have a local representation in terms of fields in the “electric” theory.
Dyonic observables are built out of products of Wilson and ’t Hooft loops. A dyon loop of

charge (qe, qm) can be constructed as

DΓ (qe, qm) = (WΓ )
Nqe (TΓ )

qm , (25)

where we continue to express electric charge in units of N , the charge we condensed to obtain
a ZN gauge theory. This means that it is possible for qe to take fractional values that are

8Some exceptions, as noted above, occur in bosonic theories. In those cases, if Nnm is odd, then (2n, 2m) will
condense, and we will have gcd(2n, 2m) = 2.
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integer multiples of 1/N . We remark that to precisely define DΓ , one must equip Γ with a
“framing,” [52,53] i.e. a choice of how the magnetic world line on the dual lattice tracks the
electric world line on the direct lattice. However, this choice will not figure significantly into
the discussion of universal properties below, and we will perform calculations ignoring the
separation between the electric and magnetic world lines.

The confinement of dyons can be assessed by computing the expectation value of the dyon
loop operator, DΓ (qe, qm),

〈DΓ (qe, qm)〉=
1
Z

∫
[daµ]

∑
{nµ,sµν}

(WΓ )
Nqe (TΓ )

qm e−S[nµ,aµ,sµν] . (26)

This calculation is straightforward in the Coulomb gas representation, Eq. (16), where electric
and magnetic variables are on equal footing. If Jµ and J̃µ are currents defining the loop Γ on
the direct and dual lattices respectively, the insertion of DΓ into the partition function simply
shifts the electric and magnetic world line variables,

nµ→ nµ + qeJµ , mµ→ mµ + qm J̃µ. (27)

In a phase in which a dyon of charge (n, m) is condensed, all line operators, DΓ (qe, qm), are
confined (and thus projected out of the spectrum) unless they have trivial statistical interaction
with the (n, m) condensate. This means that they must satisfy [23]

qm n−mqe = 0 . (28)

Dyon loop operators satisfying Eq. (28) exhibit a perimeter law. Because qe takes allowed
values qe = p/N , p ∈ Z, and qm ∈ Z, the number of distinct deconfined loop operators is
simply the greatest common divisor of Nn and m,

L = gcd(Nn, m) . (29)

Notice that this implies that any phase with L = 1 is automatically topologically trivial. Ex-
plicitly, these line operators are parameterized by a single integer, k,

deconfined dyons: DΓ

(
qe =

nk
L

, qm =
mk
L

)
, 0≤ k < L . (30)

These operators describe the physical loop excitations in the oblique confining phase where
the (n, m) dyon is condensed.

4.1.2 Surface operators

In three spatial dimensions, topological order is determined by the braiding of world lines of
point particles with world sheets of flux tubes. Indeed, in addition to the Wilson and ’t Hooft
loops, we may also construct gauge invariant surface operators representing the world sheets
of flux tubes,

UΣ(Φe) =
∏
P∈Σ

eiΦe F(P) , ŨΣ(Φm) =
∏
P̃∈Σ

eiΦm F̃(P̃) , (31)

where F(P) and F̃(P̃) are respectively the lattice field strength and dual field strength, which
live on plaquettes of the direct lattice and dual lattice. The parameters Φe and Φm set the
electric and magnetic fluxes, and Σ is a closed 2-surface.
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We first consider the electric flux sheet operator. To compute its expectation value, we
insert a background electric flux tube into the action, with world sheet described by a back-
ground world sheet field, Σµν ∈ Z,

iΦe

2

∑
r

Σµν(r) Fµν(r) =
iΦe

2

∑
r

Σµν(r)
[
∆µaν(r)−∆νaµ(r)− 2πsµν(r)

]
. (32)

Because the surface is closed, we require ∆µΣµν = 0, so Eq. (32) reduces to

iΦe

2

∑
r

Σµν(r) Fµν(r) = −
iΦe

2
2π
∑

r

Σµν(r) sµν(r). (33)

Similarly, we may represent magnetic flux sheet operators in terms of the dual gauge field, ãµ,
as

iΦm

2

∑
R

Σµν(R)
[
∆µãν(R)−∆νãµ(R) + 2π tµν(R)

]
=

iΦm

2
2π
∑

R

Σµν(R) tµν(R), (34)

where ãµ is the dual of aµ, and tµν is defined so that Nnµ =
1
2ϵµνλσ∆ν tλσ.

The insertion of a world sheet of a dyonic flux tube (Φe,Φm) has action determined by
its braiding with the dynamical charges and monopoles. To see this, we again work in the
Coulomb gas representation, writing

sµν(r) =
∑

r ′
ϵµνλσ∆λG(r − r ′)mσ(r

′) , (35)

tµν(r) =
∑

r ′
ϵµνλσ∆λG(r − r ′)N nσ(r

′) , (36)

where G(r − r ′) is again the gauge fixed lattice propagator (although the expressions in Eqs.
(32) and (34) are both gauge invariant), and we have dropped any distinction between the
direct and dual lattices for notational brevity. A flux tubeΣµν with electric fluxΦe and magnetic
flux Φm therefore has action,

2πiϕ
[
Σ, {Nn, m}

]
= 2πi

∑
r,r ′

1
2
Σµν(r)ϵµνλσ∆λG(r−r ′)

{
Φm[Nnσ(r

′)]−Φe[mσ(r
′)]
}

. (37)

The linking number, ϕ[Σ, J], is an integer-valued topological invariant counting the linking of
a configuration of closed world sheets, Σµν, with a configuration of current loops, Jµ.

We may now construct the physical surface operators in the (n, m)-condensed phase. In
this phase, the proliferating dyon loops can be described in terms of electric and magnetic
world lines that track one another,

nµ = n jµ , mµ = mjµ , (38)

where jµ ∈ Z is an integer-valued world line variable. Note that we continue to neglect the dis-
tinction between the direct and dual lattices, and we assume a framing of dyon loops such that
electric and magnetic world-lines never cross. The action for a world sheet, Σµν, is dominated
by these dyon configurations,

SΣ = 2πi (NnΦm −Φe m)ϕ[Σ, j] . (39)

Because jµ is a dynamical variable and ϕ is an integer, the expectation value of a (Φe,Φm)
surface operator will vanish (i.e. be a sum of wildly oscillating phases) unless

(NnΦm −Φe m) ∈ Z . (40)

In other words, physical flux tubes must braid trivially with the dyon condensate.
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4.1.3 Topological order: Braiding of particles with flux tubes

We are now equipped to determine the topological data of oblique TI phases. We begin by
computing the braiding statistics of physical flux tubes, described by a background world
sheet, Σµν, with the deconfined dyon particles, described by a background world line, Jµ,
with charges (qe, qm) = (kn/L, km/L). Their statistical phase, Eq. (37), is

ϑ[Σ, J] = 2πi
(

N
kn
L
Φm −Φe

km
L

)
ϕ[Σ, J] . (41)

This term is the only place where the surface operators appear in the partition function, so
braiding with the deconfined dyons is the only way to detect a flux tube in the low energy
limit. Hence, flux tubes that have identical braiding with all the deconfined dyons are indis-
tinguishable,

(Φe,Φm)∼ (Φe + Nnα,Φm +mα) , (42)

where α ∈ R.
To count the number of inequivalent flux tubes, we can set Φe = 0 because Eq. (42) implies

that any flux tube can be expressed as either purely electric or purely magnetic via a suitable
choice of α. The purely magnetic flux tubes that satisfy Eq. (40) have Φm = M/Nn, where
M ∈ Z and M ∼ M + Nn. However, since Φe is defined mod 1, we also have M ∼ M +m by
Eq. (42). Therefore, the (n, m)-condensed phase has L = gcd(Nn, m) inequivalent flux tubes
indexed by M .

A state with L distinct line operators and L distinct surface operators resembles a ZL gauge
theory. Indeed, from Eq. (41), we see that the statistical phase between the L flux tubes and
the L deconfined dyons is〈

DΓ

(
qe =

nk
L

, qm =
mk
L

)
ŨΣ

(
Φm =

M
Nn

)〉
= exp

(
2πi

kM
L
ϕ[Σ, J]

)
, (43)

where 0 ≤ k < L and 0 ≤ M < L. Hence, so long as the (n/L, m/L)-dyon is a boson, the
topological order is identical to ZL gauge theory: the ground state degeneracy9 and excitation
spectrum are the same. When the (n/L, m/L)-dyon is a fermion (i.e., when Nn/L and m/L are
both odd), the resulting paired state can have fermionic excitations, since the (kn/L, km/L)-
dyon has statistical phase (−1)Nnmk2/L2

= (−1)k. Such a theory generalizes the topological
order of the “fermionic toric code” constructed in Refs. [16,32].

4.2 Generalized global symmetries of oblique TIs

As discussed in Section 2, the major difference between oblique TI states of the Cardy-
Rabinovici model and the deconfined phases of ZL gauge theories lies in the global symme-
tries of the two sets of states. Because the oblique TI ground states arise from confinement of
dyons, they possess residual one-form global symmetries not present in an ordinary ZL gauge
theory. As a result, one may think of these states as “one-form symmetry enriched ZL gauge
theories.” We now turn to quantify the global one-form symmetries of oblique TI phases in
the context of the CR model. We remark that topological phases enriched by generalized sym-
metries have received some attention recently [15, 38, 54–58], but the range of possibilities
for such phases in 3+1-D has not been explored extensively. Oblique confinement provides a
transparent recipe for realizing these types of states.

9See Appendix B for an explicit calculation of the ground state degeneracy on a torus using the effective field
theory we establish in Section 5.1.
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We first focus on the electric one-form symmetry, which acts on the Wilson loop operators,
WΓ . When a dyon with charges (n, m) condenses, the theory has an emergent Gauss’ Law,

1
2π
∆i Ei = 0 mod Nn , (44)

where Ei = Fi0. Consequently, there is an emergent ZNn one-form symmetry which preserves
the condensed dyon loop operator, DΓ (n, m), defined in Eq. (25). However, we have shown
above that this state has L = gcd(Nn, m) deconfined dyon loop operators, Eq. (30). This
means that the ZNn one-form symmetry is broken to a subgroup in the oblique TI phase. The
remaining subgroup that preserves both the condensate and the deconfined loop operators can
be read off from Eq. (30),

Goblique = ZNn/L . (45)

We view this as the global symmetry characterizing the oblique TI phase, and it arises due to
the fact that the number of deconfined line operators is smaller than the electric charge of the
condensed dyon, meaning that the theory contains a residual unbroken one-form symmetry
that acts trivially on all of the deconfined loops.

It is natural to consider the response of the theory to probing Goblique, i.e. gauging the
symmetry. In the Cardy-Rabinovici model, this amounts to introducing a two-form probe field,
Bµν/N , which couples minimally in the lattice action, i.e. we replace

Fµν→ Fµν[B] =∆µaν −∆νaµ − 2πsµν − 2π
Bµν
N

, (46)

where Bµν ∈ Z is a flat, integer-valued two-form field. It may be understood physically as a
fractional magnetic flux that has been inserted into the theory (integer fluxes can be absorbed
into the sum over sµν). In Section 6, we will see that on condensing dyons and entering the
oblique TI phase, the field, Bµν, probes the residual one-form symmetry, Eq. (45), and leads to
a universal response that is a generalization of the magnetoelectric effect in ordinary 3D TIs.

One may also consider a magnetic one-form symmetry acting on ’t Hooft loops. Following
the arguments leading to the electric one-form symmetry in Eq. (45), one finds a preserved
magnetic one-form symmetry that leaves the deconfined dyon loops, Eq. (30), invariant,

G̃oblique = Zm/L . (47)

It is then tempting to think that the ultimate global symmetry of the oblique TI bulk state is
Goblique × G̃oblique. However, these electric and magnetic one-form symmetries have a mixed ’t
Hooft anomaly, which we will see explicitly in Section 6. Consequently, if we wish to consider
response to probes (such as Bµν) of either the electric or magnetic one-form symmetry, the
other symmetry is explicitly broken. While there is no obvious reason physically to preference
the electric one-form symmetry in this way, we will nevertheless always choose to work with
probes of Goblique and consider G̃oblique to be broken by the anomaly.

