
Caveline Detection at the Edge for Autonomous
Underwater Cave Exploration and Mapping

Mohammadreza Mohammadi
CSE, University of South Carolina

Columbia, SC 29208, USA

mohammm@email.sc.edu

Sheng-En Huang
ECE, University of Florida

Gainesville, FL 32611, USA

huang.sh@ufl.edu

Titon Barua
CSE, University of South Carolina

Columbia, SC 29208, USA

baruat@email.sc.edu

Ioannis Rekleitis
CSE, University of South Carolina

Columbia, SC 29208, USA

yiannisr@cse.sc.edu

Md Jahidul Islam
ECE, University of Florida

Gainesville, FL 32611, USA

jahid@ece.ufl.edu

Ramtin Zand
CSE, University of South Carolina

Columbia, SC 29208, USA

ramtin@cse.sc.edu

Abstract—This paper explores the problem of deploying ma-
chine learning (ML)-based object detection and segmentation
models on edge platforms to enable real-time caveline detection
for Autonomous Underwater Vehicles (AUVs) used for under-
water cave exploration and mapping. We specifically investigate
three ML models, i.e., U-Net, Vision Transformer (ViT), and
YOLOv8, deployed on three edge platforms: Raspberry Pi-4,
Intel Neural Compute Stick 2 (NCS2), and NVIDIA Jetson
Nano. The experimental results unveil clear trade-offs between
model accuracy, processing speed, and energy consumption. The
most accurate model has shown to be U-Net with an 85.53 F1-
score and 85.38 Intersection Over Union (IoU) value. Meanwhile,
the highest inference speed and lowest energy consumption
are achieved by the YOLOv8 model deployed on Jetson Nano
operating in the high-power and low-power modes, respectively.
The comprehensive quantitative analyses and comparative results
provided in the paper highlight important nuances that can guide
the deployment of caveline detection systems on underwater
robots for ensuring safe and reliable AUV navigation during
underwater cave exploration and mapping missions.

Index Terms—Edge Computing, Object Detection, Segmenta-
tion, Underwater Robots, Visual Servoing.

I. INTRODUCTION & BACKGROUND

Underwater caves offer opportunities for scientific research

in fields such as archaeology, hydrology, geology and hydro-

geology, and marine biology [1]. Cave formations, sediments,

and water chemistry can provide insights into past climate

conditions and geological processes. They also play a crucial

role in monitoring and tracking groundwater flows in Karst

topographies; it shall be noted that almost 25% of the world’s

population relies on Karst freshwater resources [2]. Moreover,

underwater caves often present a pristine capsule preserved

in time with major archaeological secrets [3], [4]. Underwater

cave exploration and mapping by human divers, however, is

a tedious, labor-intensive, extremely dangerous operation even

for highly skilled people [5]. Therefore, enabling Autonomous

Underwater Vehicles (AUVs) and Remotely Operated Vehicles

(ROVs) to enter, navigate, map, and explore underwater caves

is of significant importance [6], [7]; Fig. 1 shows an ROV

deployment scenario inside an underwater cave system.

Fig. 1: A BlueROV2 operating inside an underwater cave

system by following a caveline; note that the umbilical is

connecting the ROV to a surface operator.

The underwater caves explored by human scuba divers are

marked with a single and continuous line termed caveline [8]

that goes from open water (no overhead) to all the major

parts of the cave. Along with other navigation markers such as

arrows and cookies, the caveline provides the skeleton of the

cave (i.e., a one-dimensional retraction of the 3D space) [9] of

the main passages marking the depth and orientation of a cave.

Thus, detecting and following the caveline as navigation guid-

ance is paramount for robots in autonomous cave exploration

and mapping missions. Recently, Yu et al. [10] developed

a robust Vision Transformer (ViT)-based learning pipeline

named CL-ViT to detect and track cavelines by underwater

robots for vision-based navigation. CL-ViT learning pipeline

has two important features: (i) robustness to noise and image

distortions [11]; and (ii) generalized model adaptation to data

from new locations. Despite state-of-the-art detection perfor-

mance, the proposed models are computationally demanding

and do not offer real-time performance on edge devices. As

most AUVs have limited or no connectivity with the surface,

all computations have to be onboard. In addition, the limited

onboard space available make the use of traditional GPUs

infeasible.

