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Abstract:  

Skin-interfaced electronics is gradually changing medical practices by enabling continuous and 
noninvasive tracking of physiological and biochemical information. With the rise of big data and 
digital medicine, next-generation electronic skin (e-skin) will be able to use artificial intelligence 
(AI) to optimize its design as well as uncover user-personalized health profiles. Recent multimodal 
e-skin platforms have already employed machine learning (ML) algorithms for autonomous data 
analytics. Unfortunately, there is a lack of appropriate AI protocols and guidelines for e-skin 
devices, resulting in overly complex models and non-reproducible conclusions for simple 
applications. This review aims to present AI technologies in e-skin hardware and assess their 
potential for new inspired integrated platform solutions. We outline recent breakthroughs in AI 
strategies and their applications in engineering e-skins as well as understanding health information 
collected by e-skins, highlighting the transformative deployment of AI in robotics, prosthetics, 
virtual reality, and personalized healthcare. We also discuss the challenges and prospects of AI-
powered e-skins as well as predictions for the future trajectory of smart e-skins. 
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1. Introduction 

Electronic skin (e-skin) refers to integrated electronics that mimic and surpass the functionalities 
of human skin. Due to their flexible and conformable nature, e-skins may be placed on various 
robotic and human bodily locations for continuous biosignal monitoring, rivaling bulky medical 
equipment in the fields of robotics and prosthetics1,2. Engineered for self-contained operational 
frameworks, e-skins act as human-machine interfaces for smart bandages3, wristbands4, tattoo-like 
stickers1, textiles5, rings6, face masks7, as well as customized smart socks and shoes8 for various 
applications. Compared with conventional rigid devices, soft e-skin patches seamlessly interface 
with the skin, achieving a conformal and stable contact that minimizes motion-induced artifacts 
and wearing discomfort9. The convenience and flexibility of applying these electronic patches to 
any target location, while continuously and noninvasively measuring multiplexed signals via 
mobile connectivity, has surpassed conventional point-of-care to become an ideal form of wearable 
systems. With the increasing demands for remote and at-home care, e-skins have been applied for 
personal fitness4,10, virtual reality11,12, telemedicine and early disease detection13,14, as well as 
COVID-19 tracing and monitoring15,16. 

While emerging e-skin is revolutionizing robotics and medical practices by continuously 
monitoring multimodal data17, data analysis is playing an increasingly important role for 
interpreting the large, complex biological profiles generated from various sensors. Conventional 
analysis of e-skin data largely relies on human supervision, where signal processing and data 
evaluation is time-consuming and interpreted from a restricted point of view1,4,5. There is an unmet 
demand between e-skin hardware and efficient data analysis solutions. Recent developments in 
deep learning have permitted the evaluation and even generation of big data for health 
applications18. Artificial intelligence (AI) can reveal medical insights that are challenging to 
acquire with traditional data-analytics while providing accurate predictions that can mimic or even 
surpass human expertise19–21. AI together with the rapidly growing interest in health monitoring 
and remote robotics have become the main catalyst pushing forward advanced e-skin innovations.  

This review details the recent developments of e-skin technologies with a particular focus on AI 
(Fig. 1 and Table 1). We first present the general machine learning (ML) pipeline for e-skin 
applications, along with a summary of emerging sensors. We then discuss how machine 
intelligence could revolutionize the field of e-skin by optimizing manual designs and facilitating 
high-accuracy task assistance and decision-making. We then highlight use cases for AI-powered 
e-skins in human-machine interfaces (HMI) and personalized healthcare. Finally, we will discuss 
the challenges and prospects for e-skins in the era of AI and big data. 

2. Emerging Sensor Landscape in E-skins for Data Acquisition 

In a typical ML pipeline (Fig. 1), raw data collected from e-skins will first be preprocessed for 
feature extraction. Popular preprocessing techniques include filtering, smoothing, downsampling 
with a sliding window, dimensionality reduction, as well as baseline removal and normalization22. 
An ML algorithm is then selected for the specific objective (Table 1), which can be supervised or 
unsupervised, classification or regression, discriminative or generative22. During model selection, 



one needs to account for data availability20. While simple models may struggle to represent the 
expected trends, complex models on simple datasets may lead to non-reproducible conclusions, 
particularly in health applications when a small dataset may be specific to a particular demographic.  