5 Effective field theory of oblique TIs

5.1 Derivation from the lattice model

Having established that the oblique confining phases of the CR model exhibit the topological
order of ZL , L = gcd(Nn, m), gauge theory10 and retain the emergent one-form symmetry

10As discussed in Section 4.1.3, this ZL gauge theory can be “twisted”, containing deconfined fermions.
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in Eq. (45), we now seek an effective topological quantum field theory (TQFT) that captures
these properties. In this section, we demonstrate that this effective TQFT can be constructed
explicitly starting from the CR lattice model, Eq. (9). Note that while our focus will be on the
CR model where the microscopic charges are bosons (i.e. the gauge fields are ordinary U(1)
gauge fields), we discuss the effective field theory for the fermionic CR model (with spinc
gauge fields) in Appendix C.

We begin with the lattice CR action, Eq. (9), in the strong coupling limit, g2→∞,

S = −iN
∑
ℓ

nµaµ +
∑

r

(
iNθ
8π2

ϵµνλσ∆µaν∆λaσ −
iNθ
2π

mµaµ +
iNθ

8
ϵµνλσ sµνsλσ

)
, (48)

where we recall the definition, mµ = ϵµνλσ∆νsλσ/2. Here we have expanded out the Θ-term
and taken the kernel, K(r − R), to be a delta function. We also suppressed the distinction
between the direct and dual lattices, which will not play an important role in the arguments
below. The strong coupling limit suppresses the Maxwell term, whose only role is to control the
energetics determining which phase is realized at a given value of θ . Indeed, the Maxwell term
suppresses large dyon loops, but in a given oblique confining phase, the loops of the condensing
dyon proliferate, and the Maxwell term can be safely ignored. Moreover, in Section 5.3, we
will match the topological content presented in Section 4.1 to that of the TQFT developed in
this section, thus providing an additional argument that does not rely on the strong coupling
limit.

From the free energy arguments in Section 3.2, we recall that in the strong coupling limit,
g2 → ∞, the phase where dyons with charge, (n, m), gcd(n, m) = 1, condense is stable at
θ = −2πn/m. Indeed, plugging in this value of θ and integrating out the non-compact gauge
field, aµ, one finds the local constraint,

n mµ = m nµ . (49)

Because gcd(n, m) = 1, the solution to this constraint is none other than Eq. (38),

mµ = m jµ , nµ = n jµ , (50)

where jµ is an integer-valued current.11 Physically, the meaning of this constraint is to bind
together electric charges and monopoles such that jµ is the world line of the (n, m) dyon. These
dyons proliferate in the IR because there are no terms present to suppress large dyon loops.

After integrating out aµ, one arrives at an effective lattice gauge theory consisting of the
two-form field, sµν, alone, along with the constraint in Eq. (50),

Z (n,m)
oblique =

∑
{sµν, jµ}

δ
(

mµ[sνλ]−mjµ
)

exp

(
(2π)2

∑
r

i
16π

Nn
m
ϵµνλσ sµνsλσ

)
, (51)

where δ(x − y) is a Kronecker delta function defined on integer-valued lattice fields. With
this form for the partition function, we may “integrate in” the constraint, mµ[s] = mjµ, by
introducing an integer-valued field, α̃µ(r) ∈ Z,

S =
∑

r

(
2πi
m

mµ[s] α̃µ − (2π)2
i

16π
Nn
m
ϵµνλσ sµνsλσ

)
(52)

=
∑

r

(
−

im
2π

1
2
ϵµνλσ

2πsµν
m

2π∆λα̃σ
m

−
iNnm

4π
1
4
ϵµνλσ

2πsµν
m

2πsλσ
m

)
, (53)

11For the bosonic theory, when Nnm is odd, the (2n, 2m) dyon is the bosonic dyon with the lowest free energy.
In this case, then, the constraint Eq. (49) is satisfied by taking mµ = 2mjµ and nµ = 2n jµ so that the condensing
dyon is a boson. For this case only, in what follows, (n, m) should be replaced by (2n, 2m).
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where we have integrated by parts in the second line. Note that the notational choice of a
tilde for α̃µ is meant to emphasize that this field represents a “magnetic” gauge field, since
it couples directly to the monopole current, i.e. its corresponding loop operators are ’t Hooft
loops. Indeed, the theory now has an emergent zero-form gauge symmetry,

α̃µ→ α̃µ +∆µχ +mNµ , (54)

where χ ,Nµ ∈ Z. There is also an emergent one-form gauge symmetry acting as

sµν→ sµν −
(
∆µην −∆νηµ

)
+mMµν , α̃µ→ α̃µ + Nnηµ , (55)

where ηµ ∈ Z is a connection on links and Mµν ∈ Z lives on plaquettes. At long wavelengths,
the theory in Eq. (53) is topological, in the sense that it does not explicitly depend on any
spacetime metric.

5.2 Continuum TQFT

5.2.1 Magnetic variables

The corresponding continuum TQFT can be constructed in terms of one-form and two-form
U(1) gauge fields, ãµ and b̃µν, which are related to the lattice fields by the correspondence,

2π
α̃µ

m
→ ãµ , 2π

sµν
m
→ b̃µν , (56)

where the coefficients are fixed by invariance under the emergent gauge symmetries in
Eqs. (54) – (55), in that we require the zero (one) form gauge transformations to act on the
continuum gauge field ãµ (b̃µν) with unit charge. Physically, as mentioned above, one should
interpret ãµ as the “magnetic” vector potential, the fluxes of which are sourced by the world
lines of monopoles. Similarly, the world sheet field, b̃µν, should be viewed as the world sheet
variable of electric flux tubes, as its flux, mϵµνλσ∂ν b̃λσ/2π, is the monopole current. Hence,
despite starting with the “electric” formulation of the Cardy-Rabinovici model, we have in fact
arrived at an effective theory in terms of magnetic variables.

In terms of these fields, the continuum TQFT may be written as

Zoblique =
∫

DãD b̃ e−S̃[ã, b̃] , (57)

S̃ = −
im
2π

∫
b̃ ∧ dã−

iNnm
4π

∫
b̃ ∧ b̃ . (58)

We will see below that the TQFT that we have derived above encodes all of the topological
data of oblique TI phases discussed in Section 4 and allows a direct way to develop a theory
of their response. We remark that TQFTs of this type were first introduced in [39, 59] and
were further developed in [35, 60]. They have been proposed previously as effective field
theories for oblique confining phases [39], and in special cases have been related to phases
the CR model [32]. However, ours is the first microscopic derivation of these models from a
UV lattice gauge theory, and it is valid for any of the oblique confining phases of the CR model.

The gauge symmetries of the action, Eq. (58), are analogues of Eqs. (54) – (55). First, the
theory is invariant under a U(1) zero-form gauge transformation, ã → ã + dξ, where ξ is a
2π-periodic scalar field. In addition, there is a one-form gauge symmetry,

b̃→ b̃− dλ , ã→ ã+ Nnλ, (59)
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whereλ is a U(1) connection. We can see that such transformations leave the partition function
invariant by considering the variation of the action,

δλS̃ = 2πim
∫

dλ
2π
∧

dã
2π
+πiNnm

∫
dλ
2π
∧

dλ
2π

. (60)

On a generic closed four-manifold, the first term is an integer multiple of 2πi since m ∈ Z, but
the second term is an integer multiple of 2πi only if Nnm is an even integer. Since a (n, m)
dyon in the bosonic CR model has a statistical phase of (−1)Nnm, this requirement is simply
the statement that the condensing dyon must be a boson. In the fermionic CR model, which
involves a spinc connection, this requirement is instead Nnm+ Nn ∈ 2Z.

In addition, the theory in Eq. (58) exhibits invariance under a Zm global one-form symme-
try, under which

ã→ ã+
1
m
Υ , (61)

where Υ is a flat connection. Such transformations shift the action by an integer multiple
of 2πi since the cycles of Υ are quantized, thus leaving the partition function invariant. We
already encountered this global symmetry in Section 4.2 in the context of the lattice model:
it is the emergent magnetic one-form symmetry that appears on condensing the (n, m) dyons.
In Section 6, we will see that this symmetry is broken anomalously on the introduction of
two-form probes for the electric one-form symmetry, which is not manifest in this description.

5.2.2 Electric variables

In discussing oblique TI phases, it will be more convenient to work with the dual of the theory
in Eq. (58), which is expressed in terms of “electric” variables. To obtain this theory, we invoke
the standard electromagnetic duality procedure, in which we introduce an auxiliary two-form
field, f̃ , such that f̃ = dã is implemented as a constraint via a two-form Lagrange multiplier
field, f , coupling as f ∧ ( f̃ − dã). Integrating out f̃ and ã, one finds the dual theory [35,60],

S̃←→ Seff = −
iNn
4πm

∫
da ∧ da , (62)

where aµ is a U(1) gauge field. This appears to be an ordinary U(1) gauge theory with Θ-
angle, Θ = −2πNn/m. However, there is a subtlety here: the gauge field, aµ, introduced in
the duality transformation also transforms under the gauged one-form symmetry, Eq. (59), as

a→ a−mλ , (63)

where λ is again a U(1) connection. The fact that this symmetry is gauged implies that the
naïve Hilbert space of the theory is in fact redundant. We can make this redundancy mani-
fest by introducing a fluctuating U(1) two-form gauge field, bµν, via a Hubbard-Stratonovich
transformation, leading to the final expression,

S =
iNn
2π

∫
b ∧ da+

iNnm
4π

∫
b ∧ b . (64)

This theory is invariant under the gauge transformation, Eq. (63), along with

b→ b+ dλ . (65)

In analogy with the discussion of the magnetic theory above, here aµ is an “electric” gauge
field coupling to charge currents, and bµν describes world sheets of flux tubes. Note that in
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arriving at this duality, we have required n, m ̸= 0. A lattice version of this duality, starting from
the partition function in Eq. (51) coupled to the two-form probe introduced in Section 4.2, is
derived in Section 6.

Similar to its magnetic dual, the electric theory in Eq. (64) explicitly displays a global ZNn
one-form symmetry, under which

a→ a+
1

Nn
Υ . (66)

Here again Υ is a flat connection. This symmetry is the continuum realization of the electric
one-form symmetry discussed at length in Section 4.2 in the context of the lattice model. Note
that, as discussed in that section, the presence of deconfined loop operators will ultimately
break this symmetry down to Goblique = ZNn/L , where, as before, L = gcd(Nn, m). In Sec-
tion 6, we will will couple this symmetry to background fields, which we will see leads to a
mixed ’t Hooft anomaly with the Zm magnetic one-form symmetry along with a higher-form
generalization of the magnetoelectric effect.

To summarize, electromagnetic duality is the statement,

iNn
2π

b ∧ da+
iNnm

4π
b ∧ b ←→ −

im
2π

b̃ ∧ dã−
iNnm

4π
b̃ ∧ b̃ . (67)

Comparing the two sides of Eq. (67), we observe that electromagnetic duality acts by exchang-
ing

EM duality: Nn→ m , m→−Nn . (68)

This transformation is notably not equivalent to the duality transformation introduced by
Cardy and Rabinovici, which we discussed in Section 3.3 and which maps n→ m and m→−n.
Although that transformation leaves the free energy invariant, it does not preserve the topo-
logical order and thus maps one oblique TI phase of the CR model to another. On the other
hand, Eq. (68) is a genuine duality in the sense that it provides two equivalent descriptions
of the same oblique TI phase. We will discuss the difference between electromagnetic duality
and the CR duality transformation in more detail in Section 8.

5.3 Oblique topological order: TQFT

We are now prepared to discuss the topological order associated with the dual TQFTs in
Eq. (67). Since these theories have been discussed at length in Refs. [16,32,35,38–41,60,61],
our primary contribution will be to demonstrate that their observables map precisely onto the
operators discussed in the context of the CR lattice model in Section 4.1. This constitutes a
proof that the topological orders of the oblique confining phases of the CR model are described
by this class of TQFTs. Importantly, this type of argument extends beyond the strong coupling
limit used in Section 5.1.

