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Shared/buy-in computing systems offer users with the option to select between buy-in and shared services.
In such systems, idle buy-in resources are made available to other users for sharing. With strategic users,
resource purchase and allocation in such systems can be cast as a non-cooperative game, whose corresponding
Nash equilibrium does not necessarily result in the optimal social cost. In this study, we first derive the optimal
social cost of the game in closed form, by casting it as a convex optimization problem and establishing related
properties. Next, we derive a closed-form expression for the social cost at the Nash equilibrium, and show that
it can be computed in linear time. We further show that the strategy profiles of users at the optimum and the
Nash equilibrium are directly proportional. We measure the inefficiency of the Nash equilibrium through the
price of anarchy, and show that it can be quite large in certain cases, e.g., when the operating expense ratio
is low or when the distribution of user workloads is relatively homogeneous. To improve the efficiency of
the system, we propose and analyze two subsidy policies, which are shown to converge using best-response
dynamics.
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1 INTRODUCTION

The shared/buy-in paradigm is being widely adopted by high-performance computing (HPC)
clusters, especially among large academic institutions. Over 20 universities fully or partially use
this paradigm to run their HPC clusters, e.g., Stanford University, the University of Illinois at Urbana-
Champaign, the University of California, Berkeley, the University of California, San Diego, Boston
University, and Rutgers University [3, 23, 27-30]. HPC clusters must cope with huge demand for
computing resources. As a result, these clusters typically include hundreds of computing nodes. For
instance, Sherlock at Stanford University maintains 1693 nodes used by 1092 research groups [27],
while the Shared Computing Cluster at Boston University (BU SCC) maintains 835 nodes supporting
765 projects across 80 departments [3].

Under the shared/buy-in computing paradigm, users are able to choose between two tiers of
services, namely: shared services and buy-in services. Shared services provide users with access to
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the shared resource pool for free, while buy-in services allow users to purchase additional buy-in
resources in order to shorten job completion time. Crucially, buy-in resources are managed in a
semi-exclusive manner, that is, when buy-in resources are idle, they are added to the shared resource
pool and made available to all users. This policy is motivated by the observation that many users do
not use their own buy-in resources all the time. Thus, by sharing idle resources that are temporarily
left unused by their owners, all users can have access to more resources on demand.

A key concern for the provider of a shared/buy-in computing system is the social cost, typically
captured by the sum of costs of the provider and the users. For example, while universities typically
aim to provide as many computing resources as possible to their HPC users, the cost of operating
servers must also be accounted for. The social cost is a metric that captures this trade-off. Social cost
is also relevant to commercial computing clusters and cloud computing systems, such as Amazon
AWS and Google Cloud Platform. Although revenue maximization is typically the first concern
in those systems, social cost is also relevant [11, 24]. Indeed, while there exist different ways to
increase revenue, some significantly degrade user experience, which in turn may result in users
opting for other service providers. In such cases, keeping the social cost sufficiently low can help
prevent users from leaving the system.

Shared/buy-in computing systems induce a subtle externality, whereby the utility of a user
increases as buy-in resources are purchased by other users, since idle buy-in resources are made
available in the shared resource pool. Therefore, as other users purchase more buy-in resources, a
user may be less motivated to do so as well. As a result, the choice of each user of how much buy-in
resources to purchase (or purchase nothing as a shared user) interacts with the choices of other
users. This interaction gives rise to a non-cooperative game, in which the users, who are assumed
to be rational and selfish, are the game players. The recent work by Shi et al. [25] formalizes this
game, coining it a shared/buy-in computing game. This game model captures the strategic behavior
of users when they can interact with each other through the sharing of idle buy-in resources.
When making decisions on whether and how much to pay for buy-in resources, users need to
consider the influence of available shared resources, which depends on the payments of other
users. Shared/buy-in computing games exhibit interesting properties, including the existence of
a unique Nash equilibrium and the convergence of best-response dynamics. However, the work
in [25] does not address the key issue of social cost, except for briefly noting that it is sub-optimal
at equilibrium.

Our contributions

This paper focuses on computing the social cost in shared/buy-in computing games. Our formula-
tions consider an arbitrary number of users N with heterogeneous workloads. We aim to answer the
following questions: What is the optimal social cost? What is the social cost at the Nash equilibrium,
as a result of the non-cooperative manner in which users make their decisions? How far away is the
social cost at equilibrium from the social optimum? What can be done to bridge the gap between
the two? To answer these questions, we develop methods to efficiently compute and characterize
the social cost both at the equilibrium and at the optimum. In order to measure the efficiency of
the Nash equilibrium, we investigate the price of anarchy (PoA) of the game, namely the ratio
of the social cost at the worst equilibrium to the optimal social cost. Our results suggest that, in
order to approach the social optimum, users should purchase more buy-in resources than they do
at the equilibrium. As ways to incentivize users to purchase more buy-in resources, we propose
two subsidy policies and analyze their properties, including proving their convergence through
best-response dynamics.

The model considered in this paper belongs to the class of aggregative games with strategic
substitutes [6, 9], where the aggregative term is a linear sum of the strategies of all players (cf.
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detailed discussion at the end of Section 2). In particular, since the computing resources in a
shared/buy-in game are a public good, and buy-in users are contributing to this public good, our
model can be viewed as a type of aggregative public good games [7]. We expect our results to be
useful in other applications that involve a similar strategic interaction between the users.

In summary, our work makes the following contributions:

(1) We prove that the computation of the optimal social cost in shared/buy-in computing games
can be cast as a constrained convex optimization problem. Furthermore, we derive a closed-
form expression for the social cost at the optimum, which can be computed in linear time.
This result is validated through a numerical comparison with coordinate descent methods.

(2) We derive a closed-form expression for the social cost at the Nash equilibrium, which can be
computed in linear time. This complexity is much lower than first solving for the equilibrium
and then computing the social cost, which is O(N*). To the best of our knowledge, this
method is novel and potentially useful for the analysis of other game settings.

(3) We establish that a buy-in user at the Nash equilibrium will also be a buy-in user at the social
optimum. Moreover, we show that the strategy profile vector (i.e., payment) of users at the
optimum is directly proportional to that at the equilibrium.

(4) We derive the price of anarchy of the game in closed form.

o For the special case where all the users are buy-in users, we further establish that the price
of anarchy grows as Q(VN) in the worst-case.

e Through numerical simulations, we show that for a fixed average workload, the price of
anarchy decreases with the variance of the workload distribution (i.e., as the workload
becomes more heterogeneous). Moreover, the price of anarchy can be quite large in some
cases.

(5) We propose and analyze the impact of two subsidy policies. We prove that, under both policies,
the game still has an equilibrium and converges through best-response dynamics (possibly
under sufficient conditions). We also establish the relationship of the payments by users at the
Nash equilibrium of the game under both subsidy policies. Moreover, numerical simulations
show that both policies can significantly improve the social cost at the equilibrium.

The rest of the paper is organized as follows. We discuss related work in Section 2. In Section 3,
we model shared/buy-in computing systems from a game-theoretic perspective, and introduce our
main metrics, which are the social cost and the price of anarchy. We analyze the social cost at
the optimum and at the equilibrium in Section 4, along with computing the price of anarchy. In
Section 5, we propose two subsidy policies and characterize their properties. We conduct numerical
simulations in Section 6 to validate and expand on our analytical results. The paper concludes in
Section 7.

2 RELATED WORK

In a system where users interact with each other and try to maximize their own utilities, it is
difficult to predict how the system will operate. In order to analyze such systems, game-theoretic
models are often used since they are able to capture strategic interactions between the users [20].
For example, they are used to analyze network security [18], resource allocation [31], and advance
reservation [26]. The problems from cloud economics also benefit from game-theoretic approaches.
Abhishek et al. [1] investigated and compared two pricing schemes for cloud services, namely fixed
and market-based pricing, with a game-theoretic model. Anselmi et al. [2] proposed a three-tier
model for a cloud computing marketplace, based on which the market equilibria are characterized,
and the impact of price competition is evaluated. Game-theoretic models answer the question of
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where the system operates by providing the Nash equilibrium (or equilibria) of the corresponding
game.

After finding the Nash equilibrium (or equilibria) of the game, the next question is how well the
system performs under the Nash equilibrium against the optimal case (i.e., optimal social cost). It is
typical that the Nash equilibrium does not coincide with the optimum, thus the notion of price of
anarchy has been proposed to evaluate the inefficiency of the Nash equilibrium (or Nash equilibria)
due to the selfish behavior of the users [15]. Analysis of the price of anarchy can provide useful
insights into the system [22]. Wu and Starobinski [32] analyzed the problem of server selection in
content replication networks, showing that the price of anarchy increases as the server capacity
becomes more heterogeneous, because selfish users avoid using slow servers. Similarly, the analysis
by Chamberlain and Starobinski [5] suggests that, the price of anarchy in preemptive priority
queues becomes larger as the service distribution gets more heterogeneous (i.e., the variance of the
service distribution becomes larger).

However, it is not always true that heterogeneity results in a larger price of anarchy and makes
the system perform worse. Korilis et al. [14] considered a routing game, where a manager attempts
to steer the network into its social optimum by controlling part of the flow, while the rest of the
flow is controlled by several selfish users. The results show that the “homogeneous” case, that is,
the case of equal split of the total demand among all users, is the hardest case to reach the optimum
and thus the least desired by the manager. In our work, we also find that if the average workload
of users in the shared/buy-in computing system is fixed, the price of anarchy increases as the
workload distribution becomes relatively more homogeneous.

An approach to reduce the degradation of system performance caused by selfish user behavior is
to introduce subsidies. Buchbinder et al. [4] proposed a dynamic subsidy mechanism financed by
taxes collected from the users in order to improve the performance of cost-sharing systems. Such
subsidies help to keep the price of anarchy low, by collecting a small amount of taxes compared
to the user payments. The work by Fang et al. [10] indicates that revenue of sharing economy
platforms may be limited in practice, and subsidies can help encourage sharing and bring more
revenue. In this paper, we also introduce subsidy policies to lower the price of anarchy and improve
system performance (in our case, the social cost).

As mentioned in the introduction, the shared/buy-in computing paradigm is now common in
many HPC clusters. The paradigm shares similarities at some level with proportional allocation
mechanisms [12, 13, 16], where the bandwidth allocated to each user is proportional to its payment.
The difference is that, in shared/buy-in computing systems, the total amount of resources is not
fixed; instead, users contribute to the system by purchasing buy-in resources. As a result, it lacks
the zero-sum nature of typical proportional allocation models. Liao et al. [17] conducted a statistical
case study of the SCC cluster at Boston University. This work shows that buy-in resources are
not fully utilized by their owners, and sharing idle buy-in resources indeed improves resource
utilization. Such systems are formally modeled from a game-theoretic perspective in [25]. The
analysis of the game shows that there exists a unique Nash equilibrium. Moreover, it is shown
that, from any arbitrary initial state, the system always converges to the Nash equilibrium through
best-response dynamics, possibly with users making decisions in a distributed manner (i.e., not
having complete information on the decisions of other users). In the present study, we quantitatively
investigate the inefficiency of the Nash equilibrium with respect to the social optimum. We explore
what contributes to the inefficiency, by computing the exact social costs at the equilibrium and at
the optimum.

