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Abstract:

Skin-interfaced electronics is gradually changing medical practices by enabling continuous and
noninvasive tracking of physiological and biochemical information. With the rise of big data and
digital medicine, next-generation electronic skin (e-skin) will be able to use artificial intelligence
(AI) to optimize its design as well as uncover user-personalized health profiles. Recent multimodal
e-skin platforms have already employed machine learning (ML) algorithms for autonomous data
analytics. Unfortunately, there is a lack of appropriate Al protocols and guidelines for e-skin
devices, resulting in overly complex models and non-reproducible conclusions for simple
applications. This review aims to present Al technologies in e-skin hardware and assess their
potential for new inspired integrated platform solutions. We outline recent breakthroughs in Al
strategies and their applications in engineering e-skins as well as understanding health information
collected by e-skins, highlighting the transformative deployment of Al in robotics, prosthetics,
virtual reality, and personalized healthcare. We also discuss the challenges and prospects of Al-
powered e-skins as well as predictions for the future trajectory of smart e-skins.
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1. Introduction

Electronic skin (e-skin) refers to integrated electronics that mimic and surpass the functionalities
of human skin. Due to their flexible and conformable nature, e-skins may be placed on various
robotic and human bodily locations for continuous biosignal monitoring, rivaling bulky medical
equipment in the fields of robotics and prosthetics!?. Engineered for self-contained operational
frameworks, e-skins act as human-machine interfaces for smart bandages?, wristbands*, tattoo-like
stickers!, textiles®, rings®, face masks’, as well as customized smart socks and shoes® for various
applications. Compared with conventional rigid devices, soft e-skin patches seamlessly interface
with the skin, achieving a conformal and stable contact that minimizes motion-induced artifacts
and wearing discomfort®. The convenience and flexibility of applying these electronic patches to
any target location, while continuously and noninvasively measuring multiplexed signals via
mobile connectivity, has surpassed conventional point-of-care to become an ideal form of wearable
systems. With the increasing demands for remote and at-home care, e-skins have been applied for
personal fitness*!?, virtual reality!"'?, telemedicine and early disease detection!>'4 as well as
COVID-19 tracing and monitoring'>-1®,

While emerging e-skin is revolutionizing robotics and medical practices by continuously
monitoring multimodal data!’, data analysis is playing an increasingly important role for
interpreting the large, complex biological profiles generated from various sensors. Conventional
analysis of e-skin data largely relies on human supervision, where signal processing and data
evaluation is time-consuming and interpreted from a restricted point of view!*>. There is an unmet
demand between e-skin hardware and efficient data analysis solutions. Recent developments in
deep learning have permitted the evaluation and even generation of big data for health
applications!®. Artificial intelligence (AI) can reveal medical insights that are challenging to
acquire with traditional data-analytics while providing accurate predictions that can mimic or even
surpass human expertise!®2!. Al together with the rapidly growing interest in health monitoring
and remote robotics have become the main catalyst pushing forward advanced e-skin innovations.

This review details the recent developments of e-skin technologies with a particular focus on Al
(Fig. 1 and Table 1). We first present the general machine learning (ML) pipeline for e-skin
applications, along with a summary of emerging sensors. We then discuss how machine
intelligence could revolutionize the field of e-skin by optimizing manual designs and facilitating
high-accuracy task assistance and decision-making. We then highlight use cases for Al-powered
e-skins in human-machine interfaces (HMI) and personalized healthcare. Finally, we will discuss
the challenges and prospects for e-skins in the era of Al and big data.

2. Emerging Sensor Landscape in E-skins for Data Acquisition

In a typical ML pipeline (Fig. 1), raw data collected from e-skins will first be preprocessed for
feature extraction. Popular preprocessing techniques include filtering, smoothing, downsampling
with a sliding window, dimensionality reduction, as well as baseline removal and normalization??.
An ML algorithm is then selected for the specific objective (Table 1), which can be supervised or
unsupervised, classification or regression, discriminative or generative??. During model selection,



one needs to account for data availability?®. While simple models may struggle to represent the
expected trends, complex models on simple datasets may lead to non-reproducible conclusions,
particularly in health applications when a small dataset may be specific to a particular demographic.

