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Wearable sweat sensors have the potential to revolutionize precision medicine as they can 

non-invasively collect molecular information closely associated with an individual’s health 

status. However, the majority of clinically relevant biomarkers cannot be continuously 

detected in situ using existing wearable approaches. Molecularly imprinted polymers (MIPs) 

are a promising candidate to address this challenge but haven’t yet gained widespread use 

due to their complex design and optimization process yielding variable selectivity. Here we 

introduce QuantumDock, an automated computational framework for universal MIP 

development toward wearable applications. QuantumDock utilizes density functional theory 

to probe molecular interactions between monomers and the target/interferent molecules to 

optimize selectivity, a fundamentally limiting factor for MIP development toward wearable 

sensing. A molecular docking approach is employed to explore a wide range of known and 

unknown monomers, and to identify the optimal monomer/crosslinker choice for subsequent 

MIP fabrication. Using an essential amino acid phenylalanine as the exemplar, we performed 

successful experimental validation of QuantumDock using solution-synthesized MIP 

nanoparticles coupled with ultraviolet–visible spectroscopy. Moreover, we designed a 

QuantumDock-optimized graphene-based wearable device that can perform autonomous 

sweat induction, sampling, and sensing. We, for the first time, demonstrate wearable non-

invasive phenylalanine monitoring in human subjects toward personalized healthcare 

applications.   
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1. Introduction 
Wearable sensors have great potential to revolutionize the field of personalized medicine as they 

can continuously and non-invasively monitor an individual’s physiological and health status.[1–9] 

While commercially available wearable health monitors mainly track physical vital signs, 

wearable sweat biosensors could offer rich health information at molecular levels.[10–23] 

Continuous analysis of sweat biomarkers including amino acids, vitamins, metabolites, drugs, 

hormones, and proteins could have a profound impact in remote monitoring and management of a 

variety of health conditions such as stress, gout, metabolic disorders, cardiovascular diseases, and 

cancers.[24–40,21] Most currently reported wearable electrochemical sweat biosensors can only 

monitor a limited group of small molecules (e.g., glucose, lactate, and ions) using enzymatic or 

ion-selective sensors.[24–30] The majority of clinically relevant biomarkers in sweat cannot be 

detected in situ using these wearable sensing approaches. Bioaffinity sensors based on bioreceptors 

such as antibodies can be highly sensitive and selective, but are limited to single-point use and 

usually require additional sample preparation or washing steps.[41–44]  

Molecularly imprinted polymers (MIPs) are synthetic bioreceptors fabricated via the 

polymerization of functional monomers in the presence of the target analyte.[45,46] Subsequent 

elution of the template molecule from the polymer matrix leaves target analyte-shaped imprints 

that can act as artificial antibodies to facilitate selective target rebinding. The integration of an 

additional redox probe in the sensor design can transduce such rebinding recognition into 

measurable electrochemical signals.[35,47] We recently demonstrated continuous monitoring of 

circulating metabolites and nutrients such as branched-chain amino acids in human sweat by 

combing MIPs with mass-producible laser-engraved graphene (LEG).[35] Despite the great promise 

of using MIPs in wearable sweat biosensing, MIPs have not yet gained widespread use in the field 

of biosensors due to their complex design and optimization process.[48] The choice of functional 

monomers and crosslinkers dramatically influences sensor selectivity and overall performance, 

rendering many MIPs ineffective for biofluid analysis due to the lack of selectivity. Considering 

the large library of monomer and target biomarker choices, experimental optimization of new 

MIPs is extremely time-consuming, costly, and substantially impedes the broad application of 

MIP-based wearable sensor in personalized healthcare.  

Computational approaches such as semiempirical calculations and density functional theory (DFT) 

have great potential to simplify and accelerate the MIP design process. Although fast, 



semiempirical methods utilize the neglect of diatomic differential overlap approximation which is 

known to significantly underestimate binding affinities, limiting the ability to correlate to 

experimental results. DFT enables researchers to utilize highly accurate quantum mechanics 

simulations to probe molecular interactions between a potential monomer and biomarker. 

Traditionally DFT has been used to calculate binding energies between monomers and target 

biomolecules, since maximizing this quantity maximizes the amount of target molecules to be 

absorbed which in return maximizes MIP sensitivity[49–51]. However, finding the most stable 

binding configuration between two biomolecules tends to be a time intensive task, further slowing 

down the MIP design process. Further, previous studies lack experimental validation for biomarker 

analysis and have not fully addressed the fundamentally limiting factor in MIP performance for in 

situ wearable sensing applications – selectivity.  

