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Abstract

We fuse two recent strands of work in subreg-
ular linguistics—probabilistic tier projections
(Mayer, 2021) and tier-based perspectives on
movement (Graf, 2022a)—into a probabilistic
model of syntax that makes it easy to add gra-
dience to traditional, categorical analyses from
the syntactic literature. As a case study, we test
this model on experimental data from Sprouse
et al. (2016) for a number of island effects in
English. We show that the model correctly
replicates the superadditive effects and gradi-
ence that have been observed in the psycholin-
guistic literature.

1 Introduction

Gradience has been a long-standing issue in theoret-
ical syntax and its interface with psycholinguistics.
Is gradience a performance phenomenon or part
of syntax proper? And if the latter, how could
current syntactic formalisms handle gradience con-
sidering they were designed around the categori-
cal distinction between well-formed and ill-formed
structures? In this paper, we approach the issue
of gradience from the perspective of subregular
linguistics, a program equally rooted in theoretical
linguistics and formal language theory. Subregular
linguistics seeks to identify very restricted classes
of computational (string or tree) mechanisms that
can capture a wide range of linguistic phenomena.
The insights from this perspective can be leveraged
in a variety of ways, e.g. for new learning algo-
rithms, novel explanations of typological gaps or
linguistic universals, or to identify abstract proper-
ties that hold of both phonology and syntax.

We combine recent subregular work by Graf
(2018, 2022b,a) on syntactic movement as a tier-
based strictly local (TSL) dependency over trees
with the framework in Mayer (2021) for proba-
bilistic TSL dependencies over strings. Intuitively,
a dependency is TSL iff it can be analyzed in
two steps: first, one projects a tier that contains
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only some parts of the original structure, and sec-
ond, this tier must satisfy a finite number of well-
formedness constraints on adjacent structural ele-
ments. Mayer’s framework allows for gradience
in the string case of TSL by making this tier pro-
jection probabilistic while keeping the constraints
categorical. We extend this notion of probabilistic
tier projection to the the kind of TSL over trees that
is used by Graf to capture syntactic movement.

The resulting framework of probabilistic TSL
dependencies over trees can account for key aspects
of the gradient judgments commonly observed with
island effects, where a phrase is illicitly moved
out of a containing phrase that does not allow for
extraction. An example of such an island violation
is shown below.

() a. Who does Mary say that John likes?

(no island)

b. ??Who does Mary wonder whether
John likes? (whether island)

Concretely, we test the ability of a probabilistic
TSL model to handle a subset of the experimental
island data in Sprouse et al. (2016).! The gradi-
ence observed in this experimental island data is ar-
guably the result of many interacting factors, which
may also include performance, semantics, and prag-
matics (see Chaves (2022) for a recent survey). We
conclude that if one wants to capture the syntactic
aspects of said gradience directly in the grammar,
it is eminently feasible to do so — the switch from
categorical to gradient is computationally simple,
natural, and does not require any modifications of
the underlying syntactic analysis.

Our paper makes several contributions beyond
showing the empirical viability of probabilistic
TSL over trees. It continues a recent trend in sub-
regular linguistics to increasingly unify phonology
and syntax, with both aspects of language using

'We thank Jon Sprouse for giving us permission to use the
experimental data for English from Sprouse et al. (2016).
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roughly the same kind of dependencies but apply-
ing them over strings and trees, respectively. In
doing so, it also lends additional support to the
specific proposals about movement in Graf (2018,
2022b,a) and gradience in Mayer (2021). The view
of movement as a TSL dependency is not a mere
stipulation that works in the limited case of categor-
ical judgments, but rather provides exactly the kind
of parameters that are also needed for gradience.
TSL thus seems to capture a fundamental aspect of
movement. Similarly, the probabilistic tier projec-
tions of Mayer (2021) have broad empirical appeal
that extends far beyond the phenomena that they
were originally proposed for. At the same time, our
paper responds to the challenge by Chaves and Put-
nam (2022) to provide a TSL model of syntax that
can handle gradient data. The fact that this answer
requires no major changes to the categorical anal-
ysis supports the position commonly espoused by
syntacticians that the issue of gradience is largely
orthogonal to the enterprise of identifying the rel-
evant syntactic structures and the operations and
constraints that give rise to them.