Training of an intelligent ML system requires a substantial amount of high-quality data. Unlike
conventional clinical laboratory tests that are performed discretely and infrequently, emerging
wearable sensors provide the ability for continuous acquisition of digitalized data with multiplexed
sensors, allowing for more personalized care by analyzing deviations in individual baselines®>.
This approach greatly mitigates the biases from environmental factors such as diet, age, stress, and
drug use, yielding a more appropriate and accurate medical diagnostic tool based on the individual
rather than population-level statistics. Here we focus on the two primary sensing domains in e-
skin platforms (Fig. 2), namely physical and biochemical sensors, highlighting their key usage and
applications.

Strain and pressure sensing

A commonly integrated sensor, strain sensors track the resistance of electronic materials under
deformations. These sensors enable the detection of large distortions from bodily motions®* and
small deviations for tactile perception®. As another motion sensing mechanism, pressure sensors
utilize piezoresistive materials or capacitors with a pressure cavity. Similar to strain sensors,
pressure sensors could be customized to perform pressure mapping?®2’, user interactive

visualization®®?’, as well as tactile sensing’*-!,

To fully mimic skin sensations, strain and pressure sensors are often combined for haptic interfaces
in HMI applications!!'. When placed near arteries, strain and pressure sensors can detect vital signs
such as blood pressure and heart rate variability®2. Recent studies have also utilized piezoelectric
sensor arrays, which capture acoustic vibrations from tissue for blood pressure monitoring and
imaging applications®*35,

Temperature monitoring

While elevated core body temperatures often result from infections and overheating, a decreased
temperature can lead to faltered physiological systems and even organ failure. Although e-skin
sensors are commonly applied to monitor skin surface temperature, arrays of sensors could be used
in conjunction to minimize local deviations and display an accurate temperature profile’®. Further
studies have investigated correlating skin surface temperatures to core body profiles®’. In addition,
temperature data is of significance for calibrating biochemical sensors, as chemical reactions are
sensitive to their operating temperature3®,

Electrophysiology

Electrophysiology refers to measuring the electrical activities of tissues and organs. Common skin-
interfaced biopotential modalities involve electrocardiography (ECG)*, electromyography
(EMG)*#!and electroencephalography (EEG)*>*3. These signals are measured by placing arrays
of electrodes on the skin at different locations. E-skin-based electrophysiology sensors commonly



show high performance due to the conformal contact between the soft e-skin and body with a low
contact impedance.

Biochemical sensing

E-skin-based biochemical sensors have been widely applied to analyze molecular biomarkers (e.g.,
electrolytes*, metabolites*, amino acids'®, neurotransmitters*’, and proteins*®) in human biofluids
including sweat*!'%1347 saliva*®, and interstitial fluids**. Common biosensing signal transduction
strategies include electrochemical and optical detection mechanisms>®. These sensors can be
applied for a wide range of biomedical applications including fitness tracking, metabolic
monitoring®, cystic fibrosis diagnosis**, gout management'3, and stress assessment>!.

Substance monitoring

In addition to natural biofluid components, e-skins can also detect substances that are extrinsic to
the normal metabolism such as drugs® (e.g., vancomycin® and levodopa®*>?), alcohol’®%7,
caffeine®®, and heavy metals®. By focusing on personalized pharmacokinetics instead of
population studies, continuous therapeutic drug monitoring can improve treatment outcomes and
reduce side effects through dosage adjustments, which are especially important for drugs with
narrow therapeutic windows>2. Moreover, e-skin sensors can serve as a rapid screening tool for

drug abuse®9!,

Gas sensors

Human breath contains rich molecular information and could provide a noninvasive health profile
like biofluids. Many volatile organic compounds (VOCs) in the breath are diagnostic biomarkers
for infectious, metabolic, and genetic diseases®>%3; For example, breath carbon monoxide is linked
to neonatal jaundice and breath ammonia and nitric oxide are connected to asthma®*. Integrated
sensor arrays known as electronic noses (e-noses) have been developed to detect humidity, VOCs
and other gas components in exhaled breath and the surrounding environment®. Combined with
ML, these sensors can distinguish complex chemical signatures®®®’, and have been employed for
breath-based individual authentication®®, soil nitrogen assessment®®, and evaluating food
freshness’.

Environmental monitoring

Environmental risk factors, including chemical threats and pathogenic biohazards, pose a risk to
both the human body and safe robotic operations. Al-powered e-skins have expanded their scope
to encompass not only monitoring the human body but also the surrounding environment. During
remote operations, e-skin systems can detect trace amounts of dangerous compounds and provide
environmental feedback without human exposure’. A combination of biochemical sensors was
integrated into an e-skin patch attached to a robotic arm that could detect hazardous materials
including nitroaromatic explosives, pesticides, nerve agents, and infectious pathogens with
autonomous ML-based decision-making algorithms?.

