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Shared/buy-in computing systems offer users with the option to select between buy-in and shared services.

In such systems, idle buy-in resources are made available to other users for sharing. With strategic users,

resource purchase and allocation in such systems can be cast as a non-cooperative game, whose corresponding

Nash equilibrium does not necessarily result in the optimal social cost. In this study, we first derive the optimal

social cost of the game in closed form, by casting it as a convex optimization problem and establishing related

properties. Next, we derive a closed-form expression for the social cost at the Nash equilibrium, and show that

it can be computed in linear time. We further show that the strategy profiles of users at the optimum and the

Nash equilibrium are directly proportional. We measure the inefficiency of the Nash equilibrium through the

price of anarchy, and show that it can be quite large in certain cases, e.g., when the operating expense ratio

is low or when the distribution of user workloads is relatively homogeneous. To improve the efficiency of

the system, we propose and analyze two subsidy policies, which are shown to converge using best-response

dynamics.
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1 INTRODUCTION
The shared/buy-in paradigm is being widely adopted by high-performance computing (HPC)

clusters, especially among large academic institutions. Over 20 universities fully or partially use

this paradigm to run their HPC clusters, e.g., Stanford University, the University of Illinois at Urbana-

Champaign, the University of California, Berkeley, the University of California, San Diego, Boston

University, and Rutgers University [3, 23, 27–30]. HPC clusters must cope with huge demand for

computing resources. As a result, these clusters typically include hundreds of computing nodes. For

instance, Sherlock at Stanford University maintains 1693 nodes used by 1092 research groups [27],

while the Shared Computing Cluster at Boston University (BU SCC) maintains 835 nodes supporting

765 projects across 80 departments [3].

Under the shared/buy-in computing paradigm, users are able to choose between two tiers of

services, namely: shared services and buy-in services. Shared services provide users with access to

Authors’ addresses: Zhenpeng Shi, Boston University, Boston, USA, zpshi@bu.edu; David Starobinski, Boston University,

Boston, USA, staro@bu.edu; Ariel Orda, Technion - Israel Institute of Technology, Haifa, Israel, ariel@ee.technion.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/11-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: November 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Z. Shi, D. Starobinski, and A. Orda

the shared resource pool for free, while buy-in services allow users to purchase additional buy-in

resources in order to shorten job completion time. Crucially, buy-in resources are managed in a

semi-exclusive manner, that is, when buy-in resources are idle, they are added to the shared resource

pool and made available to all users. This policy is motivated by the observation that many users do

not use their own buy-in resources all the time. Thus, by sharing idle resources that are temporarily

left unused by their owners, all users can have access to more resources on demand.

A key concern for the provider of a shared/buy-in computing system is the social cost, typically
captured by the sum of costs of the provider and the users. For example, while universities typically

aim to provide as many computing resources as possible to their HPC users, the cost of operating

servers must also be accounted for. The social cost is a metric that captures this trade-off. Social cost

is also relevant to commercial computing clusters and cloud computing systems, such as Amazon

AWS and Google Cloud Platform. Although revenue maximization is typically the first concern

in those systems, social cost is also relevant [11, 24]. Indeed, while there exist different ways to

increase revenue, some significantly degrade user experience, which in turn may result in users

opting for other service providers. In such cases, keeping the social cost sufficiently low can help

prevent users from leaving the system.

Shared/buy-in computing systems induce a subtle externality, whereby the utility of a user

increases as buy-in resources are purchased by other users, since idle buy-in resources are made

available in the shared resource pool. Therefore, as other users purchase more buy-in resources, a

user may be less motivated to do so as well. As a result, the choice of each user of how much buy-in

resources to purchase (or purchase nothing as a shared user) interacts with the choices of other

users. This interaction gives rise to a non-cooperative game, in which the users, who are assumed

to be rational and selfish, are the game players. The recent work by Shi et al. [25] formalizes this

game, coining it a shared/buy-in computing game. This game model captures the strategic behavior

of users when they can interact with each other through the sharing of idle buy-in resources.

When making decisions on whether and how much to pay for buy-in resources, users need to

consider the influence of available shared resources, which depends on the payments of other

users. Shared/buy-in computing games exhibit interesting properties, including the existence of

a unique Nash equilibrium and the convergence of best-response dynamics. However, the work

in [25] does not address the key issue of social cost, except for briefly noting that it is sub-optimal

at equilibrium.

Our contributions
This paper focuses on computing the social cost in shared/buy-in computing games. Our formula-

tions consider an arbitrary number of users 𝑁 with heterogeneous workloads. We aim to answer the

following questions: What is the optimal social cost? What is the social cost at the Nash equilibrium,

as a result of the non-cooperative manner in which users make their decisions? How far away is the

social cost at equilibrium from the social optimum? What can be done to bridge the gap between

the two? To answer these questions, we develop methods to efficiently compute and characterize

the social cost both at the equilibrium and at the optimum. In order to measure the efficiency of

the Nash equilibrium, we investigate the price of anarchy (PoA) of the game, namely the ratio

of the social cost at the worst equilibrium to the optimal social cost. Our results suggest that, in

order to approach the social optimum, users should purchase more buy-in resources than they do

at the equilibrium. As ways to incentivize users to purchase more buy-in resources, we propose

two subsidy policies and analyze their properties, including proving their convergence through

best-response dynamics.

The model considered in this paper belongs to the class of aggregative games with strategic

substitutes [6, 9], where the aggregative term is a linear sum of the strategies of all players (cf.

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: November 2023.



Social Cost Analysis of Shared/Buy-in Computing Systems 3

detailed discussion at the end of Section 2). In particular, since the computing resources in a

shared/buy-in game are a public good, and buy-in users are contributing to this public good, our

model can be viewed as a type of aggregative public good games [7]. We expect our results to be

useful in other applications that involve a similar strategic interaction between the users.

In summary, our work makes the following contributions:

(1) We prove that the computation of the optimal social cost in shared/buy-in computing games

can be cast as a constrained convex optimization problem. Furthermore, we derive a closed-

form expression for the social cost at the optimum, which can be computed in linear time.

This result is validated through a numerical comparison with coordinate descent methods.

(2) We derive a closed-form expression for the social cost at the Nash equilibrium, which can be

computed in linear time. This complexity is much lower than first solving for the equilibrium

and then computing the social cost, which is 𝑂 (𝑁 4). To the best of our knowledge, this

method is novel and potentially useful for the analysis of other game settings.

(3) We establish that a buy-in user at the Nash equilibrium will also be a buy-in user at the social

optimum. Moreover, we show that the strategy profile vector (i.e., payment) of users at the

optimum is directly proportional to that at the equilibrium.

(4) We derive the price of anarchy of the game in closed form.

• For the special case where all the users are buy-in users, we further establish that the price

of anarchy grows as Ω(
√
𝑁 ) in the worst-case.

• Through numerical simulations, we show that for a fixed average workload, the price of

anarchy decreases with the variance of the workload distribution (i.e., as the workload

becomes more heterogeneous). Moreover, the price of anarchy can be quite large in some

cases.

(5) We propose and analyze the impact of two subsidy policies. We prove that, under both policies,

the game still has an equilibrium and converges through best-response dynamics (possibly

under sufficient conditions). We also establish the relationship of the payments by users at the

Nash equilibrium of the game under both subsidy policies. Moreover, numerical simulations

show that both policies can significantly improve the social cost at the equilibrium.

The rest of the paper is organized as follows. We discuss related work in Section 2. In Section 3,

we model shared/buy-in computing systems from a game-theoretic perspective, and introduce our

main metrics, which are the social cost and the price of anarchy. We analyze the social cost at

the optimum and at the equilibrium in Section 4, along with computing the price of anarchy. In

Section 5, we propose two subsidy policies and characterize their properties. We conduct numerical

simulations in Section 6 to validate and expand on our analytical results. The paper concludes in

Section 7.

2 RELATEDWORK
In a system where users interact with each other and try to maximize their own utilities, it is

difficult to predict how the system will operate. In order to analyze such systems, game-theoretic

models are often used since they are able to capture strategic interactions between the users [20].

For example, they are used to analyze network security [18], resource allocation [31], and advance

reservation [26]. The problems from cloud economics also benefit from game-theoretic approaches.

Abhishek et al. [1] investigated and compared two pricing schemes for cloud services, namely fixed

and market-based pricing, with a game-theoretic model. Anselmi et al. [2] proposed a three-tier

model for a cloud computing marketplace, based on which the market equilibria are characterized,

and the impact of price competition is evaluated. Game-theoretic models answer the question of
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where the system operates by providing the Nash equilibrium (or equilibria) of the corresponding

game.

After finding the Nash equilibrium (or equilibria) of the game, the next question is how well the

system performs under the Nash equilibrium against the optimal case (i.e., optimal social cost). It is

typical that the Nash equilibrium does not coincide with the optimum, thus the notion of price of

anarchy has been proposed to evaluate the inefficiency of the Nash equilibrium (or Nash equilibria)

due to the selfish behavior of the users [15]. Analysis of the price of anarchy can provide useful

insights into the system [22]. Wu and Starobinski [32] analyzed the problem of server selection in

content replication networks, showing that the price of anarchy increases as the server capacity

becomes more heterogeneous, because selfish users avoid using slow servers. Similarly, the analysis

by Chamberlain and Starobinski [5] suggests that, the price of anarchy in preemptive priority

queues becomes larger as the service distribution gets more heterogeneous (i.e., the variance of the

service distribution becomes larger).

However, it is not always true that heterogeneity results in a larger price of anarchy and makes

the system perform worse. Korilis et al. [14] considered a routing game, where a manager attempts

to steer the network into its social optimum by controlling part of the flow, while the rest of the

flow is controlled by several selfish users. The results show that the “homogeneous” case, that is,

the case of equal split of the total demand among all users, is the hardest case to reach the optimum

and thus the least desired by the manager. In our work, we also find that if the average workload

of users in the shared/buy-in computing system is fixed, the price of anarchy increases as the

workload distribution becomes relatively more homogeneous.

An approach to reduce the degradation of system performance caused by selfish user behavior is

to introduce subsidies. Buchbinder et al. [4] proposed a dynamic subsidy mechanism financed by

taxes collected from the users in order to improve the performance of cost-sharing systems. Such

subsidies help to keep the price of anarchy low, by collecting a small amount of taxes compared

to the user payments. The work by Fang et al. [10] indicates that revenue of sharing economy

platforms may be limited in practice, and subsidies can help encourage sharing and bring more

revenue. In this paper, we also introduce subsidy policies to lower the price of anarchy and improve

system performance (in our case, the social cost).

As mentioned in the introduction, the shared/buy-in computing paradigm is now common in

many HPC clusters. The paradigm shares similarities at some level with proportional allocation

mechanisms [12, 13, 16], where the bandwidth allocated to each user is proportional to its payment.

The difference is that, in shared/buy-in computing systems, the total amount of resources is not

fixed; instead, users contribute to the system by purchasing buy-in resources. As a result, it lacks

the zero-sum nature of typical proportional allocation models. Liao et al. [17] conducted a statistical

case study of the SCC cluster at Boston University. This work shows that buy-in resources are

not fully utilized by their owners, and sharing idle buy-in resources indeed improves resource

utilization. Such systems are formally modeled from a game-theoretic perspective in [25]. The

analysis of the game shows that there exists a unique Nash equilibrium. Moreover, it is shown

that, from any arbitrary initial state, the system always converges to the Nash equilibrium through

best-response dynamics, possibly with users making decisions in a distributed manner (i.e., not

having complete information on the decisions of other users). In the present study, we quantitatively

investigate the inefficiency of the Nash equilibrium with respect to the social optimum. We explore

what contributes to the inefficiency, by computing the exact social costs at the equilibrium and at

the optimum.

Shared/buy-in computing games belong to the class of aggregative games, whereby the cost of

each player depends on the aggregate strategies of all the other players, instead of the individual

strategy of another player [6]. Specifically, the game is in the form of an aggregative public good
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game, where the computing resources in the shared pool are the public good, and buy-in users

contribute to the public good with their own buy-in resources. Cornes and Hartley [7] analyzed

aggregative public good games under a voluntary contribution model, where players can decide

how much to contribute to the public good under their own budget constraints. In contrast, in

shared/buy-in computing games, contributions to the public good are not entirely voluntary, since

the idle buy-in resources are automatically made available to all users by the system. Our game

also has the property of strategic substitutes, that is, when a player increases its contribution,

other players tend to do the opposite [9, 25]. It is known that any aggregative game with strategic

substitutes converges to one of its Nash equilibria through best-response dynamics. Furthermore,

a Nash equilibrium is guaranteed to exist [9]. In this paper, we prove that after applying the

subsidy policies, the resulting shared/buy-in computing games are aggregative games with strategic

substitutes, which allows us to establish their convergence properties.

3 SYSTEMMODEL
In this section, we first formalize a game-theoretic model of a shared/buy-in computing system,

and then introduce the notions of social cost and price of anarchy. We consider a shared/buy-in

computing (SBC) game of the form of (𝑆, {𝑃𝑖 }𝑖∈𝑆,, {𝐶𝑖 }𝑖∈𝑆 ), where 𝑆 is the finite set of players, 𝑃𝑖
is the non-empty strategy set of player 𝑖 , and 𝐶𝑖 : 𝑃 → R is the cost of player 𝑖 given a strategy

profile of all players from the joint set 𝑃 =
∏

𝑖∈𝑆 𝑃𝑖 .
The SBC game has 𝑁 players, who are the users of the system and belong to the set 𝑆 = {𝑖 | 1 ≤

𝑖 ≤ 𝑁 }. Since shared/buy-in computing systems are typically of large-scale and sustain many

users, we assume that the number of users 𝑁 is large (e.g., 𝑁 ≥ 100). Each player 𝑖 has an average

workload 𝜔𝑖 that has to be completed, and needs to decide upon a strategy 𝑝𝑖 ∈ 𝑃𝑖 , which is

the payment for purchasing buy-in resources. The average workload can be estimated from the

aggregate workload observed over a long time period. The strategy of player 𝑖 has two levels, as

follows: (a) the player will pay 𝑝𝑖 > 0 if it decides to purchase buy-in resources or 𝑝𝑖 = 0 otherwise,

and (b) the value of 𝑝𝑖 reflects the amount of purchased resources. Denote the payments made

by all players by the vector p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ]⊺ . A player can utilize the idle buy-in resources of

other players, thus each player is impacted by the strategies chosen by the other players, hence the

cost of player 𝑖 depends on p.
In SBC games, players can only pay non-negative prices for buy-in resources, hence we have

𝑝𝑖 ≥ 0, ∀𝑖 ∈ 𝑆 . Define the players that pay positive prices as buy-in users, and the players that pay

nothing as shared users. Assume that there are 𝑛1 buy-in users in the set 𝑆1 = {𝑖 | 𝑝𝑖 > 0, 𝑖 ∈ 𝑆},
and 𝑛2 shared users in the set 𝑆2 = {𝑖 | 𝑝𝑖 = 0, 𝑖 ∈ 𝑆}, we have 𝑛1 + 𝑛2 = 𝑁 . In the following,

unless stated otherwise, we assume that all the subscripts used for distinguishing among players

{𝑖, 𝑗, ℓ,𝑚} belong to the set 𝑆 .

In our model, the amount of resources available to a player is measured by its computing rate,

and the player’s job completion time can be then computed as its workload divided by its computing

rate. The computing rate of player 𝑖 comes from two sources, namely: its own buy-in resources and

other players’ idle buy-in resources. We assume that, when a player 𝑖 pays a price 𝑝𝑖 for buy-in

resources, it gets a computing rate of 𝑘𝑏𝑝𝑖 ; alongside, it provides each of the other players, including

both buy-in and shared users, with a computing rate 𝑘𝑠𝑝𝑖 . Thus, the overall computing rate of a

player 𝑖 is 𝑘𝑏𝑝𝑖 + 𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗 , where the first term is due to its own buy-in nodes, and the second

term is from all the other buy-in nodes. In the following, we refer to 𝑘𝑏 and 𝑘𝑠 as the buy-in factor
and the shared factor of the shared/buy-in computing system, respectively.

