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Abstract

We fuse two recent strands of work in subreg-

ular linguistics—probabilistic tier projections

(Mayer, 2021) and tier-based perspectives on

movement (Graf, 2022a)—into a probabilistic

model of syntax that makes it easy to add gra-

dience to traditional, categorical analyses from

the syntactic literature. As a case study, we test

this model on experimental data from Sprouse

et al. (2016) for a number of island effects in

English. We show that the model correctly

replicates the superadditive effects and gradi-

ence that have been observed in the psycholin-

guistic literature.

1 Introduction

Gradience has been a long-standing issue in theoret-

ical syntax and its interface with psycholinguistics.

Is gradience a performance phenomenon or part

of syntax proper? And if the latter, how could

current syntactic formalisms handle gradience con-

sidering they were designed around the categori-

cal distinction between well-formed and ill-formed

structures? In this paper, we approach the issue

of gradience from the perspective of subregular

linguistics, a program equally rooted in theoretical

linguistics and formal language theory. Subregular

linguistics seeks to identify very restricted classes

of computational (string or tree) mechanisms that

can capture a wide range of linguistic phenomena.

The insights from this perspective can be leveraged

in a variety of ways, e.g. for new learning algo-

rithms, novel explanations of typological gaps or

linguistic universals, or to identify abstract proper-

ties that hold of both phonology and syntax.

We combine recent subregular work by Graf

(2018, 2022b,a) on syntactic movement as a tier-

based strictly local (TSL) dependency over trees

with the framework in Mayer (2021) for proba-

bilistic TSL dependencies over strings. Intuitively,

a dependency is TSL iff it can be analyzed in

two steps: first, one projects a tier that contains

only some parts of the original structure, and sec-

ond, this tier must satisfy a finite number of well-

formedness constraints on adjacent structural ele-

ments. Mayer’s framework allows for gradience

in the string case of TSL by making this tier pro-

jection probabilistic while keeping the constraints

categorical. We extend this notion of probabilistic

tier projection to the the kind of TSL over trees that

is used by Graf to capture syntactic movement.

The resulting framework of probabilistic TSL

dependencies over trees can account for key aspects

of the gradient judgments commonly observed with

island effects, where a phrase is illicitly moved

out of a containing phrase that does not allow for

extraction. An example of such an island violation

is shown below.

(1) a. Who does Mary say that John likes?

(no island)

b. ?? Who does Mary wonder whether

John likes? (whether island)

Concretely, we test the ability of a probabilistic

TSL model to handle a subset of the experimental

island data in Sprouse et al. (2016).1 The gradi-

ence observed in this experimental island data is ar-

guably the result of many interacting factors, which

may also include performance, semantics, and prag-

matics (see Chaves (2022) for a recent survey). We

conclude that if one wants to capture the syntactic

aspects of said gradience directly in the grammar,

it is eminently feasible to do so — the switch from

categorical to gradient is computationally simple,

natural, and does not require any modifications of

the underlying syntactic analysis.

Our paper makes several contributions beyond

showing the empirical viability of probabilistic

TSL over trees. It continues a recent trend in sub-

regular linguistics to increasingly unify phonology

and syntax, with both aspects of language using

1We thank Jon Sprouse for giving us permission to use the
experimental data for English from Sprouse et al. (2016).
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roughly the same kind of dependencies but apply-

ing them over strings and trees, respectively. In

doing so, it also lends additional support to the

specific proposals about movement in Graf (2018,

2022b,a) and gradience in Mayer (2021). The view

of movement as a TSL dependency is not a mere

stipulation that works in the limited case of categor-

ical judgments, but rather provides exactly the kind

of parameters that are also needed for gradience.

TSL thus seems to capture a fundamental aspect of

movement. Similarly, the probabilistic tier projec-

tions of Mayer (2021) have broad empirical appeal

that extends far beyond the phenomena that they

were originally proposed for. At the same time, our

paper responds to the challenge by Chaves and Put-

nam (2022) to provide a TSL model of syntax that

can handle gradient data. The fact that this answer

requires no major changes to the categorical anal-

ysis supports the position commonly espoused by

syntacticians that the issue of gradience is largely

orthogonal to the enterprise of identifying the rel-

evant syntactic structures and the operations and

constraints that give rise to them.