3. Al-generated e-skin



Human skin possesses outstanding mechanical properties, including flexibility, stretchability,
toughness, along with multifunctional sensing abilities. However, there are many unsolved
material challenges to replicating key properties in artificial skin’!. AI has been proposed to
optimize materials discovery and sensor designs to autonomously redesign new e-skin patches’!"2.
Al can be integrated into the materials design process in three phases (Fig. 3). The first phase
involves model prediction and patch design based on functional requirements: size, weight,
lifetime, cost, and other material specifications; the second phase entails computational modeling
and experimental validation; and lastly, the improvement of current databases and model
accuracies based on the results.

Emerging materials and e-skin designs

The conventional selection of substrate materials typically involves natural materials such as
cotton and silk, which are known for their biocompatibility, low-cost, and comfort. However,
natural materials have inherent limitations in stretchability and tunability. Material scientists and
chemists consequently synthesize soft materials based on a combination of manual designs,
drawing inspiration from nature, and leveraging previous material examples as references”7>.
Some material design strategies include ultrathin tattoo-like substrates!, applying serpentine
interconnects’®, and using nature-inspired skin adhesion to realize high fiducial signal collection””.
Meanwhile, these materials and designs require extra validation to characterize their properties,
and many synthetic processes involve toxic precursors and require careful biocompatibility tests.

With a diverse availability of material candidates, designing or selecting a material with desired
properties for a specified task is becoming increasingly challenging’®. ML provides an attractive
pathway to explore new materials and identify promising candidates with targeted properties,
including alloy materials’®, nanoparticle synthesis®, and electronic materials®!. To date, a number
of publicly available databases have been launched for simulating functional materials and
recipes’!. Moreover, ML can also be used to optimize and explore material synthesis, such as

extracting text from scientific literature and giving synthesis protocol suggestions3%3.

Al can help select and optimize fabrication methods based on material characteristics. Additionally,
ML is can assist in quality control during mass fabrication, such as with jet printing of electronic
circuits®*. In addition to materials and fabrication methods, ML is also capable of optimizing e-
skin designs. For example, a ML-based circuit designer has enabled transistor sizing adjustments
using graph convolutional neural networks®. While conventional e-skin designs from planar
designs typically do not conform to curvy surfaces®®, ML can guide structural designs of e-skins
by finding kirigami designs for 3D shape-adaptive e-skins and pixelated planar elastomeric
membranes more efficiently than mechanical simulations®7-8,

As most data from material experiments are discrete and noisy with high variance, it is necessary
to preprocess the data through interpolating missing data and rebalancing biased training sets®%%,
Additionally, many material science fields are not data-rich, and anthropogenic biases in the
limited dataset may hinder model generalization®. This can be particularly true for collecting data



about novel materials for human subjects. It is anticipated that a more standardized materials
dataset and pipeline will speed up materials development and discovery’?.

Signal processing and augmented sensor performance

While traditional intuition-driven sensors are based on situation-specific experimental trials and
time-consuming numerical simulations, ML algorithms can search for optimal sensor architectures
as a function of required material properties with an accelerated and efficient prediction time®6-°!,
In addition to conventional task-specific and labor-intensive signal processing, ML is capable of
fast, robust data analysis to provide transferrable frameworks under different initial conditions.
For example, ML can perform signal denoising®?, multi-source separation®3, artefact identification
and elimination®®. Two crucial guidelines for e-skin sensors are sensitivity and selectivity to the
target biomarker. Indistinctive signal-to-noise ratios and overlapping detection between targets
and interferents are two main bottlenecks for applying sensors for trace-level molecular detections
in complex biomatrices. Substrates with similar structures to the target in biofluids could lead to
confounding results. ML has been illustrated to improve the specificity and sensing limit of
detection in multimodal sensing®. Many biochemical sensors involve enzymes that have a narrow
working range, while Al algorithms could surpass signal saturation and calibrate non-linear
sensors in a dynamic testing environment’®.