In this work, we introduce QuantumDock, an automated computational framework for universal 

MIP development toward a wide range of wearable biosensing applications (Fig. 1a). 

QuantumDock utilizes quantum theory, specifically DFT, to probe molecular interactions between 

monomers and the target/interference molecules. QuantumDock employs a novel theory to 

optimize selectivity: A molecular docking approach is employed to find the most stable binding 

geometries and to calculate a novel selectivity metric for the optimal choice of monomer (and 

crosslinker when necessary), enabling accelerated MIP fabrication (Fig. 1b–g, Supplementary 

Fig. 1, and Supplementary Video 1). Through these innovations, QuantumDock addresses all 

previously discussed shortcomings of semiempirical calculations and traditional DFT and is the 

first standardized method for calculating binding energies reproducibly with a modern level of 

theory (Supplementary Table 1). In addition to optimizing the choice of existing monomers, 

QuantumDock also has the potential to explore various unknown monomers/molecules for general 

MIP design with potentially higher selectivities than traditionally used monomers. Using an 

essential amino acid phenylalanine (Phe) as the exemplar, we experimentally validated the model 

using solution-synthesized MIP nanoparticles (NPs) and demonstrated for the first time – the 

correct prediction of the exponential relation between binding energy difference and selectivity in 

MIPs. This is particularly important for wearable sensor field as for practical in situ body fluid 

analysis, selectivity is the main limiting factors of the MIP design. Moreover, we designed a skin-

interfaced wearable sweat sensing system and demonstrated the potential usage of a 



QuantumDock-optimized MIP wearable sensor for personalized nutritional and healthcare 

applications (Fig. 1h,i).  

2. Results and discussions 

2.1 The process of QuantumDock-based MIP development 

Chemically selective interactions are observed naturally in antibodies, proteins, and alike. The 

physical basis of this phenomena has been characterized extensively, particularly with selective 

isotope binding. Simply put, selective binding occurs when a target molecule (Tar) binds stronger 

to a candidate material than an interferant molecule (Int) in their respective ground states. The 

strength of binding is quantified via the binding energy (E), hence selective binding is encapsulated 

by the inequality ETar > EInt or ΔE = ETar – EInt > 0 (Supplementary Note 1). For systems of 

molecular biomarkers, the ground state geometric configuration can be quite elusive to find. 

Biomolecules have multiple sites in which non-covalent interactions including hydrogen bonds, 

ionic bonds, and van der Waals interactions can take place (Supplementary Figs. 2 and 3). 

Finding the ground state, or the most stable interaction, between a target molecule and monomer 

can take a long time especially when the number of monomers and targets is very large (Fig. 1b). 

Failing to do an exhaustive search for the ground state however can yield inaccurate selectivity 

predictions.  

To approach this issue QuantumDock employs an exhaustive yet computationally efficient 

docking approach in which a monomer is docked to a potential binding site on a target molecule 

until all binding sites have been probed (Fig. 1c). All noncovalent interactions that can occur in a 

pre-polymerized MIP solution (hydrogen bond, electrostatic, and van der Waals) are considered 

in this step. The energy near every binding site is quickly calculated over hundreds of potential 

molecular orientations using a fast-screening method, enabling an exhaustive search of the 

potential energy surface for its strongest binding sites (Fig. 1d,e). The most stable geometric 

conformations from this screening step are used in a final DFT calculation to determine the true 

ground state energies and binding selectivities (Fig. 1f). This process can be repeated across all 

targets and monomers in a computational library until the optimal choices are found (Fig. 1g). It 

should be clarified that the main application of QuantumDock is not to discover new monomers 

never reported before, but rather is to identify the most suitable monomer/crosslinker choices (over 

many monomers that could be used to prepare a biomarker MIP) with highest selectivity 



performance over the many potential interferences (particularly those with similar molecular 

structures) in their specific biosensing applications. The QuantumDock-based MIP optimization 

can serve as a universal approach for designing next-generation wearable biosensors that can 

monitor a broad spectrum of biomarkers related to various health conditions. 

