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AbstractÐ Underwater caves are challenging environments
that are crucial for water resource management, and for our un-
derstanding of hydro-geology and history. Mapping underwater
caves is a time-consuming, labor-intensive, and hazardous oper-
ation. For autonomous cave mapping by underwater robots, the
major challenge lies in vision-based estimation in the complete
absence of ambient light, which results in constantly moving
shadows due to the motion of the camera-light setup. Thus,
detecting and following the caveline as navigation guidance is
paramount for robots in autonomous cave mapping missions.
In this paper, we present a computationally light caveline
detection model based on a novel Vision Transformer (ViT)-
based learning pipeline. We address the problem of scarce
annotated training data by a weakly supervised formulation
where the learning is reinforced through a series of noisy
predictions from intermediate sub-optimal models. We validate
the utility and effectiveness of such weak supervision for
caveline detection and tracking in three different cave locations:
USA, Mexico, and Spain. Experimental results demonstrate
that our proposed model, CL-ViT, balances the robustness-
efficiency trade-off, ensuring good generalization performance
while offering 10+ FPS on single-board (Jetson TX2) devices.

I. INTRODUCTION

Underwater caves play a crucial role in monitoring and

tracking groundwater flows in Karst topographies, while

almost 25% of the world’s population relies on Karst

freshwater resources [1]. Moreover, underwater caves often

present a pristine capsule preserved in time with major

archaeological secrets [2]. Underwater cave exploration and

mapping by human divers, however, is a tedious, labor-

intensive, extremely dangerous operation even for highly

skilled people [3]. Therefore, enabling Autonomous Under-

water Vehicles (AUVs) and Remotely Operated Vehicles

(ROVs) to enter, navigate, map, and finally exit an under-

water cave is important to ensure the safety and efficacy of

a mapping mission, as well as to potentially generate more

accurate maps; Fig. 1 shows an ROV deployment scenario

inside the Ballroom cavern at Ginnie Springs, Florida.
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Fig. 1: A BlueROV2 operating inside the cave, Orange Grove Sink,
Florida, USA. Note that the umbilical is connecting the ROV to a
surface operator.

The first cardinal rule of cave diving as set by Sheck

Exley is ªAlways use a single, continuous guideline from

the entrance of the cave throughout the dive.º [4]. Such

guidelines, from here on termed cavelines, exist in all ex-

plored underwater caves and they provide the skeleton of

the main passages. Mapping underwater caves is a multi-

layered process. When a new section of a cave is discovered,

a caveline is set identifying the passage. Consequently, the

caveline is surveyed marking the depth and orientation at the

points where the line is attached to the cave (floor, ceiling,

or walls) and the distance between attachment points (called

placements). These surveys produce a one-dimensional re-

traction of the three-dimensional environment. Recording all

this information together with additional observations [5]

such as distance to the walls, ceiling, and floor± is a

challenging, time-consuming, and error-prone process.

Our earlier work [6] utilizing a GoPro-9 action camera

resulted in high-precision camera trajectory estimation by

a Visual-Inertial Odometry (VIO) algorithm [7], which is

comparable to manually surveyed caveline (see Fig. 2).

Moreover, the collected data are continuous spatiotemporal
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videos, which we used to generate weakly labelled data, and

demonstrated that iterative filtering of mislabelled samples

can help regulate sample extraction for improved learn-

ing [8]. We found that the major challenges of data-driven

solutions for problems such as the caveline detection and

tracking, are: (i) learning from very few annotated samples;

and (ii) ensuring generalization performance across different

waterbodies, scene geometries, and optical degradations.

In this work, we address the aforementioned issues by

developing a weakly supervised Vision Transformer (ViT)-

based learning pipeline for autonomous caveline detection

by AUVs. We demonstrate that with a limited amount of

annotated training samples, learning can be reinforced itera-

tively from intermediate sub-optimal solutions. Specifically,

after each training phase, the weak predictions are carefully

sorted by a human expert into positive (i.e., accurate) and

negative (erroneous) labels. The noisy positive samples and

a fraction of newly annotated negative samples are then fused

to reinforce learning in the subsequent phases. With a series

of experiments, we show that robust caveline detection with

good generalization performance can be achieved with only

1.5K-2K annotated samples within 2-3 training phases.

Fig. 2: Estimated trajectory together with manually measured
ground truth from baseline; Cueva Del Agua, Spain.