Shared/buy-in computing games belong to the class of aggregative games, whereby the cost of
each player depends on the aggregate strategies of all the other players, instead of the individual
strategy of another player [6]. Specifically, the game is in the form of an aggregative public good
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game, where the computing resources in the shared pool are the public good, and buy-in users
contribute to the public good with their own buy-in resources. Cornes and Hartley [7] analyzed
aggregative public good games under a voluntary contribution model, where players can decide
how much to contribute to the public good under their own budget constraints. In contrast, in
shared/buy-in computing games, contributions to the public good are not entirely voluntary, since
the idle buy-in resources are automatically made available to all users by the system. Our game
also has the property of strategic substitutes, that is, when a player increases its contribution,
other players tend to do the opposite [9, 25]. It is known that any aggregative game with strategic
substitutes converges to one of its Nash equilibria through best-response dynamics. Furthermore,
a Nash equilibrium is guaranteed to exist [9]. In this paper, we prove that after applying the
subsidy policies, the resulting shared/buy-in computing games are aggregative games with strategic
substitutes, which allows us to establish their convergence properties.

3 SYSTEM MODEL

In this section, we first formalize a game-theoretic model of a shared/buy-in computing system,
and then introduce the notions of social cost and price of anarchy. We consider a shared/buy-in
computing (SBC) game of the form of (S, {P;}ies, {Ci}ies), where S is the finite set of players, P;
is the non-empty strategy set of player i, and C; : P — R is the cost of player i given a strategy
profile of all players from the joint set P = [];cg P;.

The SBC game has N players, who are the users of the system and belong to the set S = {i | 1 <
i < N}. Since shared/buy-in computing systems are typically of large-scale and sustain many
users, we assume that the number of users N is large (e.g., N > 100). Each player i has an average
workload w; that has to be completed, and needs to decide upon a strategy p; € P;, which is
the payment for purchasing buy-in resources. The average workload can be estimated from the
aggregate workload observed over a long time period. The strategy of player i has two levels, as
follows: (a) the player will pay p; > 0 if it decides to purchase buy-in resources or p; = 0 otherwise,
and (b) the value of p; reflects the amount of purchased resources. Denote the payments made
by all players by the vector p = [p1, pa, - .., pn]T- A player can utilize the idle buy-in resources of
other players, thus each player is impacted by the strategies chosen by the other players, hence the
cost of player i depends on p.

In SBC games, players can only pay non-negative prices for buy-in resources, hence we have
pi > 0,Vi € S. Define the players that pay positive prices as buy-in users, and the players that pay
nothing as shared users. Assume that there are n; buy-in users in the set S; = {i | p; > 0, i € S},
and n; shared users in the set S; = {i | p; = 0, i € S}, we have n; + n, = N. In the following,
unless stated otherwise, we assume that all the subscripts used for distinguishing among players
{i, j, £, m} belong to the set S.

In our model, the amount of resources available to a player is measured by its computing rate,
and the player’s job completion time can be then computed as its workload divided by its computing
rate. The computing rate of player i comes from two sources, namely: its own buy-in resources and
other players’ idle buy-in resources. We assume that, when a player i pays a price p; for buy-in
resources, it gets a computing rate of kpp;; alongside, it provides each of the other players, including
both buy-in and shared users, with a computing rate k;p;. Thus, the overall computing rate of a
player i is kpp; + ks 2. j2; pj» where the first term is due to its own buy-in nodes, and the second
term is from all the other buy-in nodes. In the following, we refer to k; and ks as the buy-in factor
and the shared factor of the shared/buy-in computing system, respectively.

Intuitively, the buy-in factor kj, reflects the amount of buy-in resources that a player can get per
unit of payment, a larger k; implies that a player gets a higher computing rate from its own buy-in
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nodes. The shared factor k; reflects the effect of sharing idle buy-in nodes. A larger ks implies that
a player gets a higher computing rate from other players’ idle buy-in nodes.

We also make the reasonable assumption that k;, > ks, that is, by paying a price p;, player i gets
a computing rate kp,p; that is larger than the computing rate k;p; provided to another player, since
player i has priority access to its own buy-in nodes. Intuitively, this motivates users to purchase
their own buy-in nodes rather than just waiting for shared resources. It is also a necessary condition
for the underlying game to admit a unique Nash equilibrium.

We distinguish between two types of jobs: buy-in jobs are those running on a user’s own buy-
in nodes, while public jobs are those running on other users’ idle buy-in nodes. Then, the total
computing rate for buy-in jobs is kp > ;s pi, Whereas the total computing rate for public jobs is
(N = 1)ks X ;s pi- We note that the ratio between the two types of total computing rate can be
expected to be roughly the same as that between the corresponding workloads. Indeed, the BU SCC
data in [17] shows that, during 2015-2016, the buy-in workload was 1.42 x 107 CPU-hours, and the
public workload was 7.51 x 10® CPU-hours. The ratio between the two types of total computing rate
was kp 2ies Pi 1 (N — 1)ks 2jes pi = 14.2 : 7.5, which also justifies our assumption that kp > k.

The two factors kj, and ks serve as system parameters that can be adjusted by the provider. Both
kp and ks are affected by the pricing of buy-in resources. A higher pricing of buy-in resources
implies lower computing rate per unit of payment, thus lower k; and k;. Moreover, the provider
can also adjust ks by limiting the portion of idle buy-in resources that are available in the shared
resource pool. When adjusting the system parameters kj, and ks, the provider faces some constraints,
which are discussed in more detail in Appendix A.

REMARK 1. A user is hardly affected by other users when using its own buy-in nodes, since it has
priority access. Hence, one can assume that the buy-in factor ky, is the same for all users. On the other
hand, the shared factors could be heterogeneous among the users (i.e., k; for user i). Indeed, a user i
might use its buy-in nodes for a longer time than others, resulting in less resources available for others
and a lower kg;. Nonetheless, using the homogeneous shared factor ks for all users provides a good
approximation of the heterogeneous case, as shown by our numerical simulations in Section 6.3.

We care about the social cost of the system, which is defined as the sum of costs of both the users
(players) and the provider. The cost C; of a player i is due to two components, namely time and
money. The time cost is calculated by the job completion time T; multiplied by cost per unit of time
@;. The monetary cost is simply the payment p;. Thus, the cost of player i is

Ci(p) = aiT;(p) + pi-
The job completion time T; of player i can be computed as its workload divided by its overall

computing rate. As shown before, the overall computing rate of player i is kpp; + ks 2. jz; p;, s0 its
job completion time is

w

T.(p) = . S
(p) kppi + ks 2 ji Pj

REMARK 2. Intuitively, a; reflects the value of time for each player i. Indeed, some users might
be more sensitive to the job completion time than other users. This way, our model can capture user
heterogeneity, if needed.

Player i aims to minimize its cost C;(p), that is, p; = argminpiCi(p). Note that given the cost

function C;(p), the optimal price paid by player i is implicitly upper-bounded by +/a;w;/kp [25].
Meanwhile, shared/buy-in computing systems are typically of large-scale. Thus, we assume that
the system can always provide enough computing resources to each user.
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The provider experiences some operational cost to run the system. In the meantime, it gets
revenue from providing services to the users, that is, the sum of payments from users. We consider
the net cost of the provider as the operational cost ® minus the sum of payments from users.

Assume that the operational cost is positively correlated with the total amount of computing
resources purchased with the payments (with more payment received, more servers need to run,
which raises the operational cost). Thus, © is an increasing function of the users’ strategy vector p.
As a result, the cost of the provider is:

Cprovider(p) = ®(p) - Zpl
ieS

In our model, we assume that the operational cost is of a certain form. The model in [33] suggests
that the operational cost is mainly due to power consumption, and in some simple implementations
(e.g., without an optimization technique such as Dynamic Voltage Frequency Scaling, DVFS), the
power consumption can be in a linear relationship with used resources. In typical shared/buy-in
computing systems (e.g., Stanford Sherlock and BU SCC), when a user purchases buy-in nodes, the
provider will use its payment to acquire additional nodes from external sources and manage the
nodes for the user. In other words, the buy-in users “invest” in the system by adding more servers.
As a result, we can use the overall payment by the users to estimate the total computing resources
in the system. Thus, we assume O(p) = 6 }};cs pi, where 0 < 0 < 1. Note that 6 = O(p)/ ;s pi
hence it can also be interpreted as the operating expense ratio of the system.

REMARK 3. We assume that the provider gets income only from the buy-in users, such that the
operating expense ratio needs to satisfy 0 < 1 in order to keep the system running, otherwise the
provider would have a negative net income (revenue). If the provider gets an additional external income
(e.g., subsidy from the university) in the form of v 3. ;cs pi, where0 < v < 0, we can define an equivalent
operating expense ratio 0* = 0 — v. Such equivalent operating expense ratio satisfies 0 < 0* < 1. Thus,
instead of 6, one could use the equivalent operating expense ratio 0" in the following analysis and the
results would still hold.

Next, we compute the social cost C(p) as follows:

C(P) = Z Ci (P) + Cprovider(p)

ieS
= (aTi(p) +p) +O(p) = > pi
ieS ieS
a;w;
= +0 il
,265: (kal + D jzi kspj P )

We are interested in deriving the value of the social cost under two scenarios, namely at the social
optimum and at a Nash equilibrium.

At the social optimum, under the system parameters set by the provider, the players cooperate
(or are centrally managed) such that the social cost is minimized. This is the ideal scenario from
the social perspective.

Due to the selfish behavior of players, it is possible that the social optimum cannot be reached,
instead, the system will end up at a Nash equilibrium, where a player cannot further lower its cost
by unilaterally changing its own strategy.

The concept of the price of anarchy (PoA) has been introduced in order to quantify how bad the
social cost may be at a Nash equilibrium, compared to the social optimum [15]. It is defined as
the ratio between the social cost at the worst Nash equilibrium and the optimal social cost. In the
best scenario, the worst Nash equilibrium coincides with the social optimum, which leads to a PoA
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Notation | Description

S Set of players (users).

S1, S, Set of buy-in and shared players (users), respectively.
N Number of players.

ny, ny Number of buy-in and shared players, respectively.

i, j,£&,m | Index of players.

w; Average workload of player i.
Di Strategy (payment for purchasing buy-in resources) of player i.
P; Strategy set of player i.
P Strategy profile of all players.

Ci(p) Cost of player i given p.
C(p) Social cost given p.

Ui(p) Utility of player i given p.
U(p) Social welfare given p.

a; Cost per unit of job completion time for player i.

0 Operating expense ratio - operational cost of the system per unit of pay-
ment.

kp Buy-in factor - coefficient of proportionality between p; and the corre-
sponding computing rate it gets.

ks Shared factor - coefficient of proportionality between p; and the corre-

sponding computing rate it provides to another player.