Intuitively, the buy-in factor 𝑘𝑏 reflects the amount of buy-in resources that a player can get per

unit of payment, a larger 𝑘𝑏 implies that a player gets a higher computing rate from its own buy-in
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6 Z. Shi, D. Starobinski, and A. Orda

nodes. The shared factor 𝑘𝑠 reflects the effect of sharing idle buy-in nodes. A larger 𝑘𝑠 implies that

a player gets a higher computing rate from other players’ idle buy-in nodes.

We also make the reasonable assumption that 𝑘𝑏 > 𝑘𝑠 , that is, by paying a price 𝑝𝑖 , player 𝑖 gets

a computing rate 𝑘𝑏𝑝𝑖 that is larger than the computing rate 𝑘𝑠𝑝𝑖 provided to another player, since

player 𝑖 has priority access to its own buy-in nodes. Intuitively, this motivates users to purchase

their own buy-in nodes rather than just waiting for shared resources. It is also a necessary condition

for the underlying game to admit a unique Nash equilibrium.

We distinguish between two types of jobs: buy-in jobs are those running on a user’s own buy-

in nodes, while public jobs are those running on other users’ idle buy-in nodes. Then, the total

computing rate for buy-in jobs is 𝑘𝑏
∑

𝑖∈𝑆 𝑝𝑖 , whereas the total computing rate for public jobs is

(𝑁 − 1)𝑘𝑠
∑

𝑖∈𝑆 𝑝𝑖 . We note that the ratio between the two types of total computing rate can be

expected to be roughly the same as that between the corresponding workloads. Indeed, the BU SCC

data in [17] shows that, during 2015-2016, the buy-in workload was 1.42 × 10
7
CPU-hours, and the

public workload was 7.51×10
6
CPU-hours. The ratio between the two types of total computing rate

was 𝑘𝑏
∑

𝑖∈𝑆 𝑝𝑖 : (𝑁 − 1)𝑘𝑠
∑

𝑖∈𝑆 𝑝𝑖 ≈ 14.2 : 7.5, which also justifies our assumption that 𝑘𝑏 > 𝑘𝑠 .

The two factors 𝑘𝑏 and 𝑘𝑠 serve as system parameters that can be adjusted by the provider. Both

𝑘𝑏 and 𝑘𝑠 are affected by the pricing of buy-in resources. A higher pricing of buy-in resources

implies lower computing rate per unit of payment, thus lower 𝑘𝑏 and 𝑘𝑠 . Moreover, the provider

can also adjust 𝑘𝑠 by limiting the portion of idle buy-in resources that are available in the shared

resource pool. When adjusting the system parameters 𝑘𝑏 and 𝑘𝑠 , the provider faces some constraints,

which are discussed in more detail in Appendix A.

Remark 1. A user is hardly affected by other users when using its own buy-in nodes, since it has
priority access. Hence, one can assume that the buy-in factor 𝑘𝑏 is the same for all users. On the other
hand, the shared factors could be heterogeneous among the users (i.e., 𝑘𝑠𝑖 for user 𝑖). Indeed, a user 𝑖
might use its buy-in nodes for a longer time than others, resulting in less resources available for others
and a lower 𝑘𝑠𝑖 . Nonetheless, using the homogeneous shared factor 𝑘𝑠 for all users provides a good
approximation of the heterogeneous case, as shown by our numerical simulations in Section 6.3.

We care about the social cost of the system, which is defined as the sum of costs of both the users

(players) and the provider. The cost 𝐶𝑖 of a player 𝑖 is due to two components, namely time and

money. The time cost is calculated by the job completion time𝑇𝑖 multiplied by cost per unit of time

𝛼𝑖 . The monetary cost is simply the payment 𝑝𝑖 . Thus, the cost of player 𝑖 is

𝐶𝑖 (p) = 𝛼𝑖𝑇𝑖 (p) + 𝑝𝑖 .

The job completion time 𝑇𝑖 of player 𝑖 can be computed as its workload divided by its overall

computing rate. As shown before, the overall computing rate of player 𝑖 is 𝑘𝑏𝑝𝑖 + 𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗 , so its

job completion time is

𝑇𝑖 (p) =
𝜔𝑖

𝑘𝑏𝑝𝑖 + 𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗

.

Remark 2. Intuitively, 𝛼𝑖 reflects the value of time for each player 𝑖 . Indeed, some users might
be more sensitive to the job completion time than other users. This way, our model can capture user
heterogeneity, if needed.

Player 𝑖 aims to minimize its cost 𝐶𝑖 (p), that is, 𝑝𝑖 = argmin𝑝𝑖
𝐶𝑖 (p). Note that given the cost

function 𝐶𝑖 (p), the optimal price paid by player 𝑖 is implicitly upper-bounded by

√
𝛼𝑖𝜔𝑖/𝑘𝑏 [25].

Meanwhile, shared/buy-in computing systems are typically of large-scale. Thus, we assume that

the system can always provide enough computing resources to each user.
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The provider experiences some operational cost to run the system. In the meantime, it gets

revenue from providing services to the users, that is, the sum of payments from users. We consider

the net cost of the provider as the operational cost Θ minus the sum of payments from users.

Assume that the operational cost is positively correlated with the total amount of computing

resources purchased with the payments (with more payment received, more servers need to run,

which raises the operational cost). Thus, Θ is an increasing function of the users’ strategy vector p.
As a result, the cost of the provider is:

𝐶provider(p) = Θ(p) −
∑
𝑖∈𝑆

𝑝𝑖 .

In our model, we assume that the operational cost is of a certain form. The model in [33] suggests

that the operational cost is mainly due to power consumption, and in some simple implementations

(e.g., without an optimization technique such as Dynamic Voltage Frequency Scaling, DVFS), the

power consumption can be in a linear relationship with used resources. In typical shared/buy-in

computing systems (e.g., Stanford Sherlock and BU SCC), when a user purchases buy-in nodes, the

provider will use its payment to acquire additional nodes from external sources and manage the

nodes for the user. In other words, the buy-in users “invest” in the system by adding more servers.

As a result, we can use the overall payment by the users to estimate the total computing resources

in the system. Thus, we assume Θ(p) = 𝜃
∑

𝑖∈𝑆 𝑝𝑖 , where 0 < 𝜃 < 1. Note that 𝜃 = Θ(p)/∑𝑖∈𝑆 𝑝𝑖 ,
hence it can also be interpreted as the operating expense ratio of the system.

Remark 3. We assume that the provider gets income only from the buy-in users, such that the
operating expense ratio needs to satisfy 𝜃 < 1 in order to keep the system running, otherwise the
provider would have a negative net income (revenue). If the provider gets an additional external income
(e.g., subsidy from the university) in the form of 𝜈

∑
𝑖∈𝑆 𝑝𝑖 , where 0 < 𝜈 < 𝜃 , we can define an equivalent

operating expense ratio 𝜃 ∗ = 𝜃 − 𝜈 . Such equivalent operating expense ratio satisfies 0 < 𝜃 ∗ < 1. Thus,
instead of 𝜃 , one could use the equivalent operating expense ratio 𝜃 ∗ in the following analysis and the
results would still hold.

Next, we compute the social cost 𝐶 (p) as follows:

𝐶 (p) =
∑
𝑖∈𝑆

𝐶𝑖 (p) +𝐶provider(p)

=
∑
𝑖∈𝑆

(𝛼𝑖𝑇𝑖 (p) + 𝑝𝑖 ) + Θ(p) −
∑
𝑖∈𝑆

𝑝𝑖

=
∑
𝑖∈𝑆

(
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗

+ 𝜃𝑝𝑖
)
.

We are interested in deriving the value of the social cost under two scenarios, namely at the social

optimum and at a Nash equilibrium.

At the social optimum, under the system parameters set by the provider, the players cooperate

(or are centrally managed) such that the social cost is minimized. This is the ideal scenario from

the social perspective.

Due to the selfish behavior of players, it is possible that the social optimum cannot be reached,

instead, the system will end up at a Nash equilibrium, where a player cannot further lower its cost

by unilaterally changing its own strategy.

The concept of the price of anarchy (PoA) has been introduced in order to quantify how bad the

social cost may be at a Nash equilibrium, compared to the social optimum [15]. It is defined as

the ratio between the social cost at the worst Nash equilibrium and the optimal social cost. In the

best scenario, the worst Nash equilibrium coincides with the social optimum, which leads to a PoA
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Notation Description
𝑆 Set of players (users).

𝑆1, 𝑆2 Set of buy-in and shared players (users), respectively.

𝑁 Number of players.

𝑛1, 𝑛2 Number of buy-in and shared players, respectively.

𝑖, 𝑗, ℓ,𝑚 Index of players.

𝜔𝑖 Average workload of player 𝑖 .

𝑝𝑖 Strategy (payment for purchasing buy-in resources) of player 𝑖 .

𝑃𝑖 Strategy set of player 𝑖 .

p Strategy profile of all players.

𝐶𝑖 (p) Cost of player 𝑖 given p.
𝐶 (p) Social cost given p.
𝑈𝑖 (p) Utility of player 𝑖 given p.
𝑈 (p) Social welfare given p.
𝛼𝑖 Cost per unit of job completion time for player 𝑖 .

𝜃 Operating expense ratio - operational cost of the system per unit of pay-

ment.

𝑘𝑏 Buy-in factor - coefficient of proportionality between 𝑝𝑖 and the corre-

sponding computing rate it gets.

𝑘𝑠 Shared factor - coefficient of proportionality between 𝑝𝑖 and the corre-

sponding computing rate it provides to another player.

Δ𝑖 (p) Subsidy term - the amount of additional computing rate subsidized to

player 𝑖 given p.
𝑘𝑐 Subsidy factor - coefficient of proportionality between the subsidy term

Δ𝑖 (p) and 𝑝𝑖 or 𝑝2𝑖 , depending on the form of subsidy.

Table 1. Notation summary.

equal to 1. A large PoA suggests that the system may badly suffer from the selfish behavior of its

decision makers, and is far from the best possible scenario.

In the rest of the paper, we assume without loss of generality that players are labeled such that

𝛼1𝜔1 ≥ 𝛼2𝜔2 ≥ · · · ≥ 𝛼𝑁𝜔𝑁 .

The 𝛼𝑖𝜔𝑖 here can be interpreted as the adjusted workload of user 𝑖 , considering the user’s sensitivity

to the job completion time.

In Table 1 we provide a summary of the notations employed in the paper.

4 SOCIAL COST AND PRICE OF ANARCHY
In this section, we analyze the social cost in general 𝑁 -player SBC games. We first show that the

social cost minimization problem is convex, such that it can be solved through constrained convex

optimization techniques. We are also able to provide a closed-form expression for the optimal social

cost, in the special case where all users are buy-in users. Then, we compute, in closed-form and

linear time, the social cost at the Nash equilibrium. With these at hand, we evaluate the efficiency

of the equilibrium by computing the price of anarchy.
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4.1 Social cost at the optimum
In this subsection, we show that social cost minimization is a constrained convex optimization

problem, and analyze the strategies of players at the social optimum. We also provide a closed-form

expression of the optimal social cost.

Denote the payments made by all players through the vector p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ]⊺ . The following
theorem establishes that the social cost 𝐶 (p) is convex in p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ]⊺ .

Theorem 4.1. The following social cost function is (strictly) convex in p:

𝐶 (p) =
∑
𝑖∈𝑆

(
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗

+ 𝜃𝑝𝑖
)
. (1)

Proof. We prove the theorem by establishing that the Hessian matrix of𝐶 (p) is positive definite.
First, consider the gradient ∇𝐶 (p) of the social cost function, its 𝑖-th entry ∇𝐶𝑖 is

∇𝐶𝑖 = 𝜃 − 𝛼𝑖𝑘𝑏𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )2
−

∑
𝑚≠𝑖

𝛼𝑚𝑘𝑠𝜔𝑚

(𝑘𝑏𝑝𝑚 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑚 𝑘𝑠𝑝ℓ )2
.

Based on the gradient, the (𝑖, 𝑖)-th entry of the Hessian matrix ∇2𝐶 (p) is

∇2𝐶𝑖,𝑖 =
2𝛼𝑖𝑘

2

𝑏
𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )3
+

∑
𝑚≠𝑖

2𝛼𝑚𝑘
2

𝑠𝜔𝑚

(𝑘𝑏𝑝𝑚 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑚 𝑘𝑠𝑝ℓ )3
.

In addition, the (𝑖, 𝑗)-th entry ( 𝑗 ≠ 𝑖) of the Hessian matrix ∇2𝐶 (p) is

∇2𝐶𝑖, 𝑗 =
2𝛼𝑖𝑘𝑏𝑘𝑠𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )3
+

2𝛼 𝑗𝑘𝑏𝑘𝑠𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )3

+
∑

𝑚≠𝑖,𝑚≠𝑗

2𝛼𝑚𝑘
2

𝑠𝜔𝑚

(𝑘𝑏𝑝𝑚 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑚 𝑘𝑠𝑝ℓ )3
.

For clarity, define

𝑥2𝑖 ≜
2𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )3
, ∀𝑖,

then we can re-write the entries in the Hessian matrix ∇2𝐶 (p) as

∇2𝐶𝑖,𝑖 =𝑘
2

𝑏
𝑥2𝑖 +

∑
𝑚≠𝑖

𝑘2𝑠𝑥
2

𝑚,

∇2𝐶𝑖, 𝑗 =𝑘𝑏𝑘𝑠 (𝑥2𝑖 + 𝑥2𝑗 ) +
∑

𝑚≠𝑖,𝑚≠𝑗

𝑘2𝑠𝑥
2

𝑚, ∀𝑗 ≠ 𝑖 .

Therefore, the Hessian matrix can be written as

∇2𝐶 (p) = H⊺H,

where

H =


𝑘𝑏𝑥1 𝑘𝑠𝑥1 . . . 𝑘𝑠𝑥1
𝑘𝑠𝑥2 𝑘𝑏𝑥2 . . . 𝑘𝑠𝑥2
...

. . .
...

𝑘𝑠𝑥𝑁 𝑘𝑠𝑥𝑁 . . . 𝑘𝑏𝑥𝑁


.

If H is non-singular then the Hessian matrix ∇2𝐶 (p) is positive definite. Next, we show that H is

indeed non-singular by proving that its columns are linearly independent.
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Denoting H = [h1, h2, . . . , h𝑚−1], where h1, h2, . . . , h𝑚−1 are columns vectors of H, and let h𝑖 ( 𝑗)
denote the 𝑗-th entry of vector h𝑖 , that is, h𝑖 ( 𝑗) = H𝑗,𝑖 . We have

h𝑖 ( 𝑗) = 𝑘𝑏𝑥𝑖 , 𝑗 = 𝑖,

h𝑖 ( 𝑗) = 𝑘𝑠𝑥 𝑗 , 𝑗 ≠ 𝑖 .
(2)

Assume by contradiction that the columns of H are linearly dependent. Then, there exists an

𝑖-th column that can be expressed as a linear combination of other columns:

h𝑖 =
∑
ℓ≠𝑖

𝜆ℓhℓ ,

which yields ∑
ℓ≠𝑖

𝜆ℓhℓ (𝑖) = h𝑖 (𝑖),∑
ℓ≠𝑖

𝜆ℓhℓ ( 𝑗) = h𝑖 ( 𝑗), ∀ 𝑗 ≠ 𝑖 .
(3)

Combining (2) with (3), and canceling out the 𝑥𝑖 terms on both sides of the equations, we get∑
ℓ≠𝑖

𝜆ℓ𝑘𝑠 = 𝑘𝑏, (4)

𝜆 𝑗𝑘𝑏 +
∑

ℓ≠𝑖,ℓ≠𝑗

𝜆ℓ𝑘𝑠 = 𝜆 𝑗 (𝑘𝑏 − 𝑘𝑠 ) +
∑
ℓ≠𝑖

𝜆ℓ𝑘𝑠 = 𝑘𝑠 , ∀ 𝑗 ≠ 𝑖 . (5)

Substituting the term

∑
ℓ≠𝑖 𝜆𝑖𝑘𝑠 in (5) with 𝑘𝑏 by (4), we get

(1 + 𝜆 𝑗 ) (𝑘𝑏 − 𝑘𝑠 ) = 0, ∀ 𝑗 ≠ 𝑖 .

