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Cortical stimulation via electrocorticography (ECoG) may be an effective
method for inducing artificial sensation in bi-directional brain-computer
interfaces (BD-BCls). However, strong electrical artifacts caused by
electrostimulation may significantly degrade or obscure neural information.
A detailed understanding of stimulation artifact propagation through relevant
tissues may improve existing artifact suppression techniques or inspire the
development of novel artifact mitigation strategies. Our work thus seeks
to comprehensively characterize and model the propagation of artifacts in
subdural ECoG stimulation. To this end, we collected and analyzed data from
eloquent cortex mapping procedures of four subjects with epilepsy who
were implanted with subdural ECoG electrodes. From this data, we observed
that artifacts exhibited phase-locking and ratcheting characteristics in the
time domain across all subjects. In the frequency domain, stimulation caused
broadband power increases, as well as power bursts at the fundamental
stimulation frequency and its super-harmonics. The spatial distribution
of artifacts followed the potential distribution of an electric dipole with a
median goodness-of-fit of R2 = 0.80 across all subjects and stimulation
channels. Artifacts as large as +£1,100 uV appeared anywhere from 4.43
to 38.34 mm from the stimulation channel. These temporal, spectral and
spatial characteristics can be utilized to improve existing artifact suppression
techniques, inspire new strategies for artifact mitigation, and aid in the
development of novel cortical stimulation protocols. Taken together, these
findings deepen our understanding of cortical electrostimulation and provide
critical design specifications for future BD-BCI systems.
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1. Introduction

Electrocorticography (ECoG) is a viable signal modality
for the development of brain-computer interfaces (BCIs). For
example, ECoG-based BCIs enabled those with severe motor
deficits to communicate (Brunner et al., 2011; Krusienski
and Shih, 2011; Vansteensel et al., 2016) or operate an arm
prosthesis (Fifer et al., 2013; Wang et al.,, 2013b). In general,
current BCI designs primarily rely on visual feedback to achieve
closed-loop operation. However, recent studies (Hiremath et al.,
2017; Lee et al., 2018) have demonstrated that electrostimulation
via subdurally implanted ECoG grids can elicit somatosensory
percepts. They suggest that ECoG-based BCIs could carry
out both motor and sensory operations, thereby achieving
a biomimetic function restoration. Preliminary results also
indicate that such bi-directional operation can improve BCI
performance by easing the learning process and making
this technology more intuitive (Flesher et al., 2017). Finally,
subdural ECoG-based interfaces also have the potential to be
designed as fully implantable systems (Geller, 2018), which
could significantly improve the viability of ECoG-based BClIs.

Bi-directional (BD)-BCI operation requires simultaneous
stimulation and recording, which poses a significant challenge
as strong electrical artifacts will inevitably propagate from
the stimulation site to the recording site. These artifacts can
obscure physiologically relevant signals or even saturate ultra-
low-power (ULP) analog front-ends, which are necessary for
the implementation of fully-implantable BCIs (Stanslaski et al.,
2009; Rouse et al., 2011). Therefore, efficient artifact suppression
strategies must be developed and employed to mitigate this
problem.

Microelectrode-based BD-BCIs (O’Doherty et al.,, 2011;
Flesher et al, 2017) address this problem by temporally
interleaving stimulation and recording. However, this approach
is suboptimal since it records data intermittently, thereby
degrading the performance of BCI decoding algorithms.
Additionally, such a BD-BCI system can only provide
intermittent feedback. Motivated by these shortcomings,
several groups developed alternative approaches. For example,
Stanslaski et al. proposed to orient the ECoG stimulation
electrodes in a way that minimizes the artifact presence at
the recording site (Stanslaski et al., 2009). Subsequently, they
applied frequency-domain filtering to remove the residual
artifacts (Stanslaski et al., 2009; Rouse et al., 2011). An adaptive
filtering approach proposed by Mendrela et al. (2016) achieves
artifact suppression by estimating the artifact contributions
and then subtracting those contributions from the signal at
the front-end. Barborica et. al have utilized an alternating
polarity stimulation method that minimizes the power at the
stimulation frequency and its super-harmonics (Barborica
et al., 2022). Recording techniques like bipolar montages can
also be used to minimize common mode artifacts between
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electrodes (Perrone-Bertolotti et al., 2020), though this method
is only applicable to artifacts coming from distant sources.
Our group has also recently developed an artifact suppression
method based on an auxiliary stimulator that steers artifacts
away from the recording site (Lim et al., 2019; Pu et al., 2020).
The advantage of this approach is that we suppress artifacts
before they reach the recording site. While fundamentally
different, these artifact mitigation strategies critically depend on
factors such as the relative orientation and the distance between
the stimulation and recording channels, the stimulation
parameters, and the electrical properties of the relevant tissues
and the electrode-tissue interface. A better understanding
of these factors can improve existing artifact suppression
techniques, inspire new strategies for artifact mitigation, and aid
the development of novel cortical stimulation protocols.

Despite the need, there have been very few attempts to
characterize artifacts resulting from ECoG stimulation. This
is surprising given the prevalence of clinical ECoG mapping
in epilepsy surgical evaluation (Phase II epilepsy monitoring).
Motivated by this knowledge gap, our preliminary work (Lim
et al.,, 2018) characterized ECoG stimulation artifacts in a single
human subject. We also hypothesized that a simple dipole
model might explain the spatial distribution of these artifacts,
as previous works suggest that conduction of neural signals
through neural tissue follows dipole volume conduction (Wood,
1982; Scherg, 1990; Boon et al., 1997; Sutherling et al., 2001;
Nunez and Srinivasan, 2006). In this article, we present the
extension of these preliminary findings to four subjects, by
performing a comprehensive analysis of ECoG stimulation
artifacts in the temporal, frequency, and spatial domains.
Additionally, we conducted a modeling study and found an
electric dipole to be an accurate model of the stimulation artifact
propagation across multiple human subjects with varying
implantation sites and ECoG electrode types. Collectively, these
findings deepen our understanding of cortical electrostimulation
and provide critical design specifications for future BD-
BCI systems.

2. Methods

2.1. Subject information and stimulation
procedure

The Institutional Review Boards of the Rancho Los
Amigos National Rehabilitation Center and the University
of California, Irvine approved this study. We conducted all
research procedures according to the Declaration of Helsinki.
Four patients undergoing Phase II epilepsy monitoring gave
written informed consent to participate in the study. Subject
1 and 3 were implanted with platinum ECoG grids (Ad-Tech,
Oak Creek, WI). Subjects 2 and 4 had platinum-iridium ECoG
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TABLE 1 Stimulation parameters and representative grid information.