The paper proceeds as follows. The Background
section (§2) covers the relevant subregular con-
cepts over strings. It first introduces the categorical
notion of TSL (§2.1) before generalizing it to prob-
abilistic TSL (§2.2, 2.3). We then turn to TSL over
trees (§3), starting with an intuitive introduction
of movement as a TSL dependency over trees and
how this can be used to capture island effects in a
categorical setting (§3.1-3.3). This intuition is then
spelled out in formal terms (§3.4) that make it easy
to combine tree TSL with the probabilistic notion
of TSL from §2.3. Finally, we present the results
of a modeling study (§4) showing that a simple
probabilistic TSL grammar can predict many of
the salient properties of the experimental data on
island effects from Sprouse et al. (2016). We close
with a brief discussion of the results (§5).

2 Background

This section introduces all relevant mathemati-
cal aspects of the probabilistic TSL formalism.
Throughout we let 3 be an alphabet of symbols, €
the empty string, >* the Kleene closure of 3 (the
set of all strings of length 0 or more formed over X2),
and X the largest subset of ¥* that contains only
strings of length k. The symbols x and X repre-
sent left and right string boundary symbols, respec-
tively. The : operator has type ¥ — (X* — X*)
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and prepends a symbol in X to a string in X* (e.g.
a:bec = abe).

2.1 Strictly local and tier-based strictly local
languages

Let s € ¥* for some Y. The set of k-factors
of s, fx(s), is defined as all the substrings of
xk=1sx k=1 of length k. For example, f,(tree) =
{xt, tr,re, ee, ex }.

A strictly k-local (SL-k) grammar is a set G that
contains (finitely many) forbidden substrings of
length k. A string s is well-formed with respect
to G iff fx(s) NG = (), i.e. if it contains no illicit
substrings of length k.

Heinz et al. (2011) define a tier-based strictly k-
local (TSL-k) grammar as a tuple (G, T') such that
T C Y is a tier alphabet and G C T* is a SL-k
grammar over the tier alphabet. The tier projection
function 77, which deletes from any given string
all symbols not in 7', is defined recursively:

)]

mr(e) :=¢

N

where 0 € ¥ and w € X*. The shape of the tier
77 (s) projected from string s is then constrained
by G exactly as in an SL grammar. Hence a string
s is well-formed with respect to a TSL-k grammar
(G, T) iff fr(mr(s)) NG =0.

A stringset (or equivalently, string language) is
SL (TSL) iff it contains all and only those strings
that are well-formed with respect to some SL-k
(TSL-k) grammar, where k& > 0.

ifoeT

otherwise

orr(u),

2
(), 2

7wy (ou

2.2 Probabilistic tier projection

Probabilistic TSL (pTSL) is a generalization of
TSL where 77 is a discrete probabilistic function.

A discrete probabilistic function [ : X —
(Y — [0,1]) maps pairs of strings © € X and
y € Y to probabilities. These probabilities are
drawn from the conditional distribution P(y|z),
and accordingly - .y f(z,y) = 1 for every
x e X.

Here we generalize the projection function 77 to
a probabilistic version 7p : ¥* — (¥* — [0, 1]).

?Alternatively, a SL-k grammar can be interpreted as a col-
lection of all well-formed substrings instead of all ill-formed
substrings. In that case, string s is well-formed with respect
to G iff fi(s) is a subset of G. The two interpretations are
equivalent in the sense that every SL-k grammar G of for-

bidden k-grams generates the same set of strings as the SL-k
grammar (3 U {x, x})* — G of allowed k-grams.



Thus 7p(x) returns a probability distribution over
projections of some x € X*, and wp(x,y) re-
turns the probability associated with projecting
some x € X* to some y € X*. It follows that
> yess Tp(x,y) = 1forevery z € ¥*. mrisa
special case of 7mp such that the probability distri-
bution for all z € X* assigns a probability of 1 to
a single projection.