The paper proceeds as follows. The Background

section (§2) covers the relevant subregular con-

cepts over strings. It first introduces the categorical

notion of TSL (§2.1) before generalizing it to prob-

abilistic TSL (§2.2, 2.3). We then turn to TSL over

trees (§3), starting with an intuitive introduction

of movement as a TSL dependency over trees and

how this can be used to capture island effects in a

categorical setting (§3.1–3.3). This intuition is then

spelled out in formal terms (§3.4) that make it easy

to combine tree TSL with the probabilistic notion

of TSL from §2.3. Finally, we present the results

of a modeling study (§4) showing that a simple

probabilistic TSL grammar can predict many of

the salient properties of the experimental data on

island effects from Sprouse et al. (2016). We close

with a brief discussion of the results (§5).

2 Background

This section introduces all relevant mathemati-

cal aspects of the probabilistic TSL formalism.

Throughout we let Σ be an alphabet of symbols, ε

the empty string, Σ∗ the Kleene closure of Σ (the

set of all strings of length 0 or more formed over Σ),

and Σk the largest subset of Σ∗ that contains only

strings of length k. The symbols ì and ë repre-

sent left and right string boundary symbols, respec-

tively. The : operator has type Σ → (Σ∗ → Σ∗)

and prepends a symbol in Σ to a string in Σ∗ (e.g.

a:bc = abc).

2.1 Strictly local and tier-based strictly local

languages

Let s ∈ Σ∗ for some Σ. The set of k-factors

of s, fk(s), is defined as all the substrings of

ì
k−1sëk−1 of length k. For example, f2(tree) =

{ìt, tr, re, ee, eë}.

A strictly k-local (SL-k) grammar is a set G that

contains (finitely many) forbidden substrings of

length k. A string s is well-formed with respect

to G iff fk(s) ∩G = ∅, i.e. if it contains no illicit

substrings of length k.2

Heinz et al. (2011) define a tier-based strictly k-

local (TSL-k) grammar as a tuple ïG, T ð such that

T ¦ Σ is a tier alphabet and G ¦ T k is a SL-k

grammar over the tier alphabet. The tier projection

function ÃT , which deletes from any given string

all symbols not in T , is defined recursively:

ÃT (ε) := ε (1)

ÃT (Ãu) :=

{

ÃÃT (u), if Ã ∈ T

ÃT (u), otherwise
(2)

where Ã ∈ Σ and u ∈ Σ∗. The shape of the tier

ÃT (s) projected from string s is then constrained

by G exactly as in an SL grammar. Hence a string

s is well-formed with respect to a TSL-k grammar

ïG, T ð iff fk(ÃT (s)) ∩G = ∅.

A stringset (or equivalently, string language) is

SL (TSL) iff it contains all and only those strings

that are well-formed with respect to some SL-k

(TSL-k) grammar, where k g 0.

2.2 Probabilistic tier projection

Probabilistic TSL (pTSL) is a generalization of

TSL where ÃT is a discrete probabilistic function.

A discrete probabilistic function f : X →
(Y → [0, 1]) maps pairs of strings x ∈ X and

y ∈ Y to probabilities. These probabilities are

drawn from the conditional distribution P (y|x),
and accordingly

∑

y∈Y f(x, y) = 1 for every

x ∈ X .

Here we generalize the projection function ÃT to

a probabilistic version ÃP : Σ∗ → (Σ∗ → [0, 1]).

2Alternatively, a SL-k grammar can be interpreted as a col-
lection of all well-formed substrings instead of all ill-formed
substrings. In that case, string s is well-formed with respect
to G iff fk(s) is a subset of G. The two interpretations are
equivalent in the sense that every SL-k grammar G of for-
bidden k-grams generates the same set of strings as the SL-k
grammar (Σ ∪ {ì,ë})k −G of allowed k-grams.
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Thus ÃP (x) returns a probability distribution over

projections of some x ∈ Σ∗, and ÃP (x, y) re-

turns the probability associated with projecting

some x ∈ Σ∗ to some y ∈ Σ∗. It follows that
∑

y∈Σ∗ ÃP (x, y) = 1 for every x ∈ Σ∗. ÃT is a

special case of ÃP such that the probability distri-

bution for all x ∈ Σ∗ assigns a probability of 1 to

a single projection.