We conduct experiments on three cave systems in dif-

ferent geographical locations: the Devil’s system in Florida,

USA; Dos Ojos Cenote, QR, Mexico; and Cueva del Agua in

Murcia, Spain. We compile the data into three sets containing

different types of cavelines, in terms of thickness and color,

and different background and optical degradation levels. In

order to ensure robustness, we evaluate both intra-set and

inter-set detection performance ± with the goal of achieving

good generalization performance on data from an unseen

location. We validated the effectiveness of our weakly su-

pervised multi-phase training for several genres of prominent

state-of-the-art (SOTA) models based on convolutional neural

networks (CNNs), attention networks, conditional random

fields (CRFs), U-shaped encoder-decoders, and ViTs.

Moreover, we develop a novel ViT-based learning pipeline

named CL-ViT that offers the design choice of a base model

with EfficientNetB5 [9] backbone and a light model with

MobileNetV3 [10] backbone for offline use (by surface op-

erators) and online processing (onboard AUVs), respectively.

The base model surpasses SOTA detection performance and

provides fine-grained caveline localization in image space.

Additionally, with a highly efficient MobilenetV3 back-

bone [10] CL-ViT light model has only 12.67M parameters,

which is about 51.55% less than DeepLabv3+ [11] and

46.61% less than PAN [12] ± two of the best competitor

baselines. As a result, it offers significantly faster inference

rates: over 215.79 FPS on an NVIDIA™ RTX 3060 and

10.71 FPS on a single-board Jetson TX2. A series of chal-

lenging test experiments reveal that CL-ViT offers consistent

performance for detecting cavelines with the presence of

shadow, lighting variations, and other optical artifacts.

Furthermore, we developed a post-processing algorithm to

filter the raw output masks of CL-ViT for more consistent

and smooth caveline localization. We achieve this by first

extracting a set of candidate lines from the binary output

mask, then applying a voting procedure for non-maxima sup-

pression based on the accumulator space of the probabilistic

Hough transform [13]. We demonstrate the effectiveness of

this post-processing step qualitatively for noisy predictions

in various challenging scenarios as well.

II. BACKGROUND & RELATED WORK

A. Underwater Cave Mapping and Exploration

In order to produce informative representations of under-

water caves, divers typically use photogrammetry [14], with

a special focus on recording archaeological sites [2], [15].

Attempts to automate underwater cave mapping by AUVs

have proven to be challenging and thus remain an open

problem. Mallios et al. [16] deployed an AUV to manually

collect acoustic data from inside a cave for offline mapping,

whereas Weidner et al. [17], [18] utilized a stereo camera to

map the walls of a cave. It is worth noting that vision-based

underwater state estimation is extremely challenging due to

the lighting variations, light absorption, and blurriness [19].

More recently, Rahman et al. [7], [20], [21] presented a

framework where acoustic, visual, inertial, and water depth

data are used to estimate the trajectory of the robot and also

a sparse representation of the cave. Denser representation

of the cave boundaries can be obtained by mapping the

contours [22], the moving shadows [23] or via dense stereo

reconstruction [24]. These approaches will be utilized to

enhance the mapping of an AUV following the caveline

safely in and out of the cave. Sunfish [25] a new man-

portable AUV is currently being deployed in caves in Florida.

B. Object Detection/Segmentation in Underwater Imagery

An essential capability of visually guided AUVs is to

identify relevant objects and interesting image regions to

make effective navigational decisions in real time. Various

model-based techniques are generally deployed in fast visual

search [26], [27], enhanced object detection [28], [29], and
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(a) Devil system, FL, USA (b) Dos Ojos Cenote, QR, Mexico (c) Cueva del Agua, Murcia, Spain

Fig. 3: Datasets used in our experiments are collected using a GoPro-9 camera at three different locations. A sample for each dataset is
shown; notice the (a) grey/white thinner cavelines in the Florida dataset; (b) thick yellow cavelines and a decorated background in the
Mexico dataset; and (c) thick orange cavelines in the Spain dataset.

monitoring applications [30], [31]. For instance, Koreitem et

al. [26] used a bank of pre-specified image patches to learn

a similarity operator that guides the robot’s visual search in

an unconstrained setting. Besides, model-free approaches are

more feasible for autonomous exploratory applications [32].

For instance, Girdhar et al. [33] formulated an online topic-

modeling scheme that encodes visible features into a low-

dimensional semantic descriptor for AUV exploration. More

recent work by Modasshir et al. combined a deep learning-

based classifier model with VIO to identify and track the

locations of different types of corals to generate semantic

maps [34] as well as volumetric models [35].

Due to the difficulties in acquiring large-scale labeled

underwater data, the existing systems attempt to collect and

annotate small-scale application-specific image data [36],

[37]. Islam et al. [38] considered eight object categories

for human-robot cooperative missions: robots, human divers,

wrecks/ruins, aquatic plants, fish, reefs, and sea floor. Other

datasets consider even fewer object categories such as marine

debris or ship hull defects [39]. With limited training samples

per object category over only a few waterbody types, it is

extremely challenging to achieve good generalization perfor-

mance by deep learning-based models for image recognition

tasks. These limitations call for learning adaptations [40]

with limited supervision and rigorous model design to ensure

robust underwater visual perception.