The probabilistic tier projection 7 p is calculated
based on probabilities associated with the projec-
tion of each individual symbol in 3. We define an
additional function P : ¥ — [0, 1]. This function
represents the probability that each symbol in X is
projected to the tier. For example, if P(a) = 0.7,
then there’s a 70% chance the symbol a will project.
We can then define 7 p recursively as follows:

1, ifv=e
mp(e,v) = {O, otherwise ©)
mp(ogu,e) := (1 — P(og)) - 7p(u,e)  (4)

wp(ogu, oyw) = [0y = 0y] - P(og) - mp(u,v)
+ (1= P(0y)) - mp(u, oy:v)
&)

where 0,0, € ¥, u,v € ¥* and [o, = 0,] is an
indicator function that evaluates to 1 if 0, = oy
and 0 otherwise.

The base case (3) ensures that the only valid
projection of ¢ is €. In the first recursive case (4)
where the input is non-empty and the projection
is empty, the probability of the projection is the
probability of not projecting each symbol in the
input. In the second recursive case (5) where both
input and projection are non-empty, we consider
two possibilities for each symbol: either it projects
(the first term), or it does not (the second term). The
indicator variable ensures that we only consider
projection as a possibility when the symbols at the
beginning of the input and projection are identical.

Example. Let ¥ = {a} and P(a) = 0.75. We
show that the probability of projecting aa — a is
0.375. First, by definition:

nwp(aa,a) = P(a) - wp(a,€) ©)
+ (1 - P(a)) - -7mp(a,a)

We omit the indicator variables for brevity. The
first term corresponds to the case where the first
a projects, and the second corresponds to the case
where it does not. Solving for the two recursive
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instances of wp in (6) gets us:

mp(a,e) = (1 — P(a)) - mp(e,¢)

=1- P(a) 2
mp(a,a) = P(a) - 7p(e; )
+ (1= P(a) 7p(e,a) (B
= P(a)
Plugging these into (6) gets us:
wp(aa,a) = P(a) - (1 — P(a))
+(1- P(a)) - Pla) o

=0.75-0.254+0.25-0.75
=0.375
The support of the distribution over projections,
i.e. the set of projections assigned non-zero proba-
bility, is:
mp(aa,aa) = 0.5625
wp(aa,a) =0.375
mp(aa, &) = 0.0625

(10)

2.3 pTSL grammars

A pTSL-k grammar over an alphabet ¥ is a tuple
(rp,G), where 1) 7p is a probabilistic tier projec-
tion defined according to projection probabilities
foreacho € ¥, and 1) G C (S U {x,x})Fisa
SL-k grammar.

The function val(,,, ) defines the probability
assigned to a string u by the grammar (7p, G):

val(r, oy (w) = Y [fr(v) NG =0] - 7p(u,v)

vEX*

(1D
where [fx(v) NG = (] is an indicator variable
that evaluates to 0 if v contains any illicit k-factors
and 1 otherwise. val(,, )(u) is the sum of the
probabilities of all projections of the string u that
do not contain any prohibited k-factors. Note that
val(x, ) is not a probability distribution over in-
put strings, but rather the conditional probability of
some grammatical projection given the input string.

Example. Assume the definitions of ¥ and 7p
from the previous example, and suppose we have a
pTSL-2 grammar where G = {aa}. Then:

val(xp.)(aa) = wp(aa,a) + wp(aa,€)

12
= 0.4375 (12)

mp(aa,aa) is not included in this calculation
because the projection aa contains the prohibited
substring aa.



In sum, a pTSL-k grammar is the combination of
a categorical SL-k grammar G with a probabilistic
tier projection wp. In contrast to the categorical
tier projection 7, mp may project multiple tiers
from any given string s. Each one of these tiers
has a specific probability that is the product of
the projection probabilities that resulted in this tier
given s. We then sum the probabilities of all tiers
projected from s that are well-formed with respect
to (G, yielding the conditional probability of some
grammatical projection given the input s. With
this understanding of how TSL over strings may be
made probabilistic, we now turn to TSL over trees.

3 (p)TSL over trees

Graf (2018) generalizes TSL (more precisely the
subclass TSL-2) from strings to trees. The intuition
is exactly the same as in the string case: Given a
tree ¢ over alphabet 3, we project all nodes with
a label in the tier alphabet 7' C 3 while preserv-
ing the ordering between those nodes in terms of
dominance and precedence. SL constraints then
regulate the shape of permissible tiers. A full defi-
nition of TSL-2 over trees can be found in Graf and
Kostyszyn (2021), but for present purposes only
the tier projection needs to be discussed in depth.

The ensuing discussion is motivated by empir-
ical examples such as the one below, which is an
instance of an island effect.