 

Figure 1. QuantumDock, a rational bioaffinity biosensor design approach for wearable 

molecular monitoring. a, QuantumDock-enabled molecularly imprinted polymer (MIP)-based 

wearable biosensor design and optimization for circulating biomarker monitoring toward 

personalized healthcare. LEG, laser-engraved graphene. b–g, The general procedures of 

QuantumDock-based MIP design: chemical database generation (b), molecular docking (c), 

density functional theory (DFT)-based binding energy calculation (d), binding site and ground 

state identification (e), target/interference-monomer property calculation for selectivity evaluation 

(f), repeated computational optimization across targets and monomers libraries (g). E, binding 

energy; Tar, target; Int, interferent; Mono, monomer; S, selectivity. h, The role of phenylalanine 

(Phe) in phenylketonuria (PKU) development. i, A fully-integrated wearable sensor based on 
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Fig. 1. QuantumDock, a rational bioaffinity biosensor design approach for wearable molecular monitoring. a, QuantumDock-
enabled molecularly imprinted polymer (MIP)-based wearable biosensor design and optimization for circulating biomarker monitoring 
toward personalized healthcare. b–g, The general procedures of QuantumDock-based MIP design: chemical database generation (b), 
molecular docking (c), density functional theory (DFT)-based binding energy calculation (d), binding site and ground state identification (e), 
target/interference-monomer property calculation for selectivity evaluation (f), repeated computational optimization across targets and 
monomers libraries (g). E, binding energy; Tar, target; Int, interferent; Mono, monomer. h, The role of phenylalanine (Phe) in 
phenylketonuria (PKU) development. i, A fully-integrated wearable sensor based on QuantumDock-enabled Phe MIP for wireless Phe 
sensing toward PKU and nutritional monitoring. Scale bar, 1 cm. 
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QuantumDock-enabled Phe MIP for wireless Phe sensing toward PKU and nutritional monitoring. 

Scale bar, 1 cm.  

2.2 Quantum Dock-enabled computational Phe MIP optimization 

Being an essential amino acid, Phe plays an important role in the production of tyrosine and 

multiple crucial neurotransmitters (e.g., dopamine, norepinephrine, and epinephrine).[52] It is also 

a well-known biomarker for phenylketonuria (PKU), an inherited disorder in which the human 

body is unable to process Phe to tyrosine, causing an array of bodily harm.[53,54] Despite the 

importance and urgent demand of personalized Phe monitoring, its wearable sensing in human 

subjects via sweat analysis has not been demonstrated. As such we chose Phe as a model biomarker 

for MIP development. Using the QuantumDock procedure, we docked 7 commonly used 

monomers to Phe including pyrrole (PYR), 4-vinmylbenzoic acid (4VB), acrylamide (ACM), 

methacrylic acid (MAA), aniline (ANI), 3-aminophenylboronic acid (APB), and o-

phenylenediamine (OPD) for MIP fabrication (Fig. 2a). Although many of the monomers we chose 

here could be used to prepare the Phe MIP based on past reports, there is no study on comparing 

the selectivity performance of these monomers over the major interferences (particularly those 

with similar molecular structures). Potential binding orientations between Phe and each monomer 

were first screened using semiempirical quantum mechanical calculations (Fig. 2b). Such methods 

are particularly advantageous as they allow for quick yet fairly accurate approximations of binding 

energies in monomer-biomarker complexes, taking on the order of seconds to calculate molecular 

energies. Results from this screening correctly revealed two potential binding sites on Phe on the 

carboxyl (COOH) and amine (NH2) functional groups. Semiempirical calculations are however 

historically known to have less accuracy than more intricate DFT calculations for calculating 

binding energies as they compromise accuracy for speed[55,56]. This inaccuracy could lead to 

downstream errors where the predicted sensitivities and selectivities would be poorly ranked, 

emphasizing the need for more accurate DFT energy calculations (Supplementary Fig. 4). 

Subsequent DFT energy calculations on the most stable screened molecules indicate that the 

carboxylic group on Phe tends to form the most stable bonds with all monomers in our study (Fig. 

2c, d and Supplementary Fig. 3). This is because Phe is highly charged and has both a hydrogen 

bond donor and acceptor making a relatively stronger and larger binding site for strong hydrogen 

bonds, in agreement with molecularly electrostatic potential calculation (Fig. 2e). 