1392

2023 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/23/$31.00 ©2023 IEEE
DOI 10.1109/ICMLA58977.2023.00210

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ac
hi

ne
 L

ea
rn

in
g

an
d

Ap
pl

ic
at

io
ns

 (I
CM

LA
) |

 9
79

-8
-3

50
3-

45
34

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

M
LA

58
97

7.
20

23
.0

02
10

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:28:04 UTC from IEEE Xplore. Restrictions apply.

In this paper, we examine several distinct models, deploy

them on various edge AI accelerators, and compare their

computational load and accuracy. In particular, we investigate

three models, (i) U-Net [12] that is a classic model for

semantic segmentation, (ii) ViT [10] that has achieved the

state-of-the-art performance for various computer vision tasks,

and (iii) a recently developed model from the well-known

YOLO family called YOLOv8 [13]. We fine-tune these models

for our targeted application and deploy them on three edge

platforms, i.e., Raspberry Pi-4, Intel™ Neural Compute Stick,

and Nvidia™ Jetson Nano, with distinct hardware character-

istics that demand different deployment strategies.

Application scenario. The lightweight caveline detection

models developed in this paper will be deployed in the

autonomy pipeline of AUVs for underwater cave exploration

and mapping applications. The objective here is to enable

underwater robots to enter, explore a cave system by follow-

ing the caveline while mapping its surroundings, and finally

safely exit the cave. To this end, achieving real-time caveline

detection performance on edge devices is essential for safe

AUV navigation – which is the focus of this work.

II. RELATED WORK

A. Object Detection & Segmentation in Underwater Imagery

An essential capability of visually guided AUVs is to

identify relevant objects and interesting image regions to make

effective navigational decisions in real time [14]. Various

model-based techniques are generally deployed in fast visual

search [15], [16], enhanced object detection [17], [18], and

monitoring applications [19], [20]. For instance, Koreitem et
al. [15] used a bank of pre-specified image patches to learn

a similarity operator that guides the robot’s visual search in

an unconstrained setting. Besides, model-free approaches are

more feasible for autonomous exploratory applications [21].

For instance, Girdhar et al. [22] formulated an online topic-

modeling scheme that encodes visible features into a low-

dimensional semantic descriptor for AUV exploration. More

recent works by Modasshir et al. combined a deep learning-

based classifier model with Visual Inertial Odometry (VIO) to

identify and track the locations of different types of corals to

generate semantic maps [23] and volumetric models [24].

B. Object Detection & Tracking on Edge Devices

In recent years, various TinyML techniques [25] and

lightweight deep visual models [26] have been introduced such

as SqueezeNet [27], MobileNet [28]–[30], ShuffleNet [31],

[32], PeleeNet [33], MnasNet [34], Once-for-All (OFA) [35],

GhostNet [36], MobileVit [37], and more. Iandola et al. [27]

proposed a lightweight model called SqueezeNet, reaching

AlexNet-level accuracy on ImageNet with 50× fewer parame-

ters and less than 0.5MB memory requirement. By employing

streamlined architecture with depth-wise separable convolu-

tions, Howard et al. [28] introduced the family of MobileNet
models that are ideal for single-board embedded platforms.

The successor MobileNetv2 [29] uses inverted residual struc-

tures to reduce computations, while MobileNetv3 [30] adopts

Fig. 2: Sample data training collected from three underwater

cave systems in (a) Devil’s Spring system, FL, USA; (b)

Cueva del Agua, Murcia, Spain; and (c) Dos Ojos Cenote,

QR, Mexico – are shown in each column. The corresponding

binary labels marking the cavelines are shown in the bottom

row.

a platform-aware automated neural architecture search in hier-

archical search space along with NetAdapt [38], which further

reduces the components of the network.