III. WEAKLY SUPERVISED CAVELINE DETECTION

A. Problem Formulation and Data Preparation

We formulate the problem of caveline detection in the

RGB space as a binary image segmentation task, i.e., iden-

tifying pixels with caveline as a semantic map [41]. In our

task, the background pixels and caveline pixels are assigned

with 0 and 1 labels, respectively. For data-driven training

and evaluation, we extract video frames from our cave

exploration experiments [6], [7] conducted in three different

locations: the Devil’s system in Florida, USA; the Dos Ojos

Cenote, QR, Mexico; and the Cueva del Agua in Murcia,

Spain. We grouped the caveline frames from these locations

into three datasets, which we term as the Florida, Mexico,

and Spain dataset, respectively.

As illustrated in Fig. 3, we found that the three cave

locations exhibit different caveline characteristics in terms

of thickness, color, and background patterns. The cavelines

in Florida are thin and off-white colored, whereas the Mexico

caves are the most decorated with yellow colored lines.

Cavelines in Spain are also thick and of orange color. In

general, the main cavelines in popular locations are thicker,

while off the main path become thinner; the grey/white

colored lines take a darker color over time and often blend

with the background patterns. We identify these variety of

challenging cases and prepare 1050 images in each set, total-

ing 3× 1050 = 3150 instances. We focused on maximizing

variance in the data by including varieties in caveline color,

distance, background/waterbody patterns as well as different

cave formations (e.g., stalactites, stalagmites, columns) and

navigational aids such as arrows and cookies. Four human

participants sorted these image samples and then pixel-

annotated the cavelines for ground truth generation, which

we utilizes for the training and evaluation of all models.

B. Proposed Model: CL-ViT

We develop a lightweight caveline detection model CL-

ViT for use by visually guided AUVs in underwater cave

mapping and exploration tasks. To this end, we focus on

enabling two important features: (i) robustness to noisy low-

resolution inputs because cavelines are only a few pixels

wide even in a high-resolution camera feed; and (ii) efficient

inference on single-board embedded platforms. We attempt

to achieve this in CL-ViT model by integrating multi-scale

local hierarchical features and global spatial information for

efficient pixel-wise segmentation of cavelines. CL-ViT con-

sists of two major learning components: an efficient encoder-

decoder backbone and a ViT-based refinement module; the

network architecture is illustrated in Fig. 4.

1) Choice of Backbones: We incorporate two options for

the deep hierarchical feature extraction in CL-ViT: (i) a light

model with MobileNetV3 [10] backbone for on-board AUV

processing; and (ii) a base model with EfficientNetB5 [9]

backbone for offline use, e.g., when human operators on

surface control ROVs inside a cave. The MobileNetV3

is a lightweight CNN-based model designed for resource-

constrained platforms. The encoder contains a series of fully

convolutional layers with 16 filters followed by 15 residual

bottleneck layers. We then use a mirrored decoder with six

convolutional blocks to map the encoded features into 48
filters of 480×270 resolution (with an input of 960×540×3).

On the other hand, EfficientNet uses a technique called

compound coefficient to scale up models in a simple but

effective manner. It uniformly scales features in width, depth,

9935

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:32:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: The end-to-end learning pipeline of our proposed CL-ViT model is shown. Input images are first fed to the backbone (light model:
MobileNetV3 backbone; base model: EfficientNetB5 backbone) for feature extraction. Those features are forwarded to our transformer-
based refinement module (ViT Refiner), followed by a convolution and upsampling block to generate the caveline detection mask.

and resolution to ensure effective receptive fields for feature

extraction. We use EfficientNetB5 which extracts 128 filters

of 480× 270 resolution from 960× 540× 3 inputs.

2) ViT-based Refinement Module: Following feature ex-

traction, we design a ViT-based refinement module to trans-

form and embed the contextual features into an efficient

prediction head. Our idea is to allow each feature posi-

tion to have consistent receptive fields so that the global

spatial information is accurately embedded. As shown in

Fig. 4, the N=48/128 filters extracted by the backbone are

16×16 convolved and flattened to patch embeddings, which

are concatenated with learnable position embeddings. These

embeddings are then propagated to the transformer encoder,

which applies a four-layer multi-head attention mapping.

Subsequently, the normalized and 3 × 3 convolved feature

maps are projected (dot product operation) with N output

embeddings; the remaining embeddings in the MLP head

are dropped. The selected attention maps then generate the

binary caveline segmentation map after a final convolution

and upsampling operation at 960× 540 resolution.