Stim./grid Subject 1 Subject 2 Subject 3 Subject 4
parameters

Stimulation frequency (Hz) 50 50 50 50
Pulse width (us) 200 250 200 250
Epoch duration (s) 3 5 2 2
Amplitude (mA) 2-8 2-10 3-12 2-12
Grid vendor Integra Ad-Tech Integra Ad-Tech
Grid type Standard ~ Standard High Density High Density
Electrode spacing (mm) 10 10 3 4
Electrode diameter (mm) 4.75 4.00 2.00 2.00
Exposure diameter (mm) 1.5 2.3 1.0 1.0
Reference/ground LPG1/2  LTG19/20  Off-grid Off-grid

grids (Integra Life-Sciences, Plainsboro, NJ) implanted. The
placement and number of ECoG grids/strips, as well as the
choice of stimulation electrodes were solely guided by clinical
needs. We only analyzed the stimulation epochs from grids
that had all electrodes stimulated (representative grids). Other
implanted grid/strips were excluded because they had either
incomplete or no stimulation coverage.

We recorded clinical ECoG data at the bedside during
eloquent cortex mapping procedures. These procedures are
a standard part of Phase II epilepsy monitoring and entail
electrostimulation of cortical tissue across sequential channels
of the ECoG grids. A bipolar stimulation channel consisted of
a pair of adjacent electrodes connected to a Natus®Nicolet ™
Cortical Stimulator (Natus Medical Incorporated, Pleasanton,
CA). For each stimulation channel, the stimulator delivered a
biphasic square pulse train with equal-length anodic/cathodic
pulse width ranging from 200 to 250 s over a short stimulation
epoch. The duration of stimulation epochs varied from 2 to
5 s across subjects. The stimulation amplitude also varied
from 2 to 12 mA, typically in 2 mA increments. Note that
the choice of stimulation channels and parameters was solely
guided by clinical needs. See Table 1 for a comprehensive list
of stimulation parameters and representative grid information
for each subject. We acquired ECoG data at 512 Hz using a
Natus®Quantum™ amplifier (Natus Medical Incorporated,
Pleasanton, CA) during the entire mapping procedure and
annotated stimulation channels and epochs. This amplifier had
a £ 3 dB linear range 0.01-219 Hz for 512 Hz sampling rate.

2.2. MR-CT image segmentation and
co-registration

To aid in the artifact propagation characterization, we first
determined the coordinates of the ECoG electrodes in reference
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to the brain. Specifically, we used pre-implantation MRI (post-
explantation MRI for Subject 4) and post-implantation CT
images to co-register the ECoG electrodes with brain-segmented
MR images. For this purpose, we used the Elastix toolbox (Klein
etal., 2010; Shamonin et al., 2014), which performs non-rigid co-
registration of MRI and CT images. We used default parameters
and a normalized mutual information similarity metric. We
fixed the CT image to preserve the electrode coordinates,
while moving the MR image until it was transformed to the
CT coordinate space. We then segmented the transformed
MRI using the Mango (Lancaster et al., 2010, 2011, 2012)
segmentation plugin to prepare for co-registration with the
electrode coordinates segmented from the CT images.

The segmentation of the electrode coordinates from subject
post-implantation CT data followed the procedure described
in Wang et al. (2013a). First, to identify the electrode
locations, we thresholded the CT intensity data. For each
electrode location, this procedure generated an intensity point
cluster. Subsequently, we ran a clustering algorithm utilizing
DBSCAN (Ester et al., 1996) that returned the center-point
for each electrode in the array. These CT-space electrode
coordinates were then overlaid onto the transformed MRI-
segmented brain to complete the co-registration process. Finally,
we scaled the coordinates by the CT image voxel dimensions
(mm) to convert from voxels to physical space.

2.3. Time domain analysis

We collected ECoG data at the bedside during cortical
electrostimulation procedures. Each time the subject received
stimulation, we timestamped the corresponding stimulation
epoch so that these data could be subsequently identified
and segmented out for further analysis. For each subject, this
procedure generated several hours of data. We used MATLAB
(MathWorks, Natick, MA) for data processing and analysis. The
signals were first visually inspected to assess the quality of the
baseline ECoG data and confirm the presence of stimulation
artifacts. Subsequently, for each channel, we removed low-
frequency drifts by high-pass filtering at >1.5 Hz (zero-phase,
first-order, Butterworth filter). Note that this filter had negligible
effects on the rest of the signal (see Figure2). We then
segmented the individual stimulation epochs from the rest of
the data using the documented timestamps. The electrodes
comprising the stimulation channel were excluded from the
analysis due to amplifier saturation. Any electrodes with signals
exceeding the clinical amplifier’s saturation limit (+8.7 mV)
were also excluded. For each remaining electrode, we identified
the responses to individual biphasic pulses. Depending on the
duration of the stimulation epoch (see Table 1), this procedure
resulted in 100-250 pulse responses per stimulation epoch.
Within each stimulation epoch and for each electrode, we then
quantified the artifact amplitude by finding the extreme value of
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each pulse response. This procedure was aided by utilizing the
known pulse train frequency (50 Hz) and MATLAB’s extrema
detection algorithm.

2.4. Frequency domain analysis

To take advantage of the periodic nature of the stimulation
signals and corresponding ECoG responses, we also analyzed
data in the frequency domain. To this end, we divided each
stimulation epoch into five equal, non-overlapping segments.
We then performed the fast Fourier Transform (FFT) on each
data segment and calculated their power spectral densities
(PSDs). We repeated the same procedure for baseline epochs,
defined as duration-matched periods immediately preceding the
corresponding stimulation epochs. To quantify the effect of the
stimulation across frequency, f, we calculated the interference
index, I(f), as:

o2(f)
Oon (f)Uoff(f)

where oon(f) and o,g(f) are the frequency-dependent standard

1) = 5 log 0

deviations of the stimulation and baseline PSDs, respectively,
and otz (f) is the total variance calculated as Fukunaga (2013):

%)+ 02 [ron(H) — me(N]
2 + 2

[0 () — (D]
2

ot(f) =

+ (2)
In the above equation, pon(f) and pyg(f) are the frequency-
dependent means of the stimulation and baseline PSDs,
respectively, and ju(f) is the total mean calculated as: ju¢(f) =
%[,U«on(f) + wog(f)]. Note that Equation (1) is a variant
of the deflection coefficient (Kay, 1989) that can account
for overlapping means and unequal variances between the
stimulation-on and stimulation-off PSDs (Nenadic, 2007). We
also compared the power distribution in the stimulation-on
and stimulation-off conditions across frequencies and tested the
statistical significance of these differences by performing the
Kolmogorov-Smirnov (KS) test.

2.5. Spatial domain analysis

Based on the artifact amplitudes calculated in the time
domain analysis, we characterized each stimulation epoch by
calculating its median artifact amplitude. We repeated this
procedure for each electrode in the grid, and then interpolated
and color-coded these median values to generate artifact spatial
maps. From these maps, we defined a saturation region as the
cortical area within which artifacts were large enough to saturate
a hypothetical ULP amplifier. To this end, we first derived a
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saturation limit from the specifications of an implantable bi-
directional BCI prototype (Rouse et al.,, 2011). Specifically, a
supply voltage of 2.2 V and a gain of 66 dB (2000x) yielded a
saturation limit of 1,100 «£V. We then marked this saturation
limit as a contour on the artifact spatial maps and defined the
contour interior as the saturation region. Finally, we quantified
the extent of the saturation region by calculating the worst-
case distance (WCD), defined as the maximum distance between
the mid-point of the stimulation channel and the saturation
contour.