On the other hand, Zhang et al. [31] used the ResNet

block coupling with innovations to devise ShuffleNet, which

is compatible with mobile devices. ShuffleNetv2 [32] further

improves the speed and accuracy by adopting a direct metric

(speed) rather than indirect metrics like FLOPs. Moreover,

Wang et al. [33] proposed a PeleeNet model by adopting

an assortment of computation-conserving methods, making a

compelling lightweight network. Tan et al. [34] presented a

novel mobile CNN-based model using an automated neural ar-

chitecture search approach. Besides, Cai et al. [35] introduced

OFA, a lightweight network that can meet different hardware

requirements. Furthermore, by merging the features of CNN

and ViT, Mehta et al. [37] presented a lightweight and versatile

vision transformer called MobileVit for edge devices. Previous

works have also explored the deployment of these models on

edge AI accelerators [39]–[41].

III. EXPERIMENTAL SETUP AND METHODOLOGY

A. Dataset Preparation

For data-driven training and evaluation, we extract video

frames from cave exploration experiments [42], [43] conducted

in three different locations: the Devil’s Spring System in

Florida, USA; the Dos Ojos Cenote, QR, Mexico; and the

Cueva del Agua in Murcia, Spain. As illustrated in Fig. 2, the

three cave locations exhibit different caveline characteristics in

terms of thickness, color, and background patterns. We identify

a variety of challenging cases and prepare 1050 images in each

set, totaling 3150 training instances. We follow the problem

formulation of CL-ViT [10], where the caveline detection in

the RGB space is learned as a binary image segmentation task,

i.e., identifying pixels with caveline as a semantic map. Four

human participants sorted these image samples and then pixel-

annotated the cavelines for ground truth generation, which

we utilize for the training of all models in consideration. For

evaluation, we use the CL-Challenge test set with 200 samples

presented in [10].

1393

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:28:04 UTC from IEEE Xplore. Restrictions apply.

B. Targeted ML Models

In this paper, we use three ML models: YOLOv8, Vision

Transformer (ViT), and U-Net. The following subsections

provide the details and characteristics of these models.

1) YOLOv8: YOLOv8 [13] is the cutting-edge YOLO

model, which has exhibited promising performance across var-

ious ML tasks such as object detection, image classification,

and instance segmentation. It is designed by Ultralytics, the

developer of the YOLOv5 model that has been influential in

the field. Here, we use transfer learning paradigms, according

to which we begin with a YOLOv8 model that is pre-

trained with the COCO dataset, and fine-tune it for the cave

exploration application using our targeted dataset. As we aim

to deploy the models on resource-constrained edge devices,

we chose a small version of YOLOv8 with 3.4M parameters.

2) Vision Transformer (ViT): The ViT model we used in

this paper is inspired by the model developed in [10]. The

ViT architecture includes two key components: a streamlined

encoder-decoder backbone and a refinement module. It in-

corporates a MobileNetV3 [30] model as its backbone. The

encoder comprises a sequence of convolutional layers consist-

ing of 16 filters, followed by 15 residual bottleneck layers.

The decoder employs six convolutional blocks to transform

the encoded features into 48 filters, resulting in a 480 × 270
resolution image.

3) U-Net: U-Net [12] is a well-known architecture for se-

mantic segmentation tasks, comprising two main components:

the encoder or contraction path, and the decoder or expansion

path. The contraction path mirrors the standard setup of

a convolutional network. It involves iteratively applying a

pair of 3 × 3 convolutions, followed by a ReLU activation

function and 2 × 2 max pooling operations using a stride

of 2. As for the expansion path, each step involves feature

map upsampling, followed by 2× 2 convolutions that reduce

the feature channel count by half. A concatenation operation

connects these layers with the feature maps obtained from the

contraction path. Collectively, the network encompasses a total

of 23 convolutional layers. The feature extraction component

of our U-Net model employs a MobileNetV2 architecture.