We already know that 𝑘𝑏 > 𝑘𝑠 , therefore it must be that

𝜆 𝑗 = −1, ∀ 𝑗 ≠ 𝑖 .

However, this contradicts (4), hence the assumption that H is column-dependent cannot hold.

Thus, we conclude that the columns of H are linearly independent, and the Hessian matrix

∇2𝐶 (p) = H⊺H is positive definite. As a result, the social cost function 𝐶 (p) is strictly convex.

□

Denote the gradient of the social cost function 𝐶 (p) by ∇𝐶 (p). The next lemma establishes the

relationship between 𝑝𝑖 and ∇𝐶𝑖 , which is the 𝑖-th entry of ∇𝐶 (p).

Lemma 4.2. At the social optimum of an SBC game, if 𝑝𝑖 > 0, we have ∇𝐶𝑖 = 0; if 𝑝𝑖 = 0, we have
∇𝐶𝑖 ≥ 0, where

∇𝐶𝑖 = 𝜃 − 𝛼𝑖𝑘𝑏𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )2
−

∑
𝑚≠𝑖

𝛼𝑚𝑘𝑠𝜔𝑚

(𝑘𝑏𝑝𝑚 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑚 𝑘𝑠𝑝ℓ )2
.

Proof. The social cost minimization problem can be written as:

min 𝐶 (p) =
∑
𝑖∈𝑆

(
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗

+ 𝜃𝑝𝑖
)
,

𝑠 .𝑡 . − 𝑝𝑖 ≤ 0, ∀𝑖 ∈ 𝑆.

The Lagrangian function of the minimization problem above is

𝐿(p, 𝜆) = 𝐶 (p) − 𝜆⊺p.
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Since 𝐶 (p) is convex in p, 𝐿(p, 𝜆) only has a unique global minimum. At the minimum, p and 𝜆

must satisfy the following KKT conditions for all 𝑖:

∇p𝐿(p, 𝜆)𝑖 = 0,

−𝜆𝑖𝑝𝑖 = 0,

−𝑝𝑖 ≤ 0,

𝜆𝑖 ≥ 0.

Considering player 𝑖 at the optimum, by complementary slackness, if 𝑝𝑖 > 0, we have 𝜆𝑖 = 0.

Then we get

∇p𝐿(p, 𝜆)𝑖 = ∇𝐶𝑖 − 𝜆𝑖 = ∇𝐶𝑖 = 0.

Moreover, if 𝑝𝑖 = 0, we have 𝜆𝑖 ≥ 0, thus ∇𝐶𝑖 ≥ 0 since

∇p𝐿(p, 𝜆)𝑖 = ∇𝐶𝑖 − 𝜆𝑖 = 0.

The lemma is thus established. □

The following lemma shows the relationship between the price paid by a player and its workload

adjusted by cost per unit of time, namely, a player with a larger adjusted workload will pay no less

than a player with a smaller adjusted workload.

Lemma 4.3. At the social optimum of an SBC game, we have

𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑁 ≥ 0.

Proof. Without loss of generality, we assume that 𝑖 and 𝑗 are ordered such that 𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 . In

the following, we will prove that 𝑝𝑖 ≥ 𝑝 𝑗 always holds.

Considering the gradients of the costs of two players 𝑖 and 𝑗 , we have

∇𝐶𝑖 =𝜃 − 𝛼𝑖𝑘𝑏𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2

−
𝛼 𝑗𝑘𝑠𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
−

∑
𝑚≠𝑖,𝑚≠𝑗

𝛼𝑚𝑘𝑠𝜔𝑚

(𝑘𝑏𝑝𝑚 + ∑
ℓ≠𝑚 𝑘𝑠𝑝ℓ )2

,

∇𝐶 𝑗 =𝜃 −
𝛼 𝑗𝑘𝑏𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2

− 𝛼𝑖𝑘𝑠𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
−

∑
𝑚≠𝑖,𝑚≠𝑗

𝛼𝑚𝑘𝑠𝜔𝑚

(𝑘𝑏𝑝𝑚 + ∑
ℓ≠𝑚 𝑘𝑠𝑝ℓ )2

.

And their difference is

∇𝐶𝑖 − ∇𝐶 𝑗

=
𝛼 𝑗𝑘𝑏𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
+ 𝛼𝑖𝑘𝑠𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2

− 𝛼𝑖𝑘𝑏𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
−

𝛼 𝑗𝑘𝑠𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2

=(𝑘𝑏 − 𝑘𝑠 )
(

𝛼 𝑗𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
− 𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2

)
.

Note that 𝑘𝑏 − 𝑘𝑠 > 0 always holds since 𝑘𝑏 > 𝑘𝑠 .

Next, we consider four cases: (i) 𝑝𝑖 > 0 and 𝑝 𝑗 > 0; (ii) 𝑝𝑖 > 0 and 𝑝 𝑗 = 0; (iii) 𝑝𝑖 = 0 and 𝑝 𝑗 > 0;

(iv) 𝑝𝑖 = 𝑝 𝑗 = 0.
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(i) 𝑝𝑖 > 0 and 𝑝 𝑗 > 0. We have ∇𝐶𝑖 = ∇𝐶 𝑗 = 0, thus ∇𝐶𝑖 − ∇𝐶 𝑗 = 0, from which we can get

𝛼 𝑗𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
=

𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
.

Since 𝛼 𝑗𝜔 𝑗 ≤ 𝛼𝑖𝜔𝑖 , it must be that 𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 ≤ 𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 , which implies that 𝑝𝑖 ≥ 𝑝 𝑗 .

(ii) 𝑝𝑖 > 0 and 𝑝 𝑗 = 0. We have ∇𝐶𝑖 = 0 and ∇𝐶 𝑗 ≥ 0, thus ∇𝐶𝑖 −∇𝐶 𝑗 ≤ 0, from which we can get

𝛼 𝑗𝜔 𝑗

(𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
≤ 𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
.

Since 𝛼 𝑗𝜔 𝑗 ≤ 𝛼𝑖𝜔𝑖 and 𝑘𝑠𝑝𝑖 < 𝑘𝑏𝑝𝑖 , this case is possible.

(iii) 𝑝𝑖 = 0 and 𝑝 𝑗 > 0. We have ∇𝐶𝑖 ≥ 0 and ∇𝐶 𝑗 = 0, thus ∇𝐶𝑖 − ∇𝐶 𝑗 ≥ 0, from which we can

get

𝛼 𝑗𝜔 𝑗

(𝑘𝑏𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
≥ 𝛼𝑖𝜔𝑖

(𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
.

However, since 𝛼 𝑗𝜔 𝑗 ≤ 𝛼𝑖𝜔𝑖 and 𝑘𝑏𝑝 𝑗 > 𝑘𝑠𝑝 𝑗 , the inequality never holds (the LHS is strictly smaller

than the RHS), thus this case can be disregarded.

(iv) 𝑝𝑖 = 𝑝 𝑗 = 0. We have ∇𝐶𝑖 ≥ 0 and ∇𝐶 𝑗 ≥ 0. This case already satisfies 𝑝𝑖 ≥ 𝑝 𝑗 .

By considering all the four cases, we conclude that if 𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 , it must be that 𝑝𝑖 ≥ 𝑝 𝑗 , which

results in

𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑁 ≥ 0.

□

Next, based on the lemmas above, we derive the optimal social cost in closed form.

Theorem 4.4. At the social optimum of an SBC game, the social cost is

𝐶𝑂𝑃𝑇 (p) =
(
1√
𝜓

+
𝜃
√
𝜓

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

) ∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
𝑘𝑠

√
𝜓

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

,

where

𝜓 =
𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

𝜃

(
1 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
∑

𝑚∈𝑆2 𝛼𝑚𝜔𝑚

𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2

)
.

Proof. Theorem 4.1 states that the social cost function 𝐶 (p) is strictly convex in p, thus it has a
unique optimum.

According to Lemma 4.2, at the social optimum, for each buy-in player 𝑖 ∈ 𝑆1, we have 𝑝𝑖 > 0

and

∇𝐶𝑖 = 𝜃 − 𝛼𝑖𝑘𝑏𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ∈𝑆1,ℓ≠𝑖 𝑘𝑠𝑝ℓ )2

−
∑

𝑗 ∈𝑆1, 𝑗≠𝑖

𝛼 𝑗𝑘𝑠𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ∈𝑆1,ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
−

∑
𝑚∈𝑆2

𝛼𝑚𝑘𝑠𝜔𝑚

(∑ℓ∈𝑆1 𝑘𝑠𝑝ℓ )2

= 0. (6)

For each shared player𝑚 ∈ 𝑆2, we have 𝑝𝑚 = 0.

Consider players 𝑖 and 𝑗 such that 𝑖, 𝑗 ∈ 𝑆1, we have

∇𝐶𝑖 − ∇𝐶 𝑗 = (𝑘𝑏 − 𝑘𝑠 )
(

𝛼 𝑗𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ∈𝑆1,ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
− 𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ∈𝑆1,ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2

)
= 0.
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Social Cost Analysis of Shared/Buy-in Computing Systems 13

Since 𝑘𝑏 ≠ 𝑘𝑠 (because our model assumes 𝑘𝑏 > 𝑘𝑠 ), we deduce that

𝛼 𝑗𝜔 𝑗

(𝑘𝑏𝑝 𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ∈𝑆1,ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
=

𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ∈𝑆1,ℓ≠𝑖,ℓ≠𝑗 𝑘𝑠𝑝ℓ )2
, ∀𝑖, 𝑗 ∈ 𝑆1 .

As a result, for a given buy-in factor 𝑘𝑏 , shared factor 𝑘𝑠 , and users’ adjusted workload 𝛼𝑖𝜔𝑖 , there

exists a constant𝜓 such that

𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 +
∑

ℓ∈𝑆1,ℓ≠𝑖 𝑘𝑠𝑝ℓ )2
=

1

𝜓
, ∀𝑖 ∈ 𝑆1. (7)

Note that the equations above are equivalent to

𝑘𝑏𝑝𝑖 +
∑

ℓ∈𝑆1,ℓ≠𝑖
𝑘𝑠𝑝ℓ =

√
𝜓𝛼𝑖𝜔𝑖 , ∀𝑖 ∈ 𝑆1. (8)

Taking the sum of (8) for 𝑖 ∈ 𝑆1, we get

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
∑
𝑖∈𝑆1

𝑝𝑖 =
∑
𝑖∈𝑆1

√
𝜓𝛼𝑖𝜔𝑖 ,

from which we derive the sum of buy-in players’ payments:

∑
𝑖∈𝑆1

𝑝𝑖 =

∑
𝑖∈𝑆1

√
𝜓𝛼𝑖𝜔𝑖

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠
. (9)

Then, taking𝜓 in (7) back into equation (6), we get

∇𝐶𝑖 = 𝜃 − 𝑘𝑏

𝜓
−

∑
ℓ∈𝑆1,ℓ≠𝑖

𝑘𝑠

𝜓
−

∑
𝑚∈𝑆2

𝛼𝑚𝑘𝑠𝜔𝑚

(∑ℓ∈𝑆1 𝑘𝑠𝑝ℓ )2

= 𝜃 − 1

𝜓
(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 ) −

∑
𝑚∈𝑆2

𝛼𝑚𝜔𝑚

𝑘𝑠 (
∑

ℓ∈𝑆1 𝑝ℓ )2

= 0. (10)

Next, we solve the optimal social cost in two cases: (i) all players are buy-in (i.e., 𝑆2 = ∅); (ii)
there exist both buy-in and shared players (i.e., 𝑆2 ≠ ∅). We shall prove that the optimal social cost

in both cases satisfies the same expression.

(i) All players are buy-in, 𝑆2 is empty. We have that the sum of the costs of shared users is∑
𝑚∈𝑆2 𝐶𝑚 (p) = 0. Moreover, from equation (10), we get

𝜓 =
𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

𝜃
.
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14 Z. Shi, D. Starobinski, and A. Orda

Combining it with (7) and (9), we get that the social cost is

𝐶𝑂𝑃𝑇 (p) =
∑
𝑖∈𝑆1

𝐶𝑖 (p) +
∑
𝑚∈𝑆2

𝐶𝑚 (p) +𝐶provider (p)

=
∑
𝑖∈𝑆1

(
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ
+ 𝑝𝑖

)
+ 0 + (𝜃 − 1)

∑
𝑖∈𝑆

𝑝𝑖

=
∑
𝑖∈𝑆1

𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ
+ 𝜃

∑
𝑖∈𝑆1

𝑝𝑖

=
∑
𝑖∈𝑆1

𝛼𝑖𝜔𝑖√
𝜓𝛼𝑖𝜔𝑖

+
∑
𝑖∈𝑆1

𝜃
√
𝜓𝛼𝑖𝜔𝑖

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

=
2

∑
𝑖∈𝑆1

√
𝜃𝛼𝑖𝜔𝑖√

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠
. (11)

Here, the fourth equality uses equations (7) and (9) to derive the first and second terms, respectively,

and the fifth equality is derived by substituting𝜓 with (𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )/𝜃 .
(ii) There exist both buy-in and shared players, i.e., 𝑆2 is nonempty. Considering (8) and (9), we

get that the optimal social cost is

𝐶𝑂𝑃𝑇 (p) =
∑
𝑖∈𝑆1

𝐶𝑖 (p) +
∑
𝑗 ∈𝑆2

𝐶 𝑗 (p) +𝐶provider(p)

=
∑
𝑖∈𝑆1

(
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ
+ 𝑝𝑖

)
+

∑
𝑚∈𝑆2

𝛼𝑚𝜔𝑚∑
ℓ∈𝑆1 𝑘𝑠𝑝ℓ

+ (𝜃 − 1)
∑
𝑖∈𝑆

𝑝𝑖

=
∑
𝑖∈𝑆1

𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ
+ 𝜃

∑
𝑖∈𝑆1

𝑝𝑖 +
∑
𝑚∈𝑆2

𝛼𝑚𝜔𝑚

𝑘𝑠
∑

𝑖∈𝑆1 𝑝𝑖

=
∑
𝑖∈𝑆1

𝛼𝑖𝜔𝑖√
𝜓𝛼𝑖𝜔𝑖

+
∑
𝑖∈𝑆1

𝜃
√
𝜓𝛼𝑖𝜔𝑖

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠
+ 𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

𝑘𝑠
√
𝜓

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

=

(
1√
𝜓

+
𝜃
√
𝜓

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

) ∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
𝑘𝑠

√
𝜓

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

. (12)

Next, we obtain an expression for the constant𝜓 in (12). Note that equation (10) is equivalent to

𝑘𝑠 (
∑
𝑖∈𝑆1

𝑝𝑖 )2 =
∑

𝑚∈𝑆2 𝛼𝑚𝜔𝑚

𝜃 − 1

𝜓
(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )

.

Combining it with (9), we get

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )2
𝑘𝑠

=
(∑𝑖∈𝑆1

√
𝜓𝛼𝑖𝜔𝑖 )2∑

𝑚∈𝑆2 𝛼𝑚𝜔𝑚

(𝜃 − 1

𝜓
(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )),

which is equivalent to

𝜃 =
𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

𝜓
+
(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )2

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚

𝜓𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2

=
𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

𝜓

(
1 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
∑

𝑚∈𝑆2 𝛼𝑚𝜔𝑚

𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2

)
.
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From the equation above,𝜓 can be specified as

𝜓 =
𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

𝜃

(
1 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
∑

𝑚∈𝑆2 𝛼𝑚𝜔𝑚

𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2

)
. (13)

Combining (12) and (13), the closed-form optimal social cost in case (ii) is obtained.

So far, we have derived the optimal social cost for all possible cases in (11)-(13). Moreover, we

note that, when 𝑆2 is empty, we have

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚 = 0, such that (11) also satisfies (12) and (13).

Thus, (12) and (13) represent the closed-form social cost at the optimum.

□

For the special case where all players are buy-in, the equation (11) in the proof of Theorem 4.4

gives the optimal social cost in a simpler form.