(2) ?7?Who does Mary wonder whether John
likes ¢?

This sentence is commonly considered degraded
by native speakers of English, and syntacticians
attribute this to whether creating an island for ex-
traction. In the parlance of Minimalist syntax, the
object who in the embedded clause wh-moves to
Spec,CP of the matrix clause, but wh-movement is
degraded out of whether-clauses.

Let us see, then, how this can be captured with
TSL over trees using the analysis in Graf (2022a).
We will first put in place feature-annotated depen-
dency trees as a tree-based representation of the
syntactic derivation (§3.1), from which we project
specific tree tiers to regulate movement in a strictly
local manner (§3.2). This in turn provides an easy
way of modeling a wide range of island constraints
as a categorical constraint against specific move-
ment configurations (§3.3). These intuitive ideas
are then made rigorous and, ultimately, probabilis-
tic in §3.4.

3.1 Syntactic representations

Each sentence is associated with a syntactic deriva-
tion, which we represent with a dependency tree.
Figure 1 gives the dependency tree for (2). Follow-
ing common Minimalist assumptions, each clause
consists of a verb and its three extended projections:
v (which selects the subject), T (which provides
the default surface position for the subject), and
C (which hosts complementizers and serves as a
landing site for some movement steps). Each node
of the dependency tree is a lexical item, and m is
a mother of a iff m selects a as an argument. If a;
and ay are both daughters of m, then a; is a right
sibling of as iff a; is selected by m before as is.
That is, the right-to-left order of siblings reflects
the order of selection. The geometry of the depen-
dency tree thus encodes all relevant head-argument
relations and their relative order in the derivation.
In addition, every lexical item is given a feature
annotation inspired by the feature system of Mini-
malist grammars (Stabler, 1997, 2011). For each
lexical item, its feature annotation encodes its cate-
gory (e.g. category feature X ™), the categories of
its arguments (e.g. the string X+ Y™ of selector
features), whether it serves as a landing site for
movement steps (e.g. licensor feature wh™), and
whether it undergoes any movement steps (e.g. the
unordered set {nom ™, wh™ } of licensee features).?
Note the use of capitalization to distinguish cate-
gory and selector features on the one hand from
licensor and licensee features on the other. All four
types of features will play a key role in deciding
which nodes should be projected onto a given tier.

3.2 Movement tiers

With the basics of feature-annotated dependency
trees in place, we turn to tier projection for move-
ment. In Fig. 1, we have three separate movement
steps: two instances of subject movement, and
one instance of wh-movement. Let us consider
the former first. The subject Mary in the matrix
clause moves to Spec, TP of the matrix clause, and
the subject John in the embedded clause moves to
Spec, TP of the embedded clause. In both cases,
this is implicitly encoded by the fact that Mary
and John carry the licensee feature nom™, and the

3In contrast to Minimalist grammars, licensee features are
unordered in our system so that a mover with multiple licensee
features will always target the closest dominating nodes with
matching licensor features. This affects neither weak nor
strong generative capacity (Graf et al., 2016) but is a crucial
prerequisite for capturing movement dependencies via tiers.
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Syntactic derivation

does :: Ttwh™C~
\
vTnom™T—
\
e VIDty~

Mary :: D™ {nom™}

/\
Mary :: D~ {nom~} wonder :: Ct*V~

whether :: TTC~

nom-tier

¢ vTnomtT™
= otnomTT™

\
John :: D~ {nom™}

c

wh-tier

does :: Ttwh™C~

g vtnom™ T~ |
‘ whether :: TTC™
e VTDT oy~ |
who :: D™ {wh™}
John :: D™ {nom~} likes :: DTV~

who :: D™ {wh™}

Figure 1: Syntactic derivation for (2), its well-formed nom-tier (in red), and the ill-formed wh-tier (in blue)

corresponding T-heads carry the matching licensor
feature nom™. A lexical item with some licensee
feature f~ will always move to a specifier of the
closest dominating lexical item with matching li-
censor feature ™. This is why Mary moves to
Spec, TP of the matrix clause, whereas John moves
to Spec, TP of the embedded clause. Each one of
these subject movement steps is well-formed, and
as pointed out by Graf (2018), this can be verified
in a tier-based strictly local manner.