We begin by constructing the gauge invariant loop operators in terms of electric variables
in Eq. (64). A Wilson loop of the field, aµ, by itself is not gauge invariant under the one-form
gauge symmetry in Eq. (63), but it can be made gauge invariant by attaching an operator
supported on an open surface, Σ, bounded by the loop. We then consider the gauge invariant
operator,

OΣ = exp
(

i
∮
∂Σ

a+ im
∫
Σ

b
)

. (69)

Because this operator depends on the topology of the surface, Σ, it generally has trivial cor-
relation functions. A non-trivial loop operator can be obtained by raising OΣ to the power
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Nn/L, where L = gcd(Nn, m), such that the surface part of the operator becomes invisible.
This can be seen by noting that the equation of motion for a constrains b to be a ZNn gauge
field. Such operators are referred to in the literature as “genuine” loop operators [60], and
they furnish the topological content of the theory. They are generated by

DΓ = (OΣ)Nn/L , (70)

where Γ = ∂Σ. Since (DΓ )L = 1, we see that there are L inequivalent genuine loop operators.
The operators generated by powers of DΓ represent the world lines of the L deconfined

dyons, and they are equivalent to the operators constructed in the lattice model, Eq. (30)
(hence the similar notation). This is simply the statement that electric flux tubes are the
vortices of the magnetic gauge field, b = dã/Nn. Thus, the deconfined dyons are products of
Wilson and ’t Hooft loops,

deconfined dyons: (DΓ )k = exp
(

i
Nnk

L

∮
Γ

a+ i
mk
L

∮
Γ

ã
)

, (71)

where 0 ≤ k < L. These are precisely the continuum versions of the lattice gauge theory

operators, DΓ
(

qe =
nk
L , qm =

mk
L

)
, constructed in Eq. (30), and they have the same braiding

properties.
In addition to the L line operators, there are also L inequivalent gauge invariant surface

operators, which can be expressed in terms of b,

UΣ = exp
(

i
∮
Σ

b
)

, (72)

where Σ is a closed surface. Like the ŨΣ operators in the lattice model, these operators repre-
sent world sheets of magnetic flux tubes in the oblique confining phase. As was also the case in
the discussion of the surface operators in Section 4.1.3, there is an equivalence between elec-
tric and magnetic surface operators in the TQFT, and the operator UΣ generates the complete
set of surface operators.

Given the dyon loop operators, DΓ , and the surface operators, UΣ, of the TQFT, we can
determine their self and mutual statistics [41,61]. The line operator, DΓ , represents the world
line of a particle with statistical phase (−1)Nnm/L2

, and UΣ has trivial self statistics. The mutual
statistics are captured by correlation functions of DΓ and UΣ,〈

(DΓ )k (UΣ)M
〉
= exp

(
2πi

kM
L
ϕ[Σ, Γ ]

)
, (73)

where ϕ[Γ ,Σ] is the linking number of Γ and Σ. This result matches that obtained using
the lattice model, Eq. (43), and we thus conclude that the topological order described by the
TQFTs in Eq. (67) is identical to that of the CR model in the oblique TI phase where a charge
(n, m) dyon condenses. The only remaining task is to explain the equivalence of their global
symmetries, which is the topic we now turn to.

5.4 Global symmetries of the TQFT

In Section 5.2, we saw that the electric TQFT in Eq. (64) displays an emergent ZNn one-form
symmetry,

a→ a+
1

Nn
Υ , (74)

where Υ is a flat connection with quantized cycles,
∮
Υ ∈ 2πZ. However, as in the discussion

of the lattice model, this global symmetry acts on the electric loop operators in Eq. (69) as
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OΣ → ωOΣ, ω ∈ ZNn. In particular, the gauge invariant observables—the deconfined dyon
loops of Eq. (71)—transform under this symmetry according to

DΓ →ωNn/L DΓ . (75)

Such a transformation leaves the deconfined dyon loops invariant if ω ∈ ZNn/L ⊂ ZNn. The
remaining unbroken subgroup is then

Goblique = ZNn/L , (76)

as we found in Section 4.2 in the context of the CR lattice model.
The same argument can be carried out for the magnetic Zm one-form symmetry in Eq. (61),

leading to a residual global symmetry, G̃oblique = Zm/L , acting on magnetic loops. However,
we will demonstrate in the next section that this magnetic one-form symmetry has a mixed
’t Hooft anomaly with Goblique, and so we choose to view it as broken. Indeed, in the next
section, we will consider the response of the oblique TI phase to the introduction of electric
two-form probe fields. Finally, we remark that the theory also has a global discrete two-form
symmetry [35, 60], but the presence of this symmetry will not play a role in the physics we
describe in this work.

6 Generalized magnetoelectric effect

We now examine how the two-form probe field, Bµν, introduced to the lattice model in Sec-
tion 4.2, couples to the continuum TQFT. In the oblique TI phase, Bµν probes the emergent
electric one-form symmetry, which we will demonstrate leads to a mixed ’t Hooft anomaly with
the emergent magnetic one-form symmetry. The coupling to Bµν ultimately leads to a higher-
form generalization of the magnetoelectric effect, which provides a universal topological index
characterizing an oblique confining phase.

We begin with the Cardy-Rabinovici action coupled to the probe, Bµν, defined in Sec-
tion 4.2. To determine how the probe couples to the effective field theory, we work in parallel
to the arguments in Section 5.1. In the limit, g2→∞, and θ/2π= −n/m, the action becomes

S[B] =
∑

r

[
−

iNn
4πm

ϵµνλσ
(
∆µaν

)
(∆λaσ)−

iNπ
4m
ϵµνλσ

(
sµν +

Bµν
N

)(
sλσ +

Bλσ
N

)]
+

iNn
m

∑
r

(
mµ +

1
2
ϵµνλσ∆ν

Bλσ
N

)
aµ − iN

∑
ℓ

nµaµ .
(77)

As in Section 5.1, we proceed by integrating out aµ, which leads to a local constraint that we
can express in the action using a Lagrange multiplier, α̃µ ∈ Z. The resulting action is

S[B] =
∑

r

[
−

2πi
m

1
2
ϵµνλσ

(
sµν +

Bµν
N

)
∆λα̃σ −

iNnπ
m

1
4
ϵµνλσ

(
sµν +

Bµν
N

)(
sλσ +

Bλσ
N

)]
,

(78)

which reduces to Eq. (53) when Bµν = 0 mod N , since Bµν can be absorbed into sµν in this
case.

In contrast to the approach of Section 5.1, we will seek a dual theory in terms of “electric”
variables prior to taking the continuum limit. We perform a duality transformation on the
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lattice by invoking the Poisson summation formula, which leads to the action,

S[B] =
∑

r

[
−

2πi
m

1
2
ϵµνλσ

(
ξµν +

Bµν
N

)
∆λζσ −

iNnπ
m

1
4
ϵµνλσ

(
ξµν +

Bµν
N

)(
ξλσ +

Bλσ
N

)
−2πi

1
4
ϵµνλσξµν tλσ − 2πi ζµρµ

]
,

(79)

where we have introduced ξµν,ζµ ∈ R and tµν,ρµ ∈ Z, which are all dynamical. Integrating
over ξµν gives

S[B] =
∑

r

[
2πi
Nn

1
2
ϵµνλσ tµν∆λζσ +

2πi
N

1
4
ϵµνλσ tµνBλσ +

imπ
Nn

1
4
ϵµνλσ tµν tλσ − 2πi ζµρµ

+
iπ

Nnm
ϵµνλσ

(
∆µζν

)
(∆λζσ)

]
,

(80)

and integrating over ζµ ∈ R implies a constraint on tµν,

1
2
ϵµνλσ∆ν tλσ ∈ NnZ . (81)

We then introduce a Lagrange multiplier, αµ ∈ Z, for this constraint and arrive at the action,

S[B] =
∑

r

[
2πi
Nn

1
2
ϵµνλσ tµν∆λασ +

2πi
N

1
4
ϵµνλσ tµνBλσ +

imπ
Nn

1
4
ϵµνλσ tµν tλσ

]
. (82)

This action (with Bµν = 0 mod N) is the “electric” analogue of Eq. (53).
We may use this result to construct a corresponding continuum field theory. First, con-

sider the case when Bµν = 0 mod N . Eq. (82) has emergent zero-form and one-form gauge
symmetries,

αµ→ αµ −mηµ +∆µχ + NnNµ , tµν→ tµν +
(
∆µην −∆νηµ

)
+ NnMµν , (83)

where χ ,Nµ ∈ Z are the parameters for zero-form gauge transformations and ηµ,Mµν ∈ Z
are independent parameters for one-form gauge transformations. The same reasoning from
Section 5.1 then suggests the correspondence,

2π
Nn
αµ→ aµ ,

2π
Nn

tµν→ bµν , (84)

implying that the continuum analogue of Eq. (82) (with Bµν = 0) is the TQFT in Eq. (64),
consistent with our arguments in the continuum. We recall from Section 5.2.2 that the U(1)
one-form field, a, is the electric gauge field, and the U(1) two-form field, b, represents world
sheets of flux tubes.

We now consider how to treat the case with the probe turned on, Bµν ̸= 0 mod N . We
observe that Eq. (82) is invariant under one-form gauge transformations for Bµν,

Bµν→ Bµν +∆µην −∆νηµ , αµ→ αµ + nηµ , (85)

where ηµ ∈ Z. Although we use the same notation, note that this gauge transformation is in-
dependent of the transformation in Eq. (83). The correspondence in Eq. (84) suggests that the
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gauge symmetry for Bµν becomes a ZN gauge symmetry in the TQFT. Thus, in the continuum,
Bµν corresponds to a background ZN two-form gauge field. We then make the replacement,

2πBµν
N

→ Bµν . (86)

To guarantee that Bµν is a ZN gauge field, we introduce a new charge-N Lagrange multiplier
field, βµ, in the continuum theory to Higgs B. Putting everything together, we may write the
continuum TQFT as

S[B] =
iNn
2π

∫
b ∧ (da+ B) +

iNnm
4π

∫
b ∧ b+

iN
2π

∫
B ∧ dβ . (87)

Integrating over β enforces a constraint that dB = 0 locally and∮
Σ

B ∈
2π
N
Z , (88)

for any closed surfaceΣ. We also comment that Eq. (87) is invariant under the one-form gauge
symmetry,

b→ b+ dλ , a→ a−mλ , β → β − nλ , (89)

which is the continuum analogue of Eq. (83). Here, λ is a U(1) one-form gauge field.
We now describe the physical interpretation of Eq. (87) in terms of the global one-form

symmetries. We note that the action, Eq. (87), is invariant mod 2πi under

B→ B + dλ , a→ a−λ , (90)

where λ is a U(1) one-form gauge field. This one-form gauge symmetry for B is the continuum
analogue of Eq. (85) and is independent of the transformation in Eq. (89). Hence, B is a
background gauge field for the emergent global electric one-form symmetry of the TQFT. More
precisely, since B is a ZN gauge field (after integrating out β), it probes a subgroup ZN ⊂ ZNn
of the global electric one-form symmetry described in Section 5.2.2.

We now consider the effect of Bµν on the magnetic one-form symmetry, which we recall
is Zm before being broken to a subgroup by oblique confinement. We will see that the global
magnetic one-form symmetry of the TQFT is broken by B, thus demonstrating that there is a
mixed ’t Hooft anomaly between the electric and magnetic one-form symmetries. The mag-
netic one-form symmetry is easiest to view when the theory is presented in terms of the mag-
netic fields, ã and b̃, as in Eq. (58). To determine how B couples to the magnetic version of
the theory, we then complete a standard electromagnetic duality calculation and perform a
Hubbard-Stratonovich transformation, which introduces the two-form field, b̃. The result is

S̃[B] = −
im
2π

∫
b̃ ∧ dã−

iNnm
4π

∫
b̃ ∧ b̃+

i
2π

∫
B ∧ dã+

iN
2π

∫
B ∧ dβ , (91)

where ã and b̃ are the magnetic counterparts of a and b, introduced in Section 5.2. We remark
that in the magnetic varibales of Eq. (91), the loop variables—and thus the global electric one-
form symmetry—have been fractionalized [62], i.e. in the magnetic representation the surface
operators, exp

(∮
b̃
)
, carry fractional charge. This phenomenon does not occur in the electric

representation of the theory, Eq. (87), and therefore is not essential to understanding the
topological order of the oblique TI. It is physically a consequence of the fact that dyon loops
are composites of electric and magnetic loops.