C. Edge devices

In this study, we deploy and evaluate our ML models on

various edge devices including Raspberry Pi, Intel Movidius

Neural Compute Stick 2 (NCS2), and Nvidia Jetson Nano, as

illustrated in Figure 3. These devices are commonly utilized

in different ML tasks such as image classification [41] and

natural language processing [40]. Each edge device has unique

attributes and demands a specific deployment methodology,

which are explained in the following:

1) Raspberry Pi-4: The Raspberry Pi-4 board is driven by

a Broadcom BCM2711 quad-core ARM Cortex-A72 CPU,

which operates at different speeds depending on the model

– 1.5GHz for the 2GB and 4GB RAM models, and 1.8GHz

for the 8GB RAM model. Available in various configurations,

the Raspberry Pi-4 offers distinct RAM capacities: 2GB,

4GB, and 8GB LPDDR4. Powering the device necessitates

Fig. 3: Experimental setup with (a) Raspberry Pi-4 + NCS2;

and (b) Nvidia™ Jetson Nano

a 5V USB-C power supply with the appropriate current

rating, which varies according to the intended use case and

peripherals connected.

2) Intel Neural Compute Stick: The Intel Neural Compute

Stick 2 (NCS2) utilizes the Intel Movidius-X Vision Process-

ing Unit (VPU), incorporating 16 programmable cores and

a dedicated neural compute engine. The NCS2 operates at

700MHz base frequency and includes a 4GB of RAM. Intel

offers the OpenVINO library, accessible in both Python3 and

C, to facilitate the deployment of ML models on the NCS2.

This library encompasses a model optimizer, which transforms

models into a suitable format for NCS2 deployment. Subse-

quently, utilizing OpenVINO’s built-in inference engine API

allows for the assessment of latency and power efficiency

during inference.

3) Nvidia Jetson Nano: The Jetson Nano is a modular

computer powered by a Tegra X1 system-on-chip (SoC)

with a ARM A57 quad-core processor, and four 32-CUDA

core processing blocks. It also includes 4GB of memory.

Nvidia™ offers two operating modes for Jetson Nano; the

low power mode (Jetson-low), in which only two cores of

the ARM A57 are activated and the clock frequency is set

at 0.9GHz. In addition, the GPU’s clock frequency is set to

0.64GHz. In the high power mode (Jetson-high), all the four

cores of Arm 57 processor are activated at 1.5GHz frequency

while the GPU runs at 0.92GHz frequency. The Jetson Nano

uses NVIDIA TensorRT as its primary driver for ML model

optimization.

IV. PERFORMANCE EVALUATION

A. Deployment Considerations

Once the targeted ML models described in the previous

section are trained and fine-tuned for the caveline detection

application, our focus shifted to deploying them on various

edge platforms that each have specific requirements. Leverag-

ing PyTorch during training, we adopted the ONNX format as

an intermediary for model export. The Raspberry Pi-4 employs

TFLite models with 32-bit floating-point (FP32) precision,

while the Jetson employs TensorRT models with FP16 pre-

cision. Additionally, we incorporated the NCS2 accelerator as

a co-processor with the Raspberry Pi-4, utilizing OpenVino

1394

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:28:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Computational graphs for Hard-Swish activation func-

tion using (a) Hard-Sigmoid (b) ReLU6.

2021 to convert ONNX models to the required format, where

FP16 operations are used.

The architecture of the ViT model incorporates a Mo-

bileNetV3 model as its encoder backbone, featuring a distinc-

tive Hard Swish activation function. This activation function

encompasses a component known as the Hard Sigmoid as it

is outlined in Eq. 1.

HardSwish(x) = x · HardSigmoid(x) (1)

The OpenVino 2021 lacks support for the Hard Sigmoid
activation function, which leads to the unsuccessful deploy-

ment of the ViT model on the NCS2 platform. However, A

noteworthy detail is that the Hard Sigmoid employs ReLU6
function within its equation, as demonstrated below,

HardSigmoid(x) = ReLU6(x+ 3)/6 (2)

To surmount the aforementioned deployment limitation, we

substituted the Hard Sigmoid layer with equivalent functions,

taking advantage of OpenVino 2021’s support for ReLU6. The

replacement of the Hard Sigmoid is depicted in Fig. 4, which

illustrates the revised computation graph to accommodate the

ReLU6 activation.