2.6. Dipole model analysis

Our preliminary work suggests that the spatial distribution
of artifacts follows the voltage distribution of an electric
dipole (Lim et al.,, 2018). To test this hypothesis, we estimated
a dipole model from ECoG measurements and assessed its
accuracy using an R-squared value. We then used the model to
predict spatial distributions of artifacts and compared them to
distributions generated from experimental data.

The spatiotemporal distribution of potentials due to a dipole
in a homogeneous, isotropic, purely resistive medium is given
by Logothetis et al. (2007):

I(t)
4o

1 1
penan = (wm%w—uu_wm%n—uo
3)

where ¢(x, y, z, t) is the potential field at a point (x, y, z) and time
t, generated by a pair of positive and negative, time-dependent,
point current sources with the position vectors r+ € R> and
r— € RS, respectively. The vector r(x,y,z) € R3 defines
the position of the point (x, y,z). Note that we defined these
position vectors, r4, r—, and r, with respect to an arbitrarily
chosen origin and that the choice of origin is irrelevant due to
the homogeneity and isotropy assumptions. For the justification
of cortical tissue behaving as a homogeneous, isotropic, purely
resistive medium, we refer to Ranck (1963), Nicholson and
Freeman (1975), Okada et al. (1994), and Logothetis et al. (2007).
Finally, o is the conductivity of the medium and I(t) is current
of the source/sink.

Taking the above considerations into account, the dipole
equation can be reformulated as:

1 1
V, = kI -
lre —r+ll  llre —r—||

)—|—n, e=1,2,---, N,

4
where V, is the artifact amplitude measured at electrode e, N,
is the number recording electrodes, and I is the amplitude of
the stimulation current. The position vectors re, r4, and r—
define the positions of the electrode e, the current source, and the
current sink, respectively. We calculated these position vectors
from the CT images with respect to an arbitrary origin. The
slope parameter k accounts for the geometry of the current
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transmission path, the electrode size and material, and the
impedance of the electrode-tissue interface. Finally, the intercept
parameter n accounts for the placement of the reference
electrode, background neural activity, and environmental noise.
Note that the choice of the reference electrode was determined
clinically (see Table 1). Generally, its position was not on a zero-
potential line, defined theoretically as a line equidistant to the
dipole source and sink. This may have contributed to a non-zero
reference voltage that needs to be accounted for by n.

For a given dipole location, we measured the artifact
amplitudes, V., at multiple stimulation currents, I, and
estimated the parameters k and » in Equation (4) using a linear
least-squares approach. We also quantified the goodness-of-
fit using the R-squared value. Once the parameters, k and 7,
are estimated, we predicted the spatial distribution of artifacts,
Ve, using the model Equation (4). Finally, we interpolated the
predicted artifact values and then mapped them onto the MR-CT
co-registered images for visualization purposes.

3. Results

3.1. Co-registration

Figure 1 shows the results of the co-registration procedure
for all four subjects. Subsequently, we used these co-registration
images for visualization purposes and spatial domain analysis.
While we analyzed a single representative grid for each subject
(see Table 1), we still obtained abundant data, with 6-21 dipoles
per grid and 2-7 stimulation amplitudes per dipole. The
analyzed grid for Subject 1 was a 4x5 standard grid implanted
over the left, posterior parietal area. Subject 2 had a 4x5
standard grid implanted over the left temporal lobe. Subject 3
had a 4x8 high-density grid in the interhemispheric space over
the left motor leg area. Finally, Subject 4 had a 4x 8 high-density
grid placed over the right motor arm area.

3.2. Time domain analysis

Visual inspection of the ECoG data at various time scales
revealed salient features of stimulation artifacts. Looking on
a minutes time scale, we easily identified the individual
stimulation epochs, since stimulation created significant artifacts
in the ECoG data across multiple electrodes.

On a seconds time scale, we observed large voltage
deviations in the millivolts range during the stimulation epochs,
particularly on electrodes close to the stimulating channel. These
deviations are significantly larger than typical ECoG signals,
which have an amplitude of 10’ of microvolts (Schalk and
Leuthardt, 2011; Wang et al, 2017). Despite the supposed
charge balance of the biphasic square waveform, these electrodes
accumulated a significant DC drift over the duration of the
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stimulation epoch (see Figure 2). This so-called “ratcheting
effect” (Merrill et al., 2005) was prominent in the raw ECoG
data across all four subjects. The voltage drifts caused by the
ratcheting effect generally exceeded the amplitude of the pulse
responses by several fold, and occasionally drove electrodes
adjacent to the stimulation channel to the saturation voltage of
the recording system amplifier (+8.7 mV). High-pass filtering
at 1.5 Hz removed the ratcheting effect on non-saturated
electrodes. Note that the polarity of the DC drift on ratcheting
electrodes depended on their position with respect to the current
source/sink at the onset of the stimulation.

Pulse responses across electrodes exhibited phase-locking
on a milliseconds time scale, especially at higher stimulation
amplitudes. More specifically, voltage peaks/troughs on artifact-
affected electrodes occurred within 2 ms (1 sample) of
each other (see Figure 3). This behavior was consistent across
stimulation channels and grids. For all four subjects, the
frequency of the pulse responses matched the frequency of
the stimulation pulse train (50 Hz). These observations are
consistent with the assumptions of the dipole model given by
Equation (4).

3.3. Frequency domain analysis

Figure 4 shows examples of the power spectral density
(PSD) for each subject’s worst-case electrode, which are defined
as electrodes experiencing the strongest artifact for a given
stimulation channel. Other electrodes exhibited similar PSDs
as the worst-case electrode, albeit with lower overall power. By
comparing the stimulation-on and stimulation-off PSDs, it is
evident that the stimulation induced a significant broadband
power increase. Additionally, there were prominent power peaks
at the fundamental frequency of the stimulation pulse train (50
Hz) as well as its super-harmonics (100, 150, 200, 250 Hz).
Frequencies below 50 Hz exhibited lower interference index
values for all 4 subjects. These results were corroborated by
the KS test (p = 0.01), which showed that the stimulation-on
and stimulation-off PSDs were not significantly different for a
majority of frequencies below 50 Hz. Other electrodes in the grid
exhibited similar PSDs, albeit with reduced overall power.

3.4. Spatial domain analysis and dipole
model estimation

Artifact exhibited dipole-like
distributions, representative examples of which are shown

spatial maps voltage
in Figures 5-8 for each subject. The amplitude of a pulse
response recorded by an electrode depended on the position
of that electrode with respect to the stimulation channel.
Generally, the artifact amplitude scaled inversely with the

distance of the electrode to the stimulating channel, which is
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FIGURE 1

Co-registration of electrodes segmented from CT images and brain segmented from MRI. (Left) Co-registration image for each subject, with
the representative grid outlined in white. Note that the points representing electrodes are not to scale. Also note that the co-registration image
for Subject 3 shows a left hemisphere (sagittal plane) with electrodes in the inter-hemispheric fissure. (Right) Insets of representative grids with
electrode numbers encircled. The label size is not related to the electrode size.