A;(p) Subsidy term - the amount of additional computing rate subsidized to
player i given p.

ke Subsidy factor - coefficient of proportionality between the subsidy term
Ai(p) and p; or p?, depending on the form of subsidy.

Table 1. Notation summary.

equal to 1. A large PoA suggests that the system may badly suffer from the selfish behavior of its
decision makers, and is far from the best possible scenario.
In the rest of the paper, we assume without loss of generality that players are labeled such that

Q11 = AWz 2 *++ = ANOWN.

The o;w; here can be interpreted as the adjusted workload of user i, considering the user’s sensitivity
to the job completion time.
In Table 1 we provide a summary of the notations employed in the paper.

4 SOCIAL COST AND PRICE OF ANARCHY

In this section, we analyze the social cost in general N-player SBC games. We first show that the
social cost minimization problem is convex, such that it can be solved through constrained convex
optimization techniques. We are also able to provide a closed-form expression for the optimal social
cost, in the special case where all users are buy-in users. Then, we compute, in closed-form and
linear time, the social cost at the Nash equilibrium. With these at hand, we evaluate the efficiency
of the equilibrium by computing the price of anarchy.
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4.1 Social cost at the optimum

In this subsection, we show that social cost minimization is a constrained convex optimization
problem, and analyze the strategies of players at the social optimum. We also provide a closed-form
expression of the optimal social cost.

Denote the payments made by all players through the vector p = [p1, p2, ..., pn]T. The following
theorem establishes that the social cost C(p) is convex in p = [p1, p2, ..., pn]"-

THEOREM 4.1. The following social cost function is (strictly) convex in p:

[¢410]]
C(p) = (++6i). (1)
P ;‘ Kpit Syuikepy "

Proor. We prove the theorem by establishing that the Hessian matrix of C(p) is positive definite.
First, consider the gradient VC(p) of the social cost function, its i-th entry VC; is

Ve, =0 - aikpo; _ Z Amksm
m#

(kppi + Xpsi kspe)? ; (kppm + kspi + Xpziexm Kspe)® .

Based on the gradient, the (i, i)-th entry of the Hessian matrix V2C(p) is

ViCii =

20k} w; .\ Z 20mkZwm
(kopi + Zezi kspe)® a2 (kopm + kspi + Zpzi pem kspe)®
In addition, the (i, j)-th entry (j # i) of the Hessian matrix V2C(p) is
2aikpksw; N 20kpksw;
(kppi + Xpzi kspe)®  (kppj +kspi + Zf;ei,f;ej kspe)?

VZC,-J =

Z 20mkZwm
(kppm + kspi + Zpzipzm kspe)® .

m#i,m#j
For clarity, define
? A 20(1'(/.)1' Vi
Y (kppi+ D kspe)®

then we can re-write the entries in the Hessian matrix V2C(p) as

VZC,',,' =k,§x? + Z kzxz

sTTme

m#i
V2Ci; =kpks (e +xh) + D K, Vi # i
m#i,m#j

Therefore, the Hessian matrix can be written as

ViC(p) =HTH,
where
kbx1 ksxl . ksxl
kst kaz e kst
H=
kst kst e kbe

If H is non-singular then the Hessian matrix V2C(p) is positive definite. Next, we show that H is
indeed non-singular by proving that its columns are linearly independent.
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10 Z. Shi, D. Starobinski, and A. Orda

Denoting H = [hy, hy, ..., hy,—1], where hy, hy, ..., h,,_; are columns vectors of H, and let h; ()
denote the j-th entry of vector h;, that is, h;(j) = H; ;. We have

h;(j) = kpxi, j =1, o

h;(j) = ksxj, Jj # 1.

Assume by contradiction that the columns of H are linearly dependent. Then, there exists an
i-th column that can be expressed as a linear combination of other columns:

by = ) Ach.

i
which yields
D Ahe(i) = hy(i),
b ®)
D Ahe() =hi(j), ¥ j# i
i
Combining (2) with (3), and canceling out the x; terms on both sides of the equations, we get
D ks = ks, (4)
i
Ajky + Z Aeks =Aj(kb—ks)+ZAfks =ky V] #i. (5)
ey i

Substituting the term };,.; Aiks in (5) with k; by (4), we get
(1+A)(kp —ks) =0, V j#i.
We already know that kj, > ks, therefore it must be that
Aj=-1,Vj#i

However, this contradicts (4), hence the assumption that H is column-dependent cannot hold.
Thus, we conclude that the columns of H are linearly independent, and the Hessian matrix

V2C(p) = HTH is positive definite. As a result, the social cost function C(p) is strictly convex.
[m}

Denote the gradient of the social cost function C(p) by VC(p). The next lemma establishes the
relationship between p; and VC;, which is the i-th entry of VC(p).

LEMMA 4.2. At the social optimum of an SBC game, if p; > 0, we have VC; = 0; if p; = 0, we have
VC; > 0, where
O{ikba)i amkswm

(kppi + 2oz kspe)? - mZ;tz (kppm + kspi + Z[;ti,t’;tm kspe)? .

Proor. The social cost minimization problem can be written as:
. i W;
e[ ay).
;‘ kopi+ Xjwikspy
st. —p; <0, VieS.

VG =0-

The Lagrangian function of the minimization problem above is

L(p,A) = C(p) —ATp.
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Since C(p) is convex in p, L(p, A) only has a unique global minimum. At the minimum, p and A
must satisfy the following KKT conditions for all i:

VpL(P’ A =0,
—Aipi =0,

—pi <0,

A > 0.

Considering player i at the optimum, by complementary slackness, if p; > 0, we have A; = 0.
Then we get

VoLl(p,A);i =VC; = 4; =VC; =0.
Moreover, if p; = 0, we have A; > 0, thus VC; > 0 since
VpL(p,A)i = VC;i — 4; = 0.
The lemma is thus established. O

The following lemma shows the relationship between the price paid by a player and its workload
adjusted by cost per unit of time, namely, a player with a larger adjusted workload will pay no less
than a player with a smaller adjusted workload.

LEMMA 4.3. At the social optimum of an SBC game, we have
p1=p2=---2pn 20.

Proor. Without loss of generality, we assume that i and j are ordered such that a;w; > jw;. In
the following, we will prove that p; > p; always holds.
Considering the gradients of the costs of two players i and j, we have

O{ikb&)i
VC; =0 —
' (kppi + kspj + Xpsiezj kspe)®
B ajksw; B Z amkswom
(kopj +kspi + Zeziej kspe)? | £, (Kppm + Dgzm kspe)®
aikpw;
VC; =0 — i
/ (kppj + kspi + Zt’#i,t’;tj kspe)?
_ aiksw; _ Z amksom
(kppi + kspj + Lezieej Kspe)? mAim] (kopm + Zpzm kspe)*
And their difference is
V¢, - V¢,
_ OCjkha)j + aikswi
(kppj + kspi + Xpsiozj kspe)®  (kppi + kspj + Dipzipsj kspe)?
_ aikb(x)i _ ajkscoj
(kppi + kspj + Xpziezj kspe)®  (kopj +Kspi + Xpgirzj Kspe)®
:(kb _ ks) ajwj 041001

(kppj + kspi + Xpgiezj kspe)®  (kppi +Kkspj + Xpsipzj Kspe)® '
Note that k; — ks > 0 always holds since k; > ks.

Next, we consider four cases: (i) p; > 0 and p; > 0; (ii) p; > 0 and p; = 0; (iii) p; = 0 and p; > 0;
(iv) pi=p; = 0.
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12 Z. Shi, D. Starobinski, and A. Orda

(i) pi > 0 and p; > 0. We have VC; = VC; = 0, thus VC; — VC; = 0, from which we can get
ajw; B a;iw;
(kopj + kspi + Xezieej kspe)? ~ (kopi +kspj + Diexieej kspe)?

Since ajw; < a;w;, it must be that kyp; + ksp; < kpp; + kspj, which implies that p; > p;.

(ii) p; > 0 and p; = 0. We have VC; = 0 and VC; > 0, thus VC; — VC; < 0, from which we can get

ajw; a;w;
(kspi + Xpzienj kspe)® ~ (kaz + Deier kspe)®

Since ajw; < ajw; and ksp; < kpp;, this case is possible.

(iii) p; = 0 and p; > 0. We have VC; > 0 and VC; = 0, thus VC; — VC; > 0, from which we can
get

ajwj ajwj
(kppj + Lsierj kspe)? (ksPJ + Deries kspe)?
However, since @jw; < a;w; and kpp; > kgpj, the inequality never holds (the LHS is strictly smaller
than the RHS), thus this case can be disregarded.
(iv) pi = pj = 0. We have VC; > 0 and VC; > 0. This case already satisfies p; > p;.
By considering all the four cases, we conclude that if a;w; > ajwj, it must be that p; > p;, which
results in

p12prz--2pNn20.

Next, based on the lemmas above, we derive the optimal social cost in closed form.

THEOREM 4.4. At the social optimum of an SBC game, the social cost is

1 N
Corr(p) = (\/— Ky + (ny — Dk, )

[t + (kb + (nl - l)ks) Zmesz AmWm
al 13 N
; ks\Y 2ies, Vaiw;

where

J = kp + (ny — 1)k (1 . (kp + (n1 = Dks) 2mes, amm

0 ks(Xies, Vaioi)?

Proor. Theorem 4.1 states that the social cost function C(p) is strictly convex in p, thus it has a
unique optimum.

According to Lemma 4.2, at the social optimum, for each buy-in player i € S;, we have p; > 0
and

aikpw;
V= Gt S roi e
ajksw; AmksOm
JESLj#i (kopj + kspi + Zes, eziexj kspe)? - n;z (Dees, kspe)?
=0. (6)

For each shared player m € S,, we have p,, = 0.
Consider players i and j such that i, j € S;, we have

ajwj AiW;

(kppj + kspi + 2pes, exiexj kspe)? - (kppi + kspj + Zpes, exiexj kspe)?

VC; - VC; = (kp — ks) (

=0.
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Social Cost Analysis of Shared/Buy-in Computing Systems 13

Since kp # ks (because our model assumes kj, > k), we deduce that

ajQj i W;

(kppj + kspi + Xpes, exiex kspe)? - (kppi +kspj + 2pes, ri04j kspe)?’

Vi, j € 5.

As a result, for a given buy-in factor ky, shared factor kg, and users’ adjusted workload «;w;, there
exists a constant ¢ such that

i ! vies @)
=, Vi .
(kppi + Zees, e2i kspe)® ¥ '

Note that the equations above are equivalent to

kbpi + Z ksp[ = V(ﬁai(/\)i, Vi e S]. (8)

L€y, b+i

Taking the sum of (8) for i € S, we get

(ko + (ny = Dk;) ) pi = ) Vo

ieS; ieS;

from which we derive the sum of buy-in players’ payments:

Zi Zies, VY aiw;

= . 9
2P o m - Dk, ©)
Then, taking ¢ in (7) back into equation (6), we get
ky ks tmksm
VCi=0-— - — - —_
4 t’e;’ii Vo, (Bees kspo)?
1 AmWm
=0 - —(kp + (n; — k) — _—
(ko + (n1 = DK "; e Soes, po7
=0. (10)

Next, we solve the optimal social cost in two cases: (i) all players are buy-in (i.e., S, = 0); (ii)
there exist both buy-in and shared players (i.e., S; # 0). We shall prove that the optimal social cost
in both cases satisfies the same expression.