Training of an intelligent ML system requires a substantial amount of high-quality data. Unlike 
conventional clinical laboratory tests that are performed discretely and infrequently, emerging 
wearable sensors provide the ability for continuous acquisition of digitalized data with multiplexed 
sensors, allowing for more personalized care by analyzing deviations in individual baselines23. 
This approach greatly mitigates the biases from environmental factors such as diet, age, stress, and 
drug use, yielding a more appropriate and accurate medical diagnostic tool based on the individual 
rather than population-level statistics. Here we focus on the two primary sensing domains in e-
skin platforms (Fig. 2), namely physical and biochemical sensors, highlighting their key usage and 
applications. 

Strain and pressure sensing 

A commonly integrated sensor, strain sensors track the resistance of electronic materials under 
deformations. These sensors enable the detection of large distortions from bodily motions24 and 
small deviations for tactile perception25. As another motion sensing mechanism, pressure sensors 
utilize piezoresistive materials or capacitors with a pressure cavity. Similar to strain sensors, 
pressure sensors could be customized to perform pressure mapping26,27, user interactive 
visualization28,29, as well as tactile sensing30,31. 

To fully mimic skin sensations, strain and pressure sensors are often combined for haptic interfaces 
in HMI applications11. When placed near arteries, strain and pressure sensors can detect vital signs 
such as blood pressure and heart rate variability32. Recent studies have also utilized piezoelectric 
sensor arrays, which capture acoustic vibrations from tissue for blood pressure monitoring and 
imaging applications33–35. 

Temperature monitoring 

While elevated core body temperatures often result from infections and overheating, a decreased 
temperature can lead to faltered physiological systems and even organ failure. Although e-skin 
sensors are commonly applied to monitor skin surface temperature, arrays of sensors could be used 
in conjunction to minimize local deviations and display an accurate temperature profile36. Further 
studies have investigated correlating skin surface temperatures to core body profiles37. In addition, 
temperature data is of significance for calibrating biochemical sensors, as chemical reactions are 
sensitive to their operating temperature38. 

Electrophysiology 

Electrophysiology refers to measuring the electrical activities of tissues and organs. Common skin-
interfaced biopotential modalities involve electrocardiography (ECG)39, electromyography 
(EMG)40,41, and electroencephalography (EEG)42,43. These signals are measured by placing arrays 
of electrodes on the skin at different locations. E-skin-based electrophysiology sensors commonly 



show high performance due to the conformal contact between the soft e-skin and body with a low 
contact impedance. 

Biochemical sensing 

E-skin-based biochemical sensors have been widely applied to analyze molecular biomarkers (e.g., 
electrolytes44, metabolites4, amino acids10, neurotransmitters45, and proteins46) in human biofluids 
including sweat4,10,13,47, saliva48, and interstitial fluids49. Common biosensing signal transduction 
strategies include electrochemical and optical detection mechanisms50. These sensors can be 
applied for a wide range of biomedical applications including fitness tracking, metabolic 
monitoring4, cystic fibrosis diagnosis44, gout management13, and stress assessment51. 

Substance monitoring 

In addition to natural biofluid components, e-skins can also detect substances that are extrinsic to 
the normal metabolism such as drugs52 (e.g., vancomycin53 and levodopa54,55), alcohol56,57, 
caffeine58, and heavy metals59. By focusing on personalized pharmacokinetics instead of 
population studies, continuous therapeutic drug monitoring can improve treatment outcomes and 
reduce side effects through dosage adjustments, which are especially important for drugs with 
narrow therapeutic windows52. Moreover, e-skin sensors can serve as a rapid screening tool for 
drug abuse60,61. 