In order to determine whether the derivation con-
tains any illicit instances of subject movement, we
construct a subject movement tier that contains
only nodes that matter for subject movement. At
the very least, this tier must contain every lexical
item that carries nom™ or nom™ (as we will see
during the discussion of wh-movement, projecting
additional lexical items is exactly what gives rise
to island effects). The resulting nom-tier is shown
in Fig. 1. Note how the dominance relations in
the tier match the dominance relations in the de-
pendency tree. Moreover, Mary is the left sibling
of the embedded T-head on the tier because in the
dependency tree, Mary precedes the embedded T-
head (that is to say, Mary is reflexively dominated
by a node that is the left sibling of a node that re-
flexively dominates the embedded T-head). The
nom-tier is well-formed iff it obeys both of the
following conditions for movement tiers:

(3) Well-formedness of an f-tier

a. Every node with f* has exactly one
node with = among its f-tier daugh-
ters.
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b. Every node with f~ has an f-tier
mother that carries fT.

Both of these conditions are met in the nom-tier,
which entails that all subject movement steps in the
derivation are well-formed.

3.3 Categorical island effects

Now consider the case of wh-movement of who
from the embedded object position to Spec,CP of
the matrix clause. Without additional assumptions,
this movement step should be well-formed. If we
construct the corresponding wh-tier, it consists only
of does with who as its only daughter. As the for-
mer carries wh™ and the latter wh ™, the conditions
in (3) are met and the tier should be well-formed.
But we already saw that (2) is not considered well-
formed due to the presence of whether. Suppose,
then, that we also project whether onto the wh-tier,
yielding the wh-tier in Fig. 1. Both conditions in (3)
are now violated by the wh-tier because whether
intervenes between does and who. Island effect
thus arise whenever an element that does not carry
the relevant features is projected onto a tier and de-
stroys the mother-daughter configuration between
a mover and its target.*

This same idea can be used to capture other
island effects. In addition to the whether island

“Note that projecting whether on the nom-tier would not
destroy any such configurations. Irrespective of whether one
projects whether, the nom-tier is well-formed. In general,
it is safe to assume that islands project onto all movement
tiers, unless there is good empirical evidence that a specific
movement type is not subject to a specific island condition.
For the purposes of this paper, what exactly projects onto

the nom-tier does not matter as all our modeling will focus
exclusively on the wh-tier.



constraint described above, we will also examine
the adjunct island constraint and the complex NP
constraint. The adjunct island constraint prevents
extraction from adjuncts, e.g. because-clauses as in
(4a). The complex NP constraint prevents extrac-
tion from sentential complements of nouns (4b).
Both effects also arise with extraction from rela-
tive clauses as in (4c) and (4d), respectively. For
simplicity, we will conflate the difference between
wh-movement and relative clause extraction and
treat both as involving the features wh™ and wh™
for the rest of this paper.

(4) a. *Who did Mary complain because
John likes ¢?
b. * Who did Mary deny the rumor that
John likes ¢?
c. *I saw the congressman who Mary
worries if John respects ¢.
d. *Isaw the man who Mary heard the

rumor that John likes ¢.

All these cases can be analyzed as some lexical
item projecting onto a movement tier and disrupt-
ing the local licensing relations there. The adjunct
island constraints are captured by projecting the
heads of adjunct islands, for example because and
if. The complex NP constraint amounts to project-
ing all nouns that select a CP as their only argument
(i.e. every lexical item whose feature annotation
contains the substring CtN™). Crucially, the de-
cision to project a lexical item only requires maxi-
mally local information: the surface realization of
the lexical item and/or its feature annotation.’

However, all these accounts are hamstrung by
the fact that tiers are either well-formed or ill-
formed. It is not possible to express the fact that,
say, whether-island violations are not judged as
degraded as extraction from because-clauses. One
easy way to add gradience to this system is to

SMathematically, the tier projection may use any infor-
mation that can be encoded in terms of a finitary annota-
tion scheme for lexical items. This includes, among other
things, the semantic denotation of the lexical item, a higher-
dimensional vector representation derived from word embed-
dings, aspects of information structure such as topic and focus,
or basic frequency information in terms of a finite classifica-
tion system like very rare/rare/commonl/ubiquitous. Any kind
of annotation that preserves Minimalist grammars’ require-
ment that the set of lexical items must be finite is mathemati-
cally permissible. So even though we will limit ourselves to
purely syntactic information in our subsequent discussion of
island effects, the approach could be extended to consider at
least some of the semantic and pragmatic factors observed in
Chaves (2022) and the studies referenced therein.
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adapt the probabilistic tier projection mechanism
of Mayer (2021), which we discussed in §2.2 and
§2.3.