3) Learning Objective: The end-to-end training is driven

by two loss functions: the standard cross-entropy loss [42]

and the Dice loss proposed by Milletari et al. [43]. The cross-

entropy loss quantifies the dissimilarity in pixel intensity

distributions between the generated caveline map (ŷ) and its

ground truth (y). For a total of np pixels, it is calculated as:

LBCE =
1

np

∑
i
[−yi log ŷi − (1− yi) log(1− ŷi)]. (1)

While we initially trained all caveline detectors with LBCE

alone, we noticed a severe class imbalance problem, since

there are very few positive (caveline) pixels compared to

the negative (background) pixels. We address this issue

by adding the Dice loss, which balances foreground and

background classes by normalizing y and ŷ as follows:

LDice = 1−
2
∑

i yiŷi∑
i y

2

i +
∑

i ŷ
2

i

. (2)

Finally, the end-to-end learning objective is formulated as:

LCL = λCE LBCE + λD LDice. (3)

Here, we find the λCE and λD empirically for different

models independently through hyper-parameters tuning.

4) Weakly-Supervised Iterative Training: Pixel-annotated

training data is very scarce for unique problems such as

caveline detection in underwater caves. As discussed earlier,

caveline characteristics and background waterbody patterns

in each cave locations differ greatly, making it difficult to

compile a comprehensive dataset for supervised training. We

address this limitation by a weakly supervised formulation,

where model accuracy is improved incrementally on new

locations’ data. This speeds up model adaptations during

robotics field deployments to a new location by eliminating

the need for labeling entire datasets for supervised training.

We validate this hypothesis on each dataset (i.e., Florida,

Spain, and Mexico data) based on the leave-one-out mecha-

nism, as illustrated in Fig. 5.

Fig. 5: Our weakly-supervised iterative training process is shown.

For each of the three cases shown in Fig. 5, the weak

supervision is carried out as follows. The initial model

is evaluated on the full test set (of 1050 samples), from

which a human expert sorts out the good quality predictions

to reinforce the learning in the next phase. The human

expert also selects a set of challenging samples where the
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TABLE I: Quantitative comparison for caveline detection performance by CL-ViT and other SOTA models are shown for our weakly
supervised iterative learning phases (see Sec. III-B.4 for the discussion on how these training phases are carried out).

Training data Test set Phase Metric (↑) EMANet UNet DPT PAN DeepLabv3+
CL-ViT

(MV3)
CL-ViT

(EB5)

Florida + Spain Mexico

1
IoU
F1

13.43
77.39

32.65
66.35

35.07
68.42

38.39
82.12

46.16
84.65

25.08
59.04

50.92

85.72

2
IoU
F1

15.90
83.35

45.56
82.50

51.21
89.29

62.41
96.62

61.90
95.99

33.08
73.95

68.73

97.84

3
IoU
F1

15.98
79.74

46.05
83.45

54.07
88.53

55.84
95.04

60.57
96.98

32.60
72.45

70.28

98.34

Florida + Mexico Spain

1
IoU
F1

13.10
77.67

55.32
91.24

48.23
84.60

54.86
93.65

58.19
95.43

42.07
84.24

66.47

96.03

2
IoU
F1

24.45
92.54

60.30
96.80

64.23
97.14

66.78
98.07

70.70
98.47

48.78
92.92

76.00

98.48

3
IoU
F1

18.67
79.13

62.88
96.93

67.24
97.06

69.86
98.39

71.13
98.64

48.29
91.71

77.39

98.74

Spain + Mexico Florida

1
IoU
F1

6.87
31.45

19.21
37.50

18.89
35.45

27.87
55.90

28.78
56.50

16.18
37.68

39.11

74.23

2
IoU
F1

13.60
65.66

24.24
52.75

26.17
57.24

28.53
71.64

33.30
77.73

20.64
54.49

41.16

85.26

3
IoU
F1

13.20
69.33

26.49
57.79

22.01
51.23

34.81
79.21

31.67
76.71

15.79
47.69

40.53

85.00

Fig. 6: Effectiveness of our weakly supervised caveline detection pipeline is shown with an example. Output maps a/d, b/e, and c/f are the
test results for CL-ViT model with MobileNetV3/EfficientNetB5 backbone after the first, second, and third phase of training, respectively.
As seen, the visual prediction results and metric scores gradually get better after each learning phase. The final post-processed predictions
are also shown on the right overlayed on the input image.

model failed, then annotates and combines them into the

training set in order to balance distribution positive (accurate)

and negative (erroneous) samples. This process is repeated

several times until a satisfactory number of training samples

are compiled. Our experiments reveal that we get 15%-20%
good quality predictions in the first phase and another 34%-

47% in the second phase. All 1050 images get labelled within

3 phases, where human experts relabelled only 200-250
images as negative samples. Thus the remaining labels are

weak labels generated by intermediate sub-optimal models

for subsequent weak supervision.