Gas sensors 

Human breath contains rich molecular information and could provide a noninvasive health profile 
like biofluids. Many volatile organic compounds (VOCs) in the breath are diagnostic biomarkers 
for infectious, metabolic, and genetic diseases62,63; For example, breath carbon monoxide is linked 
to neonatal jaundice and breath ammonia and nitric oxide are connected to asthma64. Integrated 
sensor arrays known as electronic noses (e-noses) have been developed to detect humidity, VOCs 
and other gas components in exhaled breath and the surrounding environment65. Combined with 
ML, these sensors can distinguish complex chemical signatures66,67, and have been employed for 
breath-based individual authentication68, soil nitrogen assessment69, and evaluating food 
freshness70. 

Environmental monitoring 

Environmental risk factors, including chemical threats and pathogenic biohazards, pose a risk to 
both the human body and safe robotic operations. AI-powered e-skins have expanded their scope 
to encompass not only monitoring the human body but also the surrounding environment. During 
remote operations, e-skin systems can detect trace amounts of dangerous compounds and provide 
environmental feedback without human exposure2. A combination of biochemical sensors was 
integrated into an e-skin patch attached to a robotic arm that could detect hazardous materials 
including nitroaromatic explosives, pesticides, nerve agents, and infectious pathogens with 
autonomous ML-based decision-making algorithms2. 

3. AI-generated e-skin 



Human skin possesses outstanding mechanical properties, including flexibility, stretchability, 
toughness, along with multifunctional sensing abilities. However, there are many unsolved 
material challenges to replicating key properties in artificial skin71. AI has been proposed to 
optimize materials discovery and sensor designs to autonomously redesign new e-skin patches71,72. 
AI can be integrated into the materials design process in three phases (Fig. 3). The first phase 
involves model prediction and patch design based on functional requirements: size, weight, 
lifetime, cost, and other material specifications; the second phase entails computational modeling 
and experimental validation; and lastly, the improvement of current databases and model 
accuracies based on the results. 

Emerging materials and e-skin designs 

The conventional selection of substrate materials typically involves natural materials such as 
cotton and silk, which are known for their biocompatibility, low-cost, and comfort. However, 
natural materials have inherent limitations in stretchability and tunability. Material scientists and 
chemists consequently synthesize soft materials based on a combination of manual designs, 
drawing inspiration from nature, and leveraging previous material examples as references73–75. 
Some material design strategies include ultrathin tattoo-like substrates1, applying serpentine 
interconnects76, and using nature-inspired skin adhesion to realize high fiducial signal collection77. 
Meanwhile, these materials and designs require extra validation to characterize their properties, 
and many synthetic processes involve toxic precursors and require careful biocompatibility tests. 

With a diverse availability of material candidates, designing or selecting a material with desired 
properties for a specified task is becoming increasingly challenging78. ML provides an attractive 
pathway to explore new materials and identify promising candidates with targeted properties, 
including alloy materials79, nanoparticle synthesis80, and electronic materials81. To date, a number 
of publicly available databases have been launched for simulating functional materials and 
recipes71. Moreover, ML can also be used to optimize and explore material synthesis, such as 
extracting text from scientific literature and giving synthesis protocol suggestions82,83. 

AI can help select and optimize fabrication methods based on material characteristics. Additionally, 
ML is can assist in quality control during mass fabrication, such as with jet printing of electronic 
circuits84. In addition to materials and fabrication methods, ML is also capable of optimizing e-
skin designs. For example, a ML-based circuit designer has enabled transistor sizing adjustments 
using graph convolutional neural networks85. While conventional e-skin designs from planar 
designs typically do not conform to curvy surfaces86, ML can guide structural designs of e-skins 
by finding kirigami designs for 3D shape-adaptive e-skins and pixelated planar elastomeric 
membranes more efficiently than mechanical simulations87,88.  