It is clear now that the magnetic one-form symmetry is broken. Under the transformation
for the global Zm magnetic one-form symmetry, Eq. (61), the action, Eq. (91), changes by

δΥ S̃[B] = −
2πi
m

∫
dB
2π
∧
Υ

2π
∈

2πi
m
Z , (92)
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so the partition function is not left invariant. Therefore, the background field, B, has broken
the magnetic one-form symmetry. Because B is a background gauge field for the electric one-
form symmetry of the TQFT, we conclude that there is a mixed ’t Hooft anomaly for the electric
and magnetic one-form symmetries of the TQFT, as stressed in previous sections.

We can now observe that, in an oblique TI, the coupling to B leads also to a universal
“response” generalizing the magnetoelectric effect of ordinary TIs. After integrating out b in
Eq. (87), the resulting effective action is

Seff[B] = −
iNn
4πm

∫
(da+ B)∧ (da+ B) +

iN
2π

∫
B ∧ dβ . (93)

Typically, in calculating response, one integrates out all fluctuating fields, but we cannot further
integrate out a since it is required for one-form gauge invariance under Eq. (90). However, we
may nonetheless eliminate a by gauge fixing B, B→ B − da, in analogy with fixing to unitary
gauge in a Laudau-Ginzburg theory of a superconductor. The resulting response theory is then

Sresponse[B] = −
iNn
4πm

∫
B ∧ B , (94)

where integrating over β fixes B to be a ZN field.
Because B does not couple to the global current for a continuous symmetry (the global

charge is not conserved except mod Nn/L), we emphasize that the notion of the generalized
magnetoelectric effect as a genuine response coefficient does not have a straightforward phys-
ical interpretation, unlike its U(1) counterpart [4]. In addition, one is technically allowed to
eliminate a by gauge fixing B only if the phase is topologically trivial (i.e., if L = 1). Neverthe-
less, the correct interpretation of the fractional coefficient in Eqs. (93) – (94) is as a universal
topological index for an oblique confining phase, representing a higher-form generalization
of the magnetoelectric effect. In particular, because this generalized magnetoelectric effect
probes the residual one-form symmetry, Goblique = ZNn/L , and is therefore sensitive to the elec-
tric and magnetic charges condensed in an oblique TI phase, its presence distinguishes the
oblique TI from an ordinary ZL topological order.

Finally, we also comment on an ambiguity in the response computed using the TQFT—
states with the same bulk topological order may have a different response coefficient. Inte-
grating out a in Eq. (87) quantizes the cycles of b such that the partition function is invariant
under m→ m+ 2Nn, and indeed, from our discussion of the operators and correlation func-
tions in Section 5.3, one can easily verify that the bulk topological order is invariant under
m → m + 2Nn. A similar ambiguity appears in the fractional quantum Hall effect, where
the effective Chern-Simons theory only determines the fractional part of the Hall conductivity
since one can always “add Landau levels”. We note, however, that for a given N , oblique con-
fining states with different topological orders will never have the same response coefficient in
Eq. (94), so in this sense, the coefficient is a universal topological index that characterizes the
state. We also remark that there no ambiguity in the response when the theory is on a manifold
with a boundary. In the fractional quantum Hall problem, a boundary is required to inject a
current and measure the Hall voltage, though the Hall conductivity is still a feature character-
izing local response of the quantum Hall fluid regardless of whether there is a boundary. The
same considerations should apply here to the response for an oblique confining state.

7 Gapped boundary states of oblique TIs

7.1 Boundary topological order and anomaly inflow

As we have seen, the bulk of an oblique confining phase is topologically ordered in general,
so it is natural to consider the theory defined on an open manifold and investigate its possible
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boundary states. We will find that the boundary of an oblique TI phase hosts a topological
order not realizable in a purely 2+1-D system. However, we will also show that the choice
of boundary topological order is not uniquely determined by the bulk theory, and we will
explicitly construct a new boundary state distinct from those discussed in the past for TQFTs
of the type in Eq. (64). We will also see that these different possibilities for surface topological
order exhibit breaking of different subgroups of the emergent bulk one-form symmetry, and
as such are intimately linked to the presence of this global symmetry in a manner reminiscent
of ordinary symmetry protection in SPT and SET phases.

The first boundary state we will consider was previously studied in Refs. [35, 38, 60] and
is given by the action

S =
∫

X

(
iNn
2π

b ∧ da+
iNnm

4π
b ∧ b

)
+
∫
∂ X

(
−

iNnm
4π

c ∧ dc +
iNn
2π

c ∧ da
)

, (95)

where c is a one-form U(1) gauge field that exists solely on the boundary of the manifold X .
We review this analysis and then construct the new topologically ordered boundary state,

S̃ =
∫

X

(
−

iNn
2π

d b ∧ a+
iNnm

4π
b ∧ b

)
+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

iNn
2π

b ∧ (mc̃ − dφ)
)

, (96)

where c̃ is a one-form U(1) gauge field and φ is a 2π-periodic scalar field, both defined only
on ∂ X . We refer to the boundary state in Eq. (95) as the “electric boundary condition”, as it
describes a boundary topological order with |Nn| anyons, and we call Eq. (96) the “magnetic
boundary condition”, which hosts a topological order with |m| anyons. The remainder of this
section will concern the construction of these boundary states and their physical consequences.

7.1.1 Electric boundary condition

We begin by reviewing the boundary state introduced in Refs. [35, 38, 60]. This boundary
state is equivalent to taking the boundary condition b|∂ X = 0, but here we give an argument
of anomaly inflow for the one-form gauge symmetry. If the theory, Eq. (64), is on a manifold
X that has a boundary, then the action in Eq. (64) is no longer invariant under one-form gauge
transformations,

a→ a−mλ , b→ b+ dλ . (97)

Under a one-form gauge transformation, the bulk action, Eq. (64), changes by the boundary
term,

δλ Sbulk = −
iNnm

4π

∫
∂ X
λ dλ+

iNn
2π

∫
∂ X
λ da . (98)

One can introduce a one-form gauge field c that exists solely on the boundary and transforms
under one-form gauge transformations as

c→ c −λ . (99)

If we take the boundary action to be

Sbdry = −
iNnm

4π

∫
∂ X

c dc +
iNn
2π

∫
∂ X

c da , (100)

then the total action for the bulk and boundary together, given by Eq. (95), is gauge invariant.
In addition, since this action is invariant under Eq. (66), we see that the global ZNn electric
one-form symmetry is preserved.
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To determine the physics of this boundary state, we construct the gauge invariant observ-
ables. Two such operators to consider are

ŨΣ = exp
(

i
∮
Γ

c + i
∫
Σ

b
)

,

VΓ = exp
(

i
∮
Γ

a− im
∮
Γ

c
)

,
(101)

where Γ = ∂Σ is a curve that lies in ∂ X , and the surface Σ can be in the bulk. The equation
of motion for a in the bulk ensures that d b = 0 locally while globally we have∮

b ∈
2π
Nn
Z, (102)

so b is aZNn gauge field. Therefore, physical loop operators constructed from ŨΣ are generated
by

ṼΓ =
(
ŨΣ
)Nn

. (103)

However, the equation of motion for a on ∂ X constrains the value of b at the surface to be

b|∂ X = −dc , (104)

so ṼΓ is actually a trivial operator, which indicates that this boundary state is equivalent to
the boundary condition b|∂ X = 0. Thus, since ṼΓ is trivial, all nontrivial loop operators on the
surface are generated by VΓ . Using the boundary action, the correlation functions are given by〈

(VΓ )
k (VΓ ′)

k′
〉
= exp

(
2πi kk′m

Nn
ϕlink[Γ , Γ

′]
)

, (105)

where ϕlink[Γ , Γ ′] is the linking number of the closed loops Γ and Γ ′. Thus, the loop operators
generated VΓ represent the world lines of anyons on the boundary ∂ X . Since VΓ generates
the deconfined particles on ∂ X and transforms under the global electric one-form symmetry,
Eq. (66), we see that the topological order on ∂ X is realized by completely breaking the global
ZNn electric one-form symmetry.

Next, we count the types of anyons in the surface topological order. For simplicity, let us
assume that Nn > 0. From Eq. (105), we observe that for 0 ≤ k < Nn

L , the operator (VΓ )
k

is an anyon and is hence restricted to the boundary, ∂ X . But (VΓ )
Nn/L is equivalent to DΓ , a

loop operator of the bulk (see Section 5.3). Therefore, DΓ = (VΓ )Nn/L can freely move into
the bulk and thus must be either a boson or fermion, as reflected in the correlation functions,
Eq. (105). The remaining loop operators on the boundary represent anyons resulting from
fusing a bulk quasiparticle and an anyon (VΓ )

k with 0 ≤ k < Nn
L . Since there are L bulk loop

operators, the total number of boundary loop operators is Nn
L · L = Nn. This boundary theory

has fewer observables than one would expect for a theory with the action in Eq. (100) solely
in 2+1-D. The reason is that we require the observables to be invariant under the one-form
gauge symmetry in Eqs. (97) and (99).

As we have discussed, when L > 1, the bulk is topologically ordered and hosts nontrivial
deconfined quasiparticles, DΓ = (VΓ )Nn/L , which have trivial mutual statistics with all anyons
of the boundary theory. Since these bulk particles may also be obtained by fusing boundary
anyons, the boundary theory is not consistent as a purely 2+1-D topological order because
it is non-modular. A topological order of this type cannot exist purely in 2+1-D but must
necessarily be coupled to a 3+1-D bulk.
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7.1.2 Magnetic boundary condition

We now turn to the second boundary state. This state is equivalent to taking the boundary
condition a|∂ X = 0, though we will opt for a gauge invariant description as we did for the first
boundary state. In Section 7.1.1, we chose to write the BF term in the bulk action as b∧da and
then introduced boundary degrees of freedom that ensured gauge invariance under one-form
gauge transformations, Eq. (97). Now, we construct an alternate boundary state by writing
the BF term in the form −d b ∧ a and examining how the bulk action changes under a gauge
transformation. Of course, if X has no boundary, then these two ways of writing the BF term
are equivalent, but when X has a boundary, we will obtain different physics. We thus take the
bulk action to be

S̃bulk =
∫

X

(
−

iNn
2π

d b ∧ a+
iNnm

4π
b ∧ b

)
. (106)

We consider zero-form and one-form gauge transformations, given by

b→ b+ dλ , a→ a−mλ+ dξ , (107)

where λ is a U(1) one-form gauge field and ξ is a 2π-periodic scalar. Under these gauge
transformations, S̃bulk changes by the boundary term,

δλ S̃bulk =
∫
∂ X

(
iNnm

4π
λ∧ dλ+

iNnm
2π

b ∧λ−
iNn
2π

b ∧ dξ
)

. (108)

We then introduce a one-form gauge field c̃ and a 2π-periodic scalar field φ that exist solely
on ∂ X and transform under the gauge symmetry of Eq. (107) by

c̃→ c̃ −λ , φ→ φ − ξ . (109)

If we take the boundary action to be

S̃bdry =
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

iNnm
2π

c̃ ∧ b−
iNn
2π

b ∧ dφ
)

, (110)

then the total action, Eq. (96), is fully gauge invariant under Eqs. (107) and (109). The theory
is also invariant under zero-form gauge transformations for c̃,

c̃→ c̃ + dχ , a→ a−m dχ , (111)

where χ is a compact scalar. However, note that the action now is not invariant under Eq. (66),
so the ZNn electric one-form symmetry is explicitly broken by this boundary state.