5) Post-processing: In the post-processing step, we

smooth the raw CL-ViT output of binary pixel predictions

into continuous line segments. We achieve this by first

interpolating a sequence of connected straight line segments

by modeling a probabilistic Hough transform [13]. Then we

apply a voting procedure for non-maxima suppression and

generate the most dominant line. To ensure robustness of this

suppression mechanism for all types of noisy and incomplete

predictions, we empirically tuned the hyper-parameters, e.g.,

the distance metric, acute angle threshold for merging pair-

wise lines, and the number of iterations.

IV. EXPERIMENTAL RESULTS

A. Baseline Models and Evaluation metrics

We developed a unified training pipeline for SOTA models

across the CNN, CRF, and ViT literature. Specifically, we

use: EMANet [44], UNet [45], DPT [46]. PAN [12], and

DeepLabv3+ [11] for baseline performance analyses. We use

Pytorch libraries to implement a unified learning pipelines for

CL-ViT and all SOTA models in comparison. RMSprop [47]

is used as the optimizer with an initial learning rate of 10−5,

a momentum of 0.9, and a weight decay of 10−8. The input-

output resolution is set to 960 × 540 for all models; other

SOTA model-specific parameters are chosen based on their

respective recommended configurations.

For performance evaluation, we use two standard metrics:

IOU and F1 score. The IoU (Intersection Over Union)

measures caveline localization performance using the area of

overlapping regions of the predicted and ground truth labels.

it is defined as IoU = Area of overlap
Area of union

. Besides, the F1 score

quantifies the correctness of predicted labels compared to

ground truth by the normalized precision (P) and recall (R)

scores as F = 2×P×R

P+R
.

B. Qualitative and Quantitative Evaluation

1) Effectiveness of Weak Supervision: We first demon-

strate the utility and effectiveness of our weakly supervised

learning pipeline for the three cases depicted in Fig. 5. The

corresponding quantitative results are listed in Table I, which

shows that all models exhibit incremental improvements over

learning phases 1, 2, and 3. This validates our intuition that

robust generalization performance by standard deep visual

learning models can be achieved with very few labeled

data from a new location for fast model adaptation. Fig. 6
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Fig. 7: A few qualitative comparisons are shown for caveline detection by CL-ViT and other SOTA models on cross-location test images.
The DeepLabv3+, DPT, and PAN models provide well-localized predictions, while CL-ViT (EfficientNetB5) generates the most fine-
grained caveline detection (i.e., thinnest continuous lines). Note that all images are overlayed with raw outputs without post-processing.

shows a particular example where IoU scores improved

from 0.36/0.38 to 0.55/0.72, while F1 scores improved from

0.62/0.72 to 0.92/0.99 for the CL-ViT light/base model,

respectively. The generated maps become increasingly fine-

grained as well; the final output maps can be further post-

processed for well-localized detection of cavelines.

2) Performance Analyses of CL-ViT: We conduct a thor-

ough performance evaluation of CL-ViT and other SOTA

models based on all cross-location test images. A few qualita-

tive comparisons are shown in Fig. 7, which shows consistent

results from CL-ViT, DeepLabv3+, DPT, and PAN. Our CL-

ViT (EfficentNetB5) model achieves the most fine-grained

caveline detection performance with the thinnest continuous

line segments. While not as fine-grained, oue light CL-ViT

(MobileNetV3) model localizes the cavelines reasonably as

well, which can be further refined by post-processing.

We show the corresponding quantitative test results in

Table I; it confirms the superior performance from CL-

ViT (EfficentNetB5) for both IoU and F1 score metrics.

Although CL-ViT (MobileNetV3) does not surpass the SOTA

performance, with a significantly lighter model architec-

ture, it offers 51.52%-89.74% memory efficiency and 7-43
times faster inference rates. It runs at 10+ FPS rates on

Nvidia™ Jetson TX2 devices, which makes it feasible for

single-board deployments in AUVs’ autonomy pipeline.

TABLE II: Quantitative test results are shown for CL-ViT and other
top three models from Table I; their memory requirements in Mega-
Bytes (MB), and inference rates in FPS (Core i9-12900 CPU) and
FPS∗ (single-board Jetson TX2) are compared as well.