Motion artifacts are another major source for background noise in e-skins. While extensive analog
and digital signal processing techniques have been applied to reduce artifacts and improve data
quality3®?7, they typically involve manual circuit designs and simulations, which entail high costs
and are not easily expandable to different scenarios. ML can be used for precise data acquisition
by compensating noise and defects in wearable sensors”®. In addition, data acquisition hardware
can be fundamentally redesigned for optimal sensing with an intelligent platform®”-*°. The
improved sensing capabilities as well as compact systems will fundamentally enhance sensor
performance through iterative analysis of data-driven sensing outcomes®!.

4. Al-powered e-skin for HMIs

HMIs enable the interaction between users and robotics, and have become crucial in remote robotic
teleoperations. As the demand for precise and intuitive robotic control continues to grow, research
has been turning its attention from conventional control theory towards a more immersive and
interactive interfacing platform. The emerging Al-powered e-skins are creating new paradigms for
robotic control and human commanded perception (Fig. 4)!1°%191 AT could quickly analyze
multimodal data from e-skin patches and make autonomous decisions to manipulate robotics and
provide human aid, which has already bridged the gap between human and machine interactions.

Tactile perception

Tactile perception decodes and transmits physical information to a computer system about hand
movements, gestures, and force recognition'??. The associated robotics can then accomplish tasks
such as object grasping!®®, shape detection?, and object identification'*. Haptic sensors are
therefore widely adopted as a fundamental element for e-skin based HMI systems, which are



usually built with arrays of strain and pressure sensors or electrophysiology electrodes such as
surface EMG electrodes to capture complex hand movements*!:192.105106 " producing a large
quantity of continuous data. Real-time haptic perception with the aid of Al has made tremendous
progress in dynamic whole-body movements!'®, gesture interpretation!?’, tactile recognition!?>108,

as well as object manipulation and detection!?’.

Prosthetics and robotic feedback

Developing prostheses that rehabilitate motion for people with disabilities is a crucial goal in
machine intelligence. Prosthetics typically involve a large sensing area with robotic feedback,
where the e-skin extracts motion or audio data and ML algorithms analyze and control robotic
operations accordingly. Strain and pressure sensors are fundamental components for actuators and
grippers in robotics, enabling tactile feedback for enhanced functionality!'>'1°, A variety of
prosthetic solutions have been developed for different scenarios, including facial expressions!'!!,
robotic control and feedback?, translation of sign language into speech!'!?, personalized
exoskeleton walking assistance'!®, as well as providing steering and navigation assistance for
people with impaired vision'!4.

Smart robotic hands for prosthetics can also be applied for task assistance in healthy people. For
example, a nanomesh-based e-skin integrated with meta-learning could assist rapid keyboard
typing with a few-shot dataset'®’. Smart e-skin also has the potential for driving assistance by
monitoring the driver’s state and preventing sleep deprivation-related accidents!!>

an alternative solution for vehicle automation.

, which provides

Hearing aid and natural language processing (NLP)

Verbal communication with machines is another promising e-skin application that relies on Al,
where a voice-user interface leveraging NLP is highly intuitive and convenient. Numerous studies
have developed resonant acoustic sensors in e-skin for voice recognition!'®, vocal fatigue
quantification'!”, and voice control of intelligent vehicles!!®. These sensors integrate resistive or
piezoelectric membranes as sensing components'!®11%120 which converts human hearing range of
around 20 Hz to 20 kHz. The customized frequency filtering can identify physical activities with
different intrinsic frequency bands!!®, or filter acoustic vibrations against human perspirations and
background noise!?!. Voice sensors may also serve as a security device for biometric

authentication'??,
Virtual and augmented reality

Virtual reality (VR) and augmented reality (AR) create a virtual environment where visual and
auditory stimuli replicate sensations in the physical world'!. E-skin provides an additional
sensation of touch due to its unique skin interface!?2. For example, wireless actuators could be
integrated in e-skins for programmed localized mechanical vibrations!'. Such mechanical feedback
can also form a closed-loop HMI system for motion capturing and vivid haptic feedback when
interacting with virtual objects'?*124, To further implement gesture controls for VR, a textile glove
was developed with ML algorithms to classify hand patterns in various VR games!?. Al could



accelerate machine vision processing by utilizing a simple image sensor array matrix!2S,

empowering a high frame rate in VR visualizations. Additionally, some pioneering demonstrations
have illustrated the potential of odor generators for olfactory VR applications'?’.