Frontiersin Neuroscience 06 frontiersin.org


https://doi.org/10.3389/fnins.2022.1021097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lim et al.

10.3389/fnins.2022.1021097

i
o

Subject 1: LPG3

[¢)]

5 R 4

Subject 3: LIHG11 Raw| gma , 10MA |
2 amA
2mA 8MA 12mA

High-Pass

0 T'100( ) 200
| ime (s

2 B
LIHG3, 12 mA E
Zoomed ==

@0

S
s

_High Pass -20 0 1 0‘2

)
£Eo
D10
:’(!P \High-Pass
E 5
Ok+ ' L
S s
0 100 200
Time (s) E
LPG3, 10 mA % 1
Zoomed ==
[J]
®0
2
== High Pass -1
— Raw (Demean) 0 T(i)r:r;]e (s) B

(mV)

tage

Vol
DBENOND OBNOND

0 20 40 60 0 50 100
Time (s) E 5 Time (s) El
LTG8, 10 mA % Rmm@mm%
Zoomed Ty 0 Zoomed =
7)) %00
£ £
2 S
== High Pass £y — Hi
gh Pass 0.1 0.2
— i A A . s
Raw (Demean) 0.05 Tige - 0.15 __ Raw (Demean) Tiiels)

— Raw (Demean) Time (s)

4|Raw|

2mA

4mA

—
=

e
—
——
R

FIGURE 2

de-meaned so that it can be overlaid with high-passed signal.

Representative examples of time-domain signal features across four subjects. (A) Insets of co-registered images showing the representative grid
with the stimulation channel marked in yellow. (B) Time-domain signals from an electrode (marked by blue on the grid) adjacent to the
stimulation channel exhibiting ratcheting effects. The raw waveforms show 5-6 stimulation epochs at different stimulation amplitudes. Note
that ratcheting severity increases with stimulation amplitude. (C) The ratcheting is removed by high-pass filtering at 1.5 Hz. (D) A zoomed plot of
the strongest artifacts before and after filtering shows that high-passing has negligible effect on the individual pulse responses. Raw signal is

consistent with Equation (4). Furthermore, electrodes lying
co-linearly with the stimulation dipole moment experienced
stronger artifacts compared to those lying orthogonally.
Also,

stimulation amplitude, which resulted in the expansion of the

artifact amplitudes increased monotonically with
saturation region. Correspondingly, the worst-case distance
also monotonically increased with stimulation amplitude for

these examples. Some exceptions to these behaviors occurred

Frontiersin Neuroscience

07

at higher stimulation amplitudes, where the increased current
caused a departure from the dipole voltage distribution.

The ranges of WCDs for each subject over all stimulation
channels and amplitudes are reported in Table2. For a
comprehensive list of all WCDs across all subjects, stimulation
channels, and stimulation amplitudes, the reader is referred to
the Supplementary material. We found the saturation regions
to be localized to the vicinity of the stimulation channel, with
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FIGURE 3

Representative examples of pulse response phase-locking in all 4 subjects. (Left) Insets of co-registration images, with color-coded electrodes
lying in the direction of strongest artifact (co-linear with the dipole moment). (Right) ECoG data high-passed at 1.5 Hz with colors matched to
the corresponding electrode. Artifact peaks/troughs, marked by vertical lines, on these electrodes are within 2 ms (1 sample) of each other.
Pulse responses occur every 20 ms (50 Hz pulse train frequency). The artifact amplitude decreases with distance from the stimulation channel.
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(Top) Time domain and frequency domain representations of a 50 Hz square pulse train. (Bottom) Power spectra of ECoG signals during 50 Hz
biphasic square pulse stimulation for worst-case electrodes from each subject. The power distribution of ECoG signals, with peaks present at 50,
100, 150, 200 Hz, resembles the power distribution of a 50 Hz square pulse train. Interference index and Kolmogorov-Smirnoff testing (p = 0.01)
show that a majority of significantly impacted frequencies are above the 50 Hz stimulation pulse frequency.
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recording system) on the artifact spatial maps.

Recorded

WCD: 25.53 mm

Artifact spatial maps based on recorded ECoG data and model predictions for Subject 1. (Top left) Co-registration image showing the
representative grid over the left parietal lobe. (Bottom left) Regression results aggregating data from stimulation channel LPG13-14 for 2—-8 mA
stimulation amplitudes. Artifact spatial maps were generated using values from the recorded data (middle) and the dipole model (right). The
worst-case distance (WCD) is the distance from the center of the stimulating channel to the farthest point on the +£1.1 mV contour. Note that
the electrodes comprising the stimulation channel (LPG13-14) were saturated on the hospital ECoG recording system and recorded no data. As
such these were excluded from the dipole regression and their values were set to £8.711 mV (the saturation limit of the hospital ECoG

WCDs ranging from 4.43 to 38.34 mm. Generally, larger WCDs
corresponded to larger stimulation amplitudes. The resolution
of the WCD is limited by the relatively coarse spatial resolution
of ECoG electrodes within a grid. Other factors, such as grid
placement and electrode material properties may have also
affected the WCD values. Another contributing factor is the
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location of the stimulation channel within the grid, which may
limit the ability for the dipole field to be captured entirely,
e.g, stimulation channels placed on the corner or the edge of
the grid.

Table 3 shows the median and median absolute deviation
(MAD) for parameters of the linear regression model and
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Recorded

Artifact spatial maps for recorded ECoG data and model predictions for subject 2. (Top left) Co-registration image showing the representative
grid over the left temporal lobe. (Bottom left) Regression uses ECoG data from 2 to 10 mA stimulation amplitudes on the stimulation channel
LTG8-9. Artifact spatial maps were generated using values from the recorded data (middle) the dipole model (right). Electrodes LTG19 and
LTG20 contained no recorded ECoG data, so they are excluded from the analysis (values on the recorded data map are imputed from electrode

LTG18).

goodness-of-fit values across different stimulation channels for
each subject. We chose median-based statistics to counter the
effect of a few outliers, primarily contributed by stimulation
channels located at the corners of ECoG grids. Despite the
differences in implantation site and grid size/type, the median
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values of k remained relatively consistent across subjects and
ranged from 2.1 to 3.9 Q2 mm. Similarly, the median values for
i were consistent across subjects, and ranged from -78 uV to
70 V. These values are within the same order of magnitude as
ECoG signals (Schalk and Leuthardt, 2011; Wang et al., 2017),
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(middle) the dipole model (right)

Recorded

Artifact spatial maps for recorded ECoG data and model predictions for subject 3. (Top left) Co-registration image showing the representative
grid located over the leg area on the left side of the interhemispheric fissure. (Bottom left) Regression results for the stimulation channel
LIHG19-27 aggregating data from current amplitudes 3—10 mA. Artifact spatial maps were generated using values from the recorded data

which concurs with the fact that # is a parameter that accounts
for neural activity and background noise. For a comprehensive
list of k and 7 values across all dipoles and all subjects, the reader
is referred to the Supplementary material.