Metric UNet DPT DeepLabv3+
CL-ViT

(MV3)
CL-ViT

(EB5)

↑ IoU 38.34 38.88 49.77 28.57 58.30

↑ F1 86.68 77.89 93.07 77.79 95.87

↑ FPS 2.34 0.46 2.41 20.21 0.77
↑ FPS∗ 1.15 0.23 1.19 10.71 0.38
↓ MB 124.20 496.20 105.00 50.90 313.70

3) Challenging Cases: As discussed earlier, very low

resolutions of positive (caveline) pixels compared to the neg-

ative (background) pixels cause the class imbalance problem

in caveline detection learning. While we eliminate this by

using a relatively high input resolution of 960 × 540, there

Fig. 8: Post-processed CL-ViT output for a few test cases from the
CL-Challenge dataset; notice the (a) lack of contrast in the caveline
regions; (b) presence of arrows/cookies; (c) caveline shadow ap-
pears similar to another line; (d) caveline is outside the illuminated
area; (e) scattering and distortions around the caveline.

are other scenarios where CL-ViT (and other models) are

faced with challenges. We identify a subset of such cases

and compile a CL-Challenge test set with 200 samples.

It includes images with severe optical distortions, lack of

contrast, over-saturation, shadows, low-light conditions, oc-

clusion, and other issues that make it extremely challenging

to locate the caveline, even for a human observer. As shown

in Fig. 8, CL-ViT models are still able to localize the caveline

for the most part. Despite some noisy predictions, these

inspiring results indicate that caveline detection by CL-ViT

can facilitate safe AUV navigation inside underwater caves.
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V. CONCLUSIONS

In this paper, we presented a novel learning pipeline for

fast caveline detection in images from underwater caves.

We formulated a weakly supervised approach that facili-

tates a rapid model adaptation to data from new location

by requiring very few ground truth labels. A comparison

with SOTA frameworks demonstrated higher accuracy and

efficiency of the proposed approach. Cavelines traverse the

majority of explored underwater caves providing a roadmap

that can guide a robot inside a cave and then safely back

out. Of paramount importance is robustness across different

appearances both of the line but also of the surrounding

background. Tests on three different locales demonstrated

accurate performance across different domains and lines.

Currently, we are developing an autonomous caveline-fol-

lowing system that uses CL-ViT’s caveline predictions in

tandem with a VIO system for visual servoing.

REFERENCES

[1] D. Ford and P. Williams, ªIntroduction to karst,º in

Karst Hydrogeology and Geomorphology. John Wiley

& Sons, Ltd, 2007, ch. 1, pp. 1±8.

[2] A. H. G. GonzÂalez, C. R. Sandoval, A. T. Mata, M. B.

Sanvicente, and E. Acevez, ªThe arrival of humans

on the Yucatan Peninsula: Evidence from submerged

caves in the state of Quintana Roo, Mexico,º Current

Research in the Pleistocene, vol. 25, pp. 1±24, 2008.

[3] P. L. Buzzacott, E. Zeigler, P. Denoble, and R. Vann,

ªAmerican cave diving fatalities 1969-2007,º Interna-

tional Journal of Aquatic Research and Education,

vol. 3, no. 2, p. 7, 2009.

[4] S. Exley, Basic cave diving: A blueprint for survival.

Cave Diving Section of the National Speleological

Society, 1986.

[5] J. Burge, Underwater Cave Surveying. Cave Diving

Section of the National Speleological Society, 1988.

[6] B. Joshi, M. Xanthidis, S. Rahman, and I. Rekleitis,

ªHigh definition, inexpensive, underwater mapping,º

in IEEE International Conference on Robotics and

Automation (ICRA), 2022, pp. 1113±1121.

[7] S. Rahman, A. Quattrini Li, and I. Rekleitis, ªSVIn2:

A Multi-sensor Fusion-based Underwater SLAM Sys-

tem,º International Journal of Robotics Research,

vol. 41, no. 11-12, pp. 1022±1042, Jul. 2022.

[8] M. Modasshir and I. Rekleitis, ªAugmenting coral

reef monitoring with an enhanced detection system,º

in IEEE International Conference on Robotics and

Automation, Paris, France, 2020, pp. 1874±1880.

[9] M. Tan and Q. Le, ªEfficientnet: Rethinking model

scaling for convolutional neural networks,º in In-

ternational Conference on Machine Learning, 2019,

pp. 6105±6114.

[10] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen,

M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan,

et al., ªSearching for mobilenetv3,º in IEEE/CVF

International Conference on Computer Vision (ICCV),

2019, pp. 1314±1324.

[11] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and

H. Adam, ªEncoder-decoder with atrous separable

convolution for semantic image segmentation,º in Pro-

ceedings of the European conference on computer

vision (ECCV), 2018, pp. 801±818.

[12] H. Li, P. Xiong, J. An, and L. Wang, ªPyramid

attention network for semantic segmentation,º arXiv

preprint arXiv:1805.10180, 2018.