B. Performance Metrics

Here, we evaluate the performance of the ML models using

two commonly used metrics: Intersection Over Union (IOU)

and F1-score. IOU assesses the accuracy of object localization

by calculating the proportion of overlapping area between

predicted and actual labels. It is defined as:

IoU =
Area of Overlap

Area of Union
(3)

Furthermore, the F1 score evaluates the accuracy of pre-

dicted labels in relation to the true data labels, using normal-

ized precision (P) and recall (R) scores, yielding:

F1-score =
2× P ×R
P +R (4)

Fig. 5: Inference latency comparison for all models and

devices in consideration.

According to the obtained results, the U-Net model demon-

strates superior performance compared to the other two models

in both IoU and F1-score evaluations. The results, as listed

in Table I, reveal remarkable improvements achieved by U-

Net. Specifically, in terms of F1-score, U-Net exhibits 37.32%

and 52.63% higher performance compared to the ViT and

YOLOv8 models, respectively. Furthermore, when evaluating

IoU, U-Net achieves a significant 61.87% improvement com-

pared to YOLO, and a 46.94% improvement compared to

ViT. The higher performance of the U-Net model can also

be observed in three samples provided in Table II, in which

U-Net provides the highest similarity to the labels. After U-

Net, as expected from the F1-score and IoU results, the ViT

model outperforms the YOLOv8 model.

C. Inference Latency Measurement

To assess the inference latency, we first executed one

hundred inference operations for each model on each edge

platform and measured the overall latency. Next, we calcu-

lated the average inference time for a single image using

the measurement results. Fig. 5 shows the inference latency

results obtained. As it can be seen in the figure, the edge

AI accelerators, i.e., NCS2 and Jetson Nano, could achieve

approximately one order of magnitude reduction in inference

latency across all models. The Jetson Nano operating in the

high-power mode realized the fastest inference operations with

latency values of 68ms, 103ms, and 105ms for YOLO, ViT,

and U-Net models, respectively. The ranking of edge platforms

in terms of inference speed from fastest to slowest is as

follows: Jetson in high-power mode, Jetson in low-power

mode, NCS2, and Raspberry Pi-4.

TABLE I: Quantitative performance comparisons of all models

in terms of F1-score and IoU metrics.

Model F1-score IoU
YOLO 32.90 23.51

ViT 48.21 38.44
U-Net 85.53 85.38

1395

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:28:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Our qualitative evaluations infer that the U-Net has better performance compared to the other models in terms of

pixel accuracy and localization performance; three sample results are shown here for each model in comparison.

Original Image Label
Model Outputs

U-Net ViT YOLOv8

TABLE III: Frame per second (FPS) rates for all models

running on the edge devices in consideration.

Model
Frame Per Second (FPS)

Jetson-L Jetson-H NCS2 Raspberry Pi-4

YOLO 10.29 14.54 4.38 0.72
ViT 6.67 9.63 4.18 0.61

U-Net 6.63 9.50 5.27 0.56

In addition, Table III provides a comparison across all the

models and edge platforms in terms of the frames per second

(FPS) metric. As listed in the table, the YOLO model executed

on the Jetson Nano in high-power mode achieved the highest

FPS of 14.54, realizing a near-realtime caveline detection. It

is worth noting that AUVs and ROVs move at slow speeds

underwater, thus the view does not change drastically, in

contrast with aerial vehicles. Therefore, identifying the cave

line in a few frames per second is sufficient for safe navigation.

Studying the latency and accuracy results together shows that

the high accuracy realized by the U-Net model is achieved at

the cost of longer inference latency and smaller FPS ratios.

D. Inference Power Measurement

To measure the power dissipation of the inference operation

for the different models deployed on Raspberry Pi-4 and NCS2

devices, we used the MakerHawk UM34C USB multimeter

as shown in Fig. 3 (a). For the Jetson Nano, however, we

used its internal sensors which measure the CPU and GPU

power dissipation. Here, we executed the inference operation

for each model on each device for three consecutive minutes

and measured the power dissipation with a sample rate of one

measurement per second.