The probabilistic tier projection ÃP is calculated

based on probabilities associated with the projec-

tion of each individual symbol in Σ. We define an

additional function P : Σ → [0, 1]. This function

represents the probability that each symbol in Σ is

projected to the tier. For example, if P (a) = 0.7,

then there’s a 70% chance the symbol a will project.

We can then define ÃP recursively as follows:

ÃP (ε, v) :=

{

1, if v = ε

0, otherwise
(3)

ÃP (Ãx:u, ε) := (1− P (Ãx)) · ÃP (u, ε) (4)

ÃP (Ãx:u, Ãy:v) := JÃx = ÃyK · P (Ãx) · ÃP (u, v)

+ (1− P (Ãx)) · ÃP (u, Ãy:v)

(5)

where Ãx, Ãy ∈ Σ, u, v ∈ Σ∗ and JÃx = ÃyK is an

indicator function that evaluates to 1 if Ãx = Ãy
and 0 otherwise.

The base case (3) ensures that the only valid

projection of ε is ε. In the first recursive case (4)

where the input is non-empty and the projection

is empty, the probability of the projection is the

probability of not projecting each symbol in the

input. In the second recursive case (5) where both

input and projection are non-empty, we consider

two possibilities for each symbol: either it projects

(the first term), or it does not (the second term). The

indicator variable ensures that we only consider

projection as a possibility when the symbols at the

beginning of the input and projection are identical.

Example. Let Σ = {a} and P (a) = 0.75. We

show that the probability of projecting aa → a is

0.375. First, by definition:

ÃP (aa, a) = P (a) · ÃP (a, ε)

+ (1− P (a)) · ÃP (a, a)
(6)

We omit the indicator variables for brevity. The

first term corresponds to the case where the first

a projects, and the second corresponds to the case

where it does not. Solving for the two recursive

instances of ÃP in (6) gets us:

ÃP (a, ε) = (1− P (a)) · ÃP (ε, ε)

= 1− P (a)
(7)

ÃP (a, a) = P (a) · ÃP (ε, ε)

+ (1− P (a)) · ÃP (ε, a)

= P (a)

(8)

Plugging these into (6) gets us:

ÃP (aa, a) = P (a) · (1− P (a))

+ (1− P (a)) · P (a)

= 0.75 · 0.25 + 0.25 · 0.75

= 0.375

(9)

The support of the distribution over projections,

i.e. the set of projections assigned non-zero proba-

bility, is:

ÃP (aa, aa) = 0.5625

ÃP (aa, a) = 0.375

ÃP (aa, ε) = 0.0625

(10)

2.3 pTSL grammars

A pTSL-k grammar over an alphabet Σ is a tuple

(ÃP , G), where I) ÃP is a probabilistic tier projec-

tion defined according to projection probabilities

for each Ã ∈ Σ, and II) G ¦ (Σ ∪ {ì,ë})k is a

SL-k grammar.

The function val(πP ,G) defines the probability

assigned to a string u by the grammar (ÃP , G):

val(πP ,G)(u) =
∑

v∈Σ∗

Jfk(v) ∩G = ∅K · ÃP (u, v)

(11)

where Jfk(v) ∩ G = ∅K is an indicator variable

that evaluates to 0 if v contains any illicit k-factors

and 1 otherwise. val(πP ,G)(u) is the sum of the

probabilities of all projections of the string u that

do not contain any prohibited k-factors. Note that

val(πP ,G) is not a probability distribution over in-

put strings, but rather the conditional probability of

some grammatical projection given the input string.

Example. Assume the definitions of Σ and ÃP
from the previous example, and suppose we have a

pTSL-2 grammar where G = {aa}. Then:

val(πP ,G)(aa) = ÃP (aa, a) + ÃP (aa, ε)

= 0.4375
(12)

ÃP (aa, aa) is not included in this calculation

because the projection aa contains the prohibited

substring aa.
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In sum, a pTSL-k grammar is the combination of

a categorical SL-k grammar G with a probabilistic

tier projection ÃP . In contrast to the categorical

tier projection ÃT , ÃP may project multiple tiers

from any given string s. Each one of these tiers

has a specific probability that is the product of

the projection probabilities that resulted in this tier

given s. We then sum the probabilities of all tiers

projected from s that are well-formed with respect

to G, yielding the conditional probability of some

grammatical projection given the input s. With

this understanding of how TSL over strings may be

made probabilistic, we now turn to TSL over trees.