Table 3 also shows that the median values of R-squared
ranged across subjects from 0.78 to 0.88. Over all subjects,
R-squared values ranged from 0.33 to 0.99, with a median
of 0.80 and a median absolute deviation of 0.08 (see
Supplementary material for full table). This suggests that the
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dipole model is a good approximation for the propagation
of stimulation artifacts in ECoG. R-squared values falling
5th 0.57) occurred
due to violations of the dipole model assumptions. These

in the lowest 1 percentile (R*> <
include “island-like” saturation regions located away from the
stimulation site, asymmetrical elongation of the saturation
region along the edge of the grid, and abnormally strong
artifacts appearing on electrodes adjacent to the stimulation
channel.
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Artifact spatial maps for recorded ECoG data and predicted data for subject 4. (Top left) Co-registration image showing the representative grid
located over the right sensorimotor area. (Bottom left) Regression results for the stimulation channel RCG19-20 aggregating data from current
amplitudes 2—10 mA. Artifact spatial maps were generated using values from the recorded data (middle) the dipole model (right). Electrode
RCG18 saturates at 6 mA and above, at which point it is excluded from the analysis as it no longer contains any ECoG data.
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4. Discussion

4.1. Time domain characteristics

amplitudes (Figure 2). This is unsurprising given that strong
stimulation amplitudes are more likely to trigger irreversible
Faradaic reactions at the electrode-tissue interface (Merrill et al.,
2005). These reactions generate electrochemical products during

Time-domain analysis revealed the ratcheting -effect the cathodic phase that diffuse away, preventing those products

occurring in all subjects, most prominently at higher stimulation from being reverted during the anodic phase. Therefore, despite
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TABLE 2 WCD ranges for each subject.

Subjectno. Min. WCD  Max. WCD  Stim. range
(mm) (mm) (mA)
Subject 1 12.06 38.34 2-10
Subject 2 12.43 36.45 2-12
Subject 3 443 9.12 3-12
Subject 4 5.40 25.89 2-12

TABLE 3 Median and median absolute deviation (MAD) values for
dipole model parameters and R-squared values across subjects.
Median and MAD are calculated across all stimulation channels in each
representative grid.

Regression Summary Subject 1 Subject 2 Subject 3 Subject 4

parameter statistic

k(2 mm) Median 39 33 2.1 33
MAD 12 0.3 0.3 0.9

t(mv) Median 0.070 —0.078 —0.012 0.045
MAD 0.074 0.080 0.061 0.129

R? Median 0.88 0.81 0.78 0.80
MAD 0.06 0.10 0.04 0.10

the charge-balancing of the biphasic pulses, this unrecoverable
loss of charges creates a residual potential. Since stimulation
pulses arrive every 20 ms, which is much faster than the tissue
discharge time constant (a few seconds, see Figure 2), these
residual potentials accumulate over the course of a stimulation
epoch to generate significant DC voltage shifts. The presence of
ratcheting in a clinical, FDA-approved stimulator suggests that
BD-BCI systems need to be carefully designed with superior
charge-balancing mechanisms (Sohn et al., 2020; Pu et al., 2021).

The electrodes most severely affected by artifacts exhibited
phase-locking of pulse responses. This is in agreement with
the volume conduction assumption expressed by Equation (3).
It also supports the possibility that ECoG electrodes impose
consistent phase shifts whose differences fall below the signal
sampling resolution of 512 Hz. To illustrate this, the model of
electrode-electrolyte interface can be approximated by a parallel
circuit consisting of a double-layer resistance and capacitance,
serially connected to an electrolyte resistance (Merrill et al.,
2005; Webster, 2009). For a typical double-layer capacitance
of 10-20 uF/cm? (Merrill et al., 2005) and typical resistance
values in the 100-200 2 range (Geddes et al., 1969), we estimate
the ECoG electrodes’ phase shifts to be in the microsecond
range over the ECoG frequency band (0-200 Hz). Perturbing
these parameters by a factor of 10 did not significantly change
these estimates, with the largest phase shifts reaching 0.3 ms.
Thus, we conclude that the differences in phase shifts imposed
by individual ECoG electrodes likely fall below the sampling
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resolution of 1.95 ms (1/512 Hz), resulting in the appearance of
phase-locked pulse responses.

4.2. Frequency domain characteristics

The power distribution of stimulation artifacts resembled
the theoretical power spectrum of a biphasic pulse train
(Figure 4). These similarities suggest that the propagation
of artifacts from the stimulation channel to the recording
electrodes can be approximated by a linear system. The system
identification of such a model would require the simultaneous
recording of stimulation pulse trains and ECoG responses.
Strong stimulation artifacts at the fundamental frequency and its
super-harmonics interfere with ECoG frequencies that underlie
motor behavior (Wang et al., 2017; McCrimmon et al., 2018),
most notably those in the y band. Conversely, the band below
the fundamental frequency exhibited little or no artifacts. This
suggests that increasing the stimulation frequency above 160
Hz [the upper limit of ECoG y band (Wang et al., 2013b)]
could spare the y band from excessive artifacts in ECoG-based
BD-BCI systems. Recent experiments have demonstrated that
reliable perception can be elicited in humans with stimulation
frequencies as high as 500 Hz (Hiremath et al., 2017), so
high-frequency stimulation might be a viable artifact mitigation
strategy for BD-BCIs. However, such a high stimulation
frequency would significantly increase the power consumption.
This trade-off must especially be considered for fully implantable
BD-BCI, where preserving the battery life may be of critical
importance.

4.3. Spatial domain characteristics

The worst-case distance analysis gives a metric for evaluating
the saturation risk of stimulation at various current amplitudes.
As can be seen from Figures 5-8, at the higher stimulation
amplitudes, the saturation region extends to, and possibly
beyond, the edges of the ECoG grids. However, studies on
artificial somatosensation (Hiremath et al., 2017; Lee et al., 2018)
demonstrated that current amplitudes below 4 mA (and often
times as low as 1 mA), delivered by subdurally implanted ECoG
grids, were sufficient for eliciting somatosensory perception
in human subjects. Saturation is thus only a concern when
stimulation and recording electrodes are immediately adjacent
(within 20 mm) and when the recording device has a low
saturation tolerance. Optimization of other parameters such as
the pulse train frequency and pulse width also permits lower-
amplitude stimulation to elicit similar sensations (Hiremath
etal., 2017).