Corollary 1. At the social optimum of an SBC game, if all players are buy-in users (𝑝𝑖 > 0, ∀𝑖 ∈ 𝑆),
the social cost is

𝐶𝑂𝑃𝑇 (p) =
2

∑
𝑖∈𝑆

√
𝜃𝛼𝑖𝜔𝑖√

𝑘𝑏 + (𝑁 − 1)𝑘𝑠
.

Lemma 4.7 in the next subsection provides a way to identify the buy-in user group 𝑆1 and shared

user group 𝑆2. Based on that result, one can then compute the optimal social cost in 𝑂 (𝑁 ) time.

4.2 Social cost at Nash equilibrium
In this subsection, we analyze the strategies of players at the equilibrium, and specify the social

cost in a closed form that incurs 𝑂 (𝑁 ) computation time. Given the payments made by all players

through the vector p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ]⊺ , each player 𝑖 has the cost function

𝐶𝑖 (p) =
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗

+ 𝑝𝑖 . (14)

Meanwhile, we have the social cost function from (1) as

𝐶 (p) =
∑
𝑖∈𝑆

(
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗

+ 𝜃𝑝𝑖
)
.

At a Nash equilibrium, each player employs its best response, which is defined as the player’s

optimal strategy given the strategies of all the other players. The best response strategy 𝑝𝑖 of

player 𝑖 is to minimize its cost (14) given {𝑝 𝑗 | 𝑗 ∈ 𝑆, 𝑗 ≠ 𝑖}, namely:

𝑝𝑖 = max

(
0,

√
𝛼𝑖𝜔𝑖

𝑘𝑏
− 𝑘𝑠

𝑘𝑏

∑
𝑗≠𝑖

𝑝 𝑗

)
. (15)

In the following, we use 𝑝∗𝑖 to suggest that the strategy of player 𝑖 is at a Nash equilibrium.

Lemma 2 in [25] establishes that, at a Nash equilibrium, we have 𝑝∗
1
≥ 𝑝∗

2
≥ · · · ≥ 𝑝∗

𝑁
, that is,

a player with a larger adjusted workload will pay no less than a player with a smaller adjusted

workload. Therefore, we have 𝑝∗𝑖 > 0, ∀𝑖 ≤ 𝑛1, and 𝑝
∗
𝑖 = 0, ∀𝑖 > 𝑛1. Moreover, note that, if 𝑝∗𝑖 = 0,

∀𝑖 > 1, the cost of player 1 becomes

𝐶1 ( [𝑝1, 0, . . . , 0]⊺) =
𝛼1𝜔1

𝑘𝑏𝑝1
+ 𝑝1.

Hence, the best response strategy of player 1 will be 𝑝∗
1
> 0. Thus, there exists at least one buy-in

user (𝑛1 ≥ 1).

Theorem 1 in [25] establishes that the game has a unique Nash equilibrium. Next, we give the

closed-form social cost at the unique equilibrium.
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16 Z. Shi, D. Starobinski, and A. Orda

Theorem 4.5. At the Nash equilibrium of an SBC game, the social cost is

𝐶𝑁𝐸 (p) =
(

1

√
𝑘𝑏

+ 𝜃
√
𝑘𝑏

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

) ∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
𝑘𝑠
√
𝑘𝑏

∑
𝑗 ∈𝑆2 𝛼 𝑗𝜔 𝑗∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

.

Proof. According to (15), the strategy of a buy-in user at the Nash equilibrium can be written as

𝑝∗𝑖 = max

(
0,

√
𝛼𝑖𝜔𝑖

𝑘𝑏
− 𝑘𝑠

𝑘𝑏

∑
𝑗≠𝑖

𝑝∗𝑗

)
=

√
𝛼𝑖𝜔𝑖

𝑘𝑏
− 𝑘𝑠

𝑘𝑏

∑
𝑗 ∈𝑆1, 𝑗≠𝑖

𝑝∗𝑗 , 𝑖 ∈ 𝑆1. (16)

Note that the strategies of buy-in users are not affected by shared users. The strategies of all buy-in

users can be solved through the following equations:
𝑘𝑏 𝑘𝑠 . . . 𝑘𝑠
𝑘𝑠 𝑘𝑏 . . . 𝑘𝑠
...

. . .
...

𝑘𝑠 𝑘𝑠 . . . 𝑘𝑏



𝑝∗
1

𝑝∗
2

...

𝑝∗𝑛1


=


√
𝛼1𝑘𝑏𝜔1√
𝛼2𝑘𝑏𝜔2

...√
𝛼𝑛1

𝑘𝑏𝜔𝑛1


. (17)

If we rewrite the equations above as Ap∗ = b, and multiply by left with the vector 1⊺ = [1, 1, . . . , 1]
on both sides, we get 1⊺Ap∗ = 1⊺b, from which we can derive

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
∑
𝑖∈𝑆1

𝑝∗𝑖 =
∑
𝑖∈𝑆1

√
𝛼𝑖𝑘𝑏𝜔𝑖 . (18)

Combining the cost function (14) with the best response strategy (16) of a buy-in user, its cost at

the Nash equilibrium can be specified as

𝐶𝑖 (p∗) =
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝
∗
𝑖
+ ∑

𝑗 ∈𝑆1, 𝑗≠𝑖 𝑘𝑠𝑝
∗
𝑗

+ 𝑝∗𝑖 =
𝛼𝑖𝜔𝑖√
𝛼𝑖𝑘𝑏𝜔𝑖

+ 𝑝∗𝑖 , 𝑖 ∈ 𝑆1. (19)

A shared user pays 0 at the Nash equilibrium, and its cost can be computed by

𝐶𝑖 (p∗) =
𝛼𝑖𝜔𝑖

𝑘𝑠
∑

𝑖∈𝑆1 𝑝
∗
𝑖

+ 0, 𝑖 ∈ 𝑆2. (20)

The cost of the provider is

𝐶provider (p∗) = 𝜃
∑
𝑖∈𝑆

𝑝∗𝑖 −
∑
𝑖∈𝑆

𝑝∗𝑖 = (𝜃 − 1)
∑
𝑖∈𝑆1

𝑝∗𝑖 . (21)

Therefore, from (18)-(21), we get that the social cost at the equilibrium is

𝐶𝑁𝐸 (p) =
∑
𝑖∈𝑆1

𝐶𝑖 (p∗) +
∑
𝑗 ∈𝑆2

𝐶 𝑗 (p∗) +𝐶provider(p∗)

=
∑
𝑖∈𝑆1

(
𝛼𝑖𝜔𝑖√
𝛼𝑖𝑘𝑏𝜔𝑖

+ (1 + 𝜃 − 1)𝑝∗𝑖
)
+

∑
𝑗 ∈𝑆2

𝛼 𝑗𝜔 𝑗

𝑘𝑠
∑

𝑖∈𝑆1 𝑝
∗
𝑖

=
∑
𝑖∈𝑆1

√
𝛼𝑖𝑘𝑏𝜔𝑖

𝑘𝑏
+

∑
𝑖∈𝑆1

𝜃
√
𝛼𝑖𝑘𝑏𝜔𝑖

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠
+
(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )

∑
𝑗 ∈𝑆2

√
𝛼 𝑗𝜔 𝑗

𝑘𝑠
√
𝑘𝑏

∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

=

(
1

√
𝑘𝑏

+ 𝜃
√
𝑘𝑏

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

) ∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
𝑘𝑠
√
𝑘𝑏

∑
𝑗 ∈𝑆2 𝛼 𝑗𝜔 𝑗∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

. (22)

□

As a special case, we can get the social cost when all players are buy-in from Theorem 4.5.
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Corollary 2. At the Nash equilibrium of an SBC game, if all players are buy-in users (𝑝𝑖 > 0,
∀𝑖 ∈ 𝑆), the social cost is

𝐶𝑁𝐸 (p) =
(

1

√
𝑘𝑏

+ 𝜃
√
𝑘𝑏

𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

) ∑
𝑖∈𝑆

√
𝛼𝑖𝜔𝑖 .

By comparing the social cost at the optimum and the Nash equilibrium, we can deduce that the

strategies of players are only differentiated by a constant factor, which is formalized in the next

lemma. This suggests that the optimum and the Nash equilibrium have the same sets of buy-in

users 𝑆1 and shared users 𝑆2.

Lemma 4.6. Denote by p𝑂𝑃𝑇 =
[
𝑝𝑂𝑃𝑇
1

, 𝑝𝑂𝑃𝑇
2

, . . . , 𝑝𝑂𝑃𝑇
𝑁

]⊺ the strategy profile of the players at the
social optimum, and p𝑁𝐸 =

[
𝑝𝑁𝐸
1

, 𝑝𝑁𝐸
2

, . . . , 𝑝𝑁𝐸
𝑁

]⊺ the strategy profile of the players at the Nash
equilibrium, we have

p𝑁𝐸 =

√
𝑘𝑏

𝜓
p𝑂𝑃𝑇 .

Proof. We prove the lemma by construction, that is, we prove that if p𝑂𝑃𝑇
is the unique optimum,

then p𝑁𝐸 =

√
𝑘𝑏
𝜓
p𝑂𝑃𝑇

is the unique Nash equilibrium.

Consider a buy-in player 𝑖 and a shared player𝑚 at the optimum, where 𝑝𝑂𝑃𝑇
𝑖 > 0 and 𝑝𝑂𝑃𝑇

𝑚 = 0.

From Lemma 4.2, we have ∇𝐶𝑖 = 0 and ∇𝐶𝑚 ≥ 0, and the difference between ∇𝐶𝑚 and ∇𝐶𝑖 is

∇𝐶𝑚 − ∇𝐶𝑖 = (𝑘𝑏 − 𝑘𝑠 )
(

𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑂𝑃𝑇
𝑖

+ ∑
ℓ∈𝑆1,ℓ≠𝑖 𝑘𝑠𝑝

𝑂𝑃𝑇
ℓ

)2
− 𝛼𝑚𝜔𝑚

(∑ℓ∈𝑆1 𝑘𝑠𝑝
𝑂𝑃𝑇
ℓ

)2

)
≥ 0.

Combining the inequality above with (8), we get

𝛼𝑚𝜔𝑚

(∑𝑖∈𝑆1 𝑘𝑠𝑝
𝑂𝑃𝑇
𝑖

)2
≤ 1

𝜓
.

Equivalently, √
𝛼𝑚𝜔𝑚

𝑘𝑏
≤ 𝑘𝑠

𝑘𝑏

∑
𝑖∈𝑆1

(√
𝑘𝑏

𝜓
𝑝𝑂𝑃𝑇
𝑖

)
=
𝑘𝑠

𝑘𝑏

∑
𝑖∈𝑆1

𝑝𝑁𝐸
𝑖 ,

which is the necessary and sufficient condition for 𝑝𝑁𝐸
𝑚 = 0 according to Lemma 4 in [25]. Thus,

the shared users at the optimum are also the shared users at the Nash equilibrium, and we have

𝑝𝑁𝐸
𝑚 =

√
𝑘𝑏
𝜓
𝑝𝑂𝑃𝑇
𝑚 = 0 for a shared player𝑚.

Next, consider buy-in players. Note that equations (8) and (17) are in the same form, except

for their constant factors on the RHS. Thus, if

[
𝑝𝑂𝑃𝑇
1

, 𝑝𝑂𝑃𝑇
2

, . . . , 𝑝𝑂𝑃𝑇
𝑛1

]⊺
is the unique solution to

(8), then

√
𝑘𝑏
𝜓

[
𝑝𝑂𝑃𝑇
1

, 𝑝𝑂𝑃𝑇
2

, . . . , 𝑝𝑂𝑃𝑇
𝑛1

]⊺
will solve equations (17). Therefore, the buy-in users at the

optimum are also the buy-in users at the Nash equilibrium, and we have 𝑝𝑁𝐸
𝑖 =

√
𝑘𝑏
𝜓
𝑝𝑂𝑃𝑇
𝑖 > 0 for a

shared player 𝑖 .

As a result, given the unique social optimum as p𝑂𝑃𝑇 =
[
𝑝𝑂𝑃𝑇
1

, . . . , 𝑝𝑂𝑃𝑇
𝑛1

, 0, . . . , 0
]⊺
, we can

construct the unique Nash equilibrium p𝑁𝐸 =
[
𝑝𝑁𝐸
1

, . . . , 𝑝𝑁𝐸
𝑛1

, 0, . . . , 0
]⊺
, where

𝑝𝑁𝐸
𝑖 =

√
𝑘𝑏

𝜓
𝑝𝑂𝑃𝑇
𝑖 , ∀𝑖 ∈ 𝑆.

□
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Although Theorem 4.4 and Theorem 4.5 provide closed-form social cost at the optimum and

the Nash equilibrium, respectively, we still need to know the sets 𝑆1 and 𝑆2 beforehand in order to

compute the social cost. In other words, we need to distinguish buy-in users from shared users. We

have already shown that 𝑝∗𝑖 > 0, ∀𝑖 ≤ 𝑛1, and 𝑝
∗
𝑖 = 0, ∀𝑖 > 𝑛1. Thus we just need to identify 𝑛1, i.e.,

the number of buy-in users. The following lemma provides a convenient way to do that, instead of

computing the Nash equilibrium or the optimum directly.

Lemma 4.7. At the Nash equilibrium or the social optimum of an SBC game, if there exist shared
users (𝑛1 < 𝑁 ), then the strategy of player𝑚 is 𝑝𝑚 = 0 if and only if

√
𝛼𝑚𝜔𝑚 ≤

𝑘𝑠
∑

𝑖<𝑚

√
𝛼𝑖𝜔𝑖

𝑘𝑏 + (𝑚 − 2)𝑘𝑠
,

where𝑚 ≤ 𝑛1 + 1.

Proof. According to Lemma 4 in [25], at the Nash equilibrium, the strategy of player𝑚 is 𝑝∗𝑚 = 0

if and only if

𝑘𝑠

𝑘𝑏

∑
𝑖<𝑚

𝑝∗∗𝑖 ≥
√

𝛼𝑚𝜔𝑚

𝑘𝑏
, (23)

where𝑚 ≤ 𝑛1 + 1, and {𝑝∗∗𝑖 |𝑖 < 𝑚} is the unique solution to
𝑘𝑏 𝑘𝑠 . . . 𝑘𝑠
𝑘𝑠 𝑘𝑏 . . . 𝑘𝑠
...

. . .
...

𝑘𝑠 𝑘𝑠 . . . 𝑘𝑏



𝑝∗∗
1

𝑝∗∗
2

...

𝑝∗∗𝑚−1


=


√
𝛼1𝑘𝑏𝜔1√
𝛼2𝑘𝑏𝜔2

...√
𝛼𝑚−1𝑘𝑏𝜔𝑚−1


.

In other words, {𝑝∗∗𝑖 |𝑖 < 𝑚} is the Nash equilibrium of the SBC game among just the players

{1, 2, . . . ,𝑚 − 1}.
Multiplying the equation above from left with the vector 1⊺ = [1, 1, . . . , 1] on both sides, we get

(𝑘𝑏 + (𝑚 − 2)𝑘𝑠 )
∑
𝑖<𝑚

𝑝∗∗𝑖 =
∑
𝑖<𝑚

√
𝛼𝑘𝑏𝜔𝑖 . (24)

Combining (23) and (24), we get

𝑘𝑠

𝑘𝑏
×

∑
𝑖<𝑚

√
𝛼𝑖𝑘𝑏𝜔𝑖

𝑘𝑏 + (𝑚 − 2)𝑘𝑠
≥

√
𝛼𝑚𝜔𝑚

𝑘𝑏
,

which can be simplified as

√
𝛼𝑚𝜔𝑚 ≤

𝑘𝑠
∑

𝑖<𝑚

√
𝛼𝑖𝜔𝑖

𝑘𝑏 + (𝑚 − 2)𝑘𝑠
.

According to Lemma 4.6, at the optimum, we also have 𝑝𝑚 = 0 if and only if the condition above

holds.