We then determine the topological order of this second boundary state, again by finding the
gauge invariant observables and computing their correlation functions. One gauge invariant
operator is

V̂Γ = exp
(

iφ(P)− iφ(P ′) + i
∫
Γ

a− im
∫
Γ

c̃
)

, (112)

where P and P ′ are points on ∂ X , and Γ is a curve in ∂ X with endpoints at P and P ′. Addi-
tionally, we can take P = P ′ and consider a closed loop Γ . However, the equation of motion
for b renders V̂Γ trivial.12 The only other gauge invariant operator that can be constructed
with the fields on ∂ X is

ŨΣ = exp
(

i
∮
Γ

c̃ + i
∫
Σ

b
)

, (113)

12Since the loop operators of a are trivial on ∂ X , this boundary state is equivalent to the boundary condition
a|∂ X = 0.
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where Γ = ∂Σ lies on the boundary ∂ X . Integrating out a constrains b to be a ZNn gauge field
in the bulk, and φ imposes this restriction on the boundary. Thus, the physical loop operators
on the boundary are generated by

ṼΓ =
(
ŨΣ
)Nn

, (114)

which have correlation functions of〈(
ṼΓ
)k (

ṼΓ ′
)k′
〉
= exp

(
−

2πi kk′Nn
m

ϕlink[Γ , Γ
′]
)

, (115)

where ϕlink[Γ , Γ ′] is the linking number introduced in Eq. (105). Hence, the operators (ṼΓ )k

represent anyons, and Eq. (115) describes their fractional statistics.
Let us now count how many particles participate in this surface topological order. As in the

analysis above, we take m > 0 for simplicity. Then, the correlation functions in Eq. (115) tell
us that (ṼΓ )k, with 0≤ k < m

L , is an anyon confined to the boundary. But (ṼΓ )m/L is equivalent
to the bulk particle DΓ . The remaining anyons are formed by fusing a bulk particle with (ṼΓ )k,
where 0≤ k < m

L . Therefore, the number of anyons in this surface topological order is m.
We have thus found an alternate boundary state characterized by a different topological

order. In particular, the topological data for this boundary state can be obtained by taking
(Nn, m)→ (m,−Nn) for the topological data computed for the first boundary state.

7.1.3 Global symmetries of the boundary theories

We now comment in more detail on the realizations of the emergent bulk global symmetries
in each boundary state. We first discuss the emergent ZNn electric one-form symmetry that
we have primarily focused on thus far. The “electric” boundary state, Eq. (95), has an action
that respects the global ZNn one-form symmetry of the bulk, but this symmetry is ultimately
broken completely in the IR by the presence of |Nn| deconfined anyons on the surface. On
the other hand, this ZNn one-form symmetry is explicitly broken by the “magnetic” boundary
state, Eq. (96).

The global Zm magnetic one-form symmetry, Eq. (61)—which we recall has a mixed
anomaly with the ZNn electric symmetry—has the opposite fate. This can be most clearly
understood by acting with electromagnetic duality on these boundary states, which we do
in Appendix D, so that they are constructed in terms of the magnetic gauge fields, ã and b̃.
Indeed, the electric boundary state, Eq. (95), has an action that explicitly breaks the mag-
netic one-form symmetry, and the action of the magnetic boundary state, Eq. (96), preserves
the magnetic one-form symmetry at the level of the action, but its |m| deconfined anyons are
charged under this global symmetry. The boundary topological order in the magnetic bound-
ary state is thus realized by breaking the magnetic one-form symmetry completely.

Interestingly, the presence of an unbroken subgroup of the global one-form symmetry in
the bulk has played an essential role in this analysis. For example, although the electric ZNn
one-form symmetry is broken down to Goblique = ZNn/L by the bulk topological order (i.e. at
the level of the Hilbert space), the existence of the full emergent ZNn symmetry determines the
boundary topological order under the electric boundary conditions. The same can be said of
the relationship between the full emergent Zm magnetic one-form symmetry and the boundary
state obtained using magnetic boundary conditions.

7.2 Boundary Hall conductivity

In the previous subsection, we constructed two different boundary states, which are topolog-
ically ordered. An important piece of data characterizing these topological orders is the Hall
conductivity, which we now compute. We begin with the first boundary state, Eq. (100), which
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we couple to a background U(1) gauge field, Aµ. To ensure invariance under the one-form
gauge symmetry, this background field must couple to (da−m dc),

Sbdry[A] =
∫
∂ X

(
−

iNnm
4π

c dc +
iNn
2π

c da+
i

2π
A(da−m dc)

)
. (116)

The physical interpretation of this particular coupling is that the charge carriers are dyons. If
we integrate out a and c to obtain an effective action for A, we observe that the Hall conduc-
tivity for A is

σH =
m

Nn
, (117)

in units of e2/h.
We perform a similar calculation for the second boundary state. First, note that integrat-

ing over φ gives b|∂ X = dã/Nn where ã is a U(1) gauge field. Thus, the boundary action,
Eq. (110), becomes

S̃bdry =
∫
∂ X

(
iNnm

4π
c̃ d c̃ +

im
2π

c̃ d ã
)

. (118)

Because of one-form gauge invariance, the background field A couples to
Nn(b+ dc̃) = dã+ Nn dc̃, which gives us an action of

S̃bdry[A] =
∫
∂ X

(
iNnm

4π
c̃ d c̃ +

im
2π

c̃ d ã−
i

2π
A(dã+ Nn dc̃)

)
. (119)

After calculating the effective action for A, we find a Hall conductivity of

σ̃H =
Nn
m

, (120)

which is similar to the Hall conductivity for the first boundary state except that the electric
charge Nn and magnetic charge m have been swapped.

8 Comments on duality and modular invariance

Before concluding, we wish to comment in more detail on the relationship between the duality
transformations of Cardy and Rabinovici (CR), which we introduced in Section 3.3, and the
duality transformations invoked in studying the TQFT in Section 5. Recall from Section 3.3
that, in the Coulomb gas picture, the free energy of the CR model is invariant under

SCR : (n, m) 7→ (−m, n) ,

TCR : (n, m) 7→ (n−m, m) .
(121)

Although these transformations leave the free energy invariant, they do not preserve the cor-
relation functions of the theory and thus the topological order [33], which are determined by
L = gcd(Nn, m). Under the CR modular transformations, L is clearly preserved by TCR but not
by SCR. As a result, these modular transformations map the different oblique TI phases of the
CR model to one another, generating the phase diagram in Figure 4. We therefore caution that
while SCR is often referred to as “electromagnetic duality,” it does not preserve the ground
state observables of the theory.13 We note also that the generalized magnetoelectric effect,
Eq. (93), transforms under both of these transformations.

13In the absence of a Θ-angle, the duality of ordinary ZN gauge theories [46, 47] is equivalent to EM duality
in the sense used by Cardy and Rabinovici in Refs. [23, 24], in that it amounts to the exchange of electric and
magnetic charges. However, as we have shown, if Θ ̸= 0 the mapping is more subtle and it is incorrect to view the
CR transformation as “electromagnetic” duality.
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On the other hand, it is possible to write down a set of modular transformations that
preserves L and, therefore, the topological order and global symmetries of an oblique TI phase,

S : (Nn, m) 7→ (m,−Nn) ,

T : (Nn, m) 7→ (Nn−m, m) .
(122)

The S transformation is already familiar to us from Eq. (67) as the physical electromagnetic
(EM) duality transformation, which exchanges the total electric and magnetic charges com-
prising the condensing dyons in a particular oblique TI phase. The transformation, T , is a shift
of the total Θ-angle, Θ = −2πN n/m→ Θ+ 2π, which also appears to be a symmetry of the
partition function. However, there is a well-known subtlety to this analysis. Namely, one must
also consider the effects of S and T on the statistics of point excitations. For the CR model
coupled to microscopic fermions (which involes a spinc connection), the T transformation
preserves the statistics of point excitations, but EM duality, S, does not. Nevertheless, there is
an alternate notion of electromagnetic duality for fermions, which we discuss in Appendix C.
For the bosonic CR model (with ordinary U(1) gauge fields), S manifestly preserves the topo-
logical order, but T can transmute statistics of the point excitations. A shift of Θ by 4π, i.e.
T 2, on the other hand, leaves the statistics invariant [8,9].

The above statements about invariance under periodicity, T , are transparent at the level
of the bulk field theory. Consider the expression for the bosonic bulk TQFT in the “magnetic”
variables,

S̃ = −
im
2π

∫
b̃ ∧ dã−

iNnm
4π

∫
b̃ ∧ b̃ . (123)

Integrating out ã constrains b̃ to be a Zm gauge field. Thus, after integrating out ã, what
remains is a topological term that on a closed manifold, Y , evaluates to

S̃eff = −
iNnm

4π

∫
Y

b̃ ∧ b̃ ∈
πiNn

m
Z . (124)

We thus conclude that Nn∼ Nn−2m, meaning that T 2 leaves the partition function invariant,
as anticipated above. In Appendix C, we similarly show that T leaves the partition function
invariant in the fermionic case.

Finally, it is important to note how S and T act on the generalized magnetoelectric re-
sponse, Eq. (93). Because EM duality, S, is a genuine duality transformation of the theory that
is simply an exact change of variables in the partition function, it preserves the generalized
magnetoelectric effect. This can be seen by shifting b̃ by B/m in Eq. (91) and inspecting the
coefficient of B∧B. Put differently, even though S alters the form of the coupling to B (the the-
ory is not self-dual), B still leads to the same universal index, which reflects the mixed anomaly
between the electric and magnetic one-form symmetries. In contrast, T does not preserve the
generalized magnetoelectric effect, since the terms involving the background field in Eq. (93)
are not periodic.

To summarize, the modular transformations, S and T , have a different physical meaning
from the Cardy-Rabinovici transformations, SCR and TCR. In the bosonic CR model, although
(TCR)

2 = T 2N preserves the topological order, SCR does not in general. The CR modular
transformations, SCR and TCR, are symmetries of the free energy and map between the different
phases of the theory, whereas S and T are genuine EM duality transformations that preserve
correlation functions and thus the topological order.

9 Discussion

We have presented in this work a new class of 3+1-D fractional topological insulator phases
based on oblique confinement and dyon condensation, using the Cardy-Rabinovici lattice
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gauge theories as foundational examples. These oblique topological insulator phases are char-
acterized by both topological order and emergent one-form symmetries that remain unbroken
in the infrared. We have shown that they exhibit exotic behavior such as gapped boundary
topological orders not realizable strictly in 2+1-D, as well as a generalization of the magne-
toelectric effect in the presence of two-form probe fields. Taken together, we believe these
features motivate a new organizing paradigm for 3+1-D FTI phases, as well as SET phases
more broadly, where the presence of unbroken emergent higher-form symmetries in the IR
plays an essential role.

We comment that the oblique TI phases discussed in this work all correspond to ground
states of Walker-Wang models [15–17,54] or their generalizations with additional fundamental
fermions [63, 64], which also should have the same emergent global symmetries, boundary
states, and generalized magnetoelectric effect. The utility of the Cardy-Rabinovici model,
however, is to provide a single unifying parent theory for each of these states and transitions
between them, all based on the physical mechanism of oblique confinement. In the future,
it would be very interesting to search for models leading to oblique TI phases that cannot be
represented using Walker-Wang models.

Because we have constructed two distinct boundary topological orders for the same oblique
TI bulk, which differ in the emergent one-form symmetries they break in the IR, it is natural to
wonder if a continuous quantum phase transition between them is possible. Any such transi-
tion would correspond to an additional gapless boundary state sharing a gauge anomaly with
the bulk, and it would constitute a new type of phase transition beyond the Landau ordering
framework.

While our focus in this work was on bulk ZN gauge theories, it should be possible to
construct more general classes of oblique TI phases. For example, one can consider possible
phases in which the loop degrees of freedom experience fractionalization [62]. It may also
be interesting to extend the framework of oblique TI phases to gauge theories involving non-
Abelian bulk gauge groups, such as SO(N). Such theories also lead to discrete emergent
higher-form symmetries and would provide a natural avenue for further exploration of dyon
condensation and oblique TI physics. It would also be interesting to consider the possibility
of models with gapped, non-Abelian boundary states [63], which likely have a more intricate
anomaly structure involving both ordinary global symmetries and the bulk one-form gauge
symmetry.

Note added: After the completion of this manuscript, we became aware of the independent
work, Ref. [65], which studies symmetry-protected topological phases of a multi-component
generalization of the topological field theory we study.
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A Review of generalized global symmetries

In this appendix we give an introduction to the concept of generalized global symmetries,
introduced in Ref. [35]. For a recent review of generalized symmetries, see Ref. [45]. Here we
will focus on U(1) and ZN gauge theories and how the generalized global symmetries manifest
in the IR behavior of the phases of these theories. For a detailed discussion of phases of gauge
theories and their characterization, see Refs. [66,67].

