
Subregular Tree Transductions, Movement, Copies, Traces,
and the Ban on Improper Movement

Thomas Graf

Stony Brook University

Department of Linguistics

100 Nicolls Road, Stony Brook, NY 11794, USA

mail@thomasgraf.net

Abstract

Extending prior work in Graf (2018, 2020,

2022c), I show that movement is tier-based

strictly local (TSL) even if one analyzes it as

a transformation, i.e. a tree transduction from

derivation trees to output trees. I define input

strictly local (ISL) tree-to-tree transductions

with (lexical) TSL tests as a tier-based exten-

sion of ISL tree-to-tree transductions. TSL

tests allow us to attach each mover to all its

landing sites. In general, this class of transduc-

tions fails to attach each mover to its final land-

ing site to the exclusion of all its intermediate

landing sites, which is crucial for producing

output trees with the correct string yield. The

problem is avoided, though, if syntax enforces

a variant of the Ban on Improper Movement.

Subregular complexity thus provides a novel

motivation for core restrictions on movement

while also shedding new light on the choice

between copies and traces in syntax.

1 Introduction

Subregular syntax (Graf, 2018; Graf and De Santo,

2019) is a recent research program that explores

whether syntactic dependencies, when modeled

over suitable representations, fall within very re-

stricted classes in the subregular hierarchy of for-

mal (string or tree) languages. The program has

many parallels to subregular phonology (see Heinz

2018 and references therein), which has shown

that phonology is very restricted in its expressivity:

I) well-formedness conditions in phonology are

strictly local (SL), tier-based strictly local (TSL)

(Heinz et al., 2011; McMullin, 2016), or some natu-

ral extension of TSL (Graf and Mayer, 2018; Mayer

and Major, 2018; De Santo and Graf, 2019), and

II) a large number of phonological mappings from

underlying representations to surface forms are in-

put strictly local (ISL) (Chandlee, 2014; Chandlee

and Heinz, 2018), with only some falling into more

complex classes (Jardine, 2016; Heinz, 2018). The

limited nature of phonology furnishes new learning

algorithms and novel explanations of typological

gaps, and subregular syntax seeks to replicate this

success for syntax.

A lot of attention in subregular syntax has been

devoted to the operations Merge and Move in Min-

imalist syntax and Minimalist grammars (Stabler,

1997, 2011). Merge establishes head-argument re-

lations, whereas Move relates a subtree to multi-

ple positions in the structure. Graf (2018) showed

that the constraints that regulate the application of

Merge and Move in the syntactic derivation are SL

for Merge and TSL for Move, which mirrors the

central role of these two classes in phonology. But

Merge and Move are structure-building operations

and thus inherently transductive: a syntactic deriva-

tion is translated into a specific output structure.

Recently, the ISL string transductions from sub-

regular phonology have been generalized to trees

(Graf, 2020; Ji and Heinz, 2020; Ikawa et al., 2020),

and it is fairly easy to see that Merge can be con-

strued as an ISL tree transduction.1 However, ISL

tree transductions cannot handle the long-distance

dependencies induced by Move (the long-distance

nature of Move is also why the constraints on Move

are TSL but not SL). An upper complexity bound

on Move exists in the form of deterministic multi

bottom-up tree transductions (Kobele et al., 2007),

but a tighter, subregular bound remains to be estab-

lished.

This paper provides a subregular class of trans-

ductions for Move by enriching (deterministic) ISL

tree-to-tree transductions with a specific TSL mech-

1The three generalizations in Graf (2020), Ji and Heinz
(2020) and Ikawa et al. (2020) are all distinct and probably
incomparable. Graf (2020) generalizes the context-based def-
inition of ISL in Chandlee and Heinz (2018), Ji and Heinz
(2020) takes as their vantage point the finite-state machine
definition of ISL in Chandlee (2014), and Ikawa et al. (2020)
starts with the logic-based perspective of ISL string trans-
ductions. Despite these differences, all three can handle the
mapping from dependency trees to phrase structure trees mod-
ulo movement. For the rest of the paper, I will use the term
ISL tree transductions to refer to the specific version defined
in Graf (2020).

289

Proceedings of the Society for Computation in Linguistics (SCiL) 2023, pages 289-299.

Amherst, Massachusetts, June 15-17, 2023



anism that makes it possible to attach movers to

their landing sites. This is sufficient to implement

a copy-based version of movement, which is com-

monly assumed in Minimalist syntax. Producing

a structure with the correct string yield, however,

requires the ability to distinguish final landing sites

from intermediate ones so that movers can be at-

tached only to the former while the latter are filled

with traces. The extended version of ISL tree trans-

ductions in this paper cannot draw this distinction

in the general case, but it is possible in the special

case where the distinction is lexically inferrable

(in subregular terms, it is SL-1): given a mover m

with a set S := {f1, . . . , fn} of features that tell

us which movement steps m undergoes, inspection

of S is sufficient to determine which fi is the final

movement step. This is a relaxed variant of the Ban

on Improper Movement (BoIM), and I conjecture

that this output-oriented BoIM is satisfied in all

natural languages.