Figure 6 shows the dynamic power measurements for dif-

ferent models and platforms. The Jetson Nano’s high-power

mode stands out with the highest power dissipation, ranging

from 3.51 watts to 3.72 watts across all models. The remaining

hardware platforms demonstrate comparable power dissipation

levels ranging from 1.65 watts to 2.07 watts. As shown in

the figure, when executing YOLO and U-Net models, the

Jetson Nano in low-power mode realized the lowest power

dissipation, while for the ViT model, the NSC2 platform

achieved the least dynamic power dissipation. In addition,

the lowest power dissipation across all models and devices

is achieved by the YOLO model deployed on the Jetson Nano

in the low-power mode.

E. Inference Energy Measurement

In Fig. 7, we present a comparative analysis of inference

energy results. It is evident that all the edge AI accelerators

bring a significant improvement in inference energy compared

to the baseline Raspberry Pi-4. For instance, the YOLO model

running on the Jetson Nano in low-power mode achieves

18.5× inference energy reduction compared to the YOLO

model deployed on Pi-4. Furthermore, when examining the

YOLO model on the Jetson Nano in high-power mode and

the NCS2, we can observe a 11.6× and 6.8× energy reduction

compared to the baseline Raspberry Pi-4, respectively. More-

over, for the Vit model, the Jetson Nano’s low-power mode

demonstrates substantial savings in inference energy, showing

1396

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:28:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Dynamic power comparison for all models and devices.

Fig. 7: Dynamic energy comparison for all models and devices.

10.6×, 1.5×, and 1.4× energy reduction when compared to

the Raspberry Pi-4, Raspberry Pi-4 + NCS2, and Jetson Nano

in high-power mode, respectively. In summary, the YOLO

model running on Jetson Nano demonstrates the most energy-

efficient performance among all models and devices. Both the

YOLO and ViT models exhibit similar energy consumption

when deployed on Pi-4 and Pi+NCS2 platforms, while the U-

Net model stands out as the most energy-demanding option.

V. CONCLUSION AND FUTURE WORK

In this paper, we focused on the problem of real-time

caveline detection which is crucial for underwater robots in

autonomous cave exploration and mapping missions. Due to

the limitations in the connectivity of the AUVs with the

surface as well as the space limitations, it is not feasible

to rely on cloud services or powerful GPUs to run the

deep learning-based caveline detection models. Therefore, our

study investigated the trade-offs associated with deploying

three different object detection and segmentation models on

various edge platforms, with a focus on assessing accuracy,

latency, power, and energy consumption. Our experimental

results affirmed the expected trade-offs such as larger models

exhibited higher accuracy at the cost of increased inference

times and energy consumption. However, our analysis yielded

more intriguing nuances including (i) the U-Net model, despite

being considered a classic model for object detection and

segmentation, could achieve significantly higher F1-scores and

IoU values compared to more advanced models like ViT, while

maintaining comparable FPS rate and energy consumption

across all edge platforms, (ii) the FPS rate which is an

important metric for realtime operation appeared to be more

dependant on the choice of edge platform rather than the ML

model employed. For instance, a lightweight YOLOv8 model

running on Intel NCS2 realized a caveline detection speed of

4.38 FPS, whereas a significantly larger and more accurate ViT

model deployed on Jetson Nano in high-power mode could

achieve more than double processing speed of 9.63 FPS.

The comprehensive quantitative analyses presented in the

paper offer a guide for making design decisions and managing

trade-offs while integrating our cave-line detection systems

with underwater robots for cave exploration and mapping

missions. In our future research, we will delve into the

practical consequences of these trade-offs, including factors

such as battery life, accuracy in the wild, meeting real-time

mission requirements, and the thermal effects stemming from

computing power dissipation.

ACKNOWLEDGMENT

This research has been supported in part by the NSF

grants 1943205 and 2024741. The authors would also like to

acknowledge the help of the Woodville Karst Plain Project

(WKPP), El Centro Investigador del Sistema Acuı́fero de

Quintana Roo A.C. (CINDAQ), Global Underwater Explorers

(GUE), and Ricardo Constantino, Project Baseline in collect-

ing data, providing access to challenging underwater caves,

and mentoring us in underwater cave exploration. We also

appreciate the help from Evan Kornacki for coordinating our

field experimental setups.