A.1 U(1) Maxwell theory

We start by considering pure Maxwell theory in 3+1 spacetime dimensions,

SMaxwell =
∫

d4 x
[
−

1
4g2

f µν fµν

]
. (A.1)

Here fµν = ∂µaν−∂νaµ, where aµ is a compact U(1) gauge field.14 In the absence of monopoles,
this theory describes a free photon, and therefore is in a Coulomb phase. In other words, lines
of electric flux cost very little energy, and the Wilson loop generally decays as a perimeter law
(or more slowly),

charges are deconfined: 〈WΓ 〉=
〈

ei
∮
Γ a
〉
∼ e−Length(Γ ) , (A.2)

where Γ is a closed loop in spacetime. On introducing monopoles into the theory, their con-
densation leads to a confining phase of electric charges. Now electric flux is costly, and the
Wilson loop has an area law,

charges are confined: 〈WΓ 〉 ∼ e−Area(Γ ) . (A.3)

This means that the Wilson line can be understood as an ‘order parameter’ for confinement
(albeit a non-local one).

It is also useful to consider loops of magnetic charge, or ’t Hooft loops, which we will
denote TΓ . ’t Hooft loops fall into a general class of objects known as disorder operators [68]
(for a general review on disorder operators, see Ref. [69] and references therein), which do
not have a simple local form in terms of the gauge field operator. In the Coulomb phase, where
magnetic flux is also energetically inexpensive, ’t Hooft loops also decay with the perimeter
of the loop (or more slowly), while the confinement of monopoles leads to area law behavior.
The natural context in which monopoles are confined is a superconductor, or Higgs phase:
due to the Meissner effect, superconductors expel magnetic flux, meaning that monopoles can
only appear in neutral pairs linked by a magnetic flux line (i.e. a vortex), which mediates a
potential that is linear in the separation of the monopoles.

The existence of Wilson and ’t Hooft loop operators, despite being non-local, suggests
the possibility of a symmetry breaking scenario for confinement. Rather than being based on
ordinary global symmetries, we now understand that such a notion can be based on generalized
global symmetries. In the context of Maxwell theory, let us define the “electric” and “magnetic”
two-form current operators,

JµνE =
1
g2

f µν , JµνM =
1

2π
f̃ µν =

1
4π
ϵµνλσ fλσ . (A.4)

14In this work, we use compact to mean that gauge fields are valued in e.g. U(1) rather than R, and as such have
quantized fluxes. On the other hand, in some parts of the condensed matter literature, the word compact is used
to denote theories for which the inclusion of monopole operators in the action is allowed. Because throughout this
work our focus will be on lattice gauge theories, this latter sense will be implicitly understood to hold also.
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In the absence of electric charges or monopoles, ∂µJµνE = 0 by the equation of motion
(Maxwell’s equations), and ∂µJµνM = 0 by the Bianchi identity. Thus, each of these currents
is conserved, and we say that the theory thus possesses a U(1)E × U(1)M one-form symme-
try, where we call U(1)E the electric one-form symmetry and U(1)M the magnetic one-form
symmetry. A one-form symmetry is a symmetry that acts on loop operators. Here,

U(1)E : WΓ → eiαE WΓ ,

U(1)M : TΓ → eiαM TΓ .
(A.5)

In the case of U(1)E , it is evident that this means that the one-form symmetry acts by shifting
aµ by a gauge connection, λµ,

aµ→ aµ +λµ ,
∮
Γ
λ= αE , (A.6)

such that JµνE and JµνM are both invariant. U(1)M acts in the same way, but on the dual gauge
field, ãµ, coupling to monopoles. (One would obtain a gauge theory of this field by acting with
electromagnetic duality.)

Therefore, WΓ and TΓ may be viewed as order parameters respectively for the electric and
magnetic one-form symmetries. Indeed, we may view “perimeter law” behavior (or slower
decay, such as “Coulomb law” in 3+1-D) for one of these loop operators as indicating breaking
of the corresponding one-form symmetry, and it is also possible to generalize the notion of
long-ranged order to these non-local order parameters. Furthermore, in the Coulomb phase,
the gapless photon is sometimes regarded as a Goldstone mode for the broken U(1)E and
U(1)M one-form symmetries. The adaptation of the Landau symmetry breaking criterion to
generalized global symmetries has been fleshed out in a number of recent works [35, 37, 38,
45,70,71].

We remark, however, that some concepts associated with spontaneous breaking of ordinary
global symmetries do not have a clear analogue for generalized symmetries. For example, the
only sharp definition of spontaneous symmetry breaking of ordinary global symmetries is the
statement that upon coupling the local order parameter of the theory to a local symmetry
breaking field, h(x), the vacuum expectation value of the order parameter field in the ther-
modynamic limit remains nonzero as h → 0. This, in turn, implies that the vacuum of the
theory is not invariant under the global symmetry even in the absence of a symmetry breaking
field. There is no precise analogue of this definition for generalized global symmetries due to
the non-local nature of the observables. For the same reasons, there is no precise analogue of
Goldstone’s theorem for generalized global symmetries either, although it is possible to derive
the presence of gapless degrees of freedom (“photons”) in theories with broken generalized
symmetries.

A.2 ZN gauge theories

Our primary interest in this work is in discrete, ZN gauge theories, which can be obtained
by condensing matter fields of charge N . If the matter is described by a current, Jµ, current
conservation in 3+1-D, ∂µJµ = 0, implies we may re-express the matter current as the flux of
a two-form gauge field (a Kalb-Ramond field) [72,73], bµν,

Jµ =
1

2π
1
2
ϵµνλσ∂νbλσ . (A.7)

We may therefore write the coupling to matter as a mutual Chern-Simons type-theory (in four
dimensions),

SBF = N
∫

d4 x Jµaµ =
N
2π

∫
b ∧ da , (A.8)
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where we have introduced the notation of forms, b = 1
2 bµν d xµ∧d xν, a = aµ d xµ, and d is the

exterior derivative. Throughout this work, we switch between component and form notation
as needed to maximize clarity.

Because the matter is condensing, b fluctuates wildly, hence acting as a Lagrange multiplier
Higgsing all gauge configurations except those satisfying∮

Γ
a =

2πn
N
∈ ZN , (A.9)

where Γ is a closed loop. This is simply the statement that charge-N superconductors have
fractional vortices. Thus, the Lagrangian in Eq. (A.8) describes the spontaneous breaking of a
U(1) gauge theory down to a ZN gauge theory, which has a ZN electric one-form symmetry. In
the absence of monopoles, the remaining uncondensed electric charges of magnitude between
1 and N are deconfined, breaking the ZN one-form symmetry. Examining the ground state
degeneracy of this theory on closed manifolds, one finds that the theory has a topological
ground state degeneracy and thus exhibits ZN topological order. This topological order can
be destroyed by condensing charge-1 monopoles, leading the uncondensed charges to confine
and preserving the ZN one-form symmetry.

In terms of one-form symmetries, the above discussion tells us that topological orders are
characterized by the breaking of discrete one-form symmetries. Although in the example of
ordinary ZN gauge theory, the topologically ordered phase has no remaining electric one-
form symmetry, in the main text, we study more ornate examples with Θ-terms and oblique
confinement. This idea provides an avenue for the construction of topologically ordered states
having both topological order and a remaining discrete one-form global symmetry that can be
the basis for a FTI phase.

B Canonical quantization of the TQFT

To supplement the path integral discussion of the effective TQFT in the main text in Section 5.3,
we also examine this field theory from the perspective of canonical quantization. We work in
Minkowski spacetime on the manifold X = T3×R, where R represents the time direction and
T3 is a spatial 3-torus of dimensions R× R× R. The action is

S =
Nn
2π

∫
X

b ∧ da+
Nnm
4π

∫
X

b ∧ b (B.1)

=
Nn
4π

∫
X

d4 x ϵµνλσ(∂µaν)bλσ +
Nnm
16π

∫
X

d4 x ϵµνλσ bµν bλσ (B.2)

=
Nn
4π

∫
X

d4 x
[
ϵi jk(∂t ai)b jk + ϵ

i jk a0 ∂i b jk + 2 b0i ϵ
i jk ∂ jak +mϵi jk b0i b jk

]
. (B.3)

We choose the axial gauge for both a and b: a0 = b0i = 0. There are two Gauss law constraints,
given by

∂i

(
1
2
ϵi jk b jk

)
= 0 , (B.4)

ϵi jk∂ jak +m
(

1
2
ϵi jk b jk

)
= 0 . (B.5)

The solution for the first constraint is

bi j =
b̄i j(t)

R2
+ ∂iξ j − ∂ jξi , (B.6)
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where ξi is a periodic function on T3 and b̄i j(t) depends only on time, t. Inserting this solution
into the second constraint gives us

ϵi jk∂ jak = −m

(
1
2ϵ

i jk b̄ jk(t)
R2

+ ϵi jk∂ jξk

)
. (B.7)

The solution for ai is then

ai =
āi(t)

R
+ ∂iΛ+m

(
1
2 b̄i j(t)x j

R2
− ξi

)
, (B.8)

whereΛ is a periodic function on T3 and āi(t) depends only on time. Substituting the solutions
for ai and bi j into the action, we obtain

S =
Nn
2π

∫
X

d4 x

[
1
2ϵ

i jk b̄ jk(t)
R2

( ˙̄ai(t)
R
+

m
R2

1
2

˙̄biℓ(t)x
ℓ

)]
(B.9)

=
Nn
2π

∫
R

d t
1
2
ϵi jk b̄ jk(t)

(
˙̄ai(t) +

m
4

∑
ℓ

˙̄biℓ(t)

)
. (B.10)

The action has reduced to that of an ordinary quantum mechanical system. The canonical
commutation relations are[

āi ,
1
2
ϵ jkℓ b̄kℓ

]
= i

2π
Nn
δi j , [āi , ā j] = [ b̄i j , b̄kℓ] = 0 . (B.11)

By the Baker-Campbell-Hausdorff formula, the Wilson loops Wi = ei āi and Wilson surfaces
U j = ei ϵ jkℓ b̄kℓ/2 obey the algebra,

W jUk = e−2πiδ jk/NnUkW j ,

W jWk =WkW j , (B.12)

U jUk = UkU j ,

which implies that (Wi)
Nn and

(
U j
)Nn

commute with all other operators of the theory, so

we take (Wi)
Nn =

(
U j
)Nn = 1. Furthermore, by Dirac quantization for a j , the constraint in

Eq. (B.5) implies that

b̄ jk = −
1
m

∮
Σ jk

(∂ jak − ∂ka j) d x jd xk ∈
2π
m
Z . (B.13)

Here, the repeated indices are not summed over, and Σ jk is a 2-torus, T2 = S1 × S1, in the j

and k directions. Thus, we also have
(
U j
)m = 1. Combining this condition with

(
U j
)Nn = 1,

we find that
(
U j
)L = 1 where L = gcd(Nn, m). The result

(
U j
)L = 1 also has implications for

W j since āi is canonically conjugate to 1
2ϵ

i jk b̄ jk. The commutation relation for āi and 1
2ϵ

i jk b̄ jk

is consistent with (Ui)
L = 1 only if āi ∼ āi + 2πL/Nn. Therefore, the physical line operators

are generated by (Wi)
Nn/L rather than Wi .

Thus, we have line operators (Di)
k = (Wi)

kNn/L and surface operators (Ui)
k, where

0≤ k < L, which obey the algebra,

D jUk = e−2πiδ jk/LUkD j ,

D jDk =DkD j , (B.14)

U jUk = UkU j .
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Moreover, since the physical operators obey the same algebra as those of a topologicalZL gauge
theory on a torus, the ground state degeneracy is the same, namely L3. Hence, the results in
this appendix agree with the operator content and correlation functions for the TQFT discussed
in the path integral formalism in Section 5.3.

C Fermionic Cardy-Rabinovici model: Effective field theory

Typically, models with fundamental fermions must be placed on a spin manifold. In the
fermionic Cardy-Rabinovici model, however, all magnetically neutral particles with odd elec-
tric charge are fermions while those with even electric charge are bosons. For condensed
matter systems that obey this spin-charge relation, we can place the theory on a manifold with
a spinc structure [74, 75], which is less restrictive since any oriented four-manifold admits a
spinc structure (for a review, see Ref. [76]). When we do this, the electric charges should
be coupled to a U(1) spinc connection rather than a U(1) gauge field. This suggests how to
modify the effective field theory we obtained in Section 5.1 for the bosonic theory to capture
the phases of the fermionic model.