The paper proceeds as follows. The background

section in §2 starts with a general overview of the

assumed syntactic formalism, in particular feature-

annotated lexical items, dependency trees, and tree

tiers (§2.1). This is followed in §2.2 by a discussion

of the ISL tree-to-tree mappings in Graf (2020),

which are then extended with lexical TSL tests in

§3 to capture basic cases of movement. As we

will see in §4, this is sufficient to attach movers

to all their landing sites. But correct linearization

requires placing each mover only in its final land-

ing site, which is a harder problem and prompts

my conjecture that all languages satisfy the output-

oriented BoIM. A few remaining issues with this

overall system are discussed in §5. While care

has been taken to make the paper as approachable

as possible, it necessarily presupposes a certain

amount of familiarity with subregular linguistics,

in particular subregular syntax. The reader may

want to consult Graf (2022a,b) for a less technical

introduction.

2 Background

2.1 Features, dependency trees, and tiers

Subregular syntax measures the complexity of syn-

tax not over strings but over specific types of tree

representations. Following Graf and Kostyszyn

(2021) and Graf (2022c), I take syntactic deriva-

tions to be encoded in the form of dependency trees

where each node is a feature-annotated lexical item

(LI) in the spirit of Minimalist grammars (Stabler,

1997, 2011).

Definition 1 (Lexical item). Every lexical item is

a member of Σ × Sel∗ × Lcr∗ × Cat × ℘(Lce),
where Σ is the set of phonetic exponents, Sel is the

set of selector features F+, Lcr is the set of licensor

features f+, Cat is the set of category features F−,

and Lce is the set of licensee features f−. y

Category and selector features (by convention in

upper case) regulate the application of Merge to

establish head-argument relations. Licensor and

licensee features (in lower case) trigger Move, with

licensor features appearing on the target of move-

ment while licensee features mark the phrase that

is moving. The order of features on an LI indicates

the order of the operations in which it participates.

In contrast to standard MGs, licensee features are

unordered so that a mover with licensee features

f−1 , . . . , f
−

n targets, for each f−i , the closest prop-

erly dominating node with f+i (1 ≤ i ≤ n). The re-

moval of order for licensee features does not affect

weak generative capacity — this is an easy corol-

lary of the single movement normal form theorem

for MGs (Graf et al., 2016).2 To reduce clutter,

we omit {} for LIs with no licensee features. In

line with MG convention, I use a double colon to

separate the LI’s phonetic exponent from its feature

annotation.

Example. The noun movie corresponds to the LI

movie :: N− with phonetic exponent movie and cat-

egory feature N−. The empty T-head — commonly

assumed in Minimalist syntax as furnishing the sur-

face position for subjects — is ε :: V+nom+T−.

This means that after selecting a VP, the empty T-

head provides a landing site for subject movement

via nom+, at which point it becomes a full TP that

can be taken as an argument by another LI. The LI
′s :: N+D+D− {nom−, wh−} is a possessive marker

that takes an NP as its complement, a DP as its

specifier, is then selected by another LI with D+,

and finally undergoes two movement steps: subject

movement via nom−, and wh-movement via wh−.

The order of the two movement steps is not fixed

and depends on whether the closest properly domi-

nating LI with a matching licensor feature carries

nom+ or wh+.

Definition 2 (Dependency tree). Let Lex be a fi-

2The definition of LIs above also differs from that of stan-
dard MGs in that it does not allow any licensor features to
appear before any selector features. This is just a matter of
convenience and nothing in this paper hinges on this additional
restriction.

290



nite set of LIs, and Lex(i) ⊆ Lex the set of all LIs

in Lex with i selector features. The set D of (freely

combined) dependency trees over Lex is defined

recursively: l ∈ D for all l ∈ Lex(0), and for all

d1, . . . , dn ∈ D and l ∈ Lex(n), l(dn, . . . , d1) ∈ D.

If m is the mother of node n and n has exactly i

right siblings, we say that n is the (i+ 1)-th argu-

ment of m. y

Example. A dependency tree for a simple VP is

shown below with its corresponding bare phrase

structure tree. Each mother-daughter relation in the

dependency tree encodes a head-argument relation

established via application of Merge.

laughed :: P+D+V−

the :: N+D−

clown :: N−

at :: D+P−

me :: D−

VP

DP

the clown

V′

laughed PP

at me

In general, dependency trees have to satisfy ad-

ditional linguistic conditions. The root must carry

category feature C−, and if m’s i-th selector feature

is F+, then its i-th argument must carry category

feature F−. These constraints regulate the appli-

cation of Merge and are of little interest for the

purposes of this paper. The constrains on Move,

on the other hand, merit detailed discussion as they

illustrate the use of tree tiers.

Definition 3 (Tiers). Let d ∈ D be a dependency

tree over Lex, and let T ⊆ Lex be a tier alpha-

bet. Given a node x, the predicate T (x) is true

iff x is an LI in T . The T -tier of d is defined in

terms of T -dominance (/+T ), T -mother-of (/T ), and

T -left-sibling (≺T ), which in turn are expressed

in terms of proper dominance in d (/+), reflexive

dominance in d (/∗), and the left sibling relation in

d (≺).

x /+T y ⇔T (x) ∧ T (y) ∧ x /+ y

x /T y ⇔x /+T y ∧ ¬∃z[x /+T z ∧ z /+T y]

x ≺T y ⇔∃z[z /T x ∧ z /T y]∧

∃z, z′[z /∗ x ∧ z′ /∗ y ∧ z ≺ z′]

In order to ensure that every tier is a tree, we stip-

ulate that there is a unique node o such that ev-

ery node on tier T is either identical to o or is

T -dominated by o. We also stipulate that each leaf

is the mother of a distinguished element n. y

Example. The tier alphabet nom of the nom-tier

contains all LIs with nom− or nom+, and nothing

else. Similarly, the tier alphabet wh of the wh-tier

contains all and only those LIs that carry wh− or

wh+. The corresponding tier mother-of relations

/nom and /wh are shown in Fig. 1 with dashed and

dotted lines, respectively, for the dependency tree

for Who said that the clown laughed at me. As

shown in the same figure, these tiers can also be

depicted as separate projections of the dependency

tree.