(i) All players are buy-in, S; is empty. We have that the sum of the costs of shared users is
Ymes, Cm(p) = 0. Moreover, from equation (10), we get

_ ky, + (nl - l)ks

v 0
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14 Z. Shi, D. Starobinski, and A. Orda

Combining it with (7) and (9), we get that the social cost is

COPT(P) = Z Cz(P) + Z Cm(p) + Cprovider(p)

i€S; meS,
o 0;
+pi|+0+(60-1) ;
zeZS (kaz + 2[#1 spr p ) ;p
ow;
+0 i
mzs] kppi + Xpsi kspe iezslp

aiw; N
IEZS“I Waio; Z kp + (n1 — 1)ks
_ 22jes, Voa;w;
VRt (- Dk

Here, the fourth equality uses equations (7) and (9) to derive the first and second terms, respectively,
and the fifth equality is derived by substituting ¢ with (k; + (n; — 1)ks) /0.

(ii) There exist both buy-in and shared players, i.e., S; is nonempty. Considering (8) and (9), we
get that the optimal social cost is

Corr(®) = ), Ci(®) + ), C;(P) + Cprovicer(p)

(11)

i€S JE€S:
a;iw; _ AmWm
_ p.) N c0-1> p
IEZ;‘ (kbpz +Desikspe ,,; Dees, kspe ; :
ajwi amwm
+0 ) pi+
; kppi + Xpsi kspe lezsl ,,; ks Zzesl pi
Z a;iw; Oy aiw; et (1= Dks Limes, Im©Om
= \/tﬁalw, kb +(ny — 1)k ks\Y/ ies, Vi

1 9\/_ (kb + (ny — Dks) Zmesz AmWm
(\/_ kp + (n1 — 1)k ) lezs: ks\JY/ Yies, Vaio; - (2

Next, we obtain an expression for the constant ¢ in (12). Note that equation (10) is equivalent to

2imes, AmWm
ks i 2= - .
(0= 5= ks + (1 — k)

Combining it with (9), we get

(kp + (n1 — Dks)? _ (Zlesl Voo wi)* Q—E(kb'*(n - ks))
2

ks ZmeSz AmWm

which is equivalent to
ky + (ny — D)k + (kp + (ny — 1)ky)? ZmeSz AmWm
14 l//ks(Ziesl VO(iwi)2
_kp + (= Dk, " (kp + (n1 = Dks) Xmes, Im@m
¢ ks(ZiESI \/aiwi)2

0=
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Social Cost Analysis of Shared/Buy-in Computing Systems 15

From the equation above, i/ can be specified as
_ kp + (ny — ks (kp + (n1 — Dks) ZmeSz AmWm
VT B res, Vawon?
Combining (12) and (13), the closed-form optimal social cost in case (ii) is obtained.
So far, we have derived the optimal social cost for all possible cases in (11)-(13). Moreover, we

note that, when S; is empty, we have },, s, @mwm = 0, such that (11) also satisfies (12) and (13).
Thus, (12) and (13) represent the closed-form social cost at the optimum.

(13)

]

For the special case where all players are buy-in, the equation (11) in the proof of Theorem 4.4
gives the optimal social cost in a simpler form.

COROLLARY 1. At the social optimum of an SBC game, if all players are buy-in users (p; > 0,Vi € S),
the social cost is

2 es VOao;
Vky + (N = Dk;

Lemma 4.7 in the next subsection provides a way to identify the buy-in user group S; and shared
user group S,. Based on that result, one can then compute the optimal social cost in O(N) time.

Copr(p) =

4.2 Social cost at Nash equilibrium

In this subsection, we analyze the strategies of players at the equilibrium, and specify the social
cost in a closed form that incurs O(N) computation time. Given the payments made by all players
through the vector p = [p1, p2, ..., pn] T, each player i has the cost function
a;w;
Gi(p) = ———— +pi- (14)
kopi + X jzi kspj P

Meanwhile, we have the social cost function from (1) as

aiw;
)= (o v op).
IZE;‘ kppi+ 2 jzi kspj

At a Nash equilibrium, each player employs its best response, which is defined as the player’s
optimal strategy given the strategies of all the other players. The best response strategy p; of

player i is to minimize its cost (14) given {p; | j € S, j # i}, namely:

_ ajw; ks
pi—max(O, k_b_k_prJ .

In the following, we use p; to suggest that the strategy of player i is at a Nash equilibrium.
Lemma 2 in [25] establishes that, at a Nash equilibrium, we have p] > p5 > --- > Py that is,
a player with a larger adjusted workload will pay no less than a player with a smaller adjusted
workload. Therefore, we have p} > 0, Vi < ny, and p; = 0, Vi > ny. Moreover, note that, if p} = 0,
Vi > 1, the cost of player 1 becomes

T) —

Ci([p1,0,...,0]7) Koy

Hence, the best response strategy of player 1 will be p7 > 0. Thus, there exists at least one buy-in
user (n; > 1).

Theorem 1 in [25] establishes that the game has a unique Nash equilibrium. Next, we give the
closed-form social cost at the unique equilibrium.

(15)

a1

+P1.
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16 Z. Shi, D. Starobinski, and A. Orda

THEOREM 4.5. At the Nash equilibrium of an SBC game, the social cost is

1 ovky, (kp + (11 = Dks) Ljes, %)
C = \l———+—— i .
0 = (= o ) 2N T Saes v

Proor. According to (15), the strategy of a buy-in user at the Nash equilibrium can be written as

A Wi ks Z P
pj’ iesS. (16)
ke ky jeSyj#i

04100 k

p;k = max (0, k_b

Note that the strategies of buy-in users are not affected by shared users. The strategies of all buy-in
users can be solved through the following equations:

ke ks ... k[P Varkyo;

ks kp ... ks||ps Vazkpw, )

ks ks ... kp p;l ‘/anlkbwnl

If we rewrite the equations above as Ap* = b, and multiply by left with the vector 17 = [1,1,...,1]
on both sides, we get 1TAp* = 17b, from which we can derive

(ky + (n1 = Dks) D pi = > Naikpo, (18)
i€S, €S,

Combining the cost function (14) with the best response strategy (16) of a buy-in user, its cost at
the Nash equilibrium can be specified as

Ci(p*) = Qi QWi

; AP =
kbpi + Zjésl,jii kspj ' Vaikpw;

A shared user pays 0 at the Nash equilibrium, and its cost can be computed by

+pi, i €5 (19)

Ci( )—;+OIES (20)
P k 21651 l z
The cost of the provider is
Cprovider(p) =0 ) pf = > pi = (6-1) Y pi. (21)
ieS ieS i€S;

Therefore, from (18)-(21), we get that the social cost at the equilibrium is

CNE(P) = Z Cl(p*) + Z Cj(p*) + Cprovider(p*)

ieS; JjeSs:
_Z( llad +(1+9—1)p?)+z—ajwj -
ies, Vaikpw; jes, ks 2ies,
Z \/a,kbw, Z OV aikpw; N (kp + (n1 — Dks) 2 jes, VE©;
ies = kp + (n1 = ks ksVkp Xies, Vatio:
( ) S e Gt =Dk Bes e
\/_ ky + (nl - 1)k = kv 2ies; V@io;
]

As a special case, we can get the social cost when all players are buy-in from Theorem 4.5.
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Social Cost Analysis of Shared/Buy-in Computing Systems 17

COROLLARY 2. At the Nash equilibrium of an SBC game, if all players are buy-in users (p; > 0,
Vi € S), the social cost is

Cne(p) = - Al )

_+—
Vky ko + (n1— 1k

By comparing the social cost at the optimum and the Nash equilibrium, we can deduce that the
strategies of players are only differentiated by a constant factor, which is formalized in the next
lemma. This suggests that the optimum and the Nash equilibrium have the same sets of buy-in
users S; and shared users S,.

2 Vo,

ieS

LEMMA 4.6. Denote by p°f'T = [p?PT, pg)PT, . .,pj(\),PT] T the strategy profile of the players at the

social optimum, and pNt = [pf]E,péVE, e pﬁ]]E] " the strategy profile of the players at the Nash

equilibrium, we have
k
NE b_OPT
P =A7P -
\ v
OPT ;

Proor. We prove the lemma by construction, that is, we prove that if p~** is the unique optimum,
then pVE = | %”pop T is the unique Nash equilibrium.

Consider a buy-in player i and a shared player m at the optimum, where pIOP T'> 0and p9T = 0.
From Lemma 4.2, we have VC; = 0 and VC,, > 0, and the difference between VC,,, and VC; is

(24107} AmWm
OPT OPT\2 OPT
(kai + Zt’esl,l;&i kSP[ )2 (Z[ESI kst )2

Combining the inequality above with (8), we get

VCn = VC; = (kp — ks) (

AmOm 1

3 < T
(Zies, ksp?™)2 — ¥

amwm _ ks ko opr ks NE
1/ s - \ 7 Pi =0
ks kp l;‘l ( 14 kp IEZSZI

which is the necessary and sufficient condition for pN£ = 0 according to Lemma 4 in [25]. Thus,
the shared users at the optimum are also the shared users at the Nash equilibrium, and we have

pNE = %png = 0 for a shared player m.

Equivalently,

Next, consider buy-in players. Note that equations (8) and (17) are in the same form, except
for their constant factors on the RHS. Thus, if [p?P T pzop T .., p,?lp T] T is the unique solution to

(8), then l%” [pIOPT,p?PT, ... ,p,?IPT] T will solve equations (17). Therefore, the buy-in users at the

optimum are also the buy-in users at the Nash equilibrium, and we have p™* =,/ % l.OP T > 0fora

shared player i.
OPT

As a result, given the unique social optimum as p°f7T = [P1 P

o
e P
construct the unique Nash equilibrium pN E - [pJIVE, e, panE, o,..., 0] T where

prE =, fk—‘;p?”, Vies.
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Although Theorem 4.4 and Theorem 4.5 provide closed-form social cost at the optimum and
the Nash equilibrium, respectively, we still need to know the sets S; and S; beforehand in order to
compute the social cost. In other words, we need to distinguish buy-in users from shared users. We
have already shown that p; > 0, Vi < ny, and p; = 0, Vi > n;. Thus we just need to identify n,, i.e.,
the number of buy-in users. The following lemma provides a convenient way to do that, instead of
computing the Nash equilibrium or the optimum directly.

LEMMA 4.7. At the Nash equilibrium or the social optimum of an SBC game, if there exist shared
users (n; < N), then the strategy of player m is p,, = 0 if and only if

\/0(— < s Lii<m VHDi ks Yiem V&iWi

mm = (m— 2)ks’

wherem < ny + 1.