REFERENCES

[1] M. J. Lace and J. E. Mylroie, “The biological and archaeological
significance of coastal caves and karst features,” in Coastal Karst
Landforms, pp. 111–126, Springer, 2013.

[2] D. Ford and P. Williams, Introduction to Karst, ch. 1, pp. 1–8. John
Wiley & Sons, Ltd, 2007.

[3] A. H. G. González, C. R. Sandoval, A. T. Mata, M. B. Sanvicente, and
E. Acevez, “The arrival of humans on the Yucatan Peninsula: Evidence
from submerged caves in the state of Quintana Roo, Mexico,” Current
Research in the Pleistocene, vol. 25, pp. 1–24, 2008.

[4] D. Rissolo, A. N. Blank, V. Petrovic, R. C. Arce, C. Jaskolski, P. L.
Erreguerena, and J. C. Chatters, “Novel application of 3D documentation
techniques at a submerged Late Pleistocene cave site in Quintana Roo,
Mexico,” in Digital Heritage, vol. 1, pp. 181–182, 2015.

[5] P. L. Buzzacott, E. Zeigler, P. Denoble, and R. Vann, “American cave
diving fatalities 1969-2007,” International Journal of Aquatic Research
and Education, vol. 3, no. 2, p. 7, 2009.

[6] B. Joshi, M. Xanthidis, M. Roznere, N. J. Burgdorfer, P. Mordohai,
A. Q. Li, and I. Rekleitis, “Underwater exploration and mapping,” in
2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV),
pp. 1–7, IEEE, 2022.

1397

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:28:04 UTC from IEEE Xplore. Restrictions apply.

[7] K. Richmond, C. Flesher, N. Tanner, V. Siegel, and W. C. Stone,
“Autonomous exploration and 3-D mapping of underwater caves with the
human-portable SUNFISH® AUV,” in Global Oceans 2020: Singapore–
US Gulf Coast, pp. 1–10, IEEE, 2020.

[8] S. Exley, Basic cave diving: A blueprint for survival. Cave Diving
Section of the National Speleological Society, 1986.

[9] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, “Hamilton-
jacobi skeletons,” International Journal of Computer Vision, vol. 48,
no. 3, pp. 215–231, 2002.

[10] B. Yu, R. Tibbetts, T. Barua, A. Morales, I. Rekleitis, and M. J.
Islam, “Weakly supervised caveline detection for auv navigation inside
underwater caves,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE/RSJ, 2023.

[11] M. J. Islam, Y. Xia, and J. Sattar, “Fast Underwater Image Enhancement
for Improved Visual Perception,” IEEE Robotics and Automation Letters
(RA-L), vol. 5, no. 2, pp. 3227–3234, 2020.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 234–241, Springer, 2015.

[13] “Ultralytics: YOLOv8 Docs, official website =
https://docs.ultralytics.com/.” Accessed: 2023-09-01.

[14] M. J. Islam, C. Edge, Y. Xiao, P. Luo, M. Mehtaz, C. Morse, S. S. Enan,
and J. Sattar, “Semantic Segmentation of Underwater Imagery: Dataset
and Benchmark,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE/RSJ, 2020.

[15] K. Koreitem, F. Shkurti, T. Manderson, W.-D. Chang, J. C. G. Higuera,
and G. Dudek, “One-shot informed robotic visual search in the wild,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5800–5807, IEEE, 2020.

[16] M. J. Islam, R. Wang, and J. Sattar, “SVAM: Saliency-guided Visual
Attention Modeling by Autonomous Underwater Robots,” in Robotics:
Science and Systems (RSS), (NY, USA), 2022.

[17] J. Zhu, S. Yu, L. Gao, Z. Han, and Y. Tang, “Saliency-Based Diver
Target Detection and Localization Method,” Mathematical Problems in
Engineering, vol. 2020, 2020.