3 (p)TSL over trees

Graf (2018) generalizes TSL (more precisely the

subclass TSL-2) from strings to trees. The intuition

is exactly the same as in the string case: Given a

tree t over alphabet Σ, we project all nodes with

a label in the tier alphabet T ¦ Σ while preserv-

ing the ordering between those nodes in terms of

dominance and precedence. SL constraints then

regulate the shape of permissible tiers. A full defi-

nition of TSL-2 over trees can be found in Graf and

Kostyszyn (2021), but for present purposes only

the tier projection needs to be discussed in depth.

The ensuing discussion is motivated by empir-

ical examples such as the one below, which is an

instance of an island effect.

(2) ?? Who does Mary wonder whether John

likes t?

This sentence is commonly considered degraded

by native speakers of English, and syntacticians

attribute this to whether creating an island for ex-

traction. In the parlance of Minimalist syntax, the

object who in the embedded clause wh-moves to

Spec,CP of the matrix clause, but wh-movement is

degraded out of whether-clauses.

Let us see, then, how this can be captured with

TSL over trees using the analysis in Graf (2022a).

We will first put in place feature-annotated depen-

dency trees as a tree-based representation of the

syntactic derivation (§3.1), from which we project

specific tree tiers to regulate movement in a strictly

local manner (§3.2). This in turn provides an easy

way of modeling a wide range of island constraints

as a categorical constraint against specific move-

ment configurations (§3.3). These intuitive ideas

are then made rigorous and, ultimately, probabilis-

tic in §3.4.

3.1 Syntactic representations

Each sentence is associated with a syntactic deriva-

tion, which we represent with a dependency tree.

Figure 1 gives the dependency tree for (2). Follow-

ing common Minimalist assumptions, each clause

consists of a verb and its three extended projections:

v (which selects the subject), T (which provides

the default surface position for the subject), and

C (which hosts complementizers and serves as a

landing site for some movement steps). Each node

of the dependency tree is a lexical item, and m is

a mother of a iff m selects a as an argument. If a1
and a2 are both daughters of m, then a1 is a right

sibling of a2 iff a1 is selected by m before a2 is.

That is, the right-to-left order of siblings reflects

the order of selection. The geometry of the depen-

dency tree thus encodes all relevant head-argument

relations and their relative order in the derivation.

In addition, every lexical item is given a feature

annotation inspired by the feature system of Mini-

malist grammars (Stabler, 1997, 2011). For each

lexical item, its feature annotation encodes its cate-

gory (e.g. category feature X−), the categories of

its arguments (e.g. the string X+Y+ of selector

features), whether it serves as a landing site for

movement steps (e.g. licensor feature wh+), and

whether it undergoes any movement steps (e.g. the

unordered set {nom−,wh−} of licensee features).3

Note the use of capitalization to distinguish cate-

gory and selector features on the one hand from

licensor and licensee features on the other. All four

types of features will play a key role in deciding

which nodes should be projected onto a given tier.

3.2 Movement tiers

With the basics of feature-annotated dependency

trees in place, we turn to tier projection for move-

ment. In Fig. 1, we have three separate movement

steps: two instances of subject movement, and

one instance of wh-movement. Let us consider

the former first. The subject Mary in the matrix

clause moves to Spec,TP of the matrix clause, and

the subject John in the embedded clause moves to

Spec,TP of the embedded clause. In both cases,

this is implicitly encoded by the fact that Mary

and John carry the licensee feature nom−, and the

3In contrast to Minimalist grammars, licensee features are
unordered in our system so that a mover with multiple licensee
features will always target the closest dominating nodes with
matching licensor features. This affects neither weak nor
strong generative capacity (Graf et al., 2016) but is a crucial
prerequisite for capturing movement dependencies via tiers.
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Syntactic derivation

does :: T+wh+C−

ε :: v+nom+T−

ε :: V+D+
v
−

Mary :: D−{nom−} wonder :: C+V−

whether :: T+C−

ε :: v+nom+T−

ε :: V+D+
v
−

John :: D−{nom−} likes :: D+V−

who :: D−{wh−}

nom-tier

ε :: v+nom+T−

Mary :: D−{nom−} ε :: v+nom+T−

John :: D−{nom−}

wh-tier

does :: T+wh+C−

whether :: T+C−

who :: D−{wh−}

Figure 1: Syntactic derivation for (2), its well-formed nom-tier (in red), and the ill-formed wh-tier (in blue)