As most data from material experiments are discrete and noisy with high variance, it is necessary 
to preprocess the data through interpolating missing data and rebalancing biased training sets89,90. 
Additionally, many material science fields are not data-rich, and anthropogenic biases in the 
limited dataset may hinder model generalization90. This can be particularly true for collecting data 



about novel materials for human subjects. It is anticipated that a more standardized materials 
dataset and pipeline will speed up materials development and discovery72. 

Signal processing and augmented sensor performance 

While traditional intuition-driven sensors are based on situation-specific experimental trials and 
time-consuming numerical simulations, ML algorithms can search for optimal sensor architectures 
as a function of required material properties with an accelerated and efficient prediction time66,91. 
In addition to conventional task-specific and labor-intensive signal processing, ML is capable of 
fast, robust data analysis to provide transferrable frameworks under different initial conditions. 
For example, ML can perform signal denoising92, multi-source separation93, artefact identification 
and elimination94. Two crucial guidelines for e-skin sensors are sensitivity and selectivity to the 
target biomarker. Indistinctive signal-to-noise ratios and overlapping detection between targets 
and interferents are two main bottlenecks for applying sensors for trace-level molecular detections 
in complex biomatrices. Substrates with similar structures to the target in biofluids could lead to 
confounding results. ML has been illustrated to improve the specificity and sensing limit of 
detection in multimodal sensing95. Many biochemical sensors involve enzymes that have a narrow 
working range, while AI algorithms could surpass signal saturation and calibrate non-linear 
sensors in a dynamic testing environment96. 

Motion artifacts are another major source for background noise in e-skins. While extensive analog 
and digital signal processing techniques have been applied to reduce artifacts and improve data 
quality39,97, they typically involve manual circuit designs and simulations, which entail high costs 
and are not easily expandable to different scenarios. ML can be used for precise data acquisition 
by compensating noise and defects in wearable sensors98. In addition, data acquisition hardware 
can be fundamentally redesigned for optimal sensing with an intelligent platform67,99. The 
improved sensing capabilities as well as compact systems will fundamentally enhance sensor 
performance through iterative analysis of data-driven sensing outcomes91. 

4. AI-powered e-skin for HMIs 

HMIs enable the interaction between users and robotics, and have become crucial in remote robotic 
teleoperations. As the demand for precise and intuitive robotic control continues to grow, research 
has been turning its attention from conventional control theory towards a more immersive and 
interactive interfacing platform. The emerging AI-powered e-skins are creating new paradigms for 
robotic control and human commanded perception (Fig. 4)100,101. AI could quickly analyze 
multimodal data from e-skin patches and make autonomous decisions to manipulate robotics and 
provide human aid, which has already bridged the gap between human and machine interactions.  

Tactile perception 

Tactile perception decodes and transmits physical information to a computer system about hand 
movements, gestures, and force recognition102. The associated robotics can then accomplish tasks 
such as object grasping103, shape detection2, and object identification104. Haptic sensors are 
therefore widely adopted as a fundamental element for e-skin based HMI systems, which are 



usually built with arrays of strain and pressure sensors or electrophysiology electrodes such as 
surface EMG electrodes to capture complex hand movements41,102,105,106, producing a large 
quantity of continuous data. Real-time haptic perception with the aid of AI has made tremendous 
progress in dynamic whole-body movements106, gesture interpretation107, tactile recognition105,108, 
as well as object manipulation and detection109. 

Prosthetics and robotic feedback 

Developing prostheses that rehabilitate motion for people with disabilities is a crucial goal in 
machine intelligence. Prosthetics typically involve a large sensing area with robotic feedback, 
where the e-skin extracts motion or audio data and ML algorithms analyze and control robotic 
operations accordingly. Strain and pressure sensors are fundamental components for actuators and 
grippers in robotics, enabling tactile feedback for enhanced functionality105,110. A variety of 
prosthetic solutions have been developed for different scenarios, including facial expressions111, 
robotic control and feedback2, translation of sign language into speech112, personalized 
exoskeleton walking assistance113, as well as providing steering and navigation assistance for 
people with impaired vision114. 