Intuitively, tiers capture a specific kind of rela-

tivized locality (related to but distinct from Rizzi’s

(1990) notion of Relativized Minimality). If x is

the T -mother of y, then x is the closest node that

properly dominates y and belongs to a fixed subset

T of Lex. For movement, each tier factors out all

LIs that are not pertinent to that type of movement.

In order for a dependency tree to be well-formed,

the following two conditions must hold for every

f-tier, where f is some movement type (nom, wh,

and so on): I) if x carries f−, then its tier mother

carries f+, and II) if x carries f+, exactly one of

its tier daughters carries f−.

Mathematically, these conditions are expressed

for each tier T via a licensing function fT that maps

every l ∈ T to a string language over T . Tier T is

well-formed iff it holds for every node n of T with

label l and tier daughters d1, . . . , dn that d1 · · · dn
is a string in fT (l).

3 For example, if l is an LI with

f+, then fT (l) is the set of all strings over T that

contain exactly one LI with f−. That every LI with

f− has a tier mother with f+ follows indirectly

from the fact that only LIs with f+ may have LIs

with f− in their daughter string.

The complexity of the conditions on Move is

measured in terms of the complexity of the string

languages used in the licensing functions. A con-

straint C on a set D of dependency trees over Lex
is in the class TSL[TSL] (where TSL is short for

tier-based strictly local) iff there is some T ⊆ Lex
such that I) fT maps every l ∈ T to a TSL-string

language in the sense of Heinz et al. 2011 (“the

daughter strings are TSL”), and II) for every d ∈ D,

C is satisfied in d iff the T -tier of d is well-formed

(“C is local over tree tiers”). The two constraints

above on movement are TSL[TSL] in this sense

(see Graf and Kostyszyn, 2021).

3The use of a string-based licensing function is necessary
because tree tiers are unranked. There is no upper bound
on how many daughters may have, and hence the licensing
relations between a mother and its daughters has to be modeled
as a licensing relation between a mother and its string of
daughters.

291



ε :: T+wh+C−

ε :: V+nom+T−

said :: C+D+V−

who :: D− {nom−, wh−} that :: T+C−

ε :: V+nom+T−

laughed :: P+D+V−

the :: N+D− {nom−}

clown :: N−

at :: D+P−

me :: D−

nom-tier

o

ε :: V+nom+T−

who :: D− {nom−, wh−}

n

ε :: V+nom+T−

the :: N+D− {nom−}

n

wh-tier

o

ε :: T+wh+C−

who :: D− {nom−, wh−}

n

Figure 1: Left: dependency tree for who said that the clown laughed at me, with dashed lines representing /nom
and dotted lines representing /wh; Middle and Right: corresponding depictions as tree tiers

2.2 ISL tree-to-tree mappings

With our syntactic representations and the notion

of tree tiers firmly in place, it only remains for

us to define deterministic input strictly local (ISL)

tree-to-tree transductions before we start our inves-

tigation of movement as a subregular transduction

in §3.

Deterministic ISL transductions, also called ISL

mappings, were first defined in subregular phonol-

ogy for the string-to-string case (Chandlee, 2014,

2017; Chandlee and Heinz, 2018). The ISL string-

to-string mappings were subsequently generalized

to (non-deterministic) tree-to-tree transductions in

Graf (2020). An ISL tree transduction τ is specified

by a finite number of rewrite rules. The left-hand

side consists of a tree with one distinguished node

h that is to be rewritten — the rest of the tree just

provides the strictly local context in which this spe-

cific rule must be applied to h. The right-hand side

consists of a tree with indexed ports 21, 22, . . . ,

2n (n ≥ 0) such that each 2i is filled with the

output of τ for the i-th daughter of h. Figure 2

gives a simple example for mapping a dependency

tree without movement (and with at most two ar-

guments per LI) to its corresponding bare phrase

structure tree — the reader is advised to study this

example carefully before moving on to the formal

definition.

We first put in place some common concepts

from the tree transducer literature. A Σ-tree is a

finite tree over alphabet Σ. We assume that all

Σ-trees have a finitely bounded branching factor.

Given a Σ-tree t, each node n in t is given a unique

Gorn address a(n) (Gorn, 1967): a(n) = ε if n is

the root of t, and otherwise a(n) = ui, where u

is the Gorn address of the mother of n and i is the

number of left siblings of n. A Σ-tree context c is

the result of replacing n ≥ 1 leaves in a Σ-tree with

distinguished symbols drawn from a set of ports,

which are denoted with 2i, i ≥ 1. Given such a

context c and Σ-trees or Σ-tree contexts t1, . . . , tn,

c{1 : t1, . . . , n : tn} is the result of replacing 2i

in c with ti.

In order to determine the configurations in which

ISL rewrite rules may apply, we introduce the no-

tion of a tree disassembly.