corresponding T-heads carry the matching licensor

feature nom+. A lexical item with some licensee

feature f− will always move to a specifier of the

closest dominating lexical item with matching li-

censor feature f+. This is why Mary moves to

Spec,TP of the matrix clause, whereas John moves

to Spec,TP of the embedded clause. Each one of

these subject movement steps is well-formed, and

as pointed out by Graf (2018), this can be verified

in a tier-based strictly local manner.

In order to determine whether the derivation con-

tains any illicit instances of subject movement, we

construct a subject movement tier that contains

only nodes that matter for subject movement. At

the very least, this tier must contain every lexical

item that carries nom+ or nom− (as we will see

during the discussion of wh-movement, projecting

additional lexical items is exactly what gives rise

to island effects). The resulting nom-tier is shown

in Fig. 1. Note how the dominance relations in

the tier match the dominance relations in the de-

pendency tree. Moreover, Mary is the left sibling

of the embedded T-head on the tier because in the

dependency tree, Mary precedes the embedded T-

head (that is to say, Mary is reflexively dominated

by a node that is the left sibling of a node that re-

flexively dominates the embedded T-head). The

nom-tier is well-formed iff it obeys both of the

following conditions for movement tiers:

(3) Well-formedness of an f-tier

a. Every node with f+ has exactly one

node with f− among its f-tier daugh-

ters.

b. Every node with f− has an f-tier

mother that carries f+.

Both of these conditions are met in the nom-tier,

which entails that all subject movement steps in the

derivation are well-formed.

3.3 Categorical island effects

Now consider the case of wh-movement of who

from the embedded object position to Spec,CP of

the matrix clause. Without additional assumptions,

this movement step should be well-formed. If we

construct the corresponding wh-tier, it consists only

of does with who as its only daughter. As the for-

mer carries wh+ and the latter wh−, the conditions

in (3) are met and the tier should be well-formed.

But we already saw that (2) is not considered well-

formed due to the presence of whether. Suppose,

then, that we also project whether onto the wh-tier,

yielding the wh-tier in Fig. 1. Both conditions in (3)

are now violated by the wh-tier because whether

intervenes between does and who. Island effect

thus arise whenever an element that does not carry

the relevant features is projected onto a tier and de-

stroys the mother-daughter configuration between

a mover and its target.4

This same idea can be used to capture other

island effects. In addition to the whether island

4Note that projecting whether on the nom-tier would not
destroy any such configurations. Irrespective of whether one
projects whether, the nom-tier is well-formed. In general,
it is safe to assume that islands project onto all movement
tiers, unless there is good empirical evidence that a specific
movement type is not subject to a specific island condition.
For the purposes of this paper, what exactly projects onto
the nom-tier does not matter as all our modeling will focus
exclusively on the wh-tier.
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constraint described above, we will also examine

the adjunct island constraint and the complex NP

constraint. The adjunct island constraint prevents

extraction from adjuncts, e.g. because-clauses as in

(4a). The complex NP constraint prevents extrac-

tion from sentential complements of nouns (4b).

Both effects also arise with extraction from rela-

tive clauses as in (4c) and (4d), respectively. For

simplicity, we will conflate the difference between

wh-movement and relative clause extraction and

treat both as involving the features wh+ and wh−

for the rest of this paper.

(4) a. * Who did Mary complain because

John likes t?

b. * Who did Mary deny the rumor that

John likes t?

c. * I saw the congressman who Mary

worries if John respects t.

d. * I saw the man who Mary heard the

rumor that John likes t.