The ground state binding energy, being the most stable or most negative calculated energy, is 

stored from these DFT calculations (Fig. 2f and Supplementary Fig. 5). Following this quantum 

dock method, we find these final ground state energies to be highly reproducible (Supplementary 

Fig. 6). Traditionally the ground state binding energy has been used to optimize MIP sensitivity, 

with higher binding energies indicating a MIP will bind more target molecules to its surface. This 

subsequently aids detection of low concentrations when less target molecules are present in 

solution. Despite the use of this metric in theory, there is not much variation amongst our calculated 

binding energies. Of the 7 monomers used in this study, 5 (APB, ACM, OPD, MAA, VB4) had 

binding energies to Phe within the top quartile of calculated energies, indicating relatively low 

variance from monomer to monomer. Therefore, only using a high binding energy as a metric for 

monomer choice in MIP fabrication does not significantly slim our number of monomer choices. 

We therefore turn to evaluating theoretically calculated selectivity’s to make greater distinction 

between molecules. Since selectivity (S) can be calculated as S ∝ exp(ΔE/(kBT)), where kB and T 

are Boltzmann constant and temperature respectively (Supplementary Note 1), we calculate the 

binding energy difference ΔE between monomer/target and monomer/interferent as a metric to 

rank our monomer selection. Selectivity calculations indicate that clearly OPD, MAA, and 4VB 

on average have the highest potential of being selective against multiple interferants with a similar 

chemical structure to Phe including tyrosine (Tyr), valine (Val), leucine (Leu), isoleucine (Ile), 

and dopamine (DA) (Fig. 2g). Such results also confirm that even though monomer PRY was also 

used in literature to prepare Phe MIP, the PYR MIPs suffer from bad selectivity against most 

chemically similar molecules. By evaluating 5 less commonly used monomers which include 1,2-

ethanediol (12E), acrylic acid (ACA), phenol (PHN), 2-vinylpyridine (2VP), 2-aminophenol 

(2AM), we demonstrate that multiple new monomers perform better selectivity for Phe against 

chemically similar molecules (i.e., three other amino acid: Leu, Ile, and Val) than multiple more 

commonly used monomers (e.g., PYR and APB) (Supplementary Figs. 7 and 8), indicating the 

powerful capability of the QuantumDock for exploring new MIP design. It should be also noted 

that QuantumDock is fully capable of exploring unknown monomers along with those that have 

been previously reported. To demonstrate this, we have simulated two further classes of unknown 

monomers that can be used in MIP fabrication (Supplementary Figs. 7–9): The first being 3 

monomers (methacrylamide, vinyl acetate, and 1-vinylimidazole) that have never been used to 

make a MIP; The second set of molecules are generated using Generative Examination Networks 



(GEN)[57], a popular generative adversarial neural network capable of generating simplified 

molecular input line entry system (SMILES) strings (text based encodings of molecules)[58]. 

QuantumDock can interpret these novel SMILES strings, generate their 3D conformations, and 

test their selectivity against our previously listed interferants. The combination of a generative 

algorithm with QuantumDock shows the algorithms full potential of being able to generate, and 

screen through countless monomers for MIP development. Screening through a larger number of 

monomers opens up the possibility of finding novel monomers with higher selectivity and 

sensitivity. Interestingly enough, the novel topology of molecules generated via the GEN neural 

network show much higher selectivities than the typical monomers used in MIP fabrication 

(Supplementary Figs. 8 and 9). 

Furthermore, calculations in which the monomer template ratio was modified showed a much more 

efficient means of increasing both monomer template binding energies and binding energy 

differences (Fig. 2h,i). Increasing the number of monomers in the monomer template ratio allowed 

more binding sites on the Phe template to be accessed, increasing the binding energy and binding 

energy difference of the target-monomer complex. This increase seems to have diminishing returns 

once binding sites become saturated, the binding energy of the target-monomer complex stops 

increasing as rapidly. Finally, we calculate the binding energies between Phe and various potential 

crosslinkers for use of study (Fig. 2j). It is well established that crosslinkers with low binding 

energies to the target molecule have the best potential for MIP fabrication.[59] Crosslinkers which 

bind poorly to the target molecule are less likely to nonspecifically bind to it in the polymerization 

process, and in effect more likely to contribute to the rigidity of the final polymer structure as 

intended. We therefore chose divenylbenze (DVB) as our crosslinker of choice. Its low binding 

energy to Phe can be attributed to it not having any hydrogen bond donor or acceptor atoms, 

making it an optimal candidate. 