Definition 4 (Tree dissassembly). A disassembly

of tree t at addresses b, ba1, . . . , ban is an (n+ 2)-
tuple that consists of I) t with the subtree s at b re-

placed with 21, II) s with the subtrees at addresses

ba1, . . . , ban replaced with 21, . . . , 2n, and III)

the subtrees at addresses ba1, . . . , ban. y

Example. Consider the tree t below, with each

node followed by its Gorn address in parentheses.

A(ε)

B(0)

C(00)

D(1)

E(10)

F(100)

G(11) H(12)

I(120) J(121)

K(2)

The disassembly of t at addresses 1, 10, and 120
consists of the following trees/contexts:

A

B

C

21 K

D

21 G H

22 J

E

F

I

Next we define what ISL rewrite rules may look

like and how a given rule may apply within a tree.

292



A) l :: F−δ ⇒ l B) l :: γF−δ ⇒ FP

l 21

C) l :: γF−δ ⇒ FP

21 F′

l 22

Input

laughed :: P+D+V−

the :: N+D−

clown :: N−

at :: D+P−

me :: D−

Individual Outputs

VP

21

DP

the 21

clown

V′

laughed 22

PP

at 21

me

Output

VP

DP

the clown

V′

laughed PP

at me

Figure 2: ISL rewrite rules for converting movement-free dependency trees to bare phrase structure trees (top)

with example (bottom); boxes around nodes indicate which nodes should be rewritten, γ is a non-empty string of

selector features, δ is a (possibly empty) set of licensee features, and matches any node

Definition 5 (ISL rewrite rule). An ISL rewrite

rule is a triple r := 〈i, a, o〉 where the input en-

vironment i is a Σ-tree, a is the Gorn address of

some node in i, and the output context o is a Σ-tree

context. Suppose w.l.og. that i has exactly n leaf

nodes at addresses a1, . . . , an (n ≥ 1) and let i′

be the result of replacing each node at address aj
with 2j (1 ≤ j ≤ n). Then r matches tree t at ad-

dress b iff t has a disassembly 〈u, i′, u1, . . . un〉 at

addresses b, ba1, . . . , ban such that both of the fol-

lowing hold: I) t = u{1 : i′{1 : u1, . . . , n : un}},

and II) for 1 ≤ j ≤ n, the node at address aj in i

has the same label as the node at address baj in t.

A node at address ba in t can be rewritten by r iff

r matches t at address b. y

Example. Consider a rewrite rule r := 〈i, a, o〉,
with a = 0 and i as shown below (together with its

counterpart i′):

laughed :: P+D+V−

the :: N+D− {nom−}

clown :: N−

at :: D+P−

laughed :: P+D+V−

the :: N+D− {nom−}

21

22

i)

i′)

Note that the ports of i′ have addresses a1 := 00
and a2 := 1. We show that i matches the depen-

dency tree t in Fig. 1 at address b = 00100. We

first disassemble t at addresses b, ba1 = 0010000,

and ba2 = 001001. This yields four trees/contexts

u, v, u1, u2. For space reason, we only show the

subtree of u rooted in that :: T+C−.

that :: T+C−

ε :: V+nom+T−

21

clown :: N−

laughed :: P+D+V−

the :: N+D− {nom−}

21

at :: D+P−

me :: D−

22

u) v)

u1) u2)

As v is identical to i′, it holds that t = u{1 : v{1 :
u1, . . . , n : un}} = u{1 : i′{1 : u1, . . . , n : un}}.

It is also the case that the nodes of i at addresses a1
and a2 have the same labels as the nodes in t at ad-

dresses ba1 = 0010000 and ba2 = 001001. Taken

together, this means that r matches t at address b.

Consequently, r can rewrite as o the node at address

ba = 001000 in t, which is the :: N+D−. Note

that if the root of i had a third daughter labeled,

say, maliciously, i would no longer match t at any

address.

Definition 6 (Deterministic ISL transduction).

Given a set R of ISL rewrite rules, we say that R

is deterministic iff there are no two rewrite rules

〈i1, a1, o1〉 and 〈i2, a2, o2〉 in R such that o1 6= o2
and there exists a Σ-tree t and node n of t such

that n can be rewritten by both rewrite rules.

For each deterministic set R of ISL rewrite rules,

293



R(t, n) denotes the unique output context o for

node n in tree t (if no such o exists, R(t, n) is un-

defined). We extend this to t in a recursive fashion:

if t contains only node n, then R(t) := R(t, n),
and if t := n(s1, . . . , sz) (each si a Σ-tree), then

R(t) := R(t,m){1 : R(t, d1), . . . , z : R(t, dz)}.

A tree-to-tree transduction τ with domain D is de-

terministic input strictly local iff there is a finite

deterministic set R of ISL rewrite rules such that

τ(t) = R(t) for all t ∈ D. In this case, we also

call τ an ISL (tree-to-tree) mapping. y

3 Movement as a subregular

transduction

Move cannot be captured with ISL tree-to-tree map-

pings. The problem is not with the determinism of

those mappings. In the formalism used in this pa-

per, Move is a deterministic operation in the sense

that the landing sites of a mover can be inferred de-

terministically from LIs’ feature annotations (and

as a result the definition of ISL mappings in this pa-

per can safely avoid many complexities in the def-

initions of non-deterministic ISL transductions in

Graf 2020). But while movement is deterministic,

it is also unbounded — a mover and its target site

can be arbitrarily far apart. Since ISL transductions

must be definable in terms of a finite set of rewrite

rules, and since each rewrite rule 〈i, a, o〉 is lim-

ited to the finite structural context given by i, ISL

transductions cannot handle such unbounded de-

pendencies. For example, we may want to rewrite

a node n that carries wh+ as a phrase whose spec-

ifier is filled by a wh-mover, but our rewrite rules

provide no means to refer to this mover unless it

happens to be very close to n. In order to capture

movement, ISL rewrite rules must be able to refer

to nodes that can be arbitrarily far away.