All these cases can be analyzed as some lexical

item projecting onto a movement tier and disrupt-

ing the local licensing relations there. The adjunct

island constraints are captured by projecting the

heads of adjunct islands, for example because and

if. The complex NP constraint amounts to project-

ing all nouns that select a CP as their only argument

(i.e. every lexical item whose feature annotation

contains the substring C+N−). Crucially, the de-

cision to project a lexical item only requires maxi-

mally local information: the surface realization of

the lexical item and/or its feature annotation.5

However, all these accounts are hamstrung by

the fact that tiers are either well-formed or ill-

formed. It is not possible to express the fact that,

say, whether-island violations are not judged as

degraded as extraction from because-clauses. One

easy way to add gradience to this system is to

5Mathematically, the tier projection may use any infor-
mation that can be encoded in terms of a finitary annota-
tion scheme for lexical items. This includes, among other
things, the semantic denotation of the lexical item, a higher-
dimensional vector representation derived from word embed-
dings, aspects of information structure such as topic and focus,
or basic frequency information in terms of a finite classifica-
tion system like very rare/rare/common/ubiquitous. Any kind
of annotation that preserves Minimalist grammars’ require-
ment that the set of lexical items must be finite is mathemati-
cally permissible. So even though we will limit ourselves to
purely syntactic information in our subsequent discussion of
island effects, the approach could be extended to consider at
least some of the semantic and pragmatic factors observed in
Chaves (2022) and the studies referenced therein.

adapt the probabilistic tier projection mechanism

of Mayer (2021), which we discussed in §2.2 and

§2.3.

3.4 Probabilistic tree tier projection

In order to define a probabilistic tier projection for

trees, we first need a rigorous definition of categori-

cal tier projection for trees. We adopt the logic-

based definition of Graf and Kostyszyn (2021)

where a tier is just the result of enriching the de-

pendency tree with relations for tier daughter and

tier sibling.

Let us use ◁+ (◁∗) to denote proper (reflexive)

dominance in the dependency tree, i.e. x ◁+ y

(x ◁∗ y) holds in dependency tree t iff x properly

(reflexively) dominates y in t. We also use x z y

to denote that x is a left sibling of y in t. Further-

more, the predicate T (x) is true iff the label of

x (e.g. wonder :: C+V− in Fig. 2) is part of our

tier alphabet T . We define proper dominance on

tier T (◁+T ) and use that to subsequently define the

daughter-of relation over tier T (◁T ), which in turn

is needed to define the left-sibling relation over tier

T (zT ):

x ◁+T y ôT (x) ' T (y) ' x ◁+ y

x ◁T y ôx ◁+T y ' ¬∃z[x ◁+T z ' z ◁+T y]

x zT y ô∃z[z ◁T x ' z ◁T y]'

∃z, z′[z ◁∗ x ' z′ ◁∗ y ' z z z′]

These predicates implicitly define the tier T over

dependency tree t and provide the relevant struc-

tural relations for tier constraints such as the one-to-

one match between mothers with licensor features

and daughters with licensee features we encoun-

tered in (3).

In order to turn this categorical notion of tree

tiers into a probabilistic one, it suffices to make

membership in the tier alphabet probabilistic. For

example, if elements with the same label as x have

a probability of 0.7 to project onto tier T , then

the predicate T (x) has a probability of 0.7 of be-

ing true. This is the only required change. The

definitions of ◁+T , ◁T , and zT remain exactly the

same—it is only the interpretation of T (x) that be-

comes probabilistic. Once this change is made, the

probability of a given tier projection is calculated

in exactly the same manner as in the string case

(§2.2): it is the product of T (x) for every x that

projects, and (1− T (x)) for every x that does not

project. The overall conditional probability of a

given tree having some grammatical projection is
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also calculated in the same manner as the string

case: it is the sum of the probabilities of all its

possible licit tier projections.

4 Modeling study

The next section presents a computational model-

ing study where a simple pTSL grammar over trees

is fit to experimental data on English island effects

from Sprouse et al. (2016).6 We demonstrate that

in addition to exhibiting the superadditive effects

found by Sprouse et al., it can also represent the

gradience observed across judgments of different

island effects.

4.1 Methods

The stimuli from Sprouse et al. (2016) were given

a syntactic analysis using feature-annotated depen-

dency trees as described in §3. We restricted our-

selves to the subset of sentences exhibiting the is-

land effects described above: whether islands, ad-

junct islands, and complex NP islands. We also

omitted filler sentences. This produced a total of

160 trees.

Sprouse et al. (2016) partitions the data within

each island effect type based on two factors:

whether the sentence contains an island structure,

and whether the node that undergoes movement is

located in the matrix clause or the embedded clause.