ProOF. According to Lemma 4 in [25], at the Nash equilibrium, the strategy of player m is p;,, = 0

if and only if
Am@m
2
kb;m >/ T (23)

where m < ny + 1, and {p* |i < m} is the unique solution to

ky ks ... ks Vaikpo;
ks kb azkba)z

k k... Ky pml vm
In other words, {p;* |i < m} is the Nash equilibrium of the SBC game among just the players
{1,2,...,m—1}.
Multiplying the equation above from left with the vector 17 = [1,1,..., 1] on both sides, we get
(ky + (m = 2)ks) > pi* = > Nakyor, (29)
i<m i<m

Combining (23) and (24), we get
& % Yicm Vaikpoi s [%m©Pm
ky  kp+(m-2)ks — ky °

which can be simplified as

ks Xicm Valwl
Vam®m = = 2k,

According to Lemma 4.6, at the optimum, we also have p,, = 0 if and only if the condition above
holds.
O

With the lemma above, we can identify n; in O(N) time, such that we can distinguish buy-in
users from shared users, as follows: iterate from player 1 to player N, until we find the player m
such that p;, = 0, n; can be then computed by n; = m — 1. Note that, if we maintain the sum
i<m \Vaiw; for all players that have been iterated, it takes just O(1) time to update the checking
condition in each iteration. Thus, the time needed to check all players is O(N).

Although an algorithm to compute the Nash equilibrium is given in [25], using it in order to com-
pute the Nash equilibrium explicitly and afterwards compute the corresponding social cost would
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Social Cost Analysis of Shared/Buy-in Computing Systems 19

incur O(N*). Here, in contrast, we manage to give the closed-form social cost without explicitly
computing the Nash equilibrium, incurring a time complexity of just O(N). More specifically, we
first distinguish buy-in users from shared users by Lemma 4.7, then compute the social cost at the
Nash equilibrium based on Theorem 4.5, both of which can be completed in O(N) time. Similarly,
the optimal social cost can be computed in O(N) time, based on Lemma 4.7 and Theorem 4.4.

4.3 Price of anarchy

In [25], the convergence to the unique Nash equilibrium of the SBC game through best-response
dynamics is established. However, the Nash equilibrium might not (and typically does not) coincide
with the social optimum. As explained, the gap between the two is captured through the price of
anarchy, namely:

Cworst_NE (P)

Copt(p)
It is shown in [25] that the game has a unique Nash equilibrium, hence the Nash equilibrium that
we compute is necessarily the worst (i.e., has the largest social cost among all equilibria). A larger
PoA indicates that the Nash equilibrium is less efficient.
According to Theorem 4.4 and Theorem 4.5, we can solve the price of anarchy in closed form.

PoA =

LeEMMA 4.8. The price of anarchy of an SBC game is

PoA = K v (Qkh +kp + (nl - l)ks)ks(Ziesl \/051'(1)1')2 + (kb + (nl - l)ks)2 ZmESZ Am@m
kp "~ (0 +ky + (m = Dks)ks(Zies, Vaion)?® + (kp + (n1 = Dks)? Lines, Cm@m

where
Y= kp + (ny — ks ( + (kp + (n1 = Dks) 2imes, ImWm
0 ks(Lies, Vaioi)?
Proor. Combine (12)-(13) in the proof of Theorem 4.4 and (22) in the proof of Theorem 4.5, the
price of anarchy is
_ Cne(p)
~ Corr(p)

- 1 Ny (kp+(n1—1)ks) Zimes, Om®m
(W + kb+(l’l1—1)ks) Ziesl a;w; + ks\l/a Zieslz\/aiwi

_ z % (Okp + kp + (ny — l)ks)ks(ZieSI \/051'601')2 + (kp + (n1 — 1)k)? ZmeSz Am@Om
Nko T (09 +kp + (m1 = Dkoks(Bies, Vaion)? + (kp + (11 = Dke)? X pes, Tm@m

PoA

]

In the following, we provide the price of anarchy in closed form for the special case where all
players are buy-in users. The price of anarchy in this case is simply the ratio between the social
cost in Corollary 1 and that in Corollary 2. In Section 6.1, we also present numerical results of the
PoA in the general case.

CoROLLARY 3. When all players are buy-in users, the price of anarchy of an SBC game is

1 [k + (N =1k, ok,
PoA = - .
08=3 \/ 0k, \k+ (N-Dk
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20 Z. Shi, D. Starobinski, and A. Orda

As the operating expense ratio 0 increases, the price of anarchy decreases (note that we have
0 < 1). Alongside, as the ratio ks/kj increases, the price of anarchy increases.

If the number of users N is large, the price of anarchy becomes arbitrarily large. Specifically, the
price of anarchy grows in the order of Q(VN) in this special case.

In Section 6, we show through numerical simulations that, the price of anarchy actually decreases
as the user workload distribution becomes more heterogeneous. As a result, the worst-case price of
anarchy seems to occur when all users have homogeneous workloads, in which case they are all
buy-in users.

5 SUBSIDY POLICIES

In this section, we investigate one possible way to lower the price of anarchy, namely by subsidizing
users according to their payments. We first introduce the subsidy term into our model, then propose
two subsidy policies and analyze their effects.

In [25], it is shown that, in order to reach the social optimum, users need to pay more than
the prices they pay at the Nash equilibrium. We are thus motivated to come up with policies that
incentivize users to purchase buy-in resources. One such policy (adopted by BU SCC) is that users
get some credits when their idle buy-in nodes are used by others, and those credits can be used in
order to acquire more resources on demand. In the following, we will change the cost function of
each user (14), to take the effects of such a subsidy policy into account, and investigate how the
outcome of the game changes consequently.

The credits are awarded to users only when their buy-in resources are used by others, which can
be translated into an additional computing rate A;(p) in the cost function.

As a result, the new cost function of each player i becomes:

AW

Ci = + pi.
®) kopi + X jzi kspj + Ai(p) k

(25)

Define the utility of player i as the gross payoff I'(w;) for completing its workload «;, minus its
own cost. The utility function can be expressed by:

Wi

kppi + 2 jyi kspj + Ai(p)

Ui(p) =T (w;) - - pi-
For each player i, the best response strategy is still the one that can minimize its own cost C;(p) (or
equivalently, maximize its utility U;(p)), which is given by p; = argmax,, U;(p) = argmin,, Ci(p).

The next task is to state the exact form of A;(p). There are many possibilities for determining
A;(p), yet we prefer a simple yet effective one, so that not only the outcome (e.g., social cost) is
easier to predict, but it is also easier for users to make decisions. With that in mind, we compare
between the following two forms of subsidy within our model: A;(p) = k.p; (linear form) and
Ai(p) = kep? (quadratic form), where k. is a coefficient of proportionality.

Note that, by choosing a quadratic form for A;(p), heavy users get a larger marginal increase
in their computing rate. Considering the fact that light users benefit relatively more in the game
previously considered in [25], the quadratic form makes the game fairer, compared with a linear
form.

Next, we investigate the properties of the SBC game with the two different subsidy policies.

Subsidy of the form of A;j(p) = kcp;. The next theorem states that, with this form of subsidy
policy, the game satisfies all the properties of regular SBC games in terms of the Nash equilibria.

THEOREM 5.1. An SBC game with subsidy of the form of A;(p) = kc.p; has the following properties:
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(i) At a Nash equilibrium of the game,
PL2pr=--2py20.

(ii) The game has a unique Nash equilibrium.
(iii) The game is submodular.
(iv) Through best-response dynamics, the game converges to its unique Nash equilibrium from all

possible initial states.

Proor. For each player i, the cost function is
Wi
Ci(p) =
AP i + 2y ko + ke
_ Wi
(kb + kc)pi + Zj;ti kst
_me
kypi + 2jzikspj ’

where k, = kj, + k.. Consider k; as the equivalent k; in a regular SBC game, the theorem then
follows Lemma 1, Theorem 1, Lemma 7, and Theorem 2 in [25]. ]

+pi

+ pi

Note that the new cost function for each player still satisfies the definition of an SBC game, except
that the buy-in factor is larger. Therefore, all the conclusions in previous sections are applicable to
an SBC game with subsidy of the form of A;(p) = k.p;.

LeEMMA 5.2. For an SBC game with subsidy of the form of A;(p) = k.p;, we have:
(i) The social cost at the optimum is

N — (k; +(n1 = Dks) Y nes, Gm®m
) zezs: ks Yies, V@i

c 1
orr(p) = \/— m

(ii) The social cost at Nash equilibrium is

(ky + (n1 = Dks) Xjes, @j@;
Cne(p) = ( ; —) ky ) Naiwi + . ;
Ky K+ (m =Dk \/7; o kJk  Zies Vo

(iii) The price of anarchy is

por= |« (Oky, + Ky + (n1 = Dkoks (Zies, Vaion)? + (ky + (n1 = Dks)? s, @mom
p OU+ky + (n = Dko)ks(Zies, Vaion)? + (ky + (m1 = Dks)? Xpyes, Omoom

where
k; =kp + ke,
Y= ky + ke + (ng — D)k 14+ (kp + ke + (n1 — 1)ks) Zmesz AmOm
0 ks(Ziesl Vaiwi)z

Proor. In the proof of Theorem 5.1, it is shown that an SBC game with subsidy of the form
of Aj(p) = kcp; is also an SBC game with buy-in factor k; = kp + kc. Thus, Theorem 4.4 and
Theorem 4.5 still apply to the game. Replacing the buy-in factor by kj, + k., we get the closed-form
social cost at the optimum and the Nash equilibrium in (i) and (ii), respectively. The price of anarchy
in (iii) can be computed accordingly as their ratio. O
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Subsidy of the form of A;(p) = kcp?. We next obtain several properties of the game, by establishing
a connection to aggregative games. Based on these properties, we then derive a convergence result
for the best-response dynamics of the game. The convergence result enables us to compute the Nash
equilibrium by running best-response dynamics. As a result, we can get numerical solutions to the
social cost and price of anarchy, and evaluate the impact of the subsidy even though closed-form
solutions are difficult to derive.

LEMMA 5.3. An SBC game with subsidy of the form A;(p) = k.p? admits a Nash equilibrium under
the following sufficient condition

k. < (Xiklzja)i
2ks 2 j4i Pj
Moreover, the utility function U;(p) of player i is strictly concave in p;, given {p;|j # i}.

Vi. (26)

ProoF. The idea of the proof is to find out the sufficient condition such that U;(p) is concave
with respect to p;, as concave games always admit a Nash equilibrium following from Theorem 1
in [21].

For each player i, the best response is lower-bounded by 0. Taking the partial derivative of U;(p)
in terms of p;, we get

aUi(p) _ (kp + 2kcpi)aiw; _q
i (kepi +kep} + Desikspe)®
Note that, if p; is greater than a large enough p;_,pper, the partial derivative oU;(p) /dp; will be less
than 0, which indicates that the utility decreases as p; increases, hence the best response must be
upper-bounded by p;_ypper- As a result, the best response p; can take any value from [0, p;_ypper],
which implies that P; is compact and convex.