□

With the lemma above, we can identify 𝑛1 in 𝑂 (𝑁 ) time, such that we can distinguish buy-in

users from shared users, as follows: iterate from player 1 to player 𝑁 , until we find the player𝑚

such that 𝑝∗𝑚 = 0, 𝑛1 can be then computed by 𝑛1 = 𝑚 − 1. Note that, if we maintain the sum∑
𝑖<𝑚

√
𝛼𝑖𝜔𝑖 for all players that have been iterated, it takes just 𝑂 (1) time to update the checking

condition in each iteration. Thus, the time needed to check all players is 𝑂 (𝑁 ).
Although an algorithm to compute the Nash equilibrium is given in [25], using it in order to com-

pute the Nash equilibrium explicitly and afterwards compute the corresponding social cost would

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article . Publication date: November 2023.



Social Cost Analysis of Shared/Buy-in Computing Systems 19

incur 𝑂 (𝑁 4). Here, in contrast, we manage to give the closed-form social cost without explicitly

computing the Nash equilibrium, incurring a time complexity of just 𝑂 (𝑁 ). More specifically, we

first distinguish buy-in users from shared users by Lemma 4.7, then compute the social cost at the

Nash equilibrium based on Theorem 4.5, both of which can be completed in 𝑂 (𝑁 ) time. Similarly,

the optimal social cost can be computed in 𝑂 (𝑁 ) time, based on Lemma 4.7 and Theorem 4.4.

4.3 Price of anarchy
In [25], the convergence to the unique Nash equilibrium of the SBC game through best-response

dynamics is established. However, the Nash equilibrium might not (and typically does not) coincide

with the social optimum. As explained, the gap between the two is captured through the price of
anarchy, namely:

𝑃𝑜𝐴 =
𝐶worst_NE(p)
𝐶OPT (p)

.

It is shown in [25] that the game has a unique Nash equilibrium, hence the Nash equilibrium that

we compute is necessarily the worst (i.e., has the largest social cost among all equilibria). A larger

𝑃𝑜𝐴 indicates that the Nash equilibrium is less efficient.

According to Theorem 4.4 and Theorem 4.5, we can solve the price of anarchy in closed form.

Lemma 4.8. The price of anarchy of an SBC game is

𝑃𝑜𝐴 =

√
𝜓

𝑘𝑏
×

(𝜃𝑘𝑏 + 𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2 + (𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )2

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚

(𝜃𝜓 + 𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2 + (𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )2

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚

,

where

𝜓 =
𝑘𝑏 + (𝑛1 − 1)𝑘𝑠

𝜃

(
1 +

(𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )
∑

𝑚∈𝑆2 𝛼𝑚𝜔𝑚

𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2

)
.

Proof. Combine (12)-(13) in the proof of Theorem 4.4 and (22) in the proof of Theorem 4.5, the

price of anarchy is

𝑃𝑜𝐴 =
𝐶NE (p)
𝐶OPT (p)

=

(
1√
𝑘𝑏

+ 𝜃
√
𝑘𝑏

𝑘𝑏+(𝑛1−1)𝑘𝑠

) ∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 + (𝑘𝑏+(𝑛1−1)𝑘𝑠 )

𝑘𝑠
√
𝑘𝑏

∑
𝑚∈𝑆

2
𝛼𝑚𝜔𝑚∑

𝑖∈𝑆
1

√
𝛼𝑖𝜔𝑖(

1√
𝜓
+ 𝜃

√
𝜓

𝑘𝑏+(𝑛1−1)𝑘𝑠

) ∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 + (𝑘𝑏+(𝑛1−1)𝑘𝑠 )

𝑘𝑠
√
𝜓

∑
𝑚∈𝑆

2
𝛼𝑚𝜔𝑚∑

𝑖∈𝑆
1

√
𝛼𝑖𝜔𝑖

=

√
𝜓

𝑘𝑏
×

(𝜃𝑘𝑏 + 𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2 + (𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )2

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚

(𝜃𝜓 + 𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2 + (𝑘𝑏 + (𝑛1 − 1)𝑘𝑠 )2

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚

.

□

In the following, we provide the price of anarchy in closed form for the special case where all

players are buy-in users. The price of anarchy in this case is simply the ratio between the social

cost in Corollary 1 and that in Corollary 2. In Section 6.1, we also present numerical results of the

𝑃𝑜𝐴 in the general case.

Corollary 3. When all players are buy-in users, the price of anarchy of an SBC game is

𝑃𝑜𝐴 =
1

2

©­«
√
𝑘𝑏 + (𝑁 − 1)𝑘𝑠

𝜃𝑘𝑏
+

√
𝜃𝑘𝑏

𝑘𝑏 + (𝑁 − 1)𝑘𝑠
ª®¬ .
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As the operating expense ratio 𝜃 increases, the price of anarchy decreases (note that we have

𝜃 < 1). Alongside, as the ratio 𝑘𝑠/𝑘𝑏 increases, the price of anarchy increases.

If the number of users 𝑁 is large, the price of anarchy becomes arbitrarily large. Specifically, the

price of anarchy grows in the order of Ω(
√
𝑁 ) in this special case.

In Section 6, we show through numerical simulations that, the price of anarchy actually decreases

as the user workload distribution becomes more heterogeneous. As a result, the worst-case price of

anarchy seems to occur when all users have homogeneous workloads, in which case they are all

buy-in users.

5 SUBSIDY POLICIES
In this section, we investigate one possible way to lower the price of anarchy, namely by subsidizing

users according to their payments. We first introduce the subsidy term into our model, then propose

two subsidy policies and analyze their effects.

In [25], it is shown that, in order to reach the social optimum, users need to pay more than

the prices they pay at the Nash equilibrium. We are thus motivated to come up with policies that

incentivize users to purchase buy-in resources. One such policy (adopted by BU SCC) is that users

get some credits when their idle buy-in nodes are used by others, and those credits can be used in

order to acquire more resources on demand. In the following, we will change the cost function of

each user (14), to take the effects of such a subsidy policy into account, and investigate how the

outcome of the game changes consequently.

The credits are awarded to users only when their buy-in resources are used by others, which can

be translated into an additional computing rate Δ𝑖 (p) in the cost function.

As a result, the new cost function of each player 𝑖 becomes:

𝐶𝑖 (p) =
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗 + Δ𝑖 (p)
+ 𝑝𝑖 . (25)

Define the utility of player 𝑖 as the gross payoff Γ(𝜔𝑖 ) for completing its workload 𝜔𝑖 , minus its

own cost. The utility function can be expressed by:

𝑈𝑖 (p) = Γ(𝜔𝑖 ) −
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗 + Δ𝑖 (p)
− 𝑝𝑖 .

For each player 𝑖 , the best response strategy is still the one that can minimize its own cost𝐶𝑖 (p) (or
equivalently, maximize its utility𝑈𝑖 (p)), which is given by 𝑝𝑖 = argmax𝑝𝑖

𝑈𝑖 (p) = argmin𝑝𝑖
𝐶𝑖 (p).

The next task is to state the exact form of Δ𝑖 (p). There are many possibilities for determining

Δ𝑖 (p), yet we prefer a simple yet effective one, so that not only the outcome (e.g., social cost) is

easier to predict, but it is also easier for users to make decisions. With that in mind, we compare

between the following two forms of subsidy within our model: Δ𝑖 (p) = 𝑘𝑐𝑝𝑖 (linear form) and

Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 (quadratic form), where 𝑘𝑐 is a coefficient of proportionality.

Note that, by choosing a quadratic form for Δ𝑖 (p), heavy users get a larger marginal increase

in their computing rate. Considering the fact that light users benefit relatively more in the game

previously considered in [25], the quadratic form makes the game fairer, compared with a linear

form.

Next, we investigate the properties of the SBC game with the two different subsidy policies.

Subsidy of the form of Δ𝑖 (p) = 𝑘𝑐𝑝𝑖 . The next theorem states that, with this form of subsidy

policy, the game satisfies all the properties of regular SBC games in terms of the Nash equilibria.

Theorem 5.1. An SBC game with subsidy of the form of Δ𝑖 (p) = 𝑘𝑐𝑝𝑖 has the following properties:
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(i) At a Nash equilibrium of the game,

𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑁 ≥ 0.

(ii) The game has a unique Nash equilibrium.
(iii) The game is submodular.
(iv) Through best-response dynamics, the game converges to its unique Nash equilibrium from all

possible initial states.

Proof. For each player 𝑖 , the cost function is

𝐶𝑖 (p) =
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗 + 𝑘𝑐𝑝𝑖
+ 𝑝𝑖

=
𝛼𝑖𝜔𝑖

(𝑘𝑏 + 𝑘𝑐 )𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗

+ 𝑝𝑖

=
𝛼𝑖𝜔𝑖

𝑘∗
𝑏
𝑝𝑖 +

∑
𝑗≠𝑖 𝑘𝑠𝑝 𝑗

+ 𝑝𝑖 ,

where 𝑘∗
𝑏
= 𝑘𝑏 + 𝑘𝑐 . Consider 𝑘

∗
𝑏
as the equivalent 𝑘𝑏 in a regular SBC game, the theorem then

follows Lemma 1, Theorem 1, Lemma 7, and Theorem 2 in [25]. □

Note that the new cost function for each player still satisfies the definition of an SBC game, except

that the buy-in factor is larger. Therefore, all the conclusions in previous sections are applicable to

an SBC game with subsidy of the form of Δ𝑖 (p) = 𝑘𝑐𝑝𝑖 .

Lemma 5.2. For an SBC game with subsidy of the form of Δ𝑖 (p) = 𝑘𝑐𝑝𝑖 , we have:
(i) The social cost at the optimum is

𝐶𝑂𝑃𝑇 (p) =
(
1√
𝜓

+
𝜃
√
𝜓

𝑘∗
𝑏
+ (𝑛1 − 1)𝑘𝑠

) ∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 +

(𝑘∗
𝑏
+ (𝑛1 − 1)𝑘𝑠 )
𝑘𝑠

√
𝜓

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

,

(ii) The social cost at Nash equilibrium is

𝐶𝑁𝐸 (p) =
(
1

𝑘∗
𝑏

+ 𝜃

𝑘∗
𝑏
+ (𝑛1 − 1)𝑘𝑠

) √
𝑘∗
𝑏

∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 +

(𝑘∗
𝑏
+ (𝑛1 − 1)𝑘𝑠 )

𝑘𝑠

√
𝑘∗
𝑏

∑
𝑗 ∈𝑆2 𝛼 𝑗𝜔 𝑗∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖

,

(iii) The price of anarchy is

𝑃𝑜𝐴 =

√
𝜓

𝑘∗
𝑏

×
(𝜃𝑘∗

𝑏
+ 𝑘∗

𝑏
+ (𝑛1 − 1)𝑘𝑠 )𝑘𝑠 (

∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 )2 + (𝑘∗

𝑏
+ (𝑛1 − 1)𝑘𝑠 )2

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚

(𝜃𝜓 + 𝑘∗
𝑏
+ (𝑛1 − 1)𝑘𝑠 )𝑘𝑠 (

∑
𝑖∈𝑆1

√
𝛼𝑖𝜔𝑖 )2 + (𝑘∗

𝑏
+ (𝑛1 − 1)𝑘𝑠 )2

∑
𝑚∈𝑆2 𝛼𝑚𝜔𝑚

,

where

𝑘∗
𝑏
= 𝑘𝑏 + 𝑘𝑐 ,

𝜓 =
𝑘𝑏 + 𝑘𝑐 + (𝑛1 − 1)𝑘𝑠

𝜃

(
1 +

(𝑘𝑏 + 𝑘𝑐 + (𝑛1 − 1)𝑘𝑠 )
∑

𝑚∈𝑆2 𝛼𝑚𝜔𝑚

𝑘𝑠 (
∑

𝑖∈𝑆1
√
𝛼𝑖𝜔𝑖 )2

)
.

Proof. In the proof of Theorem 5.1, it is shown that an SBC game with subsidy of the form

of Δ𝑖 (p) = 𝑘𝑐𝑝𝑖 is also an SBC game with buy-in factor 𝑘∗
𝑏
= 𝑘𝑏 + 𝑘𝑐 . Thus, Theorem 4.4 and

Theorem 4.5 still apply to the game. Replacing the buy-in factor by 𝑘𝑏 + 𝑘𝑐 , we get the closed-form
social cost at the optimum and the Nash equilibrium in (i) and (ii), respectively. The price of anarchy

in (iii) can be computed accordingly as their ratio. □
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Subsidy of the form of Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 . We next obtain several properties of the game, by establishing

a connection to aggregative games. Based on these properties, we then derive a convergence result

for the best-response dynamics of the game. The convergence result enables us to compute the Nash

equilibrium by running best-response dynamics. As a result, we can get numerical solutions to the

social cost and price of anarchy, and evaluate the impact of the subsidy even though closed-form

solutions are difficult to derive.

Lemma 5.3. An SBC game with subsidy of the form Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 admits a Nash equilibrium under
the following sufficient condition

𝑘𝑐 ≤
𝛼𝑖𝑘

2

𝑏
𝜔𝑖

2𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗

, ∀𝑖 . (26)

Moreover, the utility function𝑈𝑖 (p) of player 𝑖 is strictly concave in 𝑝𝑖 , given {𝑝 𝑗 | 𝑗 ≠ 𝑖}.

Proof. The idea of the proof is to find out the sufficient condition such that 𝑈𝑖 (p) is concave
with respect to 𝑝𝑖 , as concave games always admit a Nash equilibrium following from Theorem 1

in [21].

For each player 𝑖 , the best response is lower-bounded by 0. Taking the partial derivative of𝑈𝑖 (p)
in terms of 𝑝𝑖 , we get

𝜕𝑈𝑖 (p)
𝜕𝑝𝑖

=
(𝑘𝑏 + 2𝑘𝑐𝑝𝑖 )𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )2
− 1.

Note that, if 𝑝𝑖 is greater than a large enough 𝑝𝑖−𝑢𝑝𝑝𝑒𝑟 , the partial derivative 𝜕𝑈𝑖 (p)/𝜕𝑝𝑖 will be less
than 0, which indicates that the utility decreases as 𝑝𝑖 increases, hence the best response must be

upper-bounded by 𝑝𝑖−𝑢𝑝𝑝𝑒𝑟 . As a result, the best response 𝑝𝑖 can take any value from [0, 𝑝𝑖−𝑢𝑝𝑝𝑒𝑟 ],
which implies that 𝑃𝑖 is compact and convex.

Next, observe that 𝑘𝑏 > 0, 𝑘𝑠 > 0, and 𝑝𝑖 ≥ 0 for all 𝑖 , thus the payoff 𝑈𝑖 (p) of player 𝑖 is
continuous in p. Moreover, taking the second derivative of the payoff function𝑈𝑖 (p) with respect

to 𝑝𝑖 , we obtain

𝜕2𝑈𝑖 (p)
𝜕𝑝2

𝑖

=
2𝑘𝑐 (

∑
𝑗≠𝑖 𝑘𝑠𝑝 𝑗 ) − 𝛼𝑖𝜔𝑖 (𝑘2𝑏 + 2𝑘𝑏𝑘𝑐𝑝𝑖 + 2𝑘2𝑐𝑝

2

𝑖 )
(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +

∑
𝑗≠𝑖 𝑘𝑠𝑝 𝑗 )3

.

The condition (26) is equivalent to

2𝑘𝑐 (
∑
𝑗≠𝑖

𝑘𝑠𝑝 𝑗 ) − 𝛼𝑖𝑘
2

𝑏
𝜔𝑖 < 0, ∀𝑖 .

Thus we have

𝜕2𝑈𝑖 (p)
𝜕𝑝2

𝑖

=
2𝑘𝑐 (

∑
𝑗≠𝑖 𝑘𝑠𝑝 𝑗 ) − 𝛼𝑖𝜔𝑖 (𝑘2𝑏 + 2𝑘𝑏𝑘𝑐𝑝𝑖 + 2𝑘2𝑐𝑝

2

𝑖 )
(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +

∑
𝑗≠𝑖 𝑘𝑠𝑝 𝑗 )3

=
(2𝑘𝑐 (

∑
𝑗≠𝑖 𝑘𝑠𝑝 𝑗 ) − 𝛼𝑖𝑘

2

𝑏
𝜔𝑖 ) − 2𝛼𝑖𝜔𝑖 (𝑘𝑏𝑘𝑐𝑝𝑖 + 𝑘2𝑐𝑝2𝑖 )

(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗 )3
<0,

which implies that𝑈𝑖 (p) is strictly concave in 𝑝𝑖 given fixed {𝑝 𝑗 | 𝑗 ≠ 𝑖}. The lemma then follows

from Theorem 1 in [21].