Smart robotic hands for prosthetics can also be applied for task assistance in healthy people. For 
example, a nanomesh-based e-skin integrated with meta-learning could assist rapid keyboard 
typing with a few-shot dataset103. Smart e-skin also has the potential for driving assistance by 
monitoring the driver’s state and preventing sleep deprivation-related accidents115, which provides 
an alternative solution for vehicle automation. 

Hearing aid and natural language processing (NLP) 

Verbal communication with machines is another promising e-skin application that relies on AI, 
where a voice-user interface leveraging NLP is highly intuitive and convenient. Numerous studies 
have developed resonant acoustic sensors in e-skin for voice recognition116, vocal fatigue 
quantification117, and voice control of intelligent vehicles118. These sensors integrate resistive or 
piezoelectric membranes as sensing components116,119,120, which converts human hearing range of 
around 20 Hz to 20 kHz. The customized frequency filtering can identify physical activities with 
different intrinsic frequency bands119, or filter acoustic vibrations against human perspirations and 
background noise121. Voice sensors may also serve as a security device for biometric 
authentication120. 

Virtual and augmented reality 

Virtual reality (VR) and augmented reality (AR) create a virtual environment where visual and 
auditory stimuli replicate sensations in the physical world11. E-skin provides an additional 
sensation of touch due to its unique skin interface122. For example, wireless actuators could be 
integrated in e-skins for programmed localized mechanical vibrations11. Such mechanical feedback 
can also form a closed-loop HMI system for motion capturing and vivid haptic feedback when 
interacting with virtual objects123,124. To further implement gesture controls for VR, a textile glove 
was developed with ML algorithms to classify hand patterns in various VR games125. AI could 



accelerate machine vision processing by utilizing a simple image sensor array matrix126, 
empowering a high frame rate in VR visualizations. Additionally, some pioneering demonstrations 
have illustrated the potential of odor generators for olfactory VR applications127. 

5. AI-powered e-skin for healthcare and diagnostics 

E-skin with arrays of integrated sensors can record the health profile of an individual in remote 
and community settings, detect aberrant physiology over time, and unveil health distributions at a 
population level. ML has aided diagnostics by identifying complex relationships between input 
physiological information and disease states18,23,128. There is a growing trend using AI-powered e-
skins to address the growing demands in health monitoring and diagnosis (Fig. 5). Emerging AI 
has shown promising capabilities in approaching expert-level diagnosis, which could reduce the 
rate of misdiagnosis and create great clinical and market potential. For complex disease syndromes 
without established biomarkers, these ML algorithms could also facilitate our understanding in 
biomarker discovery, psychological predictions, and precision therapy.  

Cardiovascular monitoring 

Heart failure can worsen progressively over days while current telemedicine tools are not sufficient 
to detect acute exacerbations. AI-powered e-skins hold the promise of specialist-level diagnosis 
for cardiac contractile dysfunction or arrhythmias129,130. E-skins can integrate multiple modalities 
and facilitate the rapid evaluation of hemodynamic consequences of heart failure131. ML has been 
widely adapted for data analysis to extract cardiac parameters, such as blood pressure 
predictions132,133 and left ventricular volume34. AI-based e-skin is anticipated to spot small and 
gradual cardiovascular changes over time and facilitate automatic diagnosis in a timely manner131. 
Such an approach will also alleviate the clinical load of physicians by reducing unnecessary 
hospital consultations. 

Stress and mental health 

Stress and mental health are significant problems for global health but their assessments rely 
heavily on subjective questionnaires. Pioneering studies for mental health predictions have been 
introduced including stress134–136 and fatigue137–139, but most studies still focus on commercial 
wearables such as watches which only monitor physical vital signs and are prone to motion 
artefacts. Several pioneering studies have demonstrated dynamic monitoring of the stress hormone 
cortisol using e-skin devices51,140. Next generation e-skins will combine physiological data with 
molecular signatures and perform multimodal data analysis141. By identifying previously 
unrecognized associations between health patterns and stress risk factors142, smart multimodal e-
skins with the aid of AI have the potential to model risk associations and unveil stress outcomes 
for mental health. 