3.4 Probabilistic tree tier projection

In order to define a probabilistic tier projection for
trees, we first need a rigorous definition of categori-
cal tier projection for trees. We adopt the logic-
based definition of Graf and Kostyszyn (2021)
where a tier is just the result of enriching the de-
pendency tree with relations for tier daughter and
tier sibling.

Let us use <™ (<*) to denote proper (reflexive)
dominance in the dependency tree, i.e. z <t y
(z <* y) holds in dependency tree t iff = properly
(reflexively) dominates y in t. We alsouse z < y
to denote that x is a left sibling of y in ¢. Further-
more, the predicate T'(z) is true iff the label of
z (e.g. wonder :: CTV~ in Fig. 2) is part of our
tier alphabet 7. We define proper dominance on
tier T’ (4}) and use that to subsequently define the
daughter-of relation over tier T' (<), which in turn
is needed to define the left-sibling relation over tier
T (<7):

ratyeT(@) AT(y) Azt y
T<ary Sr<hy A I <z Az <y
T <7y SIz[z<r Az < ylA

32,2 [z A Ty Az <]

These predicates implicitly define the tier 1" over
dependency tree ¢ and provide the relevant struc-
tural relations for tier constraints such as the one-to-
one match between mothers with licensor features
and daughters with licensee features we encoun-
tered in (3).

In order to turn this categorical notion of tree
tiers into a probabilistic one, it suffices to make
membership in the tier alphabet probabilistic. For
example, if elements with the same label as = have
a probability of 0.7 to project onto tier 7', then
the predicate T'(x) has a probability of 0.7 of be-
ing true. This is the only required change. The
definitions of <}., <7, and <7 remain exactly the
same—it is only the interpretation of 7'(z) that be-
comes probabilistic. Once this change is made, the
probability of a given tier projection is calculated
in exactly the same manner as in the string case
(§2.2): it is the product of T'(x) for every x that
projects, and (1 — T'(x)) for every x that does not
project. The overall conditional probability of a
given tree having some grammatical projection is



also calculated in the same manner as the string
case: it is the sum of the probabilities of all its
possible licit tier projections.

4 Modeling study

The next section presents a computational model-
ing study where a simple pTSL grammar over trees
is fit to experimental data on English island effects
from Sprouse et al. (2016).° We demonstrate that
in addition to exhibiting the superadditive effects
found by Sprouse et al., it can also represent the
gradience observed across judgments of different
island effects.

4.1 Methods

The stimuli from Sprouse et al. (2016) were given
a syntactic analysis using feature-annotated depen-
dency trees as described in §3. We restricted our-
selves to the subset of sentences exhibiting the is-
land effects described above: whether islands, ad-
junct islands, and complex NP islands. We also
omitted filler sentences. This produced a total of
160 trees.

Sprouse et al. (2016) partitions the data within
each island effect type based on two factors:
whether the sentence contains an island structure,
and whether the node that undergoes movement is
located in the matrix clause or the embedded clause.
Examples of the four combinations of these two
factors are show in (5) for whether islands (from
Sprouse et al., 2016).

(5) a. Who t thinks [that John bought a car]?

(non-island, matrix clause)

What do you think [that John bought
t]? (non-island, embedded clause)

Who ¢ wonders [whether John bought
a car]|? (island, matrix clause)

What do you wonder [whether John
bought ¢]? (island, embedded)

This factorial design is intended to separate the ef-
fects of extracting from a matrix clause vs. extract-
ing from an embedded clause, and also the effects
of the presence or absence of an island structure. In
particular, Sprouse et al. expect that sentences like
(5d), which are the only ones that contain syntactic
island configurations, should display superadditive
effects. That is, the effect of these configurations
on human judgments should be greater than the

The code and data can be found at: https://github.
com/connormayer/pTreeTSL
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independent contributions of extracting out of an
embedded clause, as in (5b), and the presence of
an island structure that is not extracted over, as in
(5¢).