 

Figure 2. QuantumDock-based computational Phe MIP optimization. a, The procedure of 

QuantumDock-based Phe-monomer ground state configuration. H-bond, hydrogen bond. b, 

Semiempirical energy calculations based on 100 docked monomer-Phe complexes for each 

monomer. PYR, pyrrole; 4-VB, 4-vinmylbenzoic acid; ACM, acrylamide; MAA, methacrylic 

acid; ANI, aniline; APB, 3-aminophenylboronic acid; OPD, o-phenylenediamine. c,d, DFT energy 

calculations on the most stable screened molecules based on Phe-monomer NH2 site (c) and Phe-

monomer COOH site (d). e, Electrostatic potential of a Phe molecule. f, DFT-calculated binding 

energy of Phe-monomer. g, Colored mapping of the binding energy differences between Phe-

monomer and interference-monomer complexes. Tyr, tyrosine; Val, valine; Leu, leucine; Ile, 

isoleucine; DA, dopamine. h, H-bonds formed in Phe-OPD complexes (ratio 1:1, 1:2, 1:3, and 

1:4). i, Binding energies of Phe/OPD and Leu/OPD (target versus monomer ratio 1:1, 1:2, 1:3, and 

1:4), and corresponding bonding energy differences. j, Binding energies of Phe/crosslinker. BMA, 

butyl methacrylate; EGDMA, ethylene glycol dimethylacrylate; TRIM, trimethylolpropane 

trimethacrylate; DVB, divinylbenzene. 

2.3 Experimental validation of QuantumDock using solution-synthesized MIP NPs 
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To experimentally validate the QuantumDock-based computationally optimized MIP, a series of 

MIP NPs were synthesized and characterized by the binding/adsorption amount toward target and 

interferent molecules. All MIP NPs were prepared in a solution containing Phe, monomer and 

crosslinker molecules of choice under 60 ºC with azobisisobutyronitrile as the initiator (Fig. 3a). 

Methanol was added into water (4:1 (v/v)) as a solvent to maximize the binding energy 

(Supplementary Fig. 10). Non-imprinted polymer nanoparticles (NIP NPs) were fabricated 

following the same procedure with the exclusion of the Phe template molecule. The resultant MIP 

NPs have a size of ~50 nm according to the scanning electron microscopy (SEM) image (Fig. 3b). 

Energy dispersive X-ray (EDX) analysis of the MIP NPs before and after target extraction showed 

a sharp decrease at the carbon alpha emission lines after Phe extraction (Fig. 3c), suggesting the 

successful extraction of Phe molecules. Such target extraction was further validated by conducting 

ultraviolet–visible spectroscopy (UV-Vis) before and after extraction on a sample containing MIP 

NPs. The absorbance peak at ~270 nm wavelength was consistent with Phe’s UV-absorption 

maxima decreases after target extraction (Fig. 3d). It should be noted that the peak is however still 

present as there will be some Phe molecules trapped inside the polymer matrix after extraction. 

Isotherm experiments were conducted to investigate the binding dynamics of Phe to various MIP 

NPs fabricated with different monomers. A linear relationship was identified between the 

absorbance peak height at around ~270 nm and the Phe concentration in the range between 500 

µM and 20 mM (Fig. 3e). The maximal absorption of each MIP NPs Qe was calculated as Qe = 

(C0-Ct)/(m/V) where m/V is the MIP NP density, C0 is the initial target molecule solution 

concentration, and Ct is the concentration recorded after incubating MIP NPs in solution. An 

incubation time of at least 6 minutes was determined to be optimal as Qe tended to maximize at 

this time, indicating the system had reached thermodynamic equilibrium (Fig 3f). Qe results show 

a distinction between each monomer with MAA being highest on average and PYR the lowest next 

to its NIP counterpart (Fig. 3g). These results are in agreement with the DFT calculations of the 

binding energy between monomers and Phe (Fig. 3h), indicating that when a target molecule binds 

stronger to a MIP binding site, more of said target molecules will bind to the MIP. This effect can 

be used to increase the MIP’s sensitivity by binding more of the target even at low concentrations, 

hence increasing the resulting sensor signal response. Further, we have successfully validated that 

crosslinkers with low binding energy to template molecules lead to higher Qe (Fig. 3i). 