Biomarker discovery 

The development of AI is driving advances in both medical diagnosis and fundamental studies. 
Given the quantity of data in clinical studies, ML could be a transformative technology for data-



driven biomarker discovery143. ML-based algorithms perform automatic data analysis for 
biomarker prediction, including skin disease144, dysphagia145, seizure146, and COVID-19147, where 
multiparametric monitoring based on multimodal e-skin platforms can reveal correlations between 
sensors and target outputs148. For diseases such as Parkinson’s disease where no known effective 
biomarker is available, ML has the potential to unveil underlying correlations from the multi-
dimensional data14. 

Personalized therapy 

The development of drug and metabolic monitoring using e-skins has also aided in personalized 
therapy. AI-powered e-skins could benefit drug dosage personalization, where multimodal data 
coupled with ML models can be applied to evaluate pharmacokinetics and pharmacodynamics for 
personalized dosage149,150. Additionally, dynamic treatment of a disease affected by the 
individual’s history and current course of action is well suited for the sequential decision-making 
used in reinforcement learning151. Prospective cohort studies involving physiological, 
metabolomic, environmental, and genomic data are anticipated to pave the way for the 
advancement of personalized therapy through the integration of AI-powered electronic skin. 

6. Challenges and outlook 

With the continued development and innovations in AI-powered e-skin, next generation e-skin is 
expected to aid prosthetics and the discovery of diseases, yet there remains several major 
bottlenecks including data acquisition and handling, data security, and data  generalization. 

Data handling in both quantity and quality has become a challenge for model deployment. AI-
driven data analytics are typically data-hungry, and training models with high prediction accuracy 
depends on large amounts of high-quality labeled data. Mature models such as decision trees and 
support vector machines demonstrate great accuracy and reproducibility and find extensive 
applications, yet their reliance on structured and manually labeled data poses high acquisition costs. 
In contrast, unsupervised learning unveils hidden patterns in unlabeled data, albeit with reduced 
accuracy and constrained applicability. Recent advanced models such as transformers have shown 
success in language processing and generation, but these models are of high complexity and 
require pre-training over big data sources using resource-intensive computing, with the underlying 
mechanisms still insufficiently understood. The time-continuous datastream from e-skin sensors 
carrying large amounts of unlabeled and heterogeneous data poses high demand for data 
processing and system integration. This necessitates a fast and cost-effective system for collecting 
and transmitting data to cloud-computing-based e-skins, while high-performance computing and 
storage units with low latency are required for in-situ applications23. Despite the growth in AI-
driven e-skins, comprehensive regulatory frameworks addressing data accessibility, ownership, 
and security are yet to be fully established. This is crucial as public perception of data privacy risks 
can directly influence the adoptability of wearable devices, while user acceptance to disclose their 
medical information is uncertain at present152. While latest ML algorithms such as GPT-4 models 
have been reshaping the world, the success of large language model (LLMs) stems from the 
enormous amount of publicly available Internet data, which may not apply to the privately 



restricted medical datasets. Accessing regulated medical records and data poses significant 
challenges as they are highly restricted and obtaining them entails stringent protocols and privacy 
considerations153, and data differences may potentially result in divergence from training accuracy. 
The FDA has recently updated its guidelines for handling sensitive medical data after announcing 
a new Office of Digital Transformation in 2021. Data generalization originating from built-in bias 
is another issue that could harm marginalized groups of people, which warrants special 
consideration for adopting ML models in medical practice. AI models can often make mistakes, 
but it is unknown who or what will be held responsible for controversial behaviors and outcomes 
of AI systems. Although models will become more powerful and capable over time, to what extent 
people can trust the ML predictions is still unknown153. The ability of fact-checking versus proof-
reading may be beyond the expertise of users without clinical expertise20. Studies on interpretation 
and explanation of AI may be a possible solution154. 