The current transmission path in cortical electrostimulation
depends on a number of factors. Given the complexity of the
problem, we adopted a path-agnostic approach by lumping
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these factors into a single parameter k (see Equation 4). Since
the units of k are Qm, we can interpret this parameter as the
specific resistance of the path. Furthermore, these paths, as
well as the electrode properties (Webster, 2009), may depend
non-linearly on the current passing through. However, our
approach assumes a single regression model across a range
of current amplitudes. Despite these simplifying assumptions,
we still achieved a median goodness-of-fit of 0.80 across all
subjects and across a wide variety of stimulation scenarios. The
departure from this behavior mostly happens for stimulation
channels placed on the corners of grids. In these cases, the
majority of artifacts lie outside of the grid and cannot be
adequately measured. Other examples of non-dipole behavior,
such as the formation of “islands” or extensions of the saturation
region, are potentially the result of conduction of stimulation
current along neural fibers, pockets of cerebrospinal fluid,
or neural vasculature. Even in many of these cases, the R-
squared value is still around 0.65. Taken together, these results
confirm that the spatial variations of stimulation artifacts can
be explained with a simple dipole-like model. Dipole models
have long been used to describe the propagation of neural
signals through neural tissues (Wood, 1982; Scherg, 1990; Boon
et al., 1997; Sutherling et al., 2001; Nunez and Srinivasan,
2006). However, to our knowledge there have been no other
works analyzing the dipole model’s applicability to ECoG
stimulation artifacts. These models can be used to predict
the spatial extent of artifacts and ultimately the size of the
saturation region.

4.4. Limitations

The main limitation of our work is that the results were
derived from artifacts generated and recorded by a clinical
ECoG stimulation/acquisition system. To make these results
generalizable to BD-BCI systems, we imposed a £1,100 uV
saturation limit based on the specifications of an implantable
BD-BCI prototype (Rouse et al, 2011). Furthermore, our
observations may be specific to the type of ECoG grids
that were being used by the clinic. However, our analysis
still encompasses grids from different manufacturers (AdTech
and Integra), different grid sizes (standard and high-density),
a variety implantation sites, and multiple subjects. Note
that ECoG grids with similar electrode materials (platinum),
size and pitch have been successfully used for motor BCI
applications (Wang et al., 2013b, 2019) as well as artificial
sensation studies (Hiremath et al., 2017; Lee et al., 2018).
The stimulation parameters used for this study also overlap
with those used to elicit artificial sensations (Lee et al., 2018)
in the same ECoG grids. Therefore, despite the limitations,
the results in this study are likely still applicable to BD-BCI
systems.
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5. Conclusion

This article provides a comprehensive temporal, spectral
and spatial analysis of cortical electrostimulation artifacts
recorded subdurally by a grid of ECoG electrodes. We
have also demonstrated that the spatial distribution of
stimulation artifacts can be explained by a simple dipole model.
These findings can help improve existing artifact suppression
techniques, inspire the development of novel artifact mitigation
methods, and aid in the development of novel cortical
stimulation protocols. Additionally, they may be useful for
studies examining cortical functional tractography (Trebaul
et al, 2018), cortico-cortical evoked potentials for clinical
applications (Russo et al, 2021), and source localization for
non-invasive functional neuroimaging (Mikulan et al., 2020).
In general, the results in this work deepen our understanding
of cortical electrostimulation and could provide critical design
specifications for future BD-BCI systems.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by the Institutional Review Board of University
of California, Irvine and Rancho Los Amigos National
Rehabilitation Center. The patients/participants provided their
written informed consent to participate in this study.

Author contributions

JL collected the data, performed the analysis, and wrote
the manuscript. PW aided in data collection and analysis.
SS, HG, and MA oversaw subject-related activities and
helped to perform stimulation procedures. CL performed the
surgical implantations and oversaw subject-related activities.
AD oversaw subject-related activities and provided feedback
for the manuscript. PH provided feedback on the manuscript.
ZN performed the data analysis and co-wrote the manuscript.
All authors contributed to the article and approved the
submitted version.

Funding

This work was funded by the National Science Foundation
(Award Nos. 1446908 and 1646275).

frontiersin.org


https://doi.org/10.3389/fnins.2022.1021097
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lim et al.

Acknowledgments
We wish to thank the staff at Rancho Los Amigos National

Rehabilitation Center for assistance with subjects during
experimental procedures.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

that could be construed as a potential conflict
of interest.
References

Barborica, A., Oane, 1., Donos, C., Daneasa, A., Mihai, F., Pistol, C., et al.
(2022). Imaging the effective networks associated with cortical function through
intracranial high-frequency stimulation. Hum. Brain Mapp. 43, 1657-1675.
doi: 10.1002/hbm.25749

Boon, P., D’Havé, M., Adam, C., Vonck, K., Baulac, M., Vandekerckhove, T.,
etal. (1997). Dipole modeling in epilepsy surgery candidates. Epilepsia 38, 208-218.
doi: 10.1111/§.1528-1157.1997.tb01099.x

Brunner, P., Ritaccio, A. L., Emrich, J. F., Bischof, H., and Schalk, G. (2011).
Rapid communication with a “p300” matrix speller using electrocorticographic
signals (ECOG). Front. Neurosci. 5, 5. doi: 10.3389/fnins.2011.00005

Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). “A density-based
algorithm for discovering clusters in large spatial databases with noise,” in KDD’96:
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, 226-231.

Fifer, M. S., H, G., Wester, B. A., McMullen, D. P., Wang, Y., Johannes, M. S.,
etal. (2013). Simultaneous neural control of simple reaching and grasping with the
modular prosthetic limb using intracranial EEG. IEEE Trans. Neural Syst. Rehabil.
Eng. 22, 695-705. doi: 10.1109/TNSRE.2013.2286955

Flesher, S., Downey, J., Collinger, J. L., Foldes, S., Weiss, J., Tyler-Kabara, E., et al.
(2017). “Intracortical microstimulation as a feedback source for brain-computer
interface users,” in Brain-Computer Interface Research, eds C. Guger, B. Allison,
and M. Lebedev (Cham: Springer), 43-54. doi: 10.1007/978-3-319-64373-1_5

Fukunaga, K. (2013). Introduction to Statistical Pattern Recognition. San Diego,
CA: Elsevier.

Geddes, L. A., Baker, L. E., and Moore, A. G. (1969). Optimum electrolytic
chloriding of silver electrodes. Med. Biol. Eng. 7, 49-56. doi: 10.1007/BF02474669

Geller, E. B. (2018). Responsive neurostimulation: review of clinical
trials and insights into focal epilepsy. Epilepsy Behav. 88, 11-20.
doi: 10.1016/j.yebeh.2018.06.042

Hiremath, S. V., Tyler-Kabara, E. C., Wheeler, J. ], Moran, D. W,
Gaunt, R. A, Collinger, J. L., et al. (2017). Human perception of electrical
stimulation on the surface of somatosensory cortex. PLoS ONE 12, e0176020.
doi: 10.1371/journal.pone.0176020

Kay, S. M. (1989). Fundamentals of Statistical Signal Processing. Detection
Theory. Upper Saddle River, NJ.