□

Lemma 5.4. At a Nash equilibrium of an SBC game with subsidy of the form Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 , we have

𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑁 ≥ 0,
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under the following sufficient condition

𝑘𝑐 ≤ min

{
𝛼𝑖𝑘

2

𝑏
𝜔𝑖

2𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗

,
𝑘𝑠 (𝑘𝑏 − 𝑘𝑠 )

∑
𝑗 ∈𝑆 𝑝 𝑗

𝛼𝑖𝜔𝑖

}
, ∀𝑖 . (27)

Proof. In order to prove the lemma we shall show that, given 𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 , we have 𝑝𝑖 ≥ 𝑝 𝑗

at the Nash equilibrium, for all 𝑖, 𝑗 ∈ 𝑆 . We prove this statement by contradiction, that is, given

𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 , we show that 𝑝𝑖 < 𝑝 𝑗 cannot hold.

First, we investigate the conditions that 𝑝𝑖 and 𝑝 𝑗 must satisfy at the Nash equilibrium. At the

equilibrium, player 𝑖 maximizes its payoff 𝑈𝑖 (p) given other players’ payments. In Lemma 5.3, we

have proven that the payoff function𝑈𝑖 (p) of player 𝑖 is strictly concave in 𝑝𝑖 , given {𝑝ℓ |ℓ ≠ 𝑖}, that
is, 𝜕2𝑈𝑖 (p)/𝜕𝑝2𝑖 < 0. As a result, the partial derivative of the payoff function 𝜕𝑈𝑖 (p)/𝜕𝑝𝑖 decreases
with respect to 𝑝𝑖 . Let 𝑝

∗
denote the solution to the equation

𝜕𝑈𝑖 (p)
𝜕𝑝𝑖

=
(𝑘𝑏 + 2𝑘𝑐𝑝𝑖 )𝛼𝑖𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )2
− 1 = 0.

Consider the constraint that 𝑝𝑖 ≥ 0, the payoff function 𝑈𝑖 (p) reaches its optimum at 𝑝𝑖 = 𝑝∗, if
𝑝∗ > 0; or 𝑝𝑖 = 0, if 𝑝∗ ≤ 0. Therefore, at the Nash equilibrium, 𝑝𝑖 satisfies

𝑝𝑖 = 𝑝∗ > 0, iff (𝑘𝑏 + 2𝑘𝑐𝑝𝑖 )𝛼𝑖𝜔𝑖 = (𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑
ℓ≠𝑖

𝑘𝑠𝑝ℓ )2,

𝑝𝑖 = 0 ≥ 𝑝∗, iff (𝑘𝑏 + 2𝑘𝑐𝑝𝑖 )𝛼𝑖𝜔𝑖 ≤ (𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑
ℓ≠𝑖

𝑘𝑠𝑝ℓ )2.

Next, assume that given 𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 , we have 𝑝𝑖 < 𝑝 𝑗 , which has two cases: 0 = 𝑝𝑖 < 𝑝 𝑗 , and

0 < 𝑝𝑖 < 𝑝 𝑗 . In both cases, 𝑝𝑖 and 𝑝 𝑗 satisfy

(𝑘𝑏 + 2𝑘𝑐𝑝𝑖 )𝛼𝑖𝜔𝑖 ≤ (𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 + 𝑘𝑠𝑝 𝑗 +
∑

ℓ≠𝑖,ℓ≠𝑗

𝑘𝑠𝑝ℓ )2, (28)

(𝑘𝑏 + 2𝑘𝑐𝑝 𝑗 )𝛼 𝑗𝜔 𝑗 = (𝑘𝑏𝑝 𝑗 + 𝑘𝑐𝑝2𝑗 + 𝑘𝑠𝑝𝑖 +
∑

ℓ≠𝑖,ℓ≠𝑗

𝑘𝑠𝑝ℓ )2. (29)

We show the contradiction by proving the equations above cannot hold if 𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 and 𝑝𝑖 < 𝑝 𝑗 .

Take the difference between (28) and (29), we get

𝑘𝑏 (𝛼𝑖𝜔𝑖 − 𝛼 𝑗𝜔 𝑗 ) + 2𝑘𝑐 (𝛼𝑖𝜔𝑖𝑝𝑖 − 𝛼 𝑗𝜔 𝑗𝑝 𝑗 )

≤(𝑝𝑖 − 𝑝 𝑗 ) (𝑘𝑏 − 𝑘𝑠 + 𝑘𝑐 (𝑝𝑖 + 𝑝 𝑗 )) ((𝑘𝑏 + 𝑘𝑠 ) (𝑝𝑖 + 𝑝 𝑗 ) + 𝑘𝑐 (𝑝2𝑖 + 𝑝2𝑗 ) + 2

∑
ℓ≠𝑖,ℓ≠𝑗

𝑘𝑠𝑝ℓ )

=(𝑝𝑖 − 𝑝 𝑗 ) (𝑘𝑏 − 𝑘𝑠 + 𝑘𝑐 (𝑝𝑖 + 𝑝 𝑗 )) (𝑘𝑏 (𝑝𝑖 + 𝑝 𝑗 ) + 𝑘𝑐 (𝑝2𝑖 + 𝑝2𝑗 ) + 2

∑
𝑖∈𝑆

𝑘𝑠𝑝ℓ ). (30)

The LHS of (30) can be re-written as

𝑘𝑏 (𝛼𝑖𝜔𝑖 − 𝛼 𝑗𝜔 𝑗 ) + 2𝑘𝑐𝑝 𝑗 (𝛼𝑖𝜔𝑖 − 𝛼 𝑗𝜔 𝑗 ) + 2𝑘𝑐𝛼𝑖𝜔𝑖 (𝑝𝑖 − 𝑝 𝑗 ). (31)
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Move the last term of (31) to the RHS of (30), we get

𝑘𝑏 (𝛼𝑖𝜔𝑖 − 𝛼 𝑗𝜔 𝑗 ) + 2𝑘𝑐𝑝 𝑗 (𝛼𝑖𝜔𝑖 − 𝛼 𝑗𝜔 𝑗 )

≤(𝑝𝑖 − 𝑝 𝑗 ) [(𝑘𝑏 − 𝑘𝑠 + 𝑘𝑐 (𝑝𝑖 + 𝑝 𝑗 )) (𝑘𝑏 (𝑝𝑖 + 𝑝 𝑗 ) + 𝑘𝑐 (𝑝2𝑖 + 𝑝2𝑗 ) + 2

∑
𝑖∈𝑆

𝑘𝑠𝑝ℓ ) − 2𝑘𝑐𝛼𝑖𝜔𝑖 ]

=(𝑝𝑖 − 𝑝 𝑗 ) [(2(𝑘𝑏 − 𝑘𝑠 )
∑
𝑖∈𝑆

𝑘𝑠𝑝ℓ − 2𝑘𝑐𝛼𝑖𝜔𝑖 ) + 2𝑘𝑐 (𝑝𝑖 + 𝑝 𝑗 )
∑
𝑖∈𝑆

𝑘𝑠𝑝ℓ

+ (𝑘𝑏 − 𝑘𝑠 + 𝑘𝑐 (𝑝𝑖 + 𝑝 𝑗 )) (𝑘𝑏 (𝑝𝑖 + 𝑝 𝑗 ) + 𝑘𝑐 (𝑝2𝑖 + 𝑝2𝑗 ))] . (32)

When 𝑘𝑐 satisfies the constraint (27), we have

2(𝑘𝑏 − 𝑘𝑠 )
∑
𝑖∈𝑆

𝑘𝑠𝑝ℓ − 2𝑘𝑐𝛼𝑖𝜔𝑖 ≥ 0.

Under the assumption that 0 ≤ 𝑝𝑖 < 𝑝 𝑗 , we get that the RHS of (32) is strictly less than 0. However,

from 𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 we get that the LHS of (32) is no less than 0, such that the inequality (32)

cannot hold. Hence, 𝛼𝑖𝜔𝑖 ≥ 𝛼 𝑗𝜔 𝑗 and 𝑝𝑖 < 𝑝 𝑗 cannot the hold at the same time, and the lemma is

proven. □

Define a game (𝑆, {𝑃𝑖 }𝑖∈𝑆,, {𝑈𝑖 }𝑖∈𝑆 ) as an aggregative game [6], if for each player 𝑖 , its payoff𝑈𝑖

is a function of 𝑝𝑖 and
∑

𝑗 ∈𝑆 𝑝 𝑗 , i.e.,𝑈𝑖 (p) = 𝑈𝑖 (𝑝𝑖 ,
∑

𝑗 ∈𝑆 𝑝 𝑗 ). In an aggregative game, the payoff of

player 𝑖 depends only on its own strategy 𝑝𝑖 and the aggregate of all players’ strategies

∑
𝑗 ∈𝑆 𝑝 𝑗 .

Lemma 5.5. An SBC game with subsidy of the form Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 is an aggregative game.

Proof. Note that in an SBC game with subsidy of the form Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 , the payoff function𝑈𝑖

of player 𝑖 can be written as

𝑈𝑖 (p) =Γ(𝜔𝑖 ) −
𝛼𝑖𝜔𝑖

𝑘𝑏𝑝𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗 + 𝑘𝑐𝑝2𝑖
− 𝑝𝑖

=Γ(𝜔𝑖 ) −
𝛼𝑖𝜔𝑖

(𝑘𝑏 − 𝑘𝑠 )𝑝𝑖 + 𝑘𝑐𝑝2𝑖 + 𝑘𝑠
∑

𝑗 ∈𝑆 𝑝 𝑗

− 𝑝𝑖

=𝑈 ∗
𝑖 (𝑝𝑖 ,

∑
𝑗 ∈𝑆

𝑝 𝑗 ).

The lemma then follows. □

Lemma 5.6. An SBC game with subsidy of the form Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 is submodular.

Proof. The strategy set 𝑃𝑖 of player 𝑖 is continuous by assumption and lower-bounded by 0.

Moreover, it has an inherent upper-bound since when the strategy 𝑝𝑖 is above a threshold, the cost

of will increase monotonically with 𝑝𝑖 . Therefore, 𝑃𝑖 is a compact subset of R.
Given a twice continuously-differentiable function 𝑓 : X → 𝑅, 𝑓 has decreasing difference in if

and only if

𝜕2 𝑓 (x)
𝜕𝑥𝑖𝜕𝑥 𝑗

≤ 0, ∀ 𝑖 ≠ 𝑗 .

Consider the payoff function𝑈𝑖 (𝑝) of player 𝑖 . We have

𝜕2𝑈𝑖 (p)
𝜕𝑝𝑖𝜕𝑝 𝑗

= − 𝛼𝑖𝑘𝑠 (𝑘𝑏 + 2𝑘𝑐𝑝𝑖 )𝜔𝑖

(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑

ℓ≠𝑖 𝑘𝑠𝑝ℓ )3
< 0, ∀ 𝑗 ≠ 𝑖 .

Therefore, the payoff function 𝑈𝑖 (p) has decreasing difference in (𝑝𝑖 , 𝑝−𝑖 ), where 𝑝−𝑖 denotes the
strategies of players other than player 𝑖 . Furthermore, note that 𝑘𝑏 > 0, 𝑘𝑠 > 0, 𝑝𝑖 ≥ 0 and 𝑝−𝑖 ≥ 0
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for all 𝑖 , from which we get that𝑈𝑖 (p) is continuous in (𝑝𝑖 , 𝑝−𝑖 ). Thus, we deduce that an SBC game

with subsidy in the form of Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 is submodular. □

Lemma 5.7. Given the other players’ strategies, the best response of player 𝑖 in an SBC game with
subsidy in the form of Δ𝑖 (p) = 𝑘𝑐𝑝

2

𝑖 is single-valued, except when it has a specific workload 𝜔0

𝑖 , in
which case there exist two best response strategies, one of them being 0. Moreover, the best response is a
non-decreasing function of 𝜔𝑖 .

Proof. Note that 𝑝𝑖 ≥ 0. Taking the partial derivative of 𝐶𝑖 (p), we get

𝜕𝐶𝑖 (p)
𝜕𝑝𝑖

=
(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +

∑
𝑗≠𝑖 𝑘𝑠𝑝 𝑗 )2 − 𝛼𝑖𝜔𝑖 (𝑘𝑏 + 2𝑘𝑐𝑝𝑖 )

(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑

𝑗≠𝑖 𝑘𝑠𝑝 𝑗 )2
.

Note that the numerator can be written as 𝑓𝑖 (𝑝𝑖 ) − 𝛼𝑖𝑘𝑏𝜔𝑖 , where 𝑓𝑖 (𝑝𝑖 ) is defined as

𝑓𝑖 (𝑝𝑖 ) = (𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑
𝑗≠𝑖

𝑘𝑠𝑝 𝑗 )2 − 2𝛼𝑖𝑘𝑐𝜔𝑖𝑝𝑖 . (33)

As a result, to solve 𝜕𝐶𝑖 (p)/𝜕𝑝𝑖 = 0, we only need to compare 𝛼𝑖𝑘𝑏𝜔𝑖 with 𝑓𝑖 (𝑝𝑖 ). Specifically,
if 𝑓𝑖 (𝑝𝑖 ) < 𝛼𝑖𝑘𝑏𝜔𝑖 , we have 𝜕𝐶𝑖 (p)/𝜕𝑝𝑖 < 0;

if 𝑓𝑖 (𝑝𝑖 ) = 𝛼𝑖𝑘𝑏𝜔𝑖 , we have 𝜕𝐶𝑖 (p)/𝜕𝑝𝑖 = 0;

if 𝑓𝑖 (𝑝𝑖 ) > 𝛼𝑖𝑘𝑏𝜔𝑖 , we have 𝜕𝐶𝑖 (p)/𝜕𝑝𝑖 > 0.

Next, in order to compare 𝛼𝑖𝑘𝑏𝜔𝑖 with 𝑓𝑖 (𝑝𝑖 ), we take the derivative of 𝑓𝑖 (𝑝𝑖 ), such that we can

find out how it changes with 𝑝𝑖 .

The first derivative of 𝑓𝑖 (𝑝𝑖 ) is
d𝑓𝑖 (𝑝𝑖 )
d𝑝𝑖

=2(𝑘𝑏𝑝𝑖 + 𝑘𝑐𝑝2𝑖 +
∑
𝑗≠𝑖

𝑘𝑠𝑝 𝑗 ) (2𝑘𝑐𝑝𝑖 + 𝑘𝑏) − 2𝛼𝑖𝑘𝑐𝜔𝑖

=2

[
2𝑘2𝑐𝑝

3

𝑖 + 3𝑘𝑏𝑘𝑐𝑝
2

𝑖 + (2𝑘𝑐𝑘𝑠
∑
𝑗≠𝑖

𝑝 𝑗 + 𝑘2𝑏)𝑝𝑖 + 𝑘𝑏𝑘𝑠
∑
𝑗≠𝑖

𝑝 𝑗

]
− 2𝛼𝑖𝑘𝑐𝜔𝑖 ,

which is an increasing function of 𝑝𝑖 when 𝑝𝑖 ≥ 0. Moreover, note that when 𝑝𝑖 = 0, we have

d𝑓𝑖 (0)
d𝑝𝑖

= 2𝑘𝑏𝑘𝑠

∑
𝑗≠𝑖

𝑝 𝑗 − 2𝛼𝑖𝑘𝑐𝜔𝑖 .

Next, consider the following two cases: (a)
d𝑓𝑖 (0)
d𝑝𝑖

≥ 0; and (b)
d𝑓𝑖 (0)
d𝑝𝑖

< 0. We use 𝑝𝑛𝑖 to denote

specific values such that 𝑓𝑖 (𝑝𝑡𝑖 ) = 𝛼𝑖𝑘𝑏𝜔𝑖 , where 𝑡 = 0, 1, 2, 3, ... is used to number those values. The

minimum of 𝑓𝑖 (𝑝𝑖 ) is denoted by 𝑓 min

𝑖 , and the maximum is denoted by 𝑓 max

𝑖 .