 

Figure 3. Experimental validation of QuantumDock-optimized Phe MIP using solution- 

synthesized NPs. a, Solution synthesis process of Phe MIP NPs. b, Scanning electron microscopy 

(SEM) image of Phe-PYR MIP NPs. Scale bar, 200 nm. c, Energy-dispersive X-ray spectroscopy 

results of carbon elements in the Phe-PYR MIP NPs before and after target extraction. d, 

Ultraviolet–visible spectroscopy (UV-Vis) absorbance of Phe-PYR MIP NPs before and after 

template extraction. e, UV-Vis absorbance of Phe-PYR MIP NPs after incubation of 500 µM–20 

mM Phe. Insets, calibration plots with a linear fit. f, The maximum adsorption amount (Qe) of Phe-

PYR MIP NPs over incubation time. g, Qe of Phe/monomer MIP NPs upon incubation in 500 µM–

20 mM Phe. h, The relationship between Qe of the Phe MIP NPs and calculated Phe-monomer 

binding energies. i, The relationship between Qe of the Phe MIP NPs and calculated Phe-

crosslinker binding energies. j,k, Selectivity of  Phe MIP NPs based on different monomers over 

interferents DA (j) and Trp (k). All error bars represent the s.d. from three measurements. 

Further studies were carried out to probe the MIPs capability to selectively bind to Phe over other 

interfering molecules. Selectivity 𝑆 =  𝑄𝑒
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Figure 3. Experimental validation of QuantumDock-optimized Phe MIP using solution- synthesized nanoparticles (NPs). a, Solution synthesis 
process of Phe MIP NPs. b, Scanning electron microscopy (SEM) image of Phe-PYR MIP NPs. Scale bar, 200 nm. c, Energy-dispersive X-ray 
spectroscopy results of carbon elements in the Phe-PYR MIP NPs before and after target extraction. d, Ultraviolet–visible spectroscopy (UV-Vis) 
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in 500 µM–20 mM Phe. h, The relationship between QM of the Phe MIP NPs and calculated Phe-monomer binding energies. i, The relationship between 
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DA (j) and Trp (k). All error bars represent the s.d. from three measurements.
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of absorbing (𝑄𝑒
𝐼𝑛𝑡). This selectivity metric directly indicates a MIPs capability to preferentially 

bind its imprinted target molecule over any potentially coexisting interferant. To our knowledge 

no such study has probed into the correlation using this measured selectivity nor any theoretical 

description of selectivity. As illustrated in Fig. 3j,k, using DA and Trp as the exemplar interferents 

(Supplementary Fig. 11), our selectivity results of the Phe MIP NPs verified the previously 

described theoretical derivation of selectivity which states that selectivity is exponentially 

proportional to the binding energy difference. This result is especially interesting as it shows 

optimizing selectivity computational can quickly yield significant improvements in a MIPs 

selectivity, hence drastically increasing a biosensors performance. It should be noted that the 

binding energy difference calculated by the intermediate binding states could lead to large 

prediction error (Supplementary Fig. 12). Therefore, QuantumDock’s capability to reproducibly 

find the most stable ground state binding energies is critical for selectivity prediction.  

2.4. Electrochemical graphene sensor development toward continuous sweat Phe monitoring 

Applying the QuantumDock-optimized MIPs to wearable biosensors, we developed a flexible 

electrochemical biosensor using the Phe MIP as the bio-receptor to specifically capture free Phe 

molecule in the sweat (Fig. 4a). Considering the low concentration of Phe in human sweat (µM 

level), flexible laser-engraved graphene (LEG) on a polyimide substrate was chosen as the 

electrode material to increase the sensor sensitivity and skin conformability as it has a large surface 

area, high electrochemical catalytic activity, high mechanical flexibility, and can be mass-

producible at a large scale (Supplementary Figs. 13 and 14)[33,60]. To prepare the biosensor, the 

Phe MIP layer was directly electro-polymerized onto an LEG electrode followed by the target 

extraction. The selective recognition molecule into the imprinted polymeric layer can be further 

converted to a measurable electrochemical signal by incorporating a redox active reporter (RAR) 

layer between the Phe MIP film and the LEG electrode. The target adsorption reduces the exposure 

of the RAR (nickel hexacyanoferrate here) to the sample matrix and further block the electron 

transfer and thus leads to a decreased redox signal (Fig. 4a). The SEM image of the Phe sensor 

clearly shows a highly porous 3D structure of the LEG covered uniformly by a polymeric MIP 

film and RAR NPs (Fig. 4b).  