Next, observe that k;, > 0, ks > 0, and p; > 0 for all i, thus the payoff U;(p) of player i is
continuous in p. Moreover, taking the second derivative of the payoff function U;(p) with respect
to p;, we obtain

PUi(p) _ 2ke(Xjui kspy) — aiwi(k} + 2kpkepi + 2kZp?)
apiz (khpi + chiZ + Zj;ti kst)3 '
The condition (26) is equivalent to

ch(z kst) - aikiwi <0, Vi.

J#i

Thus we have
PU(p)  2ke(Xjsikspy) — aiwi (K} + 2kpkeps + 2k7p7)
op; - (kppi + kep? + 3 jsi kspj)?
(ch(Zj;ei kspj) — aikiwi) — 200 (kpkep; + k?P?)
= (kppi +kep? + 221 kspj)?

<0,

which implies that U;(p) is strictly concave in p; given fixed {p; | j # i}. The lemma then follows
from Theorem 1 in [21].
]

LEMMA 5.4. At a Nash equilibrium of an SBC game with subsidy of the form A;(p) = kcp?, we have

pr=p22--2pN 20,
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under the following sufficient condition

k. < min{ aikiwi , D) Zjes Pi } Vi. (27)
2ks X2 pj QWi

Proor. In order to prove the lemma we shall show that, given a;w; > ajw;, we have p; > p;
at the Nash equilibrium, for all i, j € S. We prove this statement by contradiction, that is, given
a;jw; > ajw;, we show that p; < p; cannot hold.

First, we investigate the conditions that p; and p; must satisfy at the Nash equilibrium. At the
equilibrium, player i maximizes its payoff U;(p) given other players’ payments. In Lemma 5.3, we
have proven that the payoff function U;(p) of player i is strictly concave in p;, given {p,|¢ # i}, that
is, 9?U;(p) /9p? < 0. As a result, the partial derivative of the payoff function oU;(p)/dp; decreases
with respect to p;. Let p* denote the solution to the equation

aUi(p) _ (kp + 2kcpi)aiw;
op; (kppi + chiZ + Dpzi Kspe)?

Consider the constraint that p; > 0, the payoff function U;(p) reaches its optimum at p; = p*, if
p* > 0;0r p; =0,if p* < 0. Therefore, at the Nash equilibrium, p; satisfies

pi=p" > 0, iff (ky + 2kepi)ion = (kppi + kepf + ) kspe)®s

C#i
pi =0 > p*, iff (kp + 2kepi) i < (kppi + kep? + Z kspe)?.

t#i

Next, assume that given a;w; > ajw;, we have p; < p;, which has two cases: 0 = p; < p;, and
0 < p; < p;. In both cases, p; and p; satisfy

(kp + 2kepi)ajoos < (kopi + kepf +kspj+ Y kepe)®s (28)
0#i,0#]

(kp +2kepj)aje; = (kop; +kep + ksps+ ) kspr)®. (29)
IZINzS]

We show the contradiction by proving the equations above cannot hold if a;w; > ajw; and p; < p;.
Take the difference between (28) and (29), we get

kp(aiw; — ajw;) + 2k (aiwip; — ajw;p;)

<(pi = pj)(kp — ks + ke (pi + pj)) (ko + ko) (pi + pj) + ke(p? + p5) +2 Z kspe)

ey
=(pi = pj) (kp = ks + ke(pi + p)) (ko (pi + pj) + ke(p +p3) +2 > kpe). (30)
i€eS
The LHS of (30) can be re-written as
kp(aiw; — ajo;) + 2kepj(aio; — ajo;) + 2keaiwi(pi — pj)- (31)
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Move the last term of (31) to the RHS of (30), we get
kb(aia),- - ajwj) + Zkaj(aiw,- - ajwj)

<(pi = p)[(kp = ks + ke(pi + ) (ko (pi + pj) + ke (p} + ) +2 ) ope) = 2keation]

ieS
:(Pi - p]) [(z(kb - ks) Z ksp{’ - chaiwi) + ch(pi +Pj) Z kspt’
ieS ieS
+ (kp = ks + ke (pi + p) (ko (pi + pj) + ke(p} + p))]. (32)

When k. satisfies the constraint (27), we have

2(kp = ks) D kpe = 2keaioo; > 0.
ieS
Under the assumption that 0 < p; < p;, we get that the RHS of (32) is strictly less than 0. However,
from a;w; > ajw; we get that the LHS of (32) is no less than 0, such that the inequality (32)
cannot hold. Hence, ;0; > ajw; and p; < p; cannot the hold at the same time, and the lemma is
proven. O

Define a game (S, {P;}ics,, {Ui}ies) as an aggregative game [6], if for each player i, its payoff U;
is a function of p; and )’ jcs pj, i€, Ui(p) = Ui(pi, 2 jes pj)- In an aggregative game, the payoff of
player i depends only on its own strategy p; and the aggregate of all players’ strategies ). ;cs pj-

LEMMA 5.5. An SBC game with subsidy of the form A;(p) = k.p? is an aggregative game.

Proor. Note that in an SBC game with subsidy of the form A;(p) = k.p?, the payoff function U;
of player i can be written as

Us(p) =T'(w;) - H - pi
kppi + Zj;ti kspj + kcpl2
Ajwij
B T P
=U; (pis Z Pi)-
jes
The lemma then follows. ]

LEmMMA 5.6. An SBC game with subsidy of the form A;(p) = kcp? is submodular.

Proor. The strategy set P; of player i is continuous by assumption and lower-bounded by 0.
Moreover, it has an inherent upper-bound since when the strategy p; is above a threshold, the cost
of will increase monotonically with p;. Therefore, P; is a compact subset of R.

Given a twice continuously-differentiable function f : X — R, f has decreasing difference in if
and only if

Pf(x)

axiaxj

<0, Vi#]j.

Consider the payoff function U;(p) of player i. We have
52Ul(p) _ O(iks (kb + Zkal-)a)i
opidp; (kppi + kep? + Ypzi kspe)?

Therefore, the payoff function U;(p) has decreasing difference in (p;, p—;), where p_; denotes the
strategies of players other than player i. Furthermore, note that k;, > 0, ks > 0, p; > 0and p_; > 0

<0, Vj#i.
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for all i, from which we get that U;(p) is continuous in (p;, p—;). Thus, we deduce that an SBC game
with subsidy in the form of A;(p) = kcp? is submodular. O

LEMMA 5.7. Given the other players’ strategies, the best response of player i in an SBC game with
subsidy in the form of A;(p) = kcp? is single-valued, except when it has a specific workload ?, in
which case there exist two best response strategies, one of them being 0. Moreover, the best response is a
non-decreasing function of w;.

Proor. Note that p; > 0. Taking the partial derivative of C;(p), we get
3Ci(p) (kbpz + ch, + Z]¢l ksp]) - (X,w,(kb + chPz)

i (kppi + kep? + 2jzikspj)?
Note that the numerator can be written as f;(p;) — a;kpw;, where f;(p;) is defined as
Fipi) = (kopi + kep? + )" kspy)? = 2aikecipi. (33)
j#i

As a result, to solve dC;(p)/dp; = 0, we only need to compare a;kpw; with f;(p;). Specifically,

if f;(p;) < aikpw;, we have oC;(p)/dp; < 0;

if f;(p;) = aikpw;, we have oC;(p)/dp; = 0;

if fi(pi) > aikpw;, we have aC;(p)/dp; > 0.

Next, in order to compare a;kpw; with f;(p;), we take the derivative of f;(p;), such that we can
find out how it changes with p;.

The first derivative of f;(p;) is

df;p’) =2(kppi + kep? + > kep;) (2kepi + kp) — 20tk

J#i

2k2p? + 3kpkep? + (2k ks ij +k))pi + kpks ij - 2a;k.w;,
j#i j#i
which is an increasing function of p; when p; > 0. Moreover, note that when p; = 0, we have
df; (o
—J;( ) _ akok, > pj - 2aikeor.

Pi J#i

Next, consider the following two cases: (a) % > 0; and (b) df’(o) < 0. We use p! to denote
specific values such that f,(plt) = a;kpw;, where t =0,1,2,3, ... is used to number those values. The
minimum of f;(p;) is denoted by ™, and the maximum is denoted by f™*.

(a) % > 0, equivalently, kpks X ;4; pj > @ikco;. In such a case, f;(p;) increases as p; increases.

There are two sub-cases (a-i) and (a-ii), according to the value of w;:

(@) fi(0) > aikpwi, so fi(pi) > akpw; for all p; > 0. Then we get that C; is an increasing
function of p;, thus, p; = 0 is the best response.

(i) £;(0) < ajkpa;, then there exists p, such that f;(p?) = aikpw;, f;(0) < aikpw; for p; < p?,
and f;(0) > a;kpw; for p; > p?. Thus, C; decreases within interval [0,p?], increases within
interval (p?, ), and p; = p? is the best response. Furthermore, note that f;(p;) increases
with p;, so po increases as w; increases.

(b) dﬁ(o) < 0, equivalently, kpks 24 pj < @ikcw;. In such a case, fi(p;) first decreases to fmin,
then increases as p; increases. There are three sub-cases (b-i), (b-ii), and (b-iii), according to
the value of w;:
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(1) aikpw; < fimi“, so fi(pi) > ajkpw; for all p; > 0. Then we get that C; is an increasing
function of p;, thus, p; = 0 is the best response.

(ii) fl.min < aikpw; < f;(0), then there exists p; and p?, such that f;(p}) = fi(p?) = aikpw;.

Moreover, C; increases within the interval [0, p}), decreases within the interval [pl.l, pl.z),
increases within interval (p? ). To find the best response, we need to compare between
Ci(p?) and C;(0). Let 5; denote the increase of C; within interval [0, p}), and &, denote the
decrease of C; within interval [p}, p?). We then have C;(p?) = C;(0) + &1 — &,.
Consider the case where ; is relatively small (close to f™"), p! and p? are very close to
each other, so that §; > §,, and C;(0) < C; (pl.z). Therefore, p; = 0 is the best response. As
w; becomes larger, p; goes towards 0, and p? goes towards co, so that §; decreases and
8, increases, as a result, C; (pl?) decreases, eventually becomes less than C;(0), so p; = pf
becomes the best response. A special case is when &; = &, given a workload !, where
Ci(0) = Ci(p?), and both 0 and p? are the best responses.

(i) f;(0) < aikpw;, then there exists p?, such that f;(p?) = aikpw;, f;(0) < aikpw; for p; < p3,
and f;(0) > a;kpw; for p; > p>. Thus, C; decreases within interval [0, p?], increases within
interval (p?, ), and p; = p? is the best response. Furthermore, note that f;(p;) increases
with p;, so p? increases as w; increases.

We thus conclude that, in all cases, the best response of a player is either a unique positive value
pF > 0, 0r {0, pF}. This suggests that Lemma 5.7 holds. O

We are ready to prove that, if k. satisfies the condition in Lemma 5.3, the game can always
converge to an equilibrium under some reasonable assumptions.