The dataset from Sprouse et al. (2016) contains
about 14 Likert scale ratings for each sentence we
considered. Because our model is unable to rep-
resent cross-speaker variability in judgments, we
assigned each sentence the mean rating across par-
ticipants. Following Sprouse et al. (2016), we use
ratings that were Z-score normalized by participant
rather than the raw Likert scores.

Using the dependency trees and Z-scores, we fit
a pTSL grammar to the data by finding the optimal
projection probabilities: that is, those that align
as closely as possible the scores assigned by the
model to the scores assigned by humans. We do
this by first transforming the mean Z-score values
to fall in the range [0, 1] and then minimizing the
mean squared error between the transformed hu-
man acceptability judgments and the probabilities
assigned by the model. This minimization was per-
formed using scipy.optimize.minimize
(Virtanen et al., 2020) with bounded L-BFGS op-
timization to ensure each projection probability is
within the interval [0, 1].

We a priori fixed most of the projection proba-
bilities to O (irrelevant nodes) or 1 (nodes with wh™
or wh™), and we fit only projection probabilities
for nodes that could feasibly induce island effects.
This was done to facilitate interpretability of the
model, speed up the model training, and offset the
comparatively small size of the training set.

The nodes whose projection probabilities were
fitted were:

that :: TTC~

whether :: TTC™

if : TTC™

all nodes whose feature annotation contains
the substring C* N~

The first three items are potential blockers for
the whether island and adjunct island constraints;
nodes with CTN™ correspond to nouns that head
complex NPs and should thus induce complex NP
island effects. There are a set of seven nouns in
the data that have this featurization (rumor, claim,
etc.). For simplicity we assume all such nouns have
the same projection probability and treat this as a
single parameter.

Finally, nodes representing wh-movers and land-
ing sites were set to always project. The latter



includes interrogative C-heads and relative clause
C-heads with feature string TTwh*C~ (recall that
we use wh both for wh-movement and for rela-
tive clause movement). The former consists of
wh-pronouns with the feature string D~ {wh™}).

Because fitting the model is stochastic, we per-
formed training ten times in order to determine
whether the probabilities reliably converge to the
same values.

4.2 Results

For our four features of interest, learned projec-
tion probabilities showed little variance across the
ten runs. Each converged within 1072 to the same
projection probability. This aligns with the sugges-
tion in Mayer (2021) that the optimization function
when fitting a pTSL model in this way is concave.
We report projection probabilities and scores aver-
aged across the ten runs.

Table 1 shows the projection probabilities
learned by the model for the four nodes of interest.
Recall that higher projection probabilities increase
the likelihood of these nodes projecting to the wh-
tier and intervening between a tier mother with
wh' and its tier daughter with wh™. Therefore,
higher projection probabilities should correspond
to lower ratings for the relevant island structures.
The relative projection probabilities show that if is
mostly likely to act as a blocker, that is least likely,
and complex NPs and whether are intermediate
between the other two.

The mean human scores and the mean model
scores for each sentence type are shown in Fig. 2.
The model scores capture several important aspects
of the human judgments: (a) extracting out of a
matrix clause is uniformly judged to be better than
extracting out of an embedded clause; (b) extract-
ing out of an embedded clause over an island pro-
duces the expected superadditive effects; and (c)
the relative badness of the five types of island ex-
traction (the right point in the red lines in Fig. 2)
matches the relative badness reflected in the human
judgments.

Node Projection probability
that :: TTC~ .46
CT N- .63
whether :: TTC~ .73
if :: T+C™ .89

Table 1: Mean projection probabilities
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There are a number of aspects of the data the
model fails to capture. First, it over-predicts this
superadditivity in the case of relative clause adjunct
islands, where it was not found in the human data.
Second, it does a poor job of predicting the relative
badness of forms in the matrix extraction condition.
These sentences are not ungrammatical in terms
of the wh-tier, and the model accordingly assigns
them all probabilities of 1 in these cases. In particu-
lar, humans generally assign worse scores when an
island structure is present, even if it is not a blocker,
while the model cannot do so. Finally, although
it captures the general tendency for extraction out
of embedded clauses to be worse than extraction
out of a matrix clause, the relative effect of this in
different island types is not captured by the model.