The successful MIP electrochemical sensor preparation was characterized and validated using 

differential pulse voltammetry (DPV) (Fig. 4c). The LEG-RAR displayed the highest reduction 



peak of RAR which decreased substantially after polymerization of the polymer film (LEG-RAR-

MIP-before) due to the RAR blockage by the polymer; the extraction of the template molecule 

(Phe) led to the target selective cavities and increased exposure of the RAR site to the sample 

matrix, resulting in an increased reduction signal (Fig. 4c). In addition, the MIP sensor preparation 

was further validated using open-circuit potential-electrochemical impedance spectroscopy (OCP-

EIS): the electrode resistance in Nyquist plots decreased after the extraction of the template, 

suggesting the increased exposure for RAR to the sample matrix (Fig. 4d).  

For Phe quantification, DPV was used to measure the RAR’s reduction peak of the LEG-RAR-

MIP Phe sensor, where the decrease in the peak current correlated with an increase in Phe 

concentration. A log-linear relationship between the decreased peak current density height of the 

DPV voltammograms and Phe concentration (Fig. 4e) was achieved with a sensitivity of 353.94 

nA mm-2 per decade of concentration, when OPD was used as the monomer. The flexible LEG 

sensors demonstrated stable electrochemical performance under mechanical deformation (Fig. 4f). 

Moreover, the sensor showed excellent selectivity toward other analytes with similar structures 

such as Leu: a substantially higher DPV reduction peak decrease was observed for Phe detection 

compared to that obtained after incubation with interferent Leu (Fig. 4g). Overall, compared with 

APB and PYR MIP-based sensors, the OPD MIP-based sensors show improved selectivity for the 

detection of Phe over common physiological-level interferents (Fig. 4h and Supplementary Fig. 

15), consistent with the QuantumDock’s computational results on ΔE (Fig. 2g).  

To enable automatic Phe detection in human sweat toward non-invasive wearable sensing, we 

utilized here an in-situ calibration strategy involving two-step DPV scans: the first scan was 

performed to determine the background signal before target recognition while the second scan was 

performed after incubation to determine the reduction signal change; in-situ regeneration was 

realized by applying constant current to the MIP electrode to repel the bound Phe molecules (Fig 

4i). Continuous and repetitive Phe detection between low concentration and high concentration 

can thus be realized automatically (Fig 4j). Considering that the variations of individual’s sweat 

composition could affect the in situ Phe measurement, we characterized the dependence of pH or 

solution conductivity (Na+) on the response of the Phe sensor, as illustrated in Fig 4k,l. 

Considering that both pH and Na+ have substantial influence on the Phe sensor reading, it is 

important to simultaneously monitor pH and Na+ levels for in situ accurate sweat analysis. 
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deformation. Error bars represent the s.d. from three sensors. g, DPV voltammograms of an LEG-

RAR-MIP Phe sensor before and after incubation in Phe and Leu. h, The target (Phe) to 

interference signal ratios of the LEG-RAR-OPD, LEG-RAR-APB, and LEG-RAR-PRY MIP 

sensors. i, Calibration strategies of the wearable LEG-MIP sensors involving a two-step DPV-scan 

calibration for automatic in situ Phe analysis. j, In situ continuous sensing and regeneration of an 

LEG–RAR–MIP Phe sensor in Phe solutions. k,l, Color maps showing the dependence of the LEG-
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2.5 Development of the fully-integrated wearable and flexible Phe sensor patch 

To enable the continuous Phe monitoring, a wireless wearable sensor patch was developed based 

on our previously established platform[33] that contains two carbachol-loaded LEG iontophoresis 

electrodes for prolonged localized on-demand sweat induction, a laser-engraved microfluidic 

module for sweat sampling, and a sensor array consisting of a QuantumDock-optimized LEG-

OPD MIP Phe sensor (Fig. 5a–c and Supplementary Fig. 16). The integrated system can perform 

on-demand iontophoresis, multimodal electrochemical sensing, and wireless communication (Fig. 