THEOREM 5.8. Assume that if a player has two best response strategies that yield the same minimal
cost, one of which is to pay 0, then the player prefers not to pay. Under this assumption, through
best-response dynamics, an SBC game with subsidy of the form of A;(p) = kcp? converges to its Nash
equilibrium (or equilibria) from all possible initial states under the sufficient condition

k akyoi (34)
< ———, Vi
7 2k Y j#i Pj

Proor. By Lemma 5.3, condition (34) guarantees that there exists at least one Nash equilibrium
in the game. The proof then follows essentially the same as the proof of Theorem 2 in [25], as we
have shown that the game is aggregative and submodular, and has single-valued best response.
The best response is single-valued under the assumption that that players prefer not to pay if they
can minimize costs, which addresses the only case where there exist two best responses and one of
them is 0. O

6 NUMERICAL RESULTS

In this section, we present numerical results to validate and expand on our theoretical analysis. We
first provide numerical results about the social cost both at equilibrium and at optimum, and the
corresponding price of anarchy. Next, we evaluate the subsidy policies introduced in Section 5 and
show that they are indeed able to significantly lower the social cost at the Nash equilibrium. We
then simulate the game with heterogeneous shared factors, in order to show that the assumption
of a homogeneous shared factor provides a satisfactory approximation.

6.1 Social cost and price of anarchy

In this subsection, we numerically evaluate the social costs at equilibrium and at optimum, and
then compute the corresponding price of anarchy. We consider shared/buy-in computing games
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modeled by heterogeneously distributed workloads observed in real-world systems, and investigate
the influence of different parameters on the social cost and price of anarchy.

Several studies have shown that job completion time (makespan) in large-scale clouds can be
modeled with a log-normal distribution [8, 19]. This is also true for shared/buy-in clusters [17].
The formula for the log-normal distribution is

1 1
P(W <o) = 5+5erf

5

Inw - v]

where W denotes the random variable, which is workload in our model, and erf|[-] stands for the

error function
flz] = 2 / e tar
erf[z] = — e .
vV Jo

The log-normal distribution we use has two parameters v and o, which are respectively the mean
and the standard deviation of the random variable’s natural logarithm.

Unless stated otherwise, in our simulations, we set v = 7.37 and o = 5.69 for the base case,
similar to [25]. We discard very large random samples, since real-world shared/buy-in computing
systems cannot sustain workloads that exceed some threshold. We set this threshold to w = 5 x 10°
(CPU-hours). Since the workloads are generated randomly from a log-normal distribution, each
run of simulations yields different results, even under the same parameters. Therefore, for each
setting of log-normal distribution parameters, we generate 100 groups of workloads and use them
to run 100 individual simulations.

We assume that the system has N = 200 users, and for each of them, the cost per unit of time is
a = 1. For the base case, we set k; = 30 and ks = 0.075, such that the ratio between the two types
of resources used kp X ;5 Pi/ (N — 1)ks X5 pi» is roughly the same as the ratio observed in the BU
SCC data [17]. The operating expense ratio of the system is set to 6 = 0.5, for the base case.

First, we validate our closed-form social cost at the optimum, by comparing it with the results
obtained through coordinate descent methods. We have proven in Theorem 4.1 that the social
cost function is strictly convex in the payments of players. Since the social cost function (1) is
continuous and differentiable, a simple approach to solving this constrained optimization problem
is by employing a coordinate descent method, which minimizes along the coordinate directions
until it reaches a local optimum. To implement coordinate descent, we adopt an approach similar
to best-response dynamics: each player updates its strategy in turn, so as to minimize the social
cost function (1) given the other players’ strategies, until no one needs to change their strategy
anymore.

We find that the numerical results by coordinate descent are identical to the closed-form social
cost (within the range of error). Specifically, for the base case described above, the simulated social
cost and our closed-form social cost are both Copr = 8,749 (CPU-hours) on average. The ratio
between their difference and the simulated social cost has an average of only 2.71 X 1077, and a
standard deviation of 4.01 x 107®. We obtained similar results for different combinations of the
parameters 0, kp, and k. This serves as a validation of the closed-form optimal social cost given in
Theorem 4.4.

We further compute the player strategies at the Nash equilibrium to validate the closed-form
social cost at the equilibrium, provided by Theorem 4.5. We find that the results indeed coincide,
with Cng = 9, 628 (CPU-hours). Furthermore, when numerically computing the ratio of the player
strategies at the equilibrium to the player strategies at the optimum, we find that their ratio is
identical to the value given by Lemma 4.6, with an average of 0.6411 and a standard deviation of
0.0036.
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Fig. 1. Influence of different system parameters on the social cost and price of anarchy. The operating expense
ratio € has the most significant influence.

We next compare the average values of the social cost at the optimum and the equilibrium,
and compute the price of anarchy. For the base case described above, the social cost at the Nash
equilibrium is Cng = 9,628 (CPU-hours), and the social cost at the optimum is Copr = 8,749
(CPU-hours), which results in price of anarchy equal to 1.1005. Therefore, in this case, the social
cost of the Nash equilibrium is about 10% higher than optimal.

Next, we vary the parameters 6, kp,, and ks, to investigate how the social cost and price of anarchy
are influenced by these different factors. The results are depicted in Fig. 1. We find that the operating
expense ratio 6 has the most significant influence on the price of anarchy: with other parameters
kept unchanged, when 6 decreases toward 0, the price of anarchy significantly increases. Recall that
0 is the ratio between the operational cost and the payment by users. Thus, the Nash equilibrium
of the system can be pretty inefficient if the provider has a low operating expense ratio, i.e., it
gets a relatively higher net revenue from the same overall payment. On the other hand, while the
price of anarchy also depends on the buy-in factor k; and shared factor ks, the influence of these
parameters is not as significant as 6. Moreover, Fig. 1(d) shows that, no matter what the values of
kp and ks are, as long as the ratio kg/k;, is fixed, the price of anarchy remains the same. When the
ratio ks/kp increases, the price of anarchy increases as well. Intuitively, users benefit more from
the shared resources as ks /kj, grows larger, such that they tend to pay less and rely on the shared
resources. However, when everyone pays less for buy-in resources, the overall amount of available
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Price of Anarchy

Fig. 2. Influence of the distribution parameter o under different settings of v (v and o2 are the mean and
variance of the workload’s natural logarithm, respectively). The PoA decreases as the workload becomes more
heterogeneous.

resources decreases, hence the system becomes less efficient in completing all the workloads. It is
also worth noting that the social cost does decrease as kj and ks increase.

The distribution of user workloads also affects the social cost and price of anarchy. Fig. 2
evaluates the impact of different settings of the v and ¢ parameters. We find that as the distribution
parameter v increases, the price of anarchy increases slightly. This implies that as the total user
workload increases, the system operates at a less efficient state. The distribution parameter ¢ has
the opposite and more significant influence: the price of anarchy decreases as ¢ increases, that is, as
the distribution of user workloads becomes more heterogeneous. We also note that, if all the other
system parameters are kept fixed, the price of anarchy reaches its maximum of 1.1542 when ¢ = 0,
no matter what the value of v is. In fact, the case where o = 0 indicates that every user has the
same workload, hence each user will be a buy-in user with the same payment. In Corollary 3, we
have given the closed-form price of anarchy in the case where all users are buy-in users, and the
result is precisely 1.1542 for our setting of system parameters k, ks, and 6. Moreover, the analytical
results in Lemma 3 show that the price of anarchy is not influenced by the user workloads if all
the users are buy-in users, which explains why the price of anarchy is the same when ¢ = 0 under
different values of v. Note that the worst price of anarchy is still not very large in this example;
this is due to the fact that, in order to guarantee the benefit of buy-in users, the shared factor k; is
in practice typically much smaller than the buy-in factor k.

In the simulations above, the parameters change around the parameters in the base case. In
the base case, we have that k > ;e p; and (N — 1)ks 3,5 pi are relatively comparable, which
implies that N and ks cannot be very large at the same time. However, in other scenarios, where
0 is relatively small, and both N and k; are relatively large, we can find that the price of anarchy
becomes even larger. For example, consider the same parameters as in the base case, except that
we let ks range from 2 to 10, and 0 ranges from 0.1 to 0.3. In such a case, Fig. 3 shows the price of
anarchy can be close to 4, which indicates that the system is highly inefficient.

6.2 Impact of subsidy policies

In this subsection, we present numerical results regarding the price of anarchy and social cost
when employing subsidy policies of the two forms elaborated in Section 5.
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Fig. 3. Influence of the operating expense ratio 0 and the shared factor ks on the price of anarchy. When 0 is
small and ks is large, the price of anarchy can be as large as 4 in this example.

We employ the subsidy policies on the base case of Subsection 6.1, except that 8 = 0.3. We assume
that the total amount of computing resources is fixed, and the subsidy resources come from the
shared resource pool. In the simulations, when we increase the subsidy term A;(p), we decrease ks
such that the total computing rate of all users > ;cs[(kp + (N — 1)ks)p; + Ai(p)] is fixed. For the
linear form of subsidy A;(p) = k.p;, we can keep the total computing rate exactly the same when
we change k.. For the quadratic form of subsidy A;(p) = kcp?, due to the quadratic term, we can
only make the total computing rate stay approximately the same. The impact of employing subsidy
policies is illustrated in Fig. 4. Note that the price of anarchy in Fig. 4(b) is a lower-bound, since
we have not formally proven that coordinate descent converges to the global minimum for the
quadratic form of subsidies. Nevertheless, in our simulations, coordinate descent always yields the
same minimum, irrespective of the initial state. It is also worth mentioning that, the values of the
parameter of subsidy k. shown in the two figures are not directly comparable, as k. in Fig. 4(b) is
smaller, so as to keep the total computing rate of all users fixed; instead, the same positions on the
x-axes of the two figures share approximately the same amount of subsidy resources ;<5 A; (p).

We consider the Nash equilibrium of the game under the two subsidy policies. We find that,
under both policies, the game exhibits two identical properties. First, we simulate the convergence
through the best-response dynamics of the game, and find that the game always converges to a
unique Nash equilibrium from random initial states. Second, we note that the Nash equilibrium
satisfies p; > p, > --- > py > 0, that is, the prices paid by users decrease with their adjusted
workloads (¢;w;). Note that the simulations of the game with the quadratic subsidy policy suggest
more general properties than those established analytically in Section 5.

We note that both subsidy policies lower the social cost at equilibrium. However, the change
is more significant for the quadratic form of subsidy A;(p) = kcp?. Intuitively, with the quadratic
form of subsidy, heavy users with large workloads get higher overall computing rates per unit of
payment, thus they benefit more from the subsidy policy. Since the social cost is dominated by the
costs of heavy users, subsidizing mainly the heavy users works better than subsidizing all users
equally.