5. Al-powered e-skin for healthcare and diagnostics

E-skin with arrays of integrated sensors can record the health profile of an individual in remote
and community settings, detect aberrant physiology over time, and unveil health distributions at a
population level. ML has aided diagnostics by identifying complex relationships between input
physiological information and disease states'323!28_ There is a growing trend using Al-powered e-
skins to address the growing demands in health monitoring and diagnosis (Fig. 5). Emerging Al
has shown promising capabilities in approaching expert-level diagnosis, which could reduce the
rate of misdiagnosis and create great clinical and market potential. For complex disease syndromes
without established biomarkers, these ML algorithms could also facilitate our understanding in
biomarker discovery, psychological predictions, and precision therapy.

Cardiovascular monitoring

Heart failure can worsen progressively over days while current telemedicine tools are not sufficient
to detect acute exacerbations. Al-powered e-skins hold the promise of specialist-level diagnosis
for cardiac contractile dysfunction or arrhythmias'?%!3°, E-skins can integrate multiple modalities
and facilitate the rapid evaluation of hemodynamic consequences of heart failure!3!. ML has been
widely adapted for data analysis to extract cardiac parameters, such as blood pressure
predictions'3>133 and left ventricular volume*. Al-based e-skin is anticipated to spot small and
gradual cardiovascular changes over time and facilitate automatic diagnosis in a timely manner'3!.
Such an approach will also alleviate the clinical load of physicians by reducing unnecessary
hospital consultations.

Stress and mental health

Stress and mental health are significant problems for global health but their assessments rely
heavily on subjective questionnaires. Pioneering studies for mental health predictions have been
introduced including stress'34136 and fatigue'3’'%, but most studies still focus on commercial
wearables such as watches which only monitor physical vital signs and are prone to motion
artefacts. Several pioneering studies have demonstrated dynamic monitoring of the stress hormone
cortisol using e-skin devices’!!140, Next generation e-skins will combine physiological data with
molecular signatures and perform multimodal data analysis'¥'. By identifying previously
unrecognized associations between health patterns and stress risk factors'*?, smart multimodal e-
skins with the aid of Al have the potential to model risk associations and unveil stress outcomes
for mental health.

Biomarker discovery

The development of Al is driving advances in both medical diagnosis and fundamental studies.
Given the quantity of data in clinical studies, ML could be a transformative technology for data-



driven biomarker discovery!*.

biomarker prediction, including skin disease'**, dysphagia'®’, seizure!*®, and COVID-19'%", where

ML-based algorithms perform automatic data analysis for

multiparametric monitoring based on multimodal e-skin platforms can reveal correlations between
sensors and target outputs'#®. For diseases such as Parkinson’s disease where no known effective
biomarker is available, ML has the potential to unveil underlying correlations from the multi-
dimensional data'4,

Personalized therapy

The development of drug and metabolic monitoring using e-skins has also aided in personalized
therapy. Al-powered e-skins could benefit drug dosage personalization, where multimodal data
coupled with ML models can be applied to evaluate pharmacokinetics and pharmacodynamics for
personalized dosage'*>'3°, Additionally, dynamic treatment of a disease affected by the
individual’s history and current course of action is well suited for the sequential decision-making
used in reinforcement learning!>!. Prospective cohort studies involving physiological,
metabolomic, environmental, and genomic data are anticipated to pave the way for the

advancement of personalized therapy through the integration of Al-powered electronic skin.
6. Challenges and outlook

With the continued development and innovations in Al-powered e-skin, next generation e-skin is
expected to aid prosthetics and the discovery of diseases, yet there remains several major
bottlenecks including data acquisition and handling, data security, and data generalization.

Data handling in both quantity and quality has become a challenge for model deployment. Al-
driven data analytics are typically data-hungry, and training models with high prediction accuracy
depends on large amounts of high-quality labeled data. Mature models such as decision trees and
support vector machines demonstrate great accuracy and reproducibility and find extensive
applications, yet their reliance on structured and manually labeled data poses high acquisition costs.
In contrast, unsupervised learning unveils hidden patterns in unlabeled data, albeit with reduced
accuracy and constrained applicability. Recent advanced models such as transformers have shown
success in language processing and generation, but these models are of high complexity and
require pre-training over big data sources using resource-intensive computing, with the underlying
mechanisms still insufficiently understood. The time-continuous datastream from e-skin sensors
carrying large amounts of unlabeled and heterogeneous data poses high demand for data
processing and system integration. This necessitates a fast and cost-effective system for collecting
and transmitting data to cloud-computing-based e-skins, while high-performance computing and
storage units with low latency are required for in-situ applications?®. Despite the growth in Al-
driven e-skins, comprehensive regulatory frameworks addressing data accessibility, ownership,
and security are yet to be fully established. This is crucial as public perception of data privacy risks
can directly influence the adoptability of wearable devices, while user acceptance to disclose their
medical information is uncertain at present!'>2, While latest ML algorithms such as GPT-4 models
have been reshaping the world, the success of large language model (LLMs) stems from the
enormous amount of publicly available Internet data, which may not apply to the privately