For the fermionic CR model, the topological content of a (n, m) oblique phase is described
by

S =
iNn
2π

∫
b ∧ da+

iNnm
4π

∫
b ∧ b , (C.1)

which is similar to the bosonic case discussed in Section 5, except that a is now a U(1) spinc
connection instead of a U(1) gauge field. A U(1) spinc connection is locally the same as a U(1)
gauge field but has a modified flux quantization,∮

da =
∮
πw2 mod 2πZ , (C.2)

where w2 is the second Stiefel-Whitney class.
To better understand the physics of the effective field theory for the fermionic CR model,

we show that a fermionic theory in which (n, m) is condensed is dual to a bosonic theory with
(n, m+ Nn) condensed. Our analysis is similar to that of Refs. [74, 77]. We dualize the spinc
connection, a, by integrating over f as a two-form field and introducing a U(1) gauge field,
ã, that constrains f = da, where a is a U(1) spinc connection. This process gives the action,

S =
iNn
2π

∫
b ∧ f +

iNnm
4π

∫
b ∧ b+

i
2π

∫
f ∧ dã+

i
4π

∫
dã ∧ dã . (C.3)

To understand the role of the last term, we note that

i
4π

∫
dã ∧ dã = −

∫
πw2 ∧

dã
2π

mod 2πi . (C.4)

Therefore, integrating over the U(1) gauge field ã imposes both the local constraint d f = 0
and the global constraint that ( f −πw2) has cycles valued in 2πZ. Together, these constraints
imply that f = da, where a is a U(1) spinc connection. Thus, we have properly dualized a.

If we proceed to integrate over f and b, we obtain the action,

Sdual =
i(m+ Nn)

4πNn

∫
dã ∧ dã . (C.5)

However, we would have obtained the same result if we had instead acted with electromagnetic
duality on the TQFT that describes the (n, m+ Nn) phase of the bosonic CR model,

Sbosonic =
iNn
2π

∫
b̂ ∧ dâ+

iNn(m+ Nn)
4π

∫
b̂ ∧ b̂ , (C.6)
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where â is a U(1) one-form gauge field and b̂ is a U(1) two-form gauge field. Thus, a fermionic
phase in which (n, m) is condensed has the same topological order as a bosonic phase in which
(n, m+ Nn) is condensed.

Physically, this result makes sense because the (n, m+Nn) phase of the bosonic CR model
has L deconfined dyons, where L = gcd(Nn, m+Nn) = gcd(Nn, m), and the deconfined dyonic
line operators,

DΓ

(
qe =

kNn
L

, qm =
k(m+ Nn)

L

)
= (WΓ )

kNn/L (TΓ )
k(m+Nn)/L , (C.7)

where 0≤ k < L, have self-statistics of

(−1)
Nn(m+Nn)

L2 k2
= (−1)

Nnmk2

L2 + Nnk
L . (C.8)

Thus, the topological data of the (n, m+Nn) oblique phase of the bosonic CR model matches
that of the (n, m) phase of the fermionic CR model.

Finally, as mentioned in Section 8, we now show that the partition function is invariant
under

T : (Nn, m) 7→ (Nn−m, m) . (C.9)

To begin, we exploit the result that the (n, m) phase of the fermionic CR model is dual to the
(n, m + Nn) phase of the bosonic CR model. As discussed in Section 8, the dualities of the
TQFT for the bosonic theory are generated by S and T 2, defined in Eq. (122). Thus, we can
then apply these modular transformations to the (n, m + Nn) state of the bosonic model to
draw conclusions about the (n, m) state of the fermionic theory. In particular, we find that

S2T −2S : (Nn, m+ Nn) 7→ (Nn−m, Nn) . (C.10)

By the duality argument presented earlier in this appendix, the state of the bosonic theory
resulting from this transformation is dual to a fermionic theory on which we have acted with
T . Thus, we conclude that T preserves the topological order for the fermionic theory.

D Electromagnetic duality with boundaries

We consider how the boundary states in Section 7 transform under electromagnetic duality,
adapting the duality calculation in Section 5.2.2 for when the theory is on a manifold with a
boundary. We start with the electric boundary state studied in Section 7.1.1. The action is

S =
∫

X

(
iNn
2π

b ∧ da+
iNnm

4π
b ∧ b

)
+
∫
∂ X

(
−

iNnm
4π

c ∧ dc +
iNn
2π

c ∧ da
)

. (D.1)

To study electromagnetic duality in the presence of a boundary, we perform manipulations
similar to those in Refs. [77,78]. We replace da with f in the bulk and introduce a two-form
Lagrange multiplier, f̃ , for the constraint, f = da. The new action is

S =
∫

X

(
iNn
2π

b ∧ f +
iNnm

4π
b ∧ b−

i
2π

f̃ ∧ ( f − da)
)
+
∫
∂ X

(
−

iNnm
4π

c ∧ dc +
iNn
2π

c ∧ da
)

.

(D.2)
The newly introduced two-form fields, f and f̃ , transform under the one-form gauge symme-
try, Eq. (97), as

f → f −m dλ , f̃ → f̃ + Nn dλ . (D.3)
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The equation of motion for f is f̃ = Nnb, which results in the action,

S =
∫

X

(
im

4πNn
f̃ ∧ f̃ +

i
2π

f̃ ∧ da
)
+
∫
∂ X

(
−

iNnm
4π

c ∧ dc +
iNn
2π

c ∧ da
)

. (D.4)

Integrating by parts for the second term in the bulk, we obtain

S =
∫

X

(
im

4πNn
f̃ ∧ f̃ −

i
2π

d f̃ ∧ a
)
+
∫
∂ X

(
−

iNnm
4π

c ∧ dc +
iNn
2π

c ∧ da+
i

2π
a ∧ f̃

)
. (D.5)

Finally, we integrate over a in the bulk, keeping the boundary value a|∂ X fixed, which gives
f̃ = dã, where ã is a U(1) one-form gauge field. The action now becomes

S =
∫

X

(
im

4πNn
dã ∧ dã

)
+
∫
∂ X

(
−

iNnm
4π

c ∧ dc +
iNn
2π

c ∧ da+
i

2π
a ∧ dã

)
. (D.6)

The gauge field ã transforms under the one-form gauge symmetry as

ã→ ã+ Nnλ . (D.7)

We can then perform a Hubbard-Stratonovich transformation and introduce an auxiliary two-
form field b̃ in the bulk that transforms under the one-form gauge symmetry by

b̃→ b̃− dλ . (D.8)

The resulting action is

Sdual =
∫

X

(
−

im
2π

b̃ ∧ dã−
iNnm

4π
b̃ ∧ b̃

)
+
∫
∂ X

(
−

iNnm
4π

c ∧ dc +
iNn
2π

c ∧ da+
i

2π
a ∧ dã

)
.

(D.9)
We refer to this action as the dual of Eq. (D.1).

We now check the topological order of the dual action. There are three types of line oper-
ators on the boundary that can be formed from a, ã, and c,

VΓ = exp
(

i
∮
Γ

a− im
∮
Γ

c
)

,

ṼΓ = exp
(

i
∮
Γ

ã+ iNn
∮
Γ

c
)

,

DΓ = exp
(

i
Nn
L

∮
Γ

a+ i
m
L

∮
Γ

ã
)

,

(D.10)

where Γ ⊂ ∂ X . The equation of motion for a makes ṼΓ trivial and sets

DΓ = (VΓ )Nn/L . (D.11)

The DΓ operators represent the bulk quasiparticles, and since (DΓ )L = 1, we observe that there
are |Nn| boundary anyons generated by VΓ , and their correlation functions are〈

(VΓ )
k (VΓ ′)

k′
〉
= exp

(
2πi kk′m

Nn
ϕlink[Γ , Γ

′]
)

, (D.12)

where ϕlink[Γ , Γ ′] is the linking number introduced in Eq. (105). Thus, the surface topological
order is the same as for the original action, Eq. (D.1).

As previously noted in Section 7.1.1, the original boundary state in Eq. (D.1) is equivalent
to setting the boundary condition b|∂ X = 0. The fact that ṼΓ is trivial means that this boundary
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state for the dual theory, Eq. (D.9), is equivalent to the boundary condition ã|∂ X = 0, which
makes sense from examining the equations of motion we obtain in the duality calculation:
b = f̃ /Nn= dã/Nn.

We can perform the same manipulations with the magnetic boundary state, introduced in
Section 7.1.2,

S̃ =
∫

X

(
−

iNn
2π

d b ∧ a+
iNnm

4π
b ∧ b

)
+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

iNn
2π

b ∧ (mc̃ − dφ)
)

(D.13)

=
∫

X

(
iNn
2π

b ∧ da+
iNnm

4π
b ∧ b

)
+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

iNn
2π

b ∧ (mc̃ − a− dφ)
)

.

(D.14)

Again, we replace da with f and integrate over f as a two-form, introducing a Lagrange
multiplier f̃ that constrains f = da. The action in Eq. (D.14) then becomes

S̃ =
∫

X

(
iNn
2π

b ∧ f +
iNnm

4π
b ∧ b−

i
2π

f̃ ∧ ( f − da)
)

+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

iNnm
2π

c̃ ∧ b−
iNn
2π

b ∧ a−
iNn
2π

b ∧ dφ
)

.
(D.15)

The one-form gauge transformations for f and f̃ are the same as before. Integrating over f ,
the resulting action is

S̃ =
∫

X

(
im

4πNn
f̃ ∧ f̃ +

i
2π

f̃ ∧ da
)
+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

im
2π

c̃ ∧ f̃ −
i

2π
f̃ ∧ (a+ dφ)

)
=
∫

X

(
im

4πNn
f̃ ∧ f̃ −

i
2π

d f̃ ∧ a
)
+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

im
2π

c̃ ∧ f̃ −
i

2π
f̃ ∧ dφ

)
. (D.16)

Integrating over a in the bulk and φ on the boundary then gives that f̃ = dã. The dual action
is then

S̃dual =
∫

X

(
im

4πNn
dã ∧ dã

)
+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

im
2π

c̃ ∧ dã
)

. (D.17)

To make the result more transparent, we introduce an auxiliary two-form field b̃ to repackage
the bulk term. The resulting action is

S̃dual =
∫

X

(
−

im
2π

b̃ ∧ dã−
iNnm

4π
b̃ ∧ b̃

)
+
∫
∂ X

(
iNnm

4π
c̃ ∧ dc̃ +

im
2π

c̃ ∧ dã
)

. (D.18)

This action is the dual of S̃ in Eq. (D.14).
This result, Eq. (D.18), is the same as Eq. (D.1) except that the bulk gauge fields have been

replaced by their duals and (Nn, m)→ (m,−Nn). From the analysis of the theory in Eq. (D.1),
we then know that this boundary theory has |m| nontrivial genuine line operators, which are
generated by

ṼΓ = exp
(

i
∮
Γ

ã+ iNn
∮
Γ

c̃
)
= exp

(
iNn

∮
Γ

c̃ + iNn
∫
Σ

b
)

, (D.19)

and have correlation functions of〈(
ṼΓ
)k (

ṼΓ ′
)k′
〉
= exp

(
−

2πi kk′Nn
m

ϕlink[Γ , Γ
′]
)

, (D.20)

so the topological order matches what we found for S̃ in Section 7.1.2.
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In conclusion, for both topological boundary states we analyzed, the number of anyons
and their braiding data remains the same after performing electromagnetic duality. Duality
preserves the topological order of the boundary state, maintaining the boundary condition of
the original theory but changing its description. Thus, both of the two boundary states we
examined can be expressed in terms of either the “electric” or “magnetic” fields. By examining
Eqs. (D.9) and (D.18), it is clear that the electric boundary condition, Eq. (D.9), is not invariant
under the global Zm magnetic one-form symmetry, Eq. (61), while the magnetic boundary
condition, Eq. (D.18), preserves this symmetry. Moreover, since the deconfined anyons for the
magnetic boundary condition are generated by the operator, ṼΓ , defined in Eq. (D.19), which
transforms under the magnetic one-form symmetry, Eq. (61), the topological order for this
boundary state is realized by breaking the Zm magnetic one-form symmetry completely.