It is also worth noting that the subsidy policies improve both the social cost and the price of
anarchy, except when k. is close to 0 with quadratic subsidy. Since we can only make the total
computing rate stay approximately the same when simulating the quadratic subsidy, the reason
for this exception could be that the total computing rate with quadratic subsidy is slightly smaller
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Fig. 4. Impact of subsidy policies on the social cost and price of anarchy. The linear subsidy policy primarily
impacts the PoA, while the quadratic subsidy policy primarily impacts the social cost at equilibrium and at
optimum.

than in the base case. More specifically, we find that the linear subsidy lowers the social cost at
equilibrium by 9.2%, the social cost at optimum by 5.7%, and the price of anarchy by 4.8%; in
comparison, the quadratic subsidy lowers the social cost at equilibrium by 25.1%, the social cost at
optimum by 23.5%, and the price of anarchy by 2.0%. Considering the changes in the optimal social
cost and price of anarchy, we find that the linear subsidy is preferable for lowering the price of
anarchy, while the quadratic subsidy is preferable for lowering the optimal social cost.

Intuitively, under the linear subsidy policy, every user gets the same amount of subsidy per
unit of payment, while the quadratic subsidy case is akin to a “differential” subsidy, in the sense
that heavy users get more subsidy per unit of payment. In practice, the provider may prefer such
a differential subsidy policy, as our simulations show that it is better at lowering social cost at
equilibrium than a linear subsidy.

6.3 Simulations with heterogeneous shared factors

In this subsection, we run two series of numerical simulations for the case where each user i has a
heterogeneous shared factor ks;. The goal is to verify whether the assumption of a homogeneous
shared factor k; for all users, as used in our analysis, provides a satisfactory approximation of the
actual case.

In the first series of simulations, we assume that ks; follows a normal distribution N (g, &%), with
mean p = ks. Since the shared factor must be non-negative (the buy-in resources owned by a user
can only benefit other users), we discard the sample of kg; if ks; < 0. In order to ensure that only a
small fraction of samples will be discarded, we set ¢ such that y — 2& > 0.

The user workloads are generated from the same log-normal distribution introduced in Section 6.1.
For the base case, the other parameters are also the same as in Section 6.1: N = 200, k;, = 30,
ks = 0.075, and a = 1 for all users. We distinguish between two cases in terms of the shared factors:
the homogeneous case where k;; = ks for all the users, and the heterogeneous case where k;
generated from N (y, .fz). Note that, when ¢ = 0, every user has the same shared factor, hence
yielding the homogeneous case.

First, we compare the Nash equilibria and convergence properties of the homogeneous case
versus the heterogeneous case. We find that, in both cases, the game always converges to a unique
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Standard deviation (¢§) | 0 | 0.005 | 0.01 | 0.015 | 0.02 | 0.025 | 0.03 | 0.035 | 0.04 | 0.045
Rounds 775 | 7.78 | 7.79 | 7.72 | 7.84 | 7.78 | 7.75 | 7.87 | 7.85 | 7.91
Table 2. Average number of rounds needed for convergence vs. standard deviation ¢ of the shared factors.

13 - 11000
—+—PoA
- % =Gy | 710500 1.15
129 =-#-=Copr |- 10000 1.14
. 113
> 9500 _ I
'S12‘-——x———x———x---x——-x——«__»__,,__ — %’112 ——-— »* *
5] Jo000 3§ st
< o < 111
- 115 18500 & <
° K] B A e N m e m M e — W — m = =% = =X
@ 4 )
2 @ 8 1.09
a ™ 47500 o
1.08
{7000
1.05 107
6500 1os
; | | | | | | | | 5000 ‘ ‘ ‘ | | ‘
0 0005 001 0015 002 0025 003 0.035 0.04 0.045 1 050 o1 02 03 0 s "
¢ (standard deviation of ks‘) el
(a) Influence of the standard deviation &. (b) Influence of £ under different means p.

Fig. 5. The distribution of shared factors (ks; for user i) has little influence on the price of anarchy and social
cost. u and £ are the mean and standard deviation of the shared factors, respectively.

Nash equilibrium, regardless of the initial state. Moreover, the game converges within a few rounds,
where a round consists of having each player update its strategy per its best response. In Table 2,
we show the relationship between the average number of rounds needed for convergence and
the standard deviation ¢ of the shared factors, by simulating the best-response dynamics from a
random initial state 1,000 times. We find that the convergence rounds are basically not affected by
the heterogeneity of the shared factors. We also find that the Nash equilibria for all £ are very close
to the one in the homogeneous case. For example, the average difference of the prices paid by a
player between the homogeneous case and the heterogeneous case for £ = 0.025 is only 0.1557,
which is very small, as the average payment at equilibrium is 21.0750.

Next, we investigate the influence of the distribution of the shared factors ks; on the price of
anarchy and social cost of the game. The results are shown in Fig. 5. The user workloads are set
in a similar manner to Section 6.1. We generate five groups of workloads from the log-normal
distribution, which are used in five individual simulations with the same distribution parameters of
the shared factors, and we generate the shared factors from the Gaussian distribution.

We first fix the mean of the shared factors (1 = ks = 0.075), and change the heterogeneity of
the shared factors by changing its standard deviation from 0 to 0.045. Fig. 5(a) shows that both
the price of anarchy and social cost stay at the same level, regardless of the heterogeneity of the
shared factors. Then, we try different values of the mean of the shared factors, from 0.0375 to 0.15.
The result in Fig. 5(b) shows that the price of anarchy increases with the mean, and the standard
deviation of the shared factors has little influence on the price of anarchy under different means.
Note that, when & = 0, the result in Fig. 5(b) is in accordance with Fig. 1(c), where the price of
anarchy increases with the homogeneous shared factor k.

Next, we conduct another series of simulations, where the shared factors exhibit even more
heterogeneity. We assume that the users are divided into two groups, namely frequent users and
occasional users. Frequent users tend to use their buy-in nodes very often, resulting in a low k;;
occasional users, on the other hand, tend to have a high k;. We then randomly sample the shared
factors out of two normal distributions N; (p1, &%) and Nz (p, £2), with 50% probability on each. In
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Fig. 6. Increasing the heterogeneity of shared factors has little influence on the price of anarchy. Two normal
distributions N (p1, f%) and Na(p2, §§) are used to simulate shared factors of the occasional and frequent
user groups, respectively. The heterogeneity becomes higher when &, &, or |y — p2| increases.

other words, half of the users follow N (p4, §f) and the other half follows N, (p2, §§) Moreover,
their means satisfy (y; + pi2) /2 = ks. Again, we discard the negative samples of shared factors, and
ascertain that sure y; — 2&; > 0 and pp — 2&, > 0.

We find that even as the heterogeneity increases (i.e., & or &; increases, or yi; becomes further
away from p,), the game still converges within a few rounds, and yields Nash equilibria similar
to the homogeneous case. Moreover, the social cost and the price of anarchy stay roughly at the
same level as the heterogeneity changes. Fig. 6 illustrates how the price of anarchy is influenced by
the heterogeneity of the shared factors. In Fig. 6(a), we fix & = 0.06 and & = 0.02, and change 1
and p2. We find that the price of anarchy increases with p + pz in general, which coincides with
the results in Fig. 1(c). We also note that, when p; + y; is fixed, the price of anarchy experiences
little change as p; and p, become closer to or further away from each other, which corresponds to
a lower or higher heterogeneity, respectively. In Fig. 6(b), we fix y; = 0.15 and g, = 0.05, such that
ks = (1 + p2) /2 = 0.075, which is the same as the base case. Fig. 6(b) shows that changing either &
or &, has little influence on the price of anarchy. We also run simulations with different 6 and kp,
and still find that the heterogeneity of shared factors has little influence on the price of anarchy.

Based on the simulation results, we conclude that assuming that all users have a homogeneous
shared factor ks is a reasonable approximation of the actual heterogeneous case. In particular, the
variance of the shared factors has little influence on the Nash equilibrium, social cost, and price
of anarchy. Intuitively, even if the variance of the shared factors is large, the aggregative term
Dies ksipi stays roughly the same (assuming the mean of the shared factors is the same). As a result,
the computing rate and cost function experienced by each user do not change much, and users will
make similar decisions even though the variance of the shared factors changes.

7 CONCLUSION

This paper investigates the social cost and price of anarchy in shared/buy-in computing games.
We consider a system with an arbitrary number of users and general heterogeneously distributed
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workloads, and establish methods for efficiently computing the optimal social cost and the (closed-
form) social cost at equilibrium. For the special case where all users are buy-in users, we also derive
closed-form expressions for the optimal social cost and the price of anarchy. The closed-form price
of anarchy in this case can be arbitrarily large as the number of users N grows. We further show
that the price of anarchy can be arbitrarily large as the operating expense ratio 8 tends to 0, which
indicates high inefficiency of the Nash equilibrium in that case. However, under practical settings
of system parameters, the price of anarchy tends to lie within a certain range and is much smaller
than the theoretical worst-case. In order to lower the social cost at equilibrium, we propose and
analyze two subsidy policies. Numerical simulations show how the social cost and the price of
anarchy are influenced by different factors, and demonstrate the significant effectiveness of the
proposed subsidy policies.

Our results shed light on what factors contribute to the inefficiency of shared/buy-in computing
systems, and provide insights into how to improve the social cost at the equilibrium. Thus, since
the price of anarchy decreases as the user workload distribution gets more heterogeneous, the
system should aim to diversify its users, for instance, adjusting the pricing of resources to attract
more light users. Since the price of anarchy increases significantly as the operating expense ratio 6
gets smaller, the provider needs to be judicious on how much revenue it makes from the payment
of users, so as to keep the social cost low and maintain the attractiveness of the system. The shared
factor ks also plays an important role in the system. Although increasing ks can result in a larger
price of anarchy, sharing idle buy-in resources benefits the system as a whole by enhancing the
utilization of system resources and attracting light users.

As one of the initial works to investigate the social cost and price of anarchy in shared/buy-in
computing systems, this study can be further extended in many aspects. For instance, one may
want to consider other functions for the operational cost, which not be directly proportional to
user payments. The cost model of users can also take other forms, for example, the workload must
be completed before a specific deadline, otherwise the cost increases sharply. Likewise, further
investigating the design and analysis of subsidy policies, including determining when the Nash
equilibrium is unique in the case of quadratic subsidy, represents an interesting area for further
work.
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A  SUPPLEMENTARY DISCUSSION OF THE SYSTEM MODEL
Constraints on setting buy-in and shared factors

Here, we consider the constraint faced by the provider when it adjusts the system parameters
kp and ks. Given the total payment }};cs p; from all players, there exists a maximum amount of
resources that can be provided by the system. As a result, there also exists an upper-bound ¥ on
the total computing rate of all players.

w2 (kppi+ ks ) py)

ieS J#i
=" (ky + (N = Dky)py.
ieS

Assuming that the maximum computing rate is proportional to the total payment, we define
k = ¥/3 s pi, where k represents the maximum computing rate that can be provided per unit of
payment. Replace ¥ with k }};c5 pi, we get
kY iz ) (ks + (N = Dk)ps
ies ies
which can be simplified as
ky + (N — 1)ks < k.

Intuitively, this constraint implies that the provider cannot provide more than the maximum
possible resources given the total payment.

When we consider the game with subsidy policies, the total computing rate of all players includes
the subsidy term. Similarly, the total computing rate of all players must not be larger than the
maximum computing rate that can be provided by the system, that is:

KD Pz Y [(ky+ (N = Dks)pi + Ai(p)].

ieS ieS
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