5 Discussion

Assessing the performance of the probabilistic TSL
model for the English island data from Sprouse
et al. (2016) is a sutble affair because there are
so many factors that could influence what Likert
scores participants assign to specific stimuli. Syn-
tactic constraints, processing difficulties, lexical
frequency, semantics, pragmatics, and information
structure may all be involved. By limiting our atten-
tion to only the phonetic exponents of lexical items
and their feature make-up, we are asking the model
to capture the experimental data as well as possible
with only syntactic information. In that respect, the
model succeeds as it gives rise to super-additivity,
which has been argued to be the primary reflex of
syntax in experimental island effect data.
Admittedly the model does not do a perfect job,
and future work is needed to fully explore these
issues. For example, the model overpredicts super-
additivity in relative clause adjunct islands. This
raises the question whether alternative analyses of
relative clauses would have fared better in this re-
spect, and if not, what non-syntactic factors could
explain the less pronounced nature of superaddiv-
ity in these constructions. Similarly, although the
model is able to capture superadditivity and the
relative badness of the types of island violations
considered here, it does poorly in predicting the
variability in judgments of the non-island cases
and the short forms of island cases. Once again
this might indicate the need for a revised syntactic
analysis, or point towards non-syntactic factors.
Crucially, these non-syntactic factors are not nec-
essarily beyond the purview of the pTSL model —



RC.adj RC.np WH.adj

WH.np WH.whe

=1
=}
L

e
~
n

/
4

=

in

=1
L

=}
i

o
L

/

7

UBLLNH

Is island

Yes

=1
=
L

e
~

o
L

Mean sentence probability

- pg

2P0y

Matrix
Ernbedded
Matrix
Ernbedded
Iatrix

o
@
=]
=]
@
a
E
w
o]

Matrix
Ernbedded
Iatrix
Embedded

Trace location

Figure 2: Human judgments from Sprouse et al. (2016) (top) and mean model judgments after training (bottom)

any information that can be lexicalized can be taken
into account by the tier projection function. For
example, an analysis that encodes topic and focus
as movement of phrases to specific syntactic po-
sitions furnishes specific movement features that
encode the topic-focus distinction and thus could
serve as parameters for the tier projection and the
constraints that apply on tiers. Hence it is important
not to equate the syntax-only approach we took in
this paper with the limits of what can be modeled
with pTSL.

In relation to this, it is also important to remem-
ber that the probabilities themselves might encode
remnants of non-syntactic factors and hence don’t
give us a “pure” picture of the role of syntax in is-
land effects. It is likely that the learned projection
probabilities shown in Table 1 encode some effects
related to processing rather than syntax. In particu-
lar, that has a relatively high projection probability
despite it not being considered a syntactic blocker.
The model has likely assigned this probability in or-
der to encode the decrease in acceptability between
extraction out of a matrix clause and extraction out
of an embedded clause. Integration of the model
proposed here with other models, e.g. the process-
ing approach of De Santo (2020) to gradience in
adjunct islands, has the potential to shed more light
on whether effects such as this should be modeled
as part of the grammar.

Our primary goal was to show that the switch
from categorical TSL (and the categorical syntactic
analyses that can be expressed this way) to a prob-
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abilistic, gradient model is easy and empirically
viable. The task of adequately modeling island ef-
fects with pTSL is much larger than this, but we are
confident that pTSL will be able to provide novel
insights in this domain.”

6 Conclusion

We have presented pTSL as a simple probabilistic
extension of TSL syntax that makes it easy to add
gradience to existing syntactic analyses (provided
they can be stated in terms of categorical TSL).
The key idea of this extension is the switch to a
probabilistic tier projection function. We discussed
island effects as an example of the empirical viabil-
ity of this approach: the combination of a standard
Minimalist analysis with probabilistic tier projec-
tion is able to replicate the superadditive effects of
extraction out of islands and the gradience in the
relative badness of different types of island con-
structions.
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"To avoid potential confusion: our pTSL model is not in-
tended to be a model of how island effects are learned. The
model is trained on scores assigned to the data in experimen-
tal contexts, which is not a realistic learning scenario. But
the model is of interest for learning because its parameters
are interpretable and it does successfully encode syntactic
contributions to judgments of island effects, including super-
additivity and gradience.
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