E 1+1-D Cardy-Rabinovici model

The Cardy-Rabinovici model can be dimensionally reduced to a ZN spin model, or clock model,
on a 2D Euclidean square lattice, which shares many qualitative features with the 4D lattice
gauge theory [23, 24]. Here, we push this analogy further and demonstrate that the results
in our work for the 4D Cardy-Rabinovici model have direct analogues in this 2D model. The
partition function for the 2D Cardy-Rabinovici model is

Z =
∫
[dϕI]

∑
{nI ,sµI }

e−S[nI ,ϕI ,sµI ] , (E.1)

S =
1

2g2

∑
r,R

(
∆µϕI − 2πsµI

)2 − iN
∑
r,R

nI ϕI (E.2)

+
iNθ
8π2

∑
r,R

ϵµν ϵI J
(
∆µϕI − 2πsµI

)
(∆νϕJ − 2πsνJ ) ,

where, as in the main text, r labels sites of the direct lattice, R represents sites of the dual
lattice, and g2 is a coupling constant. Here, µ,ν = τ, x are Euclidean spacetime indices and
I , J = 1, 2 are internal “flavor” indices. The lattice variables ϕI ∈ R and nI ∈ Z live on sites,
and the sµI ∈ Z are on links. More specifically, variables with I = 1 (I = 2) are on sites or links
of the direct (dual) lattice.

Physically, the analogue of an electric current, nI , corresponds to spin wave excitations.
The magnetic current is analogous to

mI = −ϵI J ϵµν∆µsνJ , (E.3)

which represents the vorticity of ϕI . When θ = 0, the model in Eq. (E.1) describes two
decoupled ZN spin models. The last term Eq. (E.1) is the dimensional reduction of a Θ-term,
representing a four-spin interaction that couples the two ZN models.

An advantage of this 2D model is that it is not necessary to introduce the non-local inter-
action, K(x), in Eq. (9). Additionally, a more precise analogue of the condensation criterion
for the 4D model, Eq. (18), may be constructed and is supported by a renormalization group
analysis [23]. Indeed, the criterion for an excitation with quantum numbers (nI , mI) = (n, m)
to condense is

2π
N g2

m2 +
N g2

2π

(
n+

θ

2π
m
)2

<
4
N

. (E.4)

This inequality matches Eq. (18) with C = 4. We thus see that the 2D spin model has a
phase diagram that is similar to the 4D lattice gauge theory. In particular, the phase with
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(nI , mI) = (n, m) condensed is stable in the limit g2 → ∞, θ/2π = −n/m. Following the
analysis for the 4D model in Section 5.1, we can then examine this limit to determine the
effective field theory.

In the strong-coupling limit, g2→∞, the action becomes

S =
∑
r,R

[
iNθ
8π2

ϵµν ϵI J
(
∆µϕI

)
(∆νϕJ )− iN

(
nI +

θ

2π
mI

)
ϕI +

iNθ
8π2

(2π)2 ϵµν ϵI J sµI sνJ

]
.

(E.5)
Plugging in θ/2π= −n/m and integrating out ϕI gives the local constraint,

n mI = m nI , (E.6)

which is the analogue of Eq. (49). The solution is that nI = n jI and mI = m jI where jI ∈ Z.
One then arrives at an effective theory consisting of sµI along with the constraint in Eq. (E.6),

Z(n,m) =
∑
{sµI , jI }

δ
(

mI[sµJ]−mjI
)

exp

(
−(2π)2

∑
r,R

iNn
4πm

ϵµν ϵI J sµI sνJ

)
, (E.7)

where δ(x − y) is a Kronecker delta function defined on integer-valued lattice fields. As in
Section 5.1, we “integrate in” the constraint, mI[s] = mjI , by introducing integer-valued vari-
ables, αI ∈ Z,

S =
∑
r,R

(
2πi
m

mI[s]αI + (2π)
2 iNn

4πm
ϵµν ϵI J sµI sνJ

)
(E.8)

=
∑
r,R

(
im
2π
ϵµν ϵI J

2παJ

m

2π∆µsνI

m
+

iNnm
4π

ϵI J ϵµν
2πsµI

m
2πsνJ

m

)
. (E.9)

This action has an emergent zero-form gauge symmetry,

sµI → sµI +∆µηI +mNµI , αI → αI − NnηI , (E.10)

where ηI ,NµI ∈ Z.
Applying the same reasoning as in Section 5.1, we determine the continuum limit of

Eq. (E.9), which is a TQFT that can be written in terms of 2π-periodic scalar fields, φI , and
U(1) one-form gauge fields, (aI)µ. The correspondence with the lattice variables is

2π
ϵI J αJ

m
→ φI , 2π

sµI

m
→ (aI)µ , (E.11)

and the action for the effective field theory is given by

S =
∫ (

im
2π
φI ∧ daI +

iNnm
4π

ϵI J aI ∧ aJ

)
. (E.12)

This TQFT has been discussed in detail in Refs. [35,60] and represents a continuum formula-
tion of a Dijkgraaf-Witten theory [79]. Here, we will briefly review the global symmetries,
gauge invariant operators, and correlation functions. The operators of the TQFT may be
matched easily with operators of the lattice model using the methods of Section 4.

The action in Eq. (E.12) has a global emergent Zm ×Zm zero-form symmetry,

φI → φI +
2π
m

. (E.13)
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Additionally, when the 2D spacetime has no boundary, the action, Eq. (E.12), is invariant under
the gauge symmetry,

aI → aI + dξI , φI → φI − ϵI J NnξJ , (E.14)

where ξI is a 2π-periodic scalar. This gauge symmetry is the continuum analogue of Eq. (E.10).
The local operators in the bulk are generated by

D(I)P = exp
(

i
m
L
φI (P)− i

m
L
φI (P ′) + i

Nnm
L

∫
Γ
ϵI J aJ

)
, (E.15)

where P and P ′ are points and Γ is a curve from P ′ to P . Local operators in this theory must
be attached to a line operator to ensure gauge invariance, but the operators, D(I)P , are such that
the attached line operator is undetectable. We can also take P ′ to be at infinity (or some other
particular point), so D(I)P is in fact a genuine local operator. These genuine local operators are
analogous to the genuine loop operators, DΓ , for the 4D TQFT we discuss in Section 5.3. The
number of genuine local operators is L2, where L = gcd(Nn, m) is defined as in the main text.
This counting of local operators also makes sense from the perspective of the lattice model.
In a phase where (nI , mI) = (n, m) is condensed, there are L independent local operators for
each flavor, labeled by I = 1, 2. Because we can construct arbitrary products of local operators
for each flavor, in total there are L2 local operators. Physically, the D(I)P operators are order
parameters for the global symmetry Zm×Zm, which is spontaneously broken to the subgroup
Zm/L ×Zm/L . In the special case L = 1, there are no nontrivial operators, so the bulk theory is
trivial and preserves the full Zm ×Zm symmetry.

In addition, there are L2 bulk loop operators, generated by

U (I)Γ = exp
(

i
∮
Γ

aI

)
, (E.16)

where Γ is a closed loop. These operators are analogous to the closed surface operators, UΣ,
of the 4D TQFT. Surrounding V (I)P by U (I)Γ leads to a phase, e2πi/L , which resembles the mutual
statistics between loop and surface operators for the 4D TQFT, Eq. (73). In this case, however,
the interpretation is that the operators, U (I)Γ , represent domain walls, so moving an order
parameter operator, D(I)P , across a domain wall changes its value by a phase factor.

We can also construct a bulk response analogous to the generalized magnetoelectric effect
discussed in Section 6. If we introduce background fields, A1 and A2, to the action, Eq. (E.12),
for the Zm ×Zm global symmetry, we obtain

S[A1, A2] =
∫ (

im
2π

aI ∧ (dφI + AI) +
iNnm

4π
ϵI J aI ∧ aJ +

im
2π

AI ∧ dβI

)
. (E.17)

Here, the βI are a 2π-periodic scalar fields that Higgs the background U(1) gauge fields, AI ,
to make them probes for the Zm ×Zm symmetry. Integrating out aI leads to

Seff[A1, A2] =
im

2πNn

∫
(dφ1 + A1)∧ (dφ2 + A2) +

im
2π

∫
AI ∧ dβI . (E.18)

The βI fields constrain the AI to be Zm gauge fields, and eliminating the φI by fixing to the
unitary gauge gives the response,

Sresponse[A1, A2] =
im

2πNn

∫
A1 ∧ A2 . (E.19)

This result is directly analogous to the generalized magnetoelectric effect in Eq. (94).
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Next, continuing in analogy with the 4D case, we examine possible boundary states. When
the theory is defined on a manifold, Y , with a boundary, the action in Eq. (E.12) is no longer
gauge invariant but instead changes by a boundary term. As in the 4D case, we can construct
two distinct boundary states. One possible state has action,

S1 =
∫

Y

(
−

im
2π

dφI ∧ aI +
iNnm

4π
ϵI J aI ∧ aJ

)
+
∫
∂ Y

(
−

im
2π
φI dχI −

iNnm
4π

ϵI J χI dχJ

)
,

(E.20)
where χI is a 2π-periodic scalar field defined on ∂ Y that transforms under the zero-form gauge
symmetry, Eq. (E.14), by

χI → χI − ξI . (E.21)

There are m2 genuine local operators on the boundary, generated by

Ṽ (I)P = exp [iφI (P)− i ϵI J NnχJ (P)] , (E.22)

where P is a boundary point. Suppose we perform a Wick rotation on Eq. (E.20) and canoni-
cally quantize the theory on the spacetime [0, L0]×R where L0 is a length and R represents
time. Then, the operators, Ṽ (I)P , obey the algebra,

Ṽ (1)P Ṽ (2)P = e−2πi Nn/m Ṽ (2)P Ṽ (1)P ,

Ṽ (I)0 Ṽ (J)L0
= Ṽ (J)L0

Ṽ (I)0 ,
(E.23)

where P ∈ {0, L0} is a boundary point. We then see that this boundary state, Eq. (E.20), is the
analogue of the 2+1-D magnetic boundary state discussed in Section 7.1.2. Eq. (E.23) shows
that the boundary operators, Ṽ (I)P , are parafermion operators, which are emergent excitations
that generalize Majorana fermions [80, 81]. We also note that although the operators at the
ends of the space commute with one another, they are not truly independent. For example,
we have

Ṽ (2)0 = Ṽ (2)L0
exp

(
−iNn

∫ L0

0
a1

)
, (E.24)

implying that local operators at each end are connected by a string operator.
An alternate boundary state, is represented by the action,

S2 =
∫

Y

(
im
2π
φI ∧ daI +

iNnm
4π

ϵI J aI ∧ aJ

)
+
∫
∂ Y

(
iNnm

2π
ϵI J χ̃I aJ +

iNnm
4π

ϵI J χ̃I dχ̃J

)
,

(E.25)
where χ̃I is a 2π-periodic scalar field defined on ∂ Y that transforms under the zero-form gauge
symmetry, Eq. (E.14), by

χ̃I → χ̃I − ξI . (E.26)

This boundary state has (Nn)2 local operators, which are generated by

V (I)P = exp
(

im χ̃I (P) + im
∫
Γ

aI − im χ̃I (P ′)
)

, (E.27)

where Γ is a curve with endpoints at P and P ′. Like the bulk local operators in Eq. (E.15), these
operators must be attached to a line operator to ensure gauge invariance, but the dependence
on the line operator is trivial because of the factor of m. These operators obey the algebra,

V (1)P V (2)P = e2πi m/Nn V (2)P V (1)P , (E.28)

so we again find parafermion modes at the boundaries. Thus, the state described by Eq. (E.25)
is analogous to the 2+1-D electric boundary state in Section 7.1.1.

To summarize, in a given phase where (nI , mI) = (n, m) condenses, the effective field
theory is captured by a TQFT, which leads to two distinct boundary states, and each of these
states contains parafermion operators. Thus, for the 2D Cardy-Rabinovici model, we find much
of the same physics that we uncovered for the 4D Cardy-Rabinovici model in the main text.
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