(a)
d𝑓𝑖 (0)
d𝑝𝑖

≥ 0, equivalently, 𝑘𝑏𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗 ≥ 𝛼𝑖𝑘𝑐𝜔𝑖 . In such a case, 𝑓𝑖 (𝑝𝑖 ) increases as 𝑝𝑖 increases.
There are two sub-cases (a-i) and (a-ii), according to the value of 𝜔𝑖 :

(i) 𝑓𝑖 (0) ≥ 𝛼𝑖𝑘𝑏𝜔𝑖 , so 𝑓𝑖 (𝑝𝑖 ) > 𝛼𝑘𝑏𝜔𝑖 for all 𝑝𝑖 > 0. Then we get that 𝐶𝑖 is an increasing

function of 𝑝𝑖 , thus, 𝑝𝑖 = 0 is the best response.

(ii) 𝑓𝑖 (0) < 𝛼𝑖𝑘𝑏𝜔𝑖 , then there exists 𝑝0𝑖 , such that 𝑓𝑖 (𝑝0𝑖 ) = 𝛼𝑖𝑘𝑏𝜔𝑖 , 𝑓𝑖 (0) < 𝛼𝑖𝑘𝑏𝜔𝑖 for 𝑝𝑖 < 𝑝0𝑖 ,

and 𝑓𝑖 (0) > 𝛼𝑖𝑘𝑏𝜔𝑖 for 𝑝𝑖 > 𝑝0𝑖 . Thus, 𝐶𝑖 decreases within interval [0, 𝑝0𝑖 ], increases within
interval (𝑝0𝑖 ,∞), and 𝑝𝑖 = 𝑝0𝑖 is the best response. Furthermore, note that 𝑓𝑖 (𝑝𝑖 ) increases
with 𝑝𝑖 , so 𝑝

0

𝑖 increases as 𝜔𝑖 increases.

(b)
d𝑓𝑖 (0)
d𝑝𝑖

< 0, equivalently, 𝑘𝑏𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗 < 𝛼𝑖𝑘𝑐𝜔𝑖 . In such a case, 𝑓𝑖 (𝑝𝑖 ) first decreases to 𝑓 min

𝑖 ,

then increases as 𝑝𝑖 increases. There are three sub-cases (b-i), (b-ii), and (b-iii), according to

the value of 𝜔𝑖 :
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(i) 𝛼𝑖𝑘𝑏𝜔𝑖 < 𝑓 min

𝑖 , so 𝑓𝑖 (𝑝𝑖 ) > 𝛼𝑖𝑘𝑏𝜔𝑖 for all 𝑝𝑖 > 0. Then we get that 𝐶𝑖 is an increasing

function of 𝑝𝑖 , thus, 𝑝𝑖 = 0 is the best response.

(ii) 𝑓 min

𝑖 ≤ 𝛼𝑖𝑘𝑏𝜔𝑖 < 𝑓𝑖 (0), then there exists 𝑝1𝑖 and 𝑝2𝑖 , such that 𝑓𝑖 (𝑝1𝑖 ) = 𝑓𝑖 (𝑝2𝑖 ) = 𝛼𝑖𝑘𝑏𝜔𝑖 .

Moreover, 𝐶𝑖 increases within the interval [0, 𝑝1𝑖 ), decreases within the interval [𝑝1𝑖 , 𝑝2𝑖 ),
increases within interval (𝑝2𝑖 ,∞). To find the best response, we need to compare between

𝐶𝑖 (𝑝2𝑖 ) and 𝐶𝑖 (0). Let 𝛿1 denote the increase of 𝐶𝑖 within interval [0, 𝑝1𝑖 ), and 𝛿2 denote the
decrease of 𝐶𝑖 within interval [𝑝1𝑖 , 𝑝2𝑖 ). We then have 𝐶𝑖 (𝑝2𝑖 ) = 𝐶𝑖 (0) + 𝛿1 − 𝛿2.

Consider the case where 𝜔𝑖 is relatively small (close to 𝑓 min

𝑖 ), 𝑝1𝑖 and 𝑝
2

𝑖 are very close to

each other, so that 𝛿1 > 𝛿2, and 𝐶𝑖 (0) < 𝐶𝑖 (𝑝2𝑖 ). Therefore, 𝑝𝑖 = 0 is the best response. As

𝜔𝑖 becomes larger, 𝑝1𝑖 goes towards 0, and 𝑝2𝑖 goes towards ∞, so that 𝛿1 decreases and

𝛿2 increases, as a result, 𝐶𝑖 (𝑝2𝑖 ) decreases, eventually becomes less than 𝐶𝑖 (0), so 𝑝𝑖 = 𝑝2𝑖
becomes the best response. A special case is when 𝛿1 = 𝛿2 given a workload 𝜔0

𝑖 , where

𝐶𝑖 (0) = 𝐶𝑖 (𝑝2𝑖 ), and both 0 and 𝑝2𝑖 are the best responses.

(iii) 𝑓𝑖 (0) ≤ 𝛼𝑖𝑘𝑏𝜔𝑖 , then there exists 𝑝3𝑖 , such that 𝑓𝑖 (𝑝3𝑖 ) = 𝛼𝑖𝑘𝑏𝜔𝑖 , 𝑓𝑖 (0) < 𝛼𝑖𝑘𝑏𝜔𝑖 for 𝑝𝑖 < 𝑝3𝑖 ,

and 𝑓𝑖 (0) > 𝛼𝑖𝑘𝑏𝜔𝑖 for 𝑝𝑖 > 𝑝3𝑖 . Thus, 𝐶𝑖 decreases within interval [0, 𝑝3𝑖 ], increases within
interval (𝑝3𝑖 ,∞), and 𝑝𝑖 = 𝑝3𝑖 is the best response. Furthermore, note that 𝑓𝑖 (𝑝𝑖 ) increases
with 𝑝𝑖 , so 𝑝

3

𝑖 increases as 𝜔𝑖 increases.

We thus conclude that, in all cases, the best response of a player is either a unique positive value

𝑝★𝑖 > 0, or {0, 𝑝★𝑖 }. This suggests that Lemma 5.7 holds. □

We are ready to prove that, if 𝑘𝑐 satisfies the condition in Lemma 5.3, the game can always

converge to an equilibrium under some reasonable assumptions.

Theorem 5.8. Assume that if a player has two best response strategies that yield the same minimal
cost, one of which is to pay 0, then the player prefers not to pay. Under this assumption, through
best-response dynamics, an SBC game with subsidy of the form of Δ𝑖 (p) = 𝑘𝑐𝑝

2

𝑖 converges to its Nash
equilibrium (or equilibria) from all possible initial states under the sufficient condition

𝑘𝑐 ≤
𝛼𝑖𝑘

2

𝑏
𝜔𝑖

2𝑘𝑠
∑

𝑗≠𝑖 𝑝 𝑗

, ∀𝑖 . (34)

Proof. By Lemma 5.3, condition (34) guarantees that there exists at least one Nash equilibrium

in the game. The proof then follows essentially the same as the proof of Theorem 2 in [25], as we

have shown that the game is aggregative and submodular, and has single-valued best response.

The best response is single-valued under the assumption that that players prefer not to pay if they

can minimize costs, which addresses the only case where there exist two best responses and one of

them is 0. □

6 NUMERICAL RESULTS
In this section, we present numerical results to validate and expand on our theoretical analysis. We

first provide numerical results about the social cost both at equilibrium and at optimum, and the

corresponding price of anarchy. Next, we evaluate the subsidy policies introduced in Section 5 and

show that they are indeed able to significantly lower the social cost at the Nash equilibrium. We

then simulate the game with heterogeneous shared factors, in order to show that the assumption

of a homogeneous shared factor provides a satisfactory approximation.

6.1 Social cost and price of anarchy
In this subsection, we numerically evaluate the social costs at equilibrium and at optimum, and

then compute the corresponding price of anarchy. We consider shared/buy-in computing games
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modeled by heterogeneously distributed workloads observed in real-world systems, and investigate

the influence of different parameters on the social cost and price of anarchy.

Several studies have shown that job completion time (makespan) in large-scale clouds can be

modeled with a log-normal distribution [8, 19]. This is also true for shared/buy-in clusters [17].

The formula for the log-normal distribution is

𝑃 (𝑊 ≤ 𝜔) = 1

2

+ 1

2

erf

[
ln𝜔 − 𝜈

𝜎

]
,

where𝑊 denotes the random variable, which is workload in our model, and erf [·] stands for the
error function

erf [𝑧] = 2

√
𝜋

∫ 𝑧

0

𝑒−𝑡
2

𝑑𝑡 .

The log-normal distribution we use has two parameters 𝜈 and 𝜎 , which are respectively the mean

and the standard deviation of the random variable’s natural logarithm.

Unless stated otherwise, in our simulations, we set 𝜈 = 7.37 and 𝜎 = 5.69 for the base case,

similar to [25]. We discard very large random samples, since real-world shared/buy-in computing

systems cannot sustain workloads that exceed some threshold. We set this threshold to 𝜔 = 5 × 10
6

(CPU-hours). Since the workloads are generated randomly from a log-normal distribution, each

run of simulations yields different results, even under the same parameters. Therefore, for each

setting of log-normal distribution parameters, we generate 100 groups of workloads and use them

to run 100 individual simulations.

We assume that the system has 𝑁 = 200 users, and for each of them, the cost per unit of time is

𝛼 = 1. For the base case, we set 𝑘𝑏 = 30 and 𝑘𝑠 = 0.075, such that the ratio between the two types

of resources used 𝑘𝑏
∑

𝑖∈𝑆 𝑝𝑖/(𝑁 − 1)𝑘𝑠
∑

𝑖∈𝑆 𝑝𝑖 , is roughly the same as the ratio observed in the BU

SCC data [17]. The operating expense ratio of the system is set to 𝜃 = 0.5, for the base case.

First, we validate our closed-form social cost at the optimum, by comparing it with the results

obtained through coordinate descent methods. We have proven in Theorem 4.1 that the social

cost function is strictly convex in the payments of players. Since the social cost function (1) is

continuous and differentiable, a simple approach to solving this constrained optimization problem

is by employing a coordinate descent method, which minimizes along the coordinate directions

until it reaches a local optimum. To implement coordinate descent, we adopt an approach similar

to best-response dynamics: each player updates its strategy in turn, so as to minimize the social

cost function (1) given the other players’ strategies, until no one needs to change their strategy

anymore.

We find that the numerical results by coordinate descent are identical to the closed-form social

cost (within the range of error). Specifically, for the base case described above, the simulated social

cost and our closed-form social cost are both 𝐶𝑂𝑃𝑇 = 8, 749 (CPU-hours) on average. The ratio

between their difference and the simulated social cost has an average of only 2.71 × 10
−7
, and a

standard deviation of 4.01 × 10
−8
. We obtained similar results for different combinations of the

parameters 𝜃 , 𝑘𝑏 , and 𝑘𝑠 . This serves as a validation of the closed-form optimal social cost given in

Theorem 4.4.

We further compute the player strategies at the Nash equilibrium to validate the closed-form

social cost at the equilibrium, provided by Theorem 4.5. We find that the results indeed coincide,

with 𝐶𝑁𝐸 = 9, 628 (CPU-hours). Furthermore, when numerically computing the ratio of the player

strategies at the equilibrium to the player strategies at the optimum, we find that their ratio is

identical to the value given by Lemma 4.6, with an average of 0.6411 and a standard deviation of

0.0036.
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(a) Influence of the operating expense ratio 𝜃 .
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(b) Influence of the buy-in factor 𝑘𝑏 .
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(c) Influence of the shared factor 𝑘𝑠 .
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(d) Influence of 𝑘𝑠 under different settings of 𝑘𝑏 .

Fig. 1. Influence of different system parameters on the social cost and price of anarchy. The operating expense
ratio 𝜃 has the most significant influence.

We next compare the average values of the social cost at the optimum and the equilibrium,

and compute the price of anarchy. For the base case described above, the social cost at the Nash

equilibrium is 𝐶𝑁𝐸 = 9, 628 (CPU-hours), and the social cost at the optimum is 𝐶𝑂𝑃𝑇 = 8, 749

(CPU-hours), which results in price of anarchy equal to 1.1005. Therefore, in this case, the social

cost of the Nash equilibrium is about 10% higher than optimal.

Next, we vary the parameters 𝜃 , 𝑘𝑏 , and 𝑘𝑠 , to investigate how the social cost and price of anarchy

are influenced by these different factors. The results are depicted in Fig. 1. We find that the operating

expense ratio 𝜃 has the most significant influence on the price of anarchy: with other parameters

kept unchanged, when 𝜃 decreases toward 0, the price of anarchy significantly increases. Recall that

𝜃 is the ratio between the operational cost and the payment by users. Thus, the Nash equilibrium

of the system can be pretty inefficient if the provider has a low operating expense ratio, i.e., it

gets a relatively higher net revenue from the same overall payment. On the other hand, while the

price of anarchy also depends on the buy-in factor 𝑘𝑏 and shared factor 𝑘𝑠 , the influence of these

parameters is not as significant as 𝜃 . Moreover, Fig. 1(d) shows that, no matter what the values of

𝑘𝑏 and 𝑘𝑠 are, as long as the ratio 𝑘𝑠/𝑘𝑏 is fixed, the price of anarchy remains the same. When the

ratio 𝑘𝑠/𝑘𝑏 increases, the price of anarchy increases as well. Intuitively, users benefit more from

the shared resources as 𝑘𝑠/𝑘𝑏 grows larger, such that they tend to pay less and rely on the shared

resources. However, when everyone pays less for buy-in resources, the overall amount of available
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Fig. 2. Influence of the distribution parameter 𝜎 under different settings of 𝜈 (𝜈 and 𝜎2 are the mean and
variance of the workload’s natural logarithm, respectively). The PoA decreases as the workload becomes more
heterogeneous.

resources decreases, hence the system becomes less efficient in completing all the workloads. It is

also worth noting that the social cost does decrease as 𝑘𝑏 and 𝑘𝑠 increase.

The distribution of user workloads also affects the social cost and price of anarchy. Fig. 2

evaluates the impact of different settings of the 𝜈 and 𝜎 parameters. We find that as the distribution

parameter 𝜈 increases, the price of anarchy increases slightly. This implies that as the total user

workload increases, the system operates at a less efficient state. The distribution parameter 𝜎 has

the opposite and more significant influence: the price of anarchy decreases as 𝜎 increases, that is, as

the distribution of user workloads becomes more heterogeneous. We also note that, if all the other

system parameters are kept fixed, the price of anarchy reaches its maximum of 1.1542 when 𝜎 = 0,

no matter what the value of 𝜈 is. In fact, the case where 𝜎 = 0 indicates that every user has the

same workload, hence each user will be a buy-in user with the same payment. In Corollary 3, we

have given the closed-form price of anarchy in the case where all users are buy-in users, and the

result is precisely 1.1542 for our setting of system parameters 𝑘𝑏 , 𝑘𝑠 , and 𝜃 . Moreover, the analytical

results in Lemma 3 show that the price of anarchy is not influenced by the user workloads if all

the users are buy-in users, which explains why the price of anarchy is the same when 𝜎 = 0 under

different values of 𝜈 . Note that the worst price of anarchy is still not very large in this example;

this is due to the fact that, in order to guarantee the benefit of buy-in users, the shared factor 𝑘𝑠 is

in practice typically much smaller than the buy-in factor 𝑘𝑏 .

In the simulations above, the parameters change around the parameters in the base case. In

the base case, we have that 𝑘𝑏
∑

𝑖∈𝑆 𝑝𝑖 and (𝑁 − 1)𝑘𝑠
∑

𝑖∈𝑆 𝑝𝑖 are relatively comparable, which

implies that 𝑁 and 𝑘𝑠 cannot be very large at the same time. However, in other scenarios, where

𝜃 is relatively small, and both 𝑁 and 𝑘𝑠 are relatively large, we can find that the price of anarchy

becomes even larger. For example, consider the same parameters as in the base case, except that

we let 𝑘𝑠 range from 2 to 10, and 𝜃 ranges from 0.1 to 0.3. In such a case, Fig. 3 shows the price of

anarchy can be close to 4, which indicates that the system is highly inefficient.