[13] N. Kiryati, Y. Eldar, and A. M. Bruckstein, ªA proba-

bilistic hough transform,º Pattern recognition, vol. 24,

no. 4, pp. 303±316, 1991.

[14] J. Fortin, S. Meacham, D. Rissolo, C. Le Maillot,

and F. Devos, ªEnvironmental challenges, technical

solutions and standard operating procedures for data

collection in photogrammetric studies toward a unified

database of objects and features in underwater caves in

mexico,º The International Archives of Photogramme-

try, Remote Sensing and Spatial Information Sciences,

vol. 43, pp. 659±666, 2021.

[15] D. Rissolo, A. N. Blank, V. Petrovic, R. C. Arce,

C. Jaskolski, P. L. Erreguerena, and J. C. Chatters,

ªNovel application of 3D documentation techniques

at a submerged Late Pleistocene cave site in Quintana

Roo, Mexico,º in Digital Heritage, 2015, pp. 181±182.

[16] A. Mallios, P. Ridao, D. Ribas, M. Carreras, and R.

Camilli, ªToward autonomous exploration in confined

underwater environments,º Journal of Field Robotics,

vol. 33, no. 7, pp. 994±1012, 2016.

[17] N. Weidner, S. Rahman, A. Quattrini Li, and I. Rek-

leitis, ªUnderwater cave mapping using stereo vision,º

in IEEE International Conference on Robotics and

Automation (ICRA), 2017, pp. 5709±5715.

[18] N. Weidner, ªUnderwater Cave Mapping and Recon-

struction Using Stereo Vision,º M.S. thesis, Computer

Science and Engineering Department, University of

South Carolina, Columbia, SC, 2017.

[19] B. Joshi, S. Rahman, M. Kalaitzakis, et al., ªExper-

imental Comparison of Open Source Visual-Inertial-

Based State Estimation Algorithms in the Under-

water Domain,º in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2019,

pp. 7221±7227.

[20] S. Rahman, A. Quattrini Li, and I. Rekleitis, ªSonar

Visual Inertial SLAM of Underwater Structures,º in

IEEE International Conference on Robotics and Au-

tomation, 2018, pp. 5190±5196.

[21] S. Rahman, A. Quattrini Li, and I. Rekleitis, ªAn

Underwater SLAM System using Sonar, Visual, In-

ertial, and Depth Sensor,º in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

2019, pp. 1861±1868.

[22] Q. Massone, S. Druon, Y. Breux, and J. Triboulet,

ªContour-based approach for 3D mapping of underwa-

ter galleries,º in Global Oceans 2020: Singapore±US

Gulf Coast, IEEE, 2020, pp. 1±6.

[23] S. Rahman, A. Quattrini Li, and I. Rekleitis, ªContour

based reconstruction of underwater structures using

9939

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:32:49 UTC from IEEE Xplore.  Restrictions apply. 



sonar, visual, inertial, and depth sensor,º in IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), 2019, pp. 8048±8053.

[24] W. Wang, B. Joshi, N. Burgdorfer, K. Batsos, A.

Quattrini Li, P. Mordohai, and I. Rekleitis, ªReal-Time

Dense 3D Mapping of Underwater Environments,º

in IEEE International Conference on Robotics and

Automation (ICRA), London, UK, 2023.

[25] K. Richmond, C. Flesher, N. Tanner, V. Siegel,

and W. C. Stone, ªAutonomous exploration and 3-

D mapping of underwater caves with the human-

portable SUNFISH® AUV,º in Global Oceans 2020:

Singapore±US Gulf Coast, 2020, pp. 1±10.

[26] K. Koreitem, F. Shkurti, T. Manderson, W.-D. Chang,

J. C. G. Higuera, and G. Dudek, ªOne-shot informed

robotic visual search in the wild,º in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems

(IROS), 2020, pp. 5800±5807.

[27] M. J. Islam, R. Wang, and J. Sattar, ªSVAM: Saliency-

guided Visual Attention Modeling by Autonomous

Underwater Robots,º in Robotics: Science and Systems

(RSS), NY, USA, 2022.

[28] J. Zhu, S. Yu, L. Gao, Z. Han, and Y. Tang,

ªSaliency-Based Diver Target Detection and Localiza-

tion Method,º Mathematical Problems in Engineering,

vol. 2020, 2020.

[29] M. J. Islam, Y. Xia, and J. Sattar, ªFast Underwater

Image Enhancement for Improved Visual Perception,º

IEEE Robotics and Automation Letters (RA-L), vol. 5,

no. 2, pp. 3227±3234, 2020.