restricted medical datasets. Accessing regulated medical records and data poses significant
challenges as they are highly restricted and obtaining them entails stringent protocols and privacy
considerations'>3, and data differences may potentially result in divergence from training accuracy.
The FDA has recently updated its guidelines for handling sensitive medical data after announcing
a new Office of Digital Transformation in 2021. Data generalization originating from built-in bias
is another issue that could harm marginalized groups of people, which warrants special
consideration for adopting ML models in medical practice. AI models can often make mistakes,
but it is unknown who or what will be held responsible for controversial behaviors and outcomes
of Al systems. Although models will become more powerful and capable over time, to what extent
people can trust the ML predictions is still unknown!>3. The ability of fact-checking versus proof-
reading may be beyond the expertise of users without clinical expertise?’. Studies on interpretation
and explanation of Al may be a possible solution'>*,

From an e-skin perspective, another challenge is collecting high-quality biochemical data. Dealing
with enormous amounts of rapidly fluctuating unlabeled data during continuous health monitoring
may have adverse effects on model learning. Minimizing motion-induced artifacts from both the
human and robotic bodies have required a strong interface and wearing comfort, and therefore
poses need for strict materials properties, including biocompatibility, permeability, durability,
mechanical strength, and conformability®??. Biocompatible and non-toxic materials with strong,
breathable and reversible skin adhesion are highly desirable for prolonged daily wearing, where
the durability lifetime may depend on the specific use case®. Data accuracy can be improved by
implementing multimodal sensing using one integrated platform to reduce defects from a single
sensor*’. Moreover, despite their high correlation with multiple potential diseases!'*>, many
biochemical sensors struggle with low sensor stability, the necessity for frequent calibrations, and
difficulty in detecting low-concentration biomarkers, which cannot provide as high-quality data as
electrophysiological ones. Additionally, sensor embodiment and system integration is of concern
when considering power sources, sensor arrays, signal processing and wireless data transmission?2.
Most integrated e-skins are powered through bulky rechargeable lithium-ion batteries; however,
more research into wireless and low-power energy harvesting and storage is needed to develop
fully flexible and sustainable e-skins?%!156. These challenges have opened the door to exciting new
opportunities in improving electronic sensors, optimizing patch designs, integrating cloud storage,
protecting data privacy!®’, and interpreting model accuracy!**. The interdisciplinary collaborations
among materials scientists, chemists, engineers, physicians, and data scientists are crucial to
realize the full potential of the e-skin. The emergence of Al-powered e-skin marks a new era in
the field of robotics and healthcare and is envisioned to transform the way human interacts with
robotics and revolutionize medical diagnostics.
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Figure 1. Overview of Al-powered electronic skin (e-skin) and machine learning (ML) pipelines.
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and noninvasive monitoring of multimodal physical and biochemical sensors. The data stream is
constructed and transformed into a standard numerical format through data preprocessing and
feature extraction. Based on the intrinsic data properties, different ML algorithms can be selected
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Figure 2. Emerging sensors in e-skin for health monitoring and robotics. The combination of
physical and biochemical sensors provides access to force sensing and mapping, electrophysiology,
as well as biochemical substances in body fluids and surroundings.
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activities (ECG, pulse waveforms, etc.) with e-skins. Integrating autonomous analysis through Al
algorithms creates further potential for screening urgent conditions such as arrythmias. b, The
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algorithms will further aid in finding new missing information potential links between measured
sensor data and health status of individuals. d, Personalized therapy can be achieved by measuring
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2



Table 1. Representative studies that used ML-powered electronic skin for tasks. NN, neural
networks. CNN, convolutional neural networks. DT, decision tree. RF, random forest. SVM,
support vector machine. LDA, linear discriminant analysis. kNN, k-nearest neighbors. MNIST,
Modified National Institute of Standards and Technology database.
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