Tiers provide a natural solution to this problem.

We already saw in §2.1 that tiers play a key role in

movement — even though movement is unbounded

over dependency trees, it is local over tiers. All we

have to do is to incorporate this tier-based locality

into ISL transductions.

Suppose, then, that we enrich our rewrite rules

with another type of ports, called tier ports. If we

are to rewrite a node n that is part of some f-tier,

then its output context can include f-tier ports. The

left-hand side of rewrite rules now also specify

a specific test, and a tier port can only pick out

the node that passes this test (the node must be

unique!). The use of tier tests in the rewrite rules

is why I call this new class of transductions ISL

tree-to-tree mappings with TSL tests.

In this paper, the TSL tests are particularly sim-

ple as each one corresponds to a fixed set of LIs

that pass the test. Just like the licensing function of

TSL in §2.1 could define string languages of vari-

ous complexity levels all the way up to recursively

enumerable, the tests for tier ports can be of arbi-

trary complexity. But at least for movement, the

maximally restricted class of lexical tests (in sub-

regular parlance, SL-1 tests) is sufficient. Hence

this paper restricts itself to the even weaker sub-

class ISL tree-to-tree mappings with lexical TSL

tests.

Let us consider how this system captures simple

cases of movement. To this end, we add a new

rewrite rule to the set in Fig. 2.

D) l :: T+wh+C−

wh : wh−

⇒ CP

2
wh

1 C′

C 21

This rule targets C-heads that select a TP and pro-

vide a landing site for wh-movement. Every such

C-head is rewritten as a CP where the complement

is filled by the output of the first daughter in the de-

pendency tree, whereas the specifier is filled by the

output of the unique node x such that the C-head is

the wh-tier mother of x and x carries wh−. This is

sufficient to connect movers to their landing sites.

Rule D uses two new notational devices: dashed

lines for the tier mother-of relation, and tier ports.

The dashed line in D leads to a special node that

starts with the name of a tier (wh in this case), fol-

lowed by a colon, and the set of LIs on this tier

that can be picked out by the tier port 2wh

1 . Here

wh− is used as a shorthand for the set of all LIs that

carry wh−. The tier port 2wh

1 is to be filled with the

output of the unique node that is a wh-tier daughter

of the node to be rewritten and carries wh−.

In a more elaborate case where the C-head also

attracts some other kind of f-mover, the rule would

look as follows.

E) l :: T+wh+f+C−

f : f− wh : wh−

⇒ CP

2
f

1 CP

2
wh

1 C′

C 21

A fully worked out example is shown in Fig. 3 for

the sentence who said that, where the subject who

294



first undergoes subject movement to Spec,TP and

then wh-moves to Spec,CP.

Quite generally, adding lexical TSL tests to ISL

tree-to-tree mappings only requires three minor

tweaks. First, each rewrite rule is extended to also

include a finite (and possibly empty) collection of

TSL tests. Second, the notion of a rewrite rule

matching a tree at a given address b is expanded to

also require partial tier matches: if the rule speci-

fies that the node at address a is an f-tier mother

of an element that passes some test φ, then the

node at address ba in the dependency tree must be

part of the f-tier and must have exactly one node x

among its f-tier daughters such that x passes test

φ. Finally, the definition of R(t) is amended to in-

clude substitution into tier ports. The full definition

that incorporates all these changes is given in the

appendix.

Inspection of the example in Fig. 3 quickly re-

veals that the solution laid out above does not quite

work as expected for movement. It attaches every

mover to all its landing sites, and as a result the bare

phrase structure tree contains multiple instances of

who. In other words, the rewrite rules above im-

plement a copy-theory of movement, but they do

not capture the fact that moved phrases are only

pronounced in their final landing site. A solution

is readily available, though, provided one can tell

the final movement step of a mover just from its

feature make-up.

4 Linearization and the output-oriented

BoIM

Our previous solution for movement runs into prob-

lems because movement actually consists of two

steps: attaching the mover to all its landing sites,

and delinking it from all positions that are not its

final landing site.

Delinking itself is fairly simple from the perspec-

tive of ISL transductions. Consider the example

below for delinking the moving who in Fig. 3 from

its base position under said.

F) said :: D+D+V−

nom−

⇒ VP

t V′

said 21

Here nom− is a shorthand for any LI carrying nom−.

The rewrite rule thus replaces the left daughter with

a trace provided it undergoes subject movement.

Note that since we only care about well-formed

dependency trees where every licensee feature has

a matching licensor feature on some other node,

the fact that the left daughter carries nom− guar-

antees that it will undergo subject movement and

hence should not be linearized as an argument of

the verb. The feature make-up of the LI thus deter-

mines whether its base position should be replaced

with a trace.

Things are trickier, though, when we consider

intermediate landing sites such as Spec,TP for who.