Klein, S., Staring, M., Murphy, K., Viergever, M. A., and Pluim, J. P. W. (2010).
Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med.
Imaging 29, 196-205. doi: 10.1109/TMI.2009.2035616

Krusienski, D. J., and Shih, J. J. (2011). Control of a visual keyboard using an
electrocorticographic brain-computer interface. Neurorehabil. Neural Repair 25,
323-331. doi: 10.1177/1545968310382425

Lancaster, J. L., Cykowski, M. D., McKay, D. R,, Kochunov, P. V., Fox,

P. T, Rogers, W., et al. (2010). Anatomical global spatial normalization.
Neuroinformatics 8, 171-182. doi: 10.1007/s12021-010-9074-x

Frontiersin Neuroscience 16

10.3389/fnins.2022.1021097

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnins.2022.1021097/full#supplementary-material

Lancaster, J. L., Laird, A. R., Eickhoff, S. B., Martinez, M. J., Fox, P. M., and
Fox, P. T. (2012). Automated regional behavioral analysis for human brain images.
Front. Neuroinformatics 6, 23. doi: 10.3389/fninf.2012.00023

Lancaster, J. L., McKay, D. R, Cykowski, M. D., Martinez, M. J., Tan, X,
Valaparla, S., et al. (2011). Automated analysis of fundamental features of brain
structures. Neuroinformatics 9, 371-380. doi: 10.1007/s12021-011-9108-z

Lee, B., Kramer, D., Armenta Salas, M., Kellis, S., Brown, D., Dobreva, T.,
et al. (2018). Engineering artificial somatosensation through cortical stimulation
in humans. Front. Syst. Neurosci. 12, 24. doi: 10.3389/fnsys.2018.00024

Lim, J., Wang, P. T., Bidhendi, A., Arasteh, O., Shaw, S., Armacost, M.,
et al. (2018). “Characterization of stimulation artifact behavior in simultaneous
electrocorticography grid stimulation and recording,” in 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
(Honolulu, HI: IEEE), 4748-4751. doi: 10.1109/EMBC.2018.8513216

Lim, J., Wang, P. T., Pu, H,, Liu, C. Y., Kellis, S., Andersen, R. A,, et al.
(2019). “Dipole cancellation as an artifact suppression technique in simultaneous
electrocorticography stimulation and recording, in 2019 9th International
IEEE/EMBS Conference on Neural Engineering (NER) (San Francisco, CA: IEEE),
725-729. doi: 10.1109/NER.2019.8716961

Logothetis, N. K., Kayser, C., and Oeltermann, A. (2007). In vivo measurement
of cortical impedance spectrum in monkeys: implications for signal propagation.
Neuron 55, 809-823. doi: 10.1016/j.neuron.2007.07.027

McCrimmon, C. M., Wang, P. T., Heydari, P., Nguyen, A., Shaw, S. J., Gong,
H., et al. (2018). Electrocorticographic encoding of human gait in the leg primary
motor cortex. Cereb. Cortex 28, 2752-2762. doi: 10.1093/cercor/bhx155

Mendrela, A. E., Cho, J., Fredenburg, J. A., Nagaraj, V., Netoff, T. I, Flynn,
M. P, et al. (2016). A bidirectional neural interface circuit with active stimulation
artifact cancellation and cross-channel common-mode noise suppression. IEEE J.
Solid State Circ. 51, 955-965. doi: 10.1109/JSSC.2015.2506651

Merrill, D. R, Bikson, M., and Jefferys, J. G. R. (2005). Electrical stimulation of
excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141,
171-198. doi: 10.1016/j.jneumeth.2004.10.020

Mikulan, E., Russo, S., Parmigiani, S., Sarasso, S., Zauli, F. M., Rubino, A., et al.
(2020). Simultaneous human intracerebral stimulation and hd-eeg, ground-truth
for source localization methods. Sci. Data 7, 1-8. doi: 10.1038/s41597-020-0467-x

Nenadic, Z. (2007). Information discriminant analysis: feature extraction with
an information-theoretic objective. IEEE Trans. Pattern Anal. Mach. Intell. 29,
1394-1407. doi: 10.1109/TPAMI.2007.1156

Nicholson, C., and Freeman, J. A. (1975). Theory of current source-density
analysis and determination of conductivity tensor for anuran cerebellum. J.
Neurophysiol. 38, 356-368. doi: 10.1152/jn.1975.38.2.356

Nunez, P. L, and Srinivasan, R. (2006). Electric Fields of
the Brain: The Neurophysics of EEG. Oxford University Press.
doi: 10.1093/acprof:0s0/9780195050387.001.0001

frontiersin.org


https://doi.org/10.3389/fnins.2022.1021097
https://www.frontiersin.org/articles/10.3389/fnins.2022.1021097/full#supplementary-material
https://doi.org/10.1002/hbm.25749
https://doi.org/10.1111/j.1528-1157.1997.tb01099.x
https://doi.org/10.3389/fnins.2011.00005
https://doi.org/10.1109/TNSRE.2013.2286955
https://doi.org/10.1007/978-3-319-64373-1_5
https://doi.org/10.1007/BF02474669
https://doi.org/10.1016/j.yebeh.2018.06.042
https://doi.org/10.1371/journal.pone.0176020
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1177/1545968310382425
https://doi.org/10.1007/s12021-010-9074-x
https://doi.org/10.3389/fninf.2012.00023
https://doi.org/10.1007/s12021-011-9108-z
https://doi.org/10.3389/fnsys.2018.00024
https://doi.org/10.1109/EMBC.2018.8513216
https://doi.org/10.1109/NER.2019.8716961
https://doi.org/10.1016/j.neuron.2007.07.027
https://doi.org/10.1093/cercor/bhx155
https://doi.org/10.1109/JSSC.2015.2506651
https://doi.org/10.1016/j.jneumeth.2004.10.020
https://doi.org/10.1038/s41597-020-0467-x
https://doi.org/10.1109/TPAMI.2007.1156
https://doi.org/10.1152/jn.1975.38.2.356
https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lim et al.

OSDoherty, J. E., Lebedev, M. A, Ifft, P. J., Zhuang, K. Z., Shokur, S., Bleuler,
H., et al. (2011). Active tactile exploration using a brain-machine-brain interface.
Nature 479, 228. doi: 10.1038/nature10489

Okada, Y. C., Huang, J., Rice, M. E., Tranchina, D., and Nicholson, C.
(1994). Origin of the apparent tissue conductivity in the molecular and granular
layers of the in vitro turtle cerebellum and the interpretation of current
source-density analysis. J. Neurophysiol. 72, 742-753. doi: 10.1152/jn.1994.72.
2.742

Perrone-Bertolotti, M., Alexandre, S., Jobb, A.-S., De Palma, L., Baciu, M.,
Mairesse, M.-P., et al. (2020). Probabilistic mapping of language networks from
high frequency activity induced by direct electrical stimulation. Hum. Brain Mapp.
41, 4113-4126. doi: 10.1002/hbm.25112

Pu, H., Danesh, A. R., Malekzadeh-Arasteh, O., Sohn, W. J., Do, A. H., Nenadic,
Z.,etal. (2021). “A 40v voltage-compliance 12.75 ma maximum-current multipolar
neural stimulator using time-based charge balancing technique achieving 2mv
precision,” in 2021 IEEE Custom Integrated Circuits Conference (CICC) (Austin,
TX: IEEE), 1-2. doi: 10.1109/CICC51472.2021.9431428