Examples of the four combinations of these two

factors are show in (5) for whether islands (from

Sprouse et al., 2016).

(5) a. Who t thinks [that John bought a car]?

(non-island, matrix clause)

b. What do you think [that John bought

t]? (non-island, embedded clause)

c. Who t wonders [whether John bought

a car]? (island, matrix clause)

d. What do you wonder [whether John

bought t]? (island, embedded)

This factorial design is intended to separate the ef-

fects of extracting from a matrix clause vs. extract-

ing from an embedded clause, and also the effects

of the presence or absence of an island structure. In

particular, Sprouse et al. expect that sentences like

(5d), which are the only ones that contain syntactic

island configurations, should display superadditive

effects. That is, the effect of these configurations

on human judgments should be greater than the

6The code and data can be found at: https://github.
com/connormayer/pTreeTSL

independent contributions of extracting out of an

embedded clause, as in (5b), and the presence of

an island structure that is not extracted over, as in

(5c).

The dataset from Sprouse et al. (2016) contains

about 14 Likert scale ratings for each sentence we

considered. Because our model is unable to rep-

resent cross-speaker variability in judgments, we

assigned each sentence the mean rating across par-

ticipants. Following Sprouse et al. (2016), we use

ratings that were Z-score normalized by participant

rather than the raw Likert scores.

Using the dependency trees and Z-scores, we fit

a pTSL grammar to the data by finding the optimal

projection probabilities: that is, those that align

as closely as possible the scores assigned by the

model to the scores assigned by humans. We do

this by first transforming the mean Z-score values

to fall in the range [0, 1] and then minimizing the

mean squared error between the transformed hu-

man acceptability judgments and the probabilities

assigned by the model. This minimization was per-

formed using scipy.optimize.minimize

(Virtanen et al., 2020) with bounded L-BFGS op-

timization to ensure each projection probability is

within the interval [0, 1].
We a priori fixed most of the projection proba-

bilities to 0 (irrelevant nodes) or 1 (nodes with wh+

or wh−), and we fit only projection probabilities

for nodes that could feasibly induce island effects.

This was done to facilitate interpretability of the

model, speed up the model training, and offset the

comparatively small size of the training set.

The nodes whose projection probabilities were

fitted were:

• that :: T+C−

• whether :: T+C−

• if :: T+C−

• all nodes whose feature annotation contains

the substring C+N−

The first three items are potential blockers for

the whether island and adjunct island constraints;

nodes with C+N− correspond to nouns that head

complex NPs and should thus induce complex NP

island effects. There are a set of seven nouns in

the data that have this featurization (rumor, claim,

etc.). For simplicity we assume all such nouns have

the same projection probability and treat this as a

single parameter.

Finally, nodes representing wh-movers and land-

ing sites were set to always project. The latter
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includes interrogative C-heads and relative clause

C-heads with feature string T+wh+C− (recall that

we use wh both for wh-movement and for rela-

tive clause movement). The former consists of

wh-pronouns with the feature string D−{wh−}).

Because fitting the model is stochastic, we per-

formed training ten times in order to determine

whether the probabilities reliably converge to the

same values.

4.2 Results

For our four features of interest, learned projec-

tion probabilities showed little variance across the

ten runs. Each converged within 10−3 to the same

projection probability. This aligns with the sugges-

tion in Mayer (2021) that the optimization function

when fitting a pTSL model in this way is concave.

We report projection probabilities and scores aver-

aged across the ten runs.

Table 1 shows the projection probabilities

learned by the model for the four nodes of interest.

Recall that higher projection probabilities increase

the likelihood of these nodes projecting to the wh-

tier and intervening between a tier mother with

wh+ and its tier daughter with wh−. Therefore,

higher projection probabilities should correspond

to lower ratings for the relevant island structures.

The relative projection probabilities show that if is

mostly likely to act as a blocker, that is least likely,

and complex NPs and whether are intermediate

between the other two.

The mean human scores and the mean model

scores for each sentence type are shown in Fig. 2.

The model scores capture several important aspects

of the human judgments: (a) extracting out of a

matrix clause is uniformly judged to be better than

extracting out of an embedded clause; (b) extract-

ing out of an embedded clause over an island pro-

duces the expected superadditive effects; and (c)

the relative badness of the five types of island ex-

traction (the right point in the red lines in Fig. 2)

matches the relative badness reflected in the human

judgments.