[30] M. Modasshir, A. Quattrini Li, and I. Rekleitis, ªDeep

neural networks: A comparison on different computing

platforms,º in Canadian Conference on Computer and

Robot Vision (CRV), 2018, pp. 383±389.

[31] T. Manderson, J. C. G. Higuera, R. Cheng, and

G. Dudek, ªVision-based Autonomous Underwater

Swimming in Dense Coral for Combined Collision

Avoidance and Target Selection,º in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems

(IROS), 2018, pp. 1885±1891.

[32] Y. Girdhar and G. Dudek, ªModeling Curiosity in a

Mobile Robot for Long-term Autonomous Exploration

and Monitoring,º Autonomous Robots, vol. 40, no. 7,

pp. 1267±1278, 2016.

[33] Y. Girdhar, P. Giguere, and G. Dudek, ªAutonomous

Adaptive Exploration using Realtime Online Spa-

tiotemporal Topic Modeling,º International Journal of

Robotics Research (IJRR), pp. 645±657, 2014.

[34] M. Modasshir, S. Rahman, O. Youngquist, and I. Rek-

leitis, ªCoral Identification and Counting with an Au-

tonomous Underwater Vehicle,º in IEEE International

Conference on Robotics and Biomimetics (ROBIO),

Dec. 2018, pp. 524±529.

[35] M. Modasshir, S. Rahman, and I. Rekleitis, ªAu-

tonomous 3D Semantic Mapping of Coral Reefs,º in

12th Conference on Field and Service Robotics (FSR),

Tokyo, Japan, Aug. 2019, pp. 365±379.

[36] I. Alonso, M. Yuval, G. Eyal, T. Treibitz, and A. C.

Murillo, ªCoralSeg: Learning Coral Segmentation

from Sparse Annotations,º Journal of Field Robotics

(JFR), vol. 36, no. 8, pp. 1456±1477, 2019.

[37] M. Ravanbakhsh, M. R. Shortis, F. Shafait, A.

Mian, E. S. Harvey, and J. W. Seager, ªAutomated

Fish Detection in Underwater Images Using Shape-

Based Level Sets,º Photogrammetric Record, vol. 30,

no. 149, pp. 46±62, 2015.

[38] M. J. Islam, C. Edge, Y. Xiao, P. Luo, M. Mehtaz, C.

Morse, S. S. Enan, and J. Sattar, ªSemantic Segmenta-

tion of Underwater Imagery: Dataset and Benchmark,º

in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2020.

[39] M. Waszak, A. Cardaillac, B. Elvesñter, F. Rùdùlen,

and M. Ludvigsen, ªSemantic segmentation in under-

water ship inspections: Benchmark and data set,º IEEE

Journal of Oceanic Engineering, 2022.

[40] B. Yu, J. Wu, and M. J. Islam, ªUdepth: Fast monoc-

ular depth estimation for visually-guided underwater

robots,º in Accepted at the IEEE International Con-

ference on Robotics and Automation (ICRA), IEEE,

2023.

[41] A. M. Hafiz and G. M. Bhat, ªA survey on instance

segmentation: State of the art,º International journal

of multimedia information retrieval, vol. 9, no. 3,

pp. 171±189, 2020.

[42] Z. Zhang and M. Sabuncu, ªGeneralized cross entropy

loss for training deep neural networks with noisy

labels,º Advances in Neural Information Processing

Systems, vol. 31, 2018.

[43] F. Milletari, N. Navab, and S.-A. Ahmadi, ªV-net:

Fully convolutional neural networks for volumetric

medical image segmentation,º in International Con-

ference on 3D vision (3DV), 2016, pp. 565±571.

[44] X. Li, Z. Zhong, J. Wu, Y. Yang, Z. Lin, and H. Liu,

ªExpectation-maximization attention networks for se-

mantic segmentation,º in IEEE/CVF Int. Conference

on Computer Vision, 2019, pp. 9167±9176.

[45] O. Ronneberger, P. Fischer, and T. Brox, ªU-

net: Convolutional networks for biomedical image

segmentation,º in Medical Image Computing and

Computer-Assisted Intervention (MICCAI), Springer,

2015, pp. 234±241.

[46] R. Ranftl, A. Bochkovskiy, and V. Koltun, ªVision

transformers for dense prediction,º in IEEE/CVF Int.

Conference on Computer Vision, 2021, pp. 12 179±

12 188.

[47] T. Tieleman, G. Hinton, et al., ªLecture 6.5-rmsprop:

Divide the gradient by a running average of its re-

cent magnitude,º COURSERA: Neural networks for

machine learning, vol. 4, no. 2, pp. 26±31, 2012.

9940

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:32:49 UTC from IEEE Xplore.  Restrictions apply. 