6.2 Impact of subsidy policies
In this subsection, we present numerical results regarding the price of anarchy and social cost

when employing subsidy policies of the two forms elaborated in Section 5.
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Fig. 3. Influence of the operating expense ratio 𝜃 and the shared factor 𝑘𝑠 on the price of anarchy. When 𝜃 is
small and 𝑘𝑠 is large, the price of anarchy can be as large as 4 in this example.

We employ the subsidy policies on the base case of Subsection 6.1, except that 𝜃 = 0.3. We assume

that the total amount of computing resources is fixed, and the subsidy resources come from the

shared resource pool. In the simulations, when we increase the subsidy term Δ𝑖 (p), we decrease 𝑘𝑠
such that the total computing rate of all users

∑
𝑖∈𝑆 [(𝑘𝑏 + (𝑁 − 1)𝑘𝑠 )𝑝𝑖 + Δ𝑖 (p)] is fixed. For the

linear form of subsidy Δ𝑖 (p) = 𝑘𝑐𝑝𝑖 , we can keep the total computing rate exactly the same when

we change 𝑘𝑐 . For the quadratic form of subsidy Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 , due to the quadratic term, we can

only make the total computing rate stay approximately the same. The impact of employing subsidy

policies is illustrated in Fig. 4. Note that the price of anarchy in Fig. 4(b) is a lower-bound, since

we have not formally proven that coordinate descent converges to the global minimum for the

quadratic form of subsidies. Nevertheless, in our simulations, coordinate descent always yields the

same minimum, irrespective of the initial state. It is also worth mentioning that, the values of the

parameter of subsidy 𝑘𝑐 shown in the two figures are not directly comparable, as 𝑘𝑐 in Fig. 4(b) is

smaller, so as to keep the total computing rate of all users fixed; instead, the same positions on the

x-axes of the two figures share approximately the same amount of subsidy resources

∑
𝑖∈𝑆 Δ𝑖 (p).

We consider the Nash equilibrium of the game under the two subsidy policies. We find that,

under both policies, the game exhibits two identical properties. First, we simulate the convergence

through the best-response dynamics of the game, and find that the game always converges to a

unique Nash equilibrium from random initial states. Second, we note that the Nash equilibrium

satisfies 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑁 ≥ 0, that is, the prices paid by users decrease with their adjusted

workloads (𝛼𝑖𝜔𝑖 ). Note that the simulations of the game with the quadratic subsidy policy suggest

more general properties than those established analytically in Section 5.

We note that both subsidy policies lower the social cost at equilibrium. However, the change

is more significant for the quadratic form of subsidy Δ𝑖 (p) = 𝑘𝑐𝑝
2

𝑖 . Intuitively, with the quadratic

form of subsidy, heavy users with large workloads get higher overall computing rates per unit of

payment, thus they benefit more from the subsidy policy. Since the social cost is dominated by the

costs of heavy users, subsidizing mainly the heavy users works better than subsidizing all users

equally.

It is also worth noting that the subsidy policies improve both the social cost and the price of

anarchy, except when 𝑘𝑐 is close to 0 with quadratic subsidy. Since we can only make the total

computing rate stay approximately the same when simulating the quadratic subsidy, the reason

for this exception could be that the total computing rate with quadratic subsidy is slightly smaller
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(a) Impact of the linear form of subsidy Δ𝑖 (p) =
𝑘𝑐𝑝𝑖 .
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Fig. 4. Impact of subsidy policies on the social cost and price of anarchy. The linear subsidy policy primarily
impacts the PoA, while the quadratic subsidy policy primarily impacts the social cost at equilibrium and at
optimum.

than in the base case. More specifically, we find that the linear subsidy lowers the social cost at

equilibrium by 9.2%, the social cost at optimum by 5.7%, and the price of anarchy by 4.8%; in

comparison, the quadratic subsidy lowers the social cost at equilibrium by 25.1%, the social cost at

optimum by 23.5%, and the price of anarchy by 2.0%. Considering the changes in the optimal social

cost and price of anarchy, we find that the linear subsidy is preferable for lowering the price of

anarchy, while the quadratic subsidy is preferable for lowering the optimal social cost.

Intuitively, under the linear subsidy policy, every user gets the same amount of subsidy per

unit of payment, while the quadratic subsidy case is akin to a “differential” subsidy, in the sense

that heavy users get more subsidy per unit of payment. In practice, the provider may prefer such

a differential subsidy policy, as our simulations show that it is better at lowering social cost at

equilibrium than a linear subsidy.

6.3 Simulations with heterogeneous shared factors
In this subsection, we run two series of numerical simulations for the case where each user 𝑖 has a

heterogeneous shared factor 𝑘𝑠𝑖 . The goal is to verify whether the assumption of a homogeneous

shared factor 𝑘𝑠 for all users, as used in our analysis, provides a satisfactory approximation of the

actual case.

In the first series of simulations, we assume that 𝑘𝑠𝑖 follows a normal distributionN(𝜇, 𝜉2), with
mean 𝜇 = 𝑘𝑠 . Since the shared factor must be non-negative (the buy-in resources owned by a user

can only benefit other users), we discard the sample of 𝑘𝑠𝑖 if 𝑘𝑠𝑖 < 0. In order to ensure that only a

small fraction of samples will be discarded, we set 𝜉 such that 𝜇 − 2𝜉 > 0.

The user workloads are generated from the same log-normal distribution introduced in Section 6.1.

For the base case, the other parameters are also the same as in Section 6.1: 𝑁 = 200, 𝑘𝑏 = 30,

𝑘𝑠 = 0.075, and 𝛼 = 1 for all users. We distinguish between two cases in terms of the shared factors:

the homogeneous case where 𝑘𝑠𝑖 = 𝑘𝑠 for all the users, and the heterogeneous case where 𝑘𝑠𝑖
generated from N(𝜇, 𝜉2). Note that, when 𝜉 = 0, every user has the same shared factor, hence

yielding the homogeneous case.

First, we compare the Nash equilibria and convergence properties of the homogeneous case

versus the heterogeneous case. We find that, in both cases, the game always converges to a unique
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Standard deviation (𝜉) 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Rounds 7.75 7.78 7.79 7.72 7.84 7.78 7.75 7.87 7.85 7.91

Table 2. Average number of rounds needed for convergence vs. standard deviation 𝜉 of the shared factors.
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(a) Influence of the standard deviation 𝜉 .
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(b) Influence of 𝜉 under different means 𝜇.

Fig. 5. The distribution of shared factors (𝑘𝑠𝑖 for user 𝑖) has little influence on the price of anarchy and social
cost. 𝜇 and 𝜉 are the mean and standard deviation of the shared factors, respectively.

Nash equilibrium, regardless of the initial state. Moreover, the game converges within a few rounds,

where a round consists of having each player update its strategy per its best response. In Table 2,

we show the relationship between the average number of rounds needed for convergence and

the standard deviation 𝜉 of the shared factors, by simulating the best-response dynamics from a

random initial state 1,000 times. We find that the convergence rounds are basically not affected by

the heterogeneity of the shared factors. We also find that the Nash equilibria for all 𝜉 are very close

to the one in the homogeneous case. For example, the average difference of the prices paid by a

player between the homogeneous case and the heterogeneous case for 𝜉 = 0.025 is only 0.1557,

which is very small, as the average payment at equilibrium is 21.0750.

Next, we investigate the influence of the distribution of the shared factors 𝑘𝑠𝑖 on the price of

anarchy and social cost of the game. The results are shown in Fig. 5. The user workloads are set

in a similar manner to Section 6.1. We generate five groups of workloads from the log-normal

distribution, which are used in five individual simulations with the same distribution parameters of

the shared factors, and we generate the shared factors from the Gaussian distribution.

We first fix the mean of the shared factors (𝜇 = 𝑘𝑠 = 0.075), and change the heterogeneity of

the shared factors by changing its standard deviation from 0 to 0.045. Fig. 5(a) shows that both

the price of anarchy and social cost stay at the same level, regardless of the heterogeneity of the

shared factors. Then, we try different values of the mean of the shared factors, from 0.0375 to 0.15.

The result in Fig. 5(b) shows that the price of anarchy increases with the mean, and the standard

deviation of the shared factors has little influence on the price of anarchy under different means.

Note that, when 𝜉 = 0, the result in Fig. 5(b) is in accordance with Fig. 1(c), where the price of

anarchy increases with the homogeneous shared factor 𝑘𝑠 .

Next, we conduct another series of simulations, where the shared factors exhibit even more

heterogeneity. We assume that the users are divided into two groups, namely frequent users and

occasional users. Frequent users tend to use their buy-in nodes very often, resulting in a low 𝑘𝑠 ;

occasional users, on the other hand, tend to have a high 𝑘𝑠 . We then randomly sample the shared

factors out of two normal distributionsN1 (𝜇1, 𝜉21) and N2 (𝜇2, 𝜉22), with 50% probability on each. In
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(a) Influence of the means 𝜇1 and 𝜇2 of shared
factors. The price of anarchy increases with 𝜇1+𝜇2.
When 𝜇1 + 𝜇2 is fixed, |𝜇1 − 𝜇2 | has little influence
on the price of anarchy.

(b) Influence of the standard deviations 𝜉1 and 𝜉2
of shared factors. 𝜉1 and 𝜉2 have little influence
on the price of anarchy.

Fig. 6. Increasing the heterogeneity of shared factors has little influence on the price of anarchy. Two normal
distributions N1 (𝜇1, 𝜉2

1
) and N2 (𝜇2, 𝜉2

2
) are used to simulate shared factors of the occasional and frequent

user groups, respectively. The heterogeneity becomes higher when 𝜉1, 𝜉2, or |𝜇1 − 𝜇2 | increases.

other words, half of the users follow N1 (𝜇1, 𝜉21) and the other half follows N2 (𝜇2, 𝜉22). Moreover,

their means satisfy (𝜇1 + 𝜇2)/2 = 𝑘𝑠 . Again, we discard the negative samples of shared factors, and

ascertain that sure 𝜇1 − 2𝜉1 > 0 and 𝜇2 − 2𝜉2 > 0.

We find that even as the heterogeneity increases (i.e., 𝜉1 or 𝜉2 increases, or 𝜇1 becomes further

away from 𝜇2), the game still converges within a few rounds, and yields Nash equilibria similar

to the homogeneous case. Moreover, the social cost and the price of anarchy stay roughly at the

same level as the heterogeneity changes. Fig. 6 illustrates how the price of anarchy is influenced by

the heterogeneity of the shared factors. In Fig. 6(a), we fix 𝜉1 = 0.06 and 𝜉2 = 0.02, and change 𝜇1
and 𝜇2. We find that the price of anarchy increases with 𝜇1 + 𝜇2 in general, which coincides with

the results in Fig. 1(c). We also note that, when 𝜇1 + 𝜇2 is fixed, the price of anarchy experiences

little change as 𝜇1 and 𝜇2 become closer to or further away from each other, which corresponds to

a lower or higher heterogeneity, respectively. In Fig. 6(b), we fix 𝜇1 = 0.15 and 𝜇2 = 0.05, such that

𝑘𝑠 = (𝜇1 + 𝜇2)/2 = 0.075, which is the same as the base case. Fig. 6(b) shows that changing either 𝜉1
or 𝜉2 has little influence on the price of anarchy. We also run simulations with different 𝜃 and 𝑘𝑏 ,

and still find that the heterogeneity of shared factors has little influence on the price of anarchy.

Based on the simulation results, we conclude that assuming that all users have a homogeneous

shared factor 𝑘𝑠 is a reasonable approximation of the actual heterogeneous case. In particular, the

variance of the shared factors has little influence on the Nash equilibrium, social cost, and price

of anarchy. Intuitively, even if the variance of the shared factors is large, the aggregative term∑
𝑖∈𝑆 𝑘𝑠𝑖𝑝𝑖 stays roughly the same (assuming the mean of the shared factors is the same). As a result,

the computing rate and cost function experienced by each user do not change much, and users will

make similar decisions even though the variance of the shared factors changes.

7 CONCLUSION
This paper investigates the social cost and price of anarchy in shared/buy-in computing games.

We consider a system with an arbitrary number of users and general heterogeneously distributed
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workloads, and establish methods for efficiently computing the optimal social cost and the (closed-

form) social cost at equilibrium. For the special case where all users are buy-in users, we also derive

closed-form expressions for the optimal social cost and the price of anarchy. The closed-form price

of anarchy in this case can be arbitrarily large as the number of users 𝑁 grows. We further show

that the price of anarchy can be arbitrarily large as the operating expense ratio 𝜃 tends to 0, which

indicates high inefficiency of the Nash equilibrium in that case. However, under practical settings

of system parameters, the price of anarchy tends to lie within a certain range and is much smaller

than the theoretical worst-case. In order to lower the social cost at equilibrium, we propose and

analyze two subsidy policies. Numerical simulations show how the social cost and the price of

anarchy are influenced by different factors, and demonstrate the significant effectiveness of the

proposed subsidy policies.

Our results shed light on what factors contribute to the inefficiency of shared/buy-in computing

systems, and provide insights into how to improve the social cost at the equilibrium. Thus, since

the price of anarchy decreases as the user workload distribution gets more heterogeneous, the

system should aim to diversify its users, for instance, adjusting the pricing of resources to attract

more light users. Since the price of anarchy increases significantly as the operating expense ratio 𝜃

gets smaller, the provider needs to be judicious on how much revenue it makes from the payment

of users, so as to keep the social cost low and maintain the attractiveness of the system. The shared

factor 𝑘𝑠 also plays an important role in the system. Although increasing 𝑘𝑠 can result in a larger

price of anarchy, sharing idle buy-in resources benefits the system as a whole by enhancing the

utilization of system resources and attracting light users.

As one of the initial works to investigate the social cost and price of anarchy in shared/buy-in

computing systems, this study can be further extended in many aspects. For instance, one may

want to consider other functions for the operational cost, which not be directly proportional to

user payments. The cost model of users can also take other forms, for example, the workload must

be completed before a specific deadline, otherwise the cost increases sharply. Likewise, further

investigating the design and analysis of subsidy policies, including determining when the Nash

equilibrium is unique in the case of quadratic subsidy, represents an interesting area for further

work.
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A SUPPLEMENTARY DISCUSSION OF THE SYSTEM MODEL
Constraints on setting buy-in and shared factors
Here, we consider the constraint faced by the provider when it adjusts the system parameters

𝑘𝑏 and 𝑘𝑠 . Given the total payment

∑
𝑖∈𝑆 𝑝𝑖 from all players, there exists a maximum amount of

resources that can be provided by the system. As a result, there also exists an upper-bound Ψ on

the total computing rate of all players.

Ψ ≥
∑
𝑖∈𝑆

(𝑘𝑏𝑝𝑖 + 𝑘𝑠
∑
𝑗≠𝑖

𝑝 𝑗 )

=
∑
𝑖∈𝑆

(𝑘𝑏 + (𝑁 − 1)𝑘𝑠 )𝑝𝑖 .

Assuming that the maximum computing rate is proportional to the total payment, we define

𝜅 ≜ Ψ/∑𝑖∈𝑆 𝑝𝑖 , where 𝜅 represents the maximum computing rate that can be provided per unit of

payment. Replace Ψ with 𝜅
∑

𝑖∈𝑆 𝑝𝑖 , we get

𝜅
∑
𝑖∈𝑆

𝑝𝑖 ≥
∑
𝑖∈𝑆

(𝑘𝑏 + (𝑁 − 1)𝑘𝑠 )𝑝𝑖 ,

which can be simplified as

𝑘𝑏 + (𝑁 − 1)𝑘𝑠 ≤ 𝜅.

Intuitively, this constraint implies that the provider cannot provide more than the maximum

possible resources given the total payment.

When we consider the game with subsidy policies, the total computing rate of all players includes

the subsidy term. Similarly, the total computing rate of all players must not be larger than the

maximum computing rate that can be provided by the system, that is:

𝜅
∑
𝑖∈𝑆

𝑝𝑖 ≥
∑
𝑖∈𝑆

[(𝑘𝑏 + (𝑁 − 1)𝑘𝑠 )𝑝𝑖 + Δ𝑖 (p)] .
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