5d and Supplementary Fig. 17). Electrochemical ion-selective pH and Na+ sensors are 

intergraded into the wearable sensor patch to realize accurate wearable Phe analysis in sweat 

monitoring via real-time sensor calibration in real time (Fig. 5e,f). The accuracy of the wearable 

Phe sensor patch for analyzing raw human sweat was verified using the gold standard gas 

chromatography-mass spectrometry (GC-MS): a very high correlation between the results from 

sensors and from GC-MS was observed (Fig. 5g). The sensor patch is able to autonomously induce 

sweat through iontophoresis (to deliver carbachol below the skin) at rest without the need for 

vigorous exercise; a microfluidic module was used to efficiently sample the fresh sweat generated 

from the sweat gland due to the nicotinic effects of carbachol to facilitate the real-time sweat 

analysis (Fig. 5h,  Supplementary Fig. 18, and Supplementary Video 2). 

Clinical on-body evaluation of the wearable system toward personalized nutritional monitoring 

was performed via sensing of sweat Phe in human subjects at rest with and without Phe supplement 

intake. The DPV signal from the Phe sensor worn on the subjects’ wrist was wirelessly transmitted 

along with temperature, pH and Na+ sensor readings to the interface that automatically performed 

calibration for the accurate quantification of sweat Phe (Fig. 5i–l, Supplementary Fig. 19, and 

Supplementary Video 3). As expected, rapidly rising Phe levels in sweat were observed from all 

two subjects after Phe supplement intake while the Phe levels remained stable during the fasting 

studies. This represents the first demonstration of continuous non-invasive wearable sweat Phe 

sensing in human subjects. Such a good capability indicates the great potential for non-invasive 

Phe monitoring using the wearable sensor and opens the door for PKU management through 

personalized sensor-guided dietary intervention. 



 

Figure 5. Design and in vivo evaluation of the fully-integrated wearable flexible MIP-based 
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sensor. CPU, central processing unit; POT, potentiometry; In-Amp, instrumentation amplifier; 

MCU, microcontroller; TIA, trans-impedance amplifier; WE, working electrode. e,f, Calibration 

plots obtained using the wearable system from the Na+ (e) and pH (f) sensors. g, Validation of Phe 

sensors for raw sweat samples (n = 21) analysis against gas chromatography–mass spectrometry 

(GC-MS). h, On-body evaluation of the microfluidic patch for efficient sweat induction and 

sampling at rest. Timestamps represent the period (min) after a 5-min iontophoresis session. Black 

dye was used in the reservoir to facilitate the direct visualization of sweat flow in the microfluidics. 

Scale bar, 5 mm. i,j, Autonomous Phe monitoring of two healthy subjects using the wearable 
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wearable sensors after Phe intake. For i–l, a 5-minute iontophoresis was performed in the 

beginning of the trial followed by multiplexed data recording. Temperature, pH, Na+ was recorded 

simultaneously for signal calibration.   

3. Conclusion 

We demonstrated a computational framework – QuantumDock – for optimizing MIP performance 

toward a wide range of wearable biosensing applications. Through DFT-based probing of 

intermolecular interactions between monomers and the targets/interferents, we were able to 

develop MIP-based sensors with enhanced selectivity, a crucial factor for in situ wearable 

biomarker analysis. Through the screening a number of molecules, we demonstrated that 

QuantumDock also has the potential to explore a wide range of commonly used and unknown 

monomers for designing better MIPs. We successfully validated the QuantumDock-based MIP 

design and optimization using solution-synthesized MIP NPs. We further show the potential for 

generative artificial intelligence in materials design by using GEN to generate novel monomers 

with significantly higher theoretical selectivities than commonly used MIP monomers. Based on 

the QuantumDock-optimized MIP, we also developed a laser-engraved graphene-based wearable 

electrochemical Phe sensor capable of autonomous sweat extraction, sampling, and sensing 

without the need for vigorous exercise. The first wearable non-invasive Phe monitoring in human 

subjects revealed the high potential of such technology for personalized nutritional and healthcare 

applications. As QuantumDock is a universal sensor optimization approach that can be easily 

adapted toward other important biomarkers in human body fluids, we envision that it will enable 

the demonstration of high-performance MIP sensors for the analysis of a wide range of biomarker 

and facilitate the realization of practical wearable healthcare applications.  
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