Since licensee features are not ordered, we can-

not tell whether who :: D− {nom−, wh−} first un-

dergoes nom-movement or wh-movement. The as-

sumption that licensee features are unordered is

crucial for the tier-based perspective of movement,

it cannot be easily done away with. It seems, then,

that our delinking trick for base positions does

not carry over to intermediate landing sites like

Spec,TP. We cannot tell from the local context of

the T-head whether the subject mover with nom−

will move on to a higher position via wh-movement,

or if it has already done so and will thus stop in

Spec,TP. One may be tempted to try ideas like

merging the nom-tier and the wh-tier into a single

tier, but these do not work either because then a

mover and its landing site may no longer stand in

a mother-daughter configuration. While a math-

ematical proof is still outstanding, it seems that

there is no way in the current system to correctly

distinguish final from intermediate landing sites.

Linguists will point out, though, that Spec,TP

cannot be the final landing site for who due to

the Ban on Improper Movement (BoIM): once a

mover undergoes an instance of A′-movement like

wh-movement, it can no longer undergo any A-

movement steps such as subject movement. The

BoIM rules out sentences like the illicit who won-

ders [t John saw t], where who first wh-moves to

Spec,CP of the embedded clause before undergoing

subject movement into the matrix clause.

In light of the BoIM, it is readily apparent from

the feature make-up of who :: D− {nom−, wh−}
that it first undergoes nom-movement and then wh-

movement. Consequently, the purely feature condi-

tioned delinking strategy still works and one could

something like rule G below for rewriting the T-

head. Rule H for rewriting the C-head looks al-

most exactly the same except that we insert the

mover and not a trace. In both rules, {nom−, wh−}
matches every LI that carries at least those two

licensee features.

295



Input

ε :: T+wh+C−

ε :: V+nom+T−

said :: D+D+V−

who :: D− {nom−, wh−} that :: D−

Individual Outputs

CP

2
wh

1 C′

C 21

TP

2
nom

1 T′

T 21

VP

21

who

V′

said 22

that

Output

CP

who C′

C TP

who T′

T VP

who V′

said that

Figure 3: The dependency tree for who said that is rewritten into the corresponding bare phrase structure tree.

G) ε :: V+nom+T−

nom:{nom−, wh−}

⇒ TP

t T′

T 21

H) ε :: T+wh+C−

wh:{nom−, wh−}

⇒ CP

2
wh

1 C′

C 21

At least in the case of subject movement and wh-

movement, then, ISL tree-to-tree transductions

with TSL tests allow us not only to associate a

mover with all its landing sites, but also to produce

linearized output structures with the correct string

yield.

In order for this solution to extend to all of syn-

tax, however, a stronger property has to be in place.

Definition 7 (Output-oriented BoIM). For no LI

l with set
{

f−1 , . . . , f
−

n

}

of licensee features may

there be well-formed dependency trees t1 and t2
such that I) both t1 and t2 contain l, and II) l’s final

movement step is fi in t1 and fj in t2 (i 6= j). y

In other words, for every LI l one can always pre-

dict its final movement step based purely on inspec-

tion of the LI itself.

I conjecture that the output-oriented BoIM is a

universal property of movement across languages.

This is prompted by two observations. First, a

preliminary analysis of the MG corpus (Torr, 2017)

suggests that the output-oriented BoIM holds for

the trees in that treebank. In fact, the licensee

features used in that corpus seem to obey an even

stronger restriction: for every LI l that carries, say,

f− and g−, it is always the case that l undergoes

f-movement before g-movement. While corpora

represent just a finite slice of a possibly infinite

range of licit configurations, it is encouraging that

the conjecture clears this first hurdle with ease.

The second argument is more indirect: While the

syntactic literature has noted potential exceptions

to the BoIM, those do not directly carry over to

the system used here. Consider the case of hyper-

raising in Zulu (see Zyman 2023 and references

therein). Here a DP undergoes A-movement from

a position in the embedded clause to some posi-

tion in the matrix clause, yielding a configuration

similar to the illicit English sentence Mary seems

[that will go home]. Minimalists assume for in-

dependent reasons that Mary, rather than moving

directly from the embedded subject position to the

matrix subject position, has to stop in Spec,CP

of the embedded clause. As the latter is an in-

stance of A′-movement, hyperraising seems to in-

volve an A′-movement step to Spec,CP followed

by A-movement to the subject position of the ma-

trix clause. But this A′-movement step is driven

by theoretical considerations related to successive

cyclic movement, which is treated very differently

296



in MGs and subregular syntax. The phenomena that

are used to motivate successive cyclic movement,

e.g. wh-agreement in Irish, can be captured with-

out such movement in TSL syntax (Graf, 2022c).

Without successive cyclic movement, though, hy-

perraising is no longer a counterexample to the

standard BoIM, let alone the output-oriented BoIM

that is needed in this system of ISL transductions

with lexical TSL tests.

If the output-oriented BoIM turns out to be

empirically robust, then the limits of ISL tree-to-

tree transductions with TLS tests provide a novel

motivation for the otherwise mysterious BoIM

(which would then be a stronger implementation of

the output-oriented BoIM). Subregular complexity

might offer a computational third-factor explana-

tion (Chomsky, 2005) for one of the most robust

universals of syntax.