[18] M. J. Islam, P. Luo, and J. Sattar, “Simultaneous Enhancement and
Super-Resolution of Underwater Imagery for Improved Visual Percep-
tion,” in Robotics: Science and Systems (RSS), (Corvalis, Oregon, USA),
July 2020.

[19] M. Modasshir, A. Quattrini Li, and I. Rekleitis, “Deep neural networks: a
comparison on different computing platforms,” in Canadian Conference
on Computer and Robot Vision (CRV), pp. 383–389, 2018.

[20] T. Manderson, J. C. G. Higuera, R. Cheng, and G. Dudek, “Vision-based
Autonomous Underwater Swimming in Dense Coral for Combined
Collision Avoidance and Target Selection,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1885–1891,
IEEE, 2018.

[21] Y. Girdhar and G. Dudek, “Modeling Curiosity in a Mobile Robot
for Long-term Autonomous Exploration and Monitoring,” Autonomous
Robots, vol. 40, no. 7, pp. 1267–1278, 2016.

[22] Y. Girdhar, P. Giguere, and G. Dudek, “Autonomous Adaptive Explo-
ration using Realtime Online Spatiotemporal Topic Modeling,” Interna-
tional Journal of Robotics Research (IJRR), vol. 33, no. 4, pp. 645–657,
2014.

[23] M. Modasshir, S. Rahman, O. Youngquist, and I. Rekleitis, “Coral Iden-
tification and Counting with an Autonomous Underwater Vehicle,” in
IEEE International Conference on Robotics and Biomimetics (ROBIO),
pp. 524–529, Dec. 2018.

[24] M. Modasshir, S. Rahman, and I. Rekleitis, “Autonomous 3D Semantic
Mapping of Coral Reefs,” in 12th Conference on Field and Service
Robotics (FSR), (Tokyo, Japan), pp. 365–379, Aug. 2019.

[25] P. P. Ray, “A review on tinyml: State-of-the-art and prospects,” Journal
of King Saud University-Computer and Information Sciences, vol. 34,
no. 4, pp. 1595–1623, 2022.

[26] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, vol. 126, p. 103514, 2022.

[27] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-

lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

[30] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,”
in IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 1314–1324, 2019.

[31] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 6848–6856, 2018.

[32] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), pp. 116–131, 2018.

[33] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection
system on mobile devices,” Advances in neural information processing
systems, vol. 31, 2018.

[34] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 2820–2828, 2019.

[35] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[36] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet:
More features from cheap operations,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1580–1589,
2020.

[37] S. Mehta and M. Rastegari, “Mobilevit: light-weight, general-
purpose, and mobile-friendly vision transformer,” arXiv preprint
arXiv:2110.02178, 2021.

[38] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam, “Netadapt: Platform-aware neural network adaptation for
mobile applications,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 285–300, 2018.

[39] B. C. Reidy, M. Mohammadi, M. E. Elbtity, and R. Zand, “Work in
progress: Real-time transformer inference on edge ai accelerators,” in
2023 IEEE 29th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 341–344, 2023.

[40] B. C. Reidy, M. Mohammadi, M. E. Elbtity, and R. Zand, “Efficient
deployment of transformer models on edge tpu accelerators: A real
system evaluation,” in Architecture and System Support for Transformer
Models (ASSYST ISCA), 2023.

[41] M. Mohammadi, H. Smith, L. Khan, and R. Zand, “Facial expression
recognition at the edge: Cpu vs gpu vs vpu vs tpu,” in Proceedings of
the Great Lakes Symposium on VLSI 2023, GLSVLSI ’23, (New York,
NY, USA), p. 243–248, Association for Computing Machinery, 2023.

[42] B. Joshi, M. Xanthidis, S. Rahman, and I. Rekleitis, “High definition,
inexpensive, underwater mapping,” in IEEE International Conference on
Robotics and Automation (ICRA), 2022.

[43] S. Rahman, A. Quattrini Li, and I. Rekleitis, “SVIn2: A Multi-sensor
Fusion-based Underwater SLAM System,” International Journal of
Robotics Research, vol. 41, pp. 1022–1042, July 2022.

1398

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:28:04 UTC from IEEE Xplore. Restrictions apply.