Node Projection probability

that :: T+C− .46
C+ N− .63
whether :: T+C− .73
if :: T+C− .89

Table 1: Mean projection probabilities

There are a number of aspects of the data the

model fails to capture. First, it over-predicts this

superadditivity in the case of relative clause adjunct

islands, where it was not found in the human data.

Second, it does a poor job of predicting the relative

badness of forms in the matrix extraction condition.

These sentences are not ungrammatical in terms

of the wh-tier, and the model accordingly assigns

them all probabilities of 1 in these cases. In particu-

lar, humans generally assign worse scores when an

island structure is present, even if it is not a blocker,

while the model cannot do so. Finally, although

it captures the general tendency for extraction out

of embedded clauses to be worse than extraction

out of a matrix clause, the relative effect of this in

different island types is not captured by the model.

5 Discussion

Assessing the performance of the probabilistic TSL

model for the English island data from Sprouse

et al. (2016) is a sutble affair because there are

so many factors that could influence what Likert

scores participants assign to specific stimuli. Syn-

tactic constraints, processing difficulties, lexical

frequency, semantics, pragmatics, and information

structure may all be involved. By limiting our atten-

tion to only the phonetic exponents of lexical items

and their feature make-up, we are asking the model

to capture the experimental data as well as possible

with only syntactic information. In that respect, the

model succeeds as it gives rise to super-additivity,

which has been argued to be the primary reflex of

syntax in experimental island effect data.

Admittedly the model does not do a perfect job,

and future work is needed to fully explore these

issues. For example, the model overpredicts super-

additivity in relative clause adjunct islands. This

raises the question whether alternative analyses of

relative clauses would have fared better in this re-

spect, and if not, what non-syntactic factors could

explain the less pronounced nature of superaddiv-

ity in these constructions. Similarly, although the

model is able to capture superadditivity and the

relative badness of the types of island violations

considered here, it does poorly in predicting the

variability in judgments of the non-island cases

and the short forms of island cases. Once again

this might indicate the need for a revised syntactic

analysis, or point towards non-syntactic factors.

Crucially, these non-syntactic factors are not nec-

essarily beyond the purview of the pTSL model —
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Figure 2: Human judgments from Sprouse et al. (2016) (top) and mean model judgments after training (bottom)

any information that can be lexicalized can be taken

into account by the tier projection function. For

example, an analysis that encodes topic and focus

as movement of phrases to specific syntactic po-

sitions furnishes specific movement features that

encode the topic-focus distinction and thus could

serve as parameters for the tier projection and the

constraints that apply on tiers. Hence it is important

not to equate the syntax-only approach we took in

this paper with the limits of what can be modeled

with pTSL.

In relation to this, it is also important to remem-

ber that the probabilities themselves might encode

remnants of non-syntactic factors and hence don’t

give us a “pure” picture of the role of syntax in is-

land effects. It is likely that the learned projection

probabilities shown in Table 1 encode some effects

related to processing rather than syntax. In particu-

lar, that has a relatively high projection probability

despite it not being considered a syntactic blocker.

The model has likely assigned this probability in or-

der to encode the decrease in acceptability between

extraction out of a matrix clause and extraction out

of an embedded clause. Integration of the model

proposed here with other models, e.g. the process-

ing approach of De Santo (2020) to gradience in

adjunct islands, has the potential to shed more light

on whether effects such as this should be modeled

as part of the grammar.

Our primary goal was to show that the switch

from categorical TSL (and the categorical syntactic

analyses that can be expressed this way) to a prob-

abilistic, gradient model is easy and empirically

viable. The task of adequately modeling island ef-

fects with pTSL is much larger than this, but we are

confident that pTSL will be able to provide novel

insights in this domain.7

6 Conclusion

We have presented pTSL as a simple probabilistic

extension of TSL syntax that makes it easy to add

gradience to existing syntactic analyses (provided

they can be stated in terms of categorical TSL).

The key idea of this extension is the switch to a

probabilistic tier projection function. We discussed

island effects as an example of the empirical viabil-

ity of this approach: the combination of a standard

Minimalist analysis with probabilistic tier projec-

tion is able to replicate the superadditive effects of

extraction out of islands and the gradience in the

relative badness of different types of island con-

structions.
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