5 Remarks and open issues

The discussion so far has assumed that all move-

ment steps are overt. Minimalist syntax and MGs

both allow for covert movement steps, which do

not affect linearization. In such systems, the final

landing site of LI l with respect to linearization

may be distinct from the landing site of its final

movement step. This does not introduce any new

challenges, though, as long as the following con-

dition is met: for every set S :=
{

f−1 , . . . , f
−

n

}

of

licensee features and every type of output structure

(e.g. phrase structure tree, LF), one can tell directly

from S whether fi-movement (1 ≤ i ≤ n) creates

a copy or a trace at the landing site.

Another issue arises with successive cyclic

movement. A common approach in MGs posits that

successive cyclic movement is not feature-triggered

but rather a result of the output mapping inserting

traces and/or copies at specific positions along a

movement path. ISL mappings with lexical TSL

tests struggle with this because a node that is not

on tier T cannot use T to test whether it is along a

movement path. At the same time, putting, say, all

C-heads on a tier T together with all wh-movers

does not help either as the T -daughter of some C-

head may then just be another C-head rather than

the desired wh-mover. Instead of a transduction-

based model of successive cyclic movement, one

based on tier constraints may be more promising

(cf. Graf, 2022c).

Finally, the complexity of copies vs. traces mer-

its further exploration. Kracht (2001) observes that

one can freely translate between copies and traces,

but we saw that copy-based movement is simpler

than trace-based movement because the latter re-

quires additional restrictions on movement. Simi-

larly, transductions with copying are more complex

than linear transductions, yet the latter are suffi-

cient for trace-based movement. This suggests that

the subregular notions of complexity crosscut tradi-

tional ones in unexpected ways that may sometimes

favor more complex machinery in one area in order

to reduce complexity in another. These connections

could only be hinted at in this paper but are ripe

for future exploration from a mathematical perspec-

tive, e.g. in terms of DAG transductions (Drewes,

2017) as dependency trees with tier relations are

essentially DAGs with labeled edges.

Conclusion

I have introduced (deterministic) ISL tree-to-tree

transductions with TSL tests as a new class of sub-

regular transductions that expands the ISL tree-

to-tree transductions of Graf (2020) with the tier-

based view of movement in Graf (2018, 2022c)

in order to provide a subregular model of move-

ment as a mapping from syntactic derivations (rep-

resented via dependency trees) to output structures.

This class of transductions is still conceptually sim-

ple while offering enough expressivity to easily

relate each mover to all its landing sites. The trans-

ductions in this class are too weak to distinguish fi-

nal from intermediate landing sites, which is essen-

tial for obtaining the correct string yield from a syn-

tactic derivation. However, it seems that a variant

of the Ban on Improper Movement restricts syntax

in just the right way to draw the necessary distinc-

tion between final and intermediate landing sites

based purely on the feature make-up of the mover.

It remains to be seen whether the output-oriented

BoIM proposed here is indeed empirically viable,

but the possibility is tantalizing as it promises a

computational grounding for one of the best-known

and most robust syntactic constraints.

Acknowledgments

This paper is dedicated to Christopher Graf, who

entered this world a bit ahead of schedule, on the

day of the submission deadline. I thank the review-

ers for pushing this paper in a linguistically more

comprehensive direction. The work reported in

this paper was supported by the National Science

Foundation under Grant No. BCS-1845344.

297



References

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, 27:599–641.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. Linguistic Inquiry, 49:23–
60.

Noam Chomsky. 2005. Three factors in language de-
sign. Linguistic Inquiry, 36(1):1–22.

Aniello De Santo and Thomas Graf. 2019. Struc-
ture sensitive tier projection: Applications and for-
mal properties. In Formal Grammar, pages 35–50,
Berlin, Heidelberg. Springer.

Frank Drewes. 2017. On DAG languages and DAG
transducers. Bulletin of the European Association
for Theoretical Computer Science, 121.

Saul Gorn. 1967. Explicit definitions and linguis-
tic dominoes. In Systems and Computer Science,
Proceedings of the Conference held at University
of Western Ontario, 1965, Toronto. University of
Toronto Press.

Thomas Graf. 2018. Why movement comes for free
once you have adjunction. In Proceedings of CLS
53, pages 117–136.

Thomas Graf. 2020. Curbing feature coding: Strictly
local feature assignment. In Proceedings of the So-
ciety for Computation in Linguistics (SCiL) 2020,
pages 362–371.

Thomas Graf. 2022a. Diving deeper into subregular
syntax. Theoretical Linguistics, 48:245–278.

Thomas Graf. 2022b. Subregular linguistics: Bridging
theoretical linguistics and formal grammar. Theoret-
ical Linguistics, 48:145–184.

Thomas Graf. 2022c. Typological implications of tier-
based strictly local movement. In Proceedings of the
Society for Computation in Linguistics (SCiL) 2022,
pages 184–193.

Thomas Graf, Alëna Aksënova, and Aniello De Santo.
2016. A single movement normal form for Minimal-
ist grammars. In Formal Grammar: 20th and 21st
International Conferences, FG 2015, Barcelona,
Spain, August 2015, Revised Selected Papers. FG
2016, Bozen, Italy, August 2016, pages 200–215,
Berlin, Heidelberg. Springer.