From an e-skin perspective, another challenge is collecting high-quality biochemical data. Dealing 
with enormous amounts of rapidly fluctuating unlabeled data during continuous health monitoring 
may have adverse effects on model learning. Minimizing motion-induced artifacts from both the 
human and robotic bodies have required a strong interface and wearing comfort, and therefore 
poses need for strict materials properties, including biocompatibility, permeability, durability, 
mechanical strength, and conformability9,22. Biocompatible and non-toxic materials with strong, 
breathable and reversible skin adhesion are highly desirable for prolonged daily wearing, where 
the durability lifetime may depend on the specific use case50. Data accuracy can be improved by 
implementing multimodal sensing using one integrated platform to reduce defects from a single 
sensor47. Moreover, despite their high correlation with multiple potential diseases155, many 
biochemical sensors struggle with low sensor stability, the necessity for frequent calibrations, and 
difficulty in detecting low-concentration biomarkers, which cannot provide as high-quality data as 
electrophysiological ones. Additionally, sensor embodiment and system integration is of concern 
when considering power sources, sensor arrays, signal processing and wireless data transmission22. 
Most integrated e-skins are powered through bulky rechargeable lithium-ion batteries; however, 
more research into wireless and low-power energy harvesting and storage is needed to develop 
fully flexible and sustainable e-skins38,156. These challenges have opened the door to exciting new 
opportunities in improving electronic sensors, optimizing patch designs, integrating cloud storage, 
protecting data privacy157, and interpreting model accuracy154. The interdisciplinary collaborations 
among materials scientists, chemists, engineers, physicians, and data scientists are crucial to 
realize the full potential of the e-skin. The emergence of AI-powered e-skin marks a new era in 
the field of robotics and healthcare and is envisioned to transform the way human interacts with 
robotics and revolutionize medical diagnostics. 
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Main Figure Captions and Tables 

 
Figure 1. Overview of AI-powered electronic skin (e-skin) and machine learning (ML) pipelines. 
E-skin provides access to human information or serves as an interface to robotics by continuous 
and noninvasive monitoring of multimodal physical and biochemical sensors. The data stream is 
constructed and transformed into a standard numerical format through data preprocessing and 
feature extraction. Based on the intrinsic data properties, different ML algorithms can be selected 
and trained, allowing for real-world applications. GPT, generative pre-trained transformer. 
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Figure 2. Emerging sensors in e-skin for health monitoring and robotics. The combination of 
physical and biochemical sensors provides access to force sensing and mapping, electrophysiology, 
as well as biochemical substances in body fluids and surroundings. 
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Figure 3. ML optimizations for e-skin designs. AI algorithms serve as an alternative pathway to 
optimize and explore materials synthesis, facilitate automatic mass-fabrication, and optimize 
current sensor limits.  
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Figure 4. AI-powered e-skin for human-machine interfaces (HMI). ML bridges the gap between 
humans and machines through task assistance, robotic control, and virtual reality. 
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Figure 5. AI-powered e-skins for personalized healthcare and predictive disease diagnostics. a, 
Cardiovascular health can be investigated through continuous monitoring of one’s cardiac 
activities (ECG, pulse waveforms, etc.) with e-skins. Integrating autonomous analysis through AI 
algorithms creates further potential for screening urgent conditions such as arrythmias. b, The 
application of AI-powered e-skin can extend to mental health which is a complex event that 
involves behavioral and physiological responses, metabolic changes, and fluctuations in a number 
of stress hormones. PTSD, post-traumatic stress disorder. c, Biomarker discovery through AI 
algorithms will further aid in finding new missing information potential links between measured 
sensor data and health status of individuals. d, Personalized therapy can be achieved by measuring 
individual’s genetic and metabolic status using e-skins to develop highly targeted medicine for 
medical treatment.  
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Table 1. Representative studies that used ML-powered electronic skin for tasks. NN, neural 
networks. CNN, convolutional neural networks. DT, decision tree. RF, random forest. SVM, 
support vector machine. LDA, linear discriminant analysis. kNN, k-nearest neighbors. MNIST, 
Modified National Institute of Standards and Technology database. 