Pu, H., Lim, J., Kellis, S., Liu, C. Y., Andersen, R. A., Do, A. H,, et al. (2020).
Optimal artifact suppression in simultaneous electrocorticography stimulation and
recording for bi-directional brain-computer interface applications. J. Neural Eng.
17, 026038. doi: 10.1088/1741-2552/ab82ac

Ranck, J. B. Jr. (1963). Specific impedance of rabbit cerebral cortex. Exp. Neurol.
7, 144-152. doi: 10.1016/S0014-4886(63)80005-9

Rouse, A. G., Stanslaski, S. R., Cong, P., Jensen, R. M., Afshar, P., Ullestad,
D, et al. (2011). A chronic generalized bi-directional brain-machine interface. J.
Neural Eng. 8, 036018. doi: 10.1088/1741-2560/8/3/036018

Russo, S., Pigorini, A., Mikulan, E., Sarasso, S., Rubino, A., Zauli, F.
M., et al. (2021). Focal lesions induce large-scale percolation of sleep-
like intracerebral activity in awake humans. Neuroimage 234, 117964.
doi: 10.1016/j.neuroimage.2021.117964

Schalk, G., and Leuthardt, E. C. (2011). Brain-computer interfaces
using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4, 140-154.
doi: 10.1109/RBME.2011.2172408

Scherg, M. (1990). Fundamentals of dipole source potential analysis. Auditory
Evoked Magnet. Fields Electric Potentials Adv. Audiol. 6, 25.

Shamonin, D. P., Bron, E. E., Lelieveldt, B. P. F., Smits, M., Klein, S.,
and Staring, M. (2014). Fast parallel image registration on CPU and GPU for
diagnostic classification of Alzheimer’s disease. Front. Neuroinformatics 7, 50.
doi: 10.3389/fninf.2013.00050

Sohn, W. J, Wang, P. T, Kellis, S, Andersen, R. A, Liu, C. Y,
Heydari, P., et al. (2020). “A prototype of a fully-implantable charge-balanced

Frontiersin Neuroscience

17

10.3389/fnins.2022.1021097

artificial sensory stimulator for bi-directional brain-computer-interface (BD-
BCI),” in 2020 42nd Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC) (Montreal, QC: IEEE), 3083-3085.
doi: 10.1109/EMBC44109.2020.9176718

Stanslaski, S., Cong, P., Carlson, D., Santa, W., Jensen, R., Molnar, G.,
et al. (2009). “An implantable bi-directional brain-machine interface system for
chronic neuroprosthesis research,” in Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2009 (Minneapolis, MN: IEEE),
5494-5497. doi: 10.1109/TEMBS.2009.5334562

Sutherling, W. W., Akhtari, M., Mamelak, A. N., Mosher, J., Arthur, D., Sands,
S., et al. (2001). Dipole localization of human induced focal afterdischarge seizure
in simultaneous magnetoencephalography and electrocorticography. Brain Topogr.
14, 101-116. doi: 10.1023/A:1012940812742

Trebaul, L., Deman, P., Tuyisenge, V., Jedynak, M., Hugues, E., Rudrauf, D.,
et al. (2018). Probabilistic functional tractography of the human cortex revisited.
Neuroimage 181, 414-429. doi: 10.1016/j.neuroimage.2018.07.039

Vansteensel, M. J., Pels, E. G., Bleichner, M. G., Branco, M. P., Denison,
T., Freudenburg, Z. V., et al. (2016). Fully implanted brain-computer
interface in a locked-in patient with ALS. N. Engl. . Med. 375, 2060-2066.
doi: 10.1056/NEJMoal608085

Wang, P. T, Camacho, E, Wang, M, Li, Y, Shaw, S. J., Armacost,
M., et al. (2019). A benchtop system to assess the feasibility of a fully
independent and implantable brain-machine interface. J. Neural Eng. 16, 066043.
doi: 10.1088/1741-2552/ab4b0c

Wang, P. T,, King, C. E,, Shaw, S. J., Millett, D. E,, Liu, C. Y., Chui, L. A,, et al.
(2013a). A co-registration approach for electrocorticogram electrode localization
using post-implantation MRI and CT of the head,” in 2013 6th International
IEEE/EMBS Conference on Neural Engineering (NER) (San Diego, CA: IEEE),
525-528. doi: 10.1109/NER.2013.6695987

Wang, P. T., McCrimmon, C. M., King, C. E., Shaw, S. J., Millett, D. E., Gong,
H., et al. (2017). Characterization of electrocorticogram high-gamma signal in
response to varying upper extremity movement velocity. Brain Struct. Funct. 222,
3705-3748. doi: 10.1007/s00429-017-1429-8

Wang, W., Collinger, J. L, Degenhart, A. D., Tyler-Kabara, E. C,
Schwartz, A. B., Moran, D. W., et al. (2013b). An electrocorticographic
brain interface in an individual with tetraplegia. PLoS ONE 8, e55344.
doi: 10.1371/journal.pone.0055344

Webster, J. G. (2009). Medical Instrumentation: Application and Design.
Hoboken, NJ: John Wiley & Sons.

Wood, C. C. (1982). Application of dipole localization methods to source
identification of human evoked potentials. Ann. N. Y. Acad. Sci. 388, 139-155.
doi: 10.1111/§.1749-6632.1982.tb50789.x

frontiersin.org


https://doi.org/10.3389/fnins.2022.1021097
https://doi.org/10.1038/nature10489
https://doi.org/10.1152/jn.1994.72.2.742
https://doi.org/10.1002/hbm.25112
https://doi.org/10.1109/CICC51472.2021.9431428
https://doi.org/10.1088/1741-2552/ab82ac
https://doi.org/10.1016/S0014-4886(63)80005-9
https://doi.org/10.1088/1741-2560/8/3/036018
https://doi.org/10.1016/j.neuroimage.2021.117964
https://doi.org/10.1109/RBME.2011.2172408
https://doi.org/10.3389/fninf.2013.00050
https://doi.org/10.1109/EMBC44109.2020.9176718
https://doi.org/10.1109/IEMBS.2009.5334562
https://doi.org/10.1023/A:1012940812742
https://doi.org/10.1016/j.neuroimage.2018.07.039
https://doi.org/10.1056/NEJMoa1608085
https://doi.org/10.1088/1741-2552/ab4b0c
https://doi.org/10.1109/NER.2013.6695987
https://doi.org/10.1007/s00429-017-1429-8
https://doi.org/10.1371/journal.pone.0055344
https://doi.org/10.1111/j.1749-6632.1982.tb50789.x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Artifact propagation in subdural cortical electrostimulation: Characterization and modeling
	1. Introduction
	2. Methods
	2.1. Subject information and stimulation procedure
	2.2. MR-CT image segmentation and co-registration
	2.3. Time domain analysis
	2.4. Frequency domain analysis
	2.5. Spatial domain analysis
	2.6. Dipole model analysis

	3. Results
	3.1. Co-registration
	3.2. Time domain analysis
	3.3. Frequency domain analysis
	3.4. Spatial domain analysis and dipole model estimation

	4. Discussion
	4.1. Time domain characteristics
	4.2. Frequency domain characteristics
	4.3. Spatial domain characteristics
	4.4. Limitations

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