Thomas Graf and Aniello De Santo. 2019. Sensing tree
automata as a model of syntactic dependencies. In
Proceedings of the 16th Meeting on the Mathematics
of Language, pages 12–26, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Thomas Graf and Kalina Kostyszyn. 2021. Multiple
wh-movement is not special: The subregular com-
plexity of persistent features in Minimalist gram-
mars. In Proceedings of the Society for Computation
in Linguistics (SCiL) 2021, pages 275–285.

Thomas Graf and Connor Mayer. 2018. Sanskrit n-
retroflexion is input-output tier-based strictly local.
In Proceedings of SIGMORPHON 2018, pages 151–
160.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frank Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195.
Mouton De Gruyter.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

Shiori Ikawa, Akane Ohtaka, and Adam Jardine. 2020.
Quantifier-free tree transductions. In Proceedings of
the Society for Computation in Linguistics (SCiL),
volume 3, pages 455–458.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33:247–283.

Jing Ji and Jeffrey Heinz. 2020. Input strictly local tree
transducers. In Language and Automata Theory and
Applications: 14th International Conference, LATA
2020, Milan, Italy, volume 12038 of LNCS, pages
369–381.

Gregory M. Kobele, Christian Retoré, and Sylvain Sal-
vati. 2007. An automata-theoretic approach to Min-
imalism. In Model Theoretic Syntax at 10, pages
71–80.

Marcus Kracht. 2001. Syntax in chains. Linguistics
and Philosophy, 24:467–529.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from Uyghur backness
harmony. In Proceedings of Formal Grammar 2018,
pages 62–83, Berlin. Springer.

Kevin McMullin. 2016. Tier-Based Locality in Long-
Distance Phonotactics: Learnability and Typology.
Ph.D. thesis, University of British Columbia.

Luigi Rizzi. 1990. Relativized Minimality. MIT Press,
Cambridge, MA.

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68–95. Springer, Berlin.

Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617–643.
Oxford University Press, Oxford.

298



John Torr. 2017. Autobank: a semi-automatic anno-
tation tool for developing deep Minimalist gram-
mar treebanks. In Proceedings of the Demonstra-
tions at the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 81–86.

Erik Zyman. 2023. Raising out of finite clauses (hyper-
raising). Annual Review of Linguistics, 9:29–48.

Definition of ISL mappings with lexical

TSL tests

We now allow tree contexts to also contain tier

ports, which are ports that are indexed with the

name of a tier, e.g. 2T
i . We also amend our tree

substitution notation to allow for the use of tier

ports: c {T i : t} is the result of replacing tier port

2
T
i in context c with t. The indices of tree ports

will be interpreted slightly differently from stan-

dard ports. Whereas 2i refers to the (output of the)

i-th daughter of the node being rewritten, 2T
i will

refer to the (output of the) node picked out by the

i-th TSL test over tier T .

A lexical TSL test over tier T is a formula of

the form φT (n, x) := n /T x ∧ x ∈ U , where

U is some subset of T . To avoid various com-

plications related to non-determinism, we only

consider the special case where φT (n, x) is de-

terministic over some set L of trees. That is to

say, for every t ∈ L and node n of t, there is at

most one x such that φT (n, x) is true. We also

call φT (n, x) L-deterministic. Slightly abusing

notation, we let φT (t, n) denote the unique node

x (if it exists) such that φT (n, x) holds in t. Fi-

nally, we define Φ as a finite family of lexical

TSL tests φT1,1, . . . , φT1,z1 , . . . , φTk,1, . . . , φTk,zk

indexed by pairs of tier names and positive natural

numbers.

An ISL rewrite rule with lexical TSL tests over

tiers T1, . . . , Tk is a pair 〈r,Φ〉 such that r :=
〈i, a, o〉 is an ISL rewrite rule (where o may contain

tier ports). We say that 〈r,Φ〉 is L-deterministic iff

every φT,i ∈ Φ is L-deterministic. Given such an

L-deterministic rule ρ := 〈r,Φ〉 and tree t ∈ L, ρ

matches t at node n with address b iff I) r matches

t at address b, and II) for every φT,i ∈ Φ, φT,i(t, n)
exists. As with ISL rewrite rules, a node at address

ba in t can be rewritten by ρ := 〈〈i, a, o〉 ,Φ〉 iff ρ

matches t at address b.

A set R of ISL rewrite rules with TSL tests

over tiers T1, . . . , Tk is L-deterministic iff

{r | 〈r,Φ〉 ∈ R} is a deterministic set of ISL

rewrite rules and every r ∈ R is L-deterministic.

Note that this excludes any set R containing at least

two rules that only differ in their TSL tests.

Given such an L-deterministic set R, R(t, n)
denotes the unique output context o for node n

in tree t ∈ L. We extend this to t in a recursive

fashion: If t contains only node n, then R(t) :=
R(t, n). If t := m(d1, . . . , dz), then R(t) is

R(t,m){1 : R(t, d1), . . . , z : R(t, dz),

T11 : R(t, φT1,1(t,m)), . . . ,

T1z1 : R(t, φT1,z1(t,m)), . . . ,

Tk1 : R(t, φTk,1(t,m)), . . . ,

Tkzk : R(t, φTk,zk(t,m))}

A tree-to-tree transduction τ with domain D is

deterministic input strictly local with lexical TSL

tests iff there is a finite set R of ISL rewrite rules

with TSL tests such that R is deterministic over

D and τ(t) = R(t) for all t ∈ D. In this case,

we also call τ an ISL (tree-to-tree) mapping with

lexical TSL tests.

299