Category E-skin 
platform 

Targeted 
parameters 

ML models Learning 
objectives 

Ref Year 

ML for e-skin 
design 

Soft 
membrane 

Shape NN 3D shapes 88 2022 

Graphene on 
polyimide 

Electrical 
conductivity DT 

Jet printing 
design 

84 2022 

Graphene 
kirigami Stretchability NN Kirigami design 87 2018 

ML for sensor 
enhancement 

E-nose VOC gas RF 
Multi-gas 
classification 

66 2022 

Stretchable 
synaptic patch 

Neuromorphic 
computing 

NN Handwritten 
digits (MNIST) 

99 2022 

Field-effect 
transistors 

Hg2+ sensors Linear regression Hg2+ sensor 
calibration 

96 2021 

Colorimetric 
strips Amine gas CNN Food freshness 70 2020 

ML for HMI 

Substrate-less 
nanomesh 

Strain at finger 
joint Transformer Hand tasks 103 2023 

Graphene 
artificial throat 

Strain from 
throat 

CNN Basic speech 
elements 

121 2023 

Stretchable 
patch 

Strain from 
throat 

NN Throat activities 119 2023 

Stretchable 
patch 

Force reception 
using fibre 
Bragg grating 
transducers 

CNN Tactile force 
mapping 

158 2022 

Smart finger 

Triboelectric 
output on 
different 
surfaces 

LDA Materials 109 2022 

Stretchable 
magnetic patch 

Force reception 
using Hall effect 
in magnetic film 

NN 
Tactile sensing 
with force self-
decoupling 

159 2021 

Flexible patch 
EMG mapping 
on forearm 

Hyperdimensional 
computing Hand gestures  102 2021 



Textiles 
Strain on 
different parts of 
body 

CNN 
Whole-body 
poses 

106 2021 

Ultrathin 
flexible patch 

Phonetic 
spectrum from 
piezoelectric 
acoustics 

Gaussian mixture 
model 

Biometric 
authentication 

120 2021 

Stretchable 
patch 

Strain at finger 
joint, hand 
gesture images 

NN for sensor, CNN 
for image 

Hand gestures 107 2020 

Stretchable 
patch 

Strain at finger 
joints 

SVM Sign-to-speech 
translation 

112 2020 

Flexible patch 

Thermal 
conductivity, 
contact pressure 
and temperature 

NN Objects 104 2020 

Stretchable 
patch 

Strain mapping 
on face kNN 

Facial 
kinematics 

111 2020 

Textile glove Full-hand strain 
distribution CNN 

Tactile 
signatures of 
hand grasp 

105 2019 

Stretchable 
patch 

EEG CNN EEG frequency 43 2019 

ML for 
healthcare 

Stretchable 
cardiac imager 

Ultrasound 
image of heart CNN Left ventricular 

volume 
34 2023 

Stretchable 
patch 

Vocal intensity 
and energy dose CNN Vocal fatigue 117 2023 

Microfluidic 
skin patch 

Heart rate, 
alcohol Linear regression 

Behavior 
impairment 

57 2023 

Graphene 
tattoos Pulse on wrist AdaBoost 

Systolic and 
diastolic 
pressure 

133 2022 

Radio sensor Night nocturnal 
breathing signals 

NN Parkinson’s 
disease 

14 2022 

Commercial 
EEG helmet EEG CNN Drowsiness  139 2021 

Textiles Pulse on wrist NN 
Systolic and 
diastolic 
pressure 

132 2021 



Smart bandage 
Vital signs from 
throat CNN 

Cough-like 
events for 
COVID-19 

147 2021 

Epidermal 
electronic 
tattoos 

ECG, respiration 
and GSR DT Fatigue 137 2020 

Textiles Strain on leg RF Running fatigue 138 2020 

Commercial 
leads ECG CNN Stress 136 2018 

Commercial 
wrist watch 

Vital signs on 
wrist SVM Stress 135 2017 

Commercial 
wrist watch 
and straps 

Vital signs on 
wrist Logistic regression Stress 134 2012 
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