2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-9190-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/IR0S55552.2023.10342435

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 1-5, 2023. Detroit, USA

Weakly Supervised Caveline Detection For AUV Navigation Inside
Underwater Caves

Boxiao Yu', Reagan Tibbetts?, Titon Barua?, Ailani Morales', Ioannis Rekleitis? and Md Jahidul Islam'

Abstract— Underwater caves are challenging environments
that are crucial for water resource management, and for our un-
derstanding of hydro-geology and history. Mapping underwater
caves is a time-consuming, labor-intensive, and hazardous oper-
ation. For autonomous cave mapping by underwater robots, the
major challenge lies in vision-based estimation in the complete
absence of ambient light, which results in constantly moving
shadows due to the motion of the camera-light setup. Thus,
detecting and following the caveline as navigation guidance is
paramount for robots in autonomous cave mapping missions.
In this paper, we present a computationally light caveline
detection model based on a novel Vision Transformer (ViT)-
based learning pipeline. We address the problem of scarce
annotated training data by a weakly supervised formulation
where the learning is reinforced through a series of noisy
predictions from intermediate sub-optimal models. We validate
the utility and effectiveness of such weak supervision for
caveline detection and tracking in three different cave locations:
USA, Mexico, and Spain. Experimental results demonstrate
that our proposed model, CL-ViT, balances the robustness-
efficiency trade-off, ensuring good generalization performance
while offering 10+ FPS on single-board (Jetson TX2) devices.

I. INTRODUCTION

Underwater caves play a crucial role in monitoring and
tracking groundwater flows in Karst topographies, while
almost 25% of the world’s population relies on Karst
freshwater resources [1]. Moreover, underwater caves often
present a pristine capsule preserved in time with major
archaeological secrets [2]. Underwater cave exploration and
mapping by human divers, however, is a tedious, labor-
intensive, extremely dangerous operation even for highly
skilled people [3]. Therefore, enabling Autonomous Under-
water Vehicles (AUVs) and Remotely Operated Vehicles
(ROVs) to enter, navigate, map, and finally exit an under-
water cave is important to ensure the safety and efficacy of
a mapping mission, as well as to potentially generate more
accurate maps; Fig. 1 shows an ROV deployment scenario
inside the Ballroom cavern at Ginnie Springs, Florida.
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Fig. 1: A BlueROV2 operating inside the cave, Orange Grove Sink,
Florida, USA. Note that the umbilical is connecting the ROV to a
surface operator.

The first cardinal rule of cave diving as set by Sheck
Exley is “Always use a single, continuous guideline from
the entrance of the cave throughout the dive.” [4]. Such
guidelines, from here on termed cavelines, exist in all ex-
plored underwater caves and they provide the skeleton of
the main passages. Mapping underwater caves is a multi-
layered process. When a new section of a cave is discovered,
a caveline is set identifying the passage. Consequently, the
caveline is surveyed marking the depth and orientation at the
points where the line is attached to the cave (floor, ceiling,
or walls) and the distance between attachment points (called
placements). These surveys produce a one-dimensional re-
traction of the three-dimensional environment. Recording all
this information together with additional observations [5]
such as distance to the walls, ceiling, and floor— is a
challenging, time-consuming, and error-prone process.

Our earlier work [6] utilizing a GoPro-9 action camera
resulted in high-precision camera trajectory estimation by
a Visual-Inertial Odometry (VIO) algorithm [7], which is
comparable to manually surveyed caveline (see Fig. 2).
Moreover, the collected data are continuous spatiotemporal
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videos, which we used to generate weakly labelled data, and
demonstrated that iterative filtering of mislabelled samples
can help regulate sample extraction for improved learn-
ing [8]. We found that the major challenges of data-driven
solutions for problems such as the caveline detection and
tracking, are: (¢) learning from very few annotated samples;
and (¢4) ensuring generalization performance across different
waterbodies, scene geometries, and optical degradations.

In this work, we address the aforementioned issues by
developing a weakly supervised Vision Transformer (ViT)-
based learning pipeline for autonomous caveline detection
by AUVs. We demonstrate that with a limited amount of
annotated training samples, learning can be reinforced itera-
tively from intermediate sub-optimal solutions. Specifically,
after each training phase, the weak predictions are carefully
sorted by a human expert into positive (i.e., accurate) and
negative (erroneous) labels. The noisy positive samples and
a fraction of newly annotated negative samples are then fused
to reinforce learning in the subsequent phases. With a series
of experiments, we show that robust caveline detection with
good generalization performance can be achieved with only
1.5K-2K annotated samples within 2-3 training phases.

Cueva del Agua | Murcia | Spain
Start-of-Line to T1 to T2

Black = MNemo Survey 2019
Red = Video+IMU Survey 2022

Fig. 2: Estimated trajectory together with manually measured
ground truth from baseline; Cueva Del Agua, Spain.

We conduct experiments on three cave systems in dif-
ferent geographical locations: the Devil’s system in Florida,
USA; Dos Ojos Cenote, QR, Mexico; and Cueva del Agua in
Murcia, Spain. We compile the data into three sets containing
different types of cavelines, in terms of thickness and color,
and different background and optical degradation levels. In
order to ensure robustness, we evaluate both intra-set and
inter-set detection performance — with the goal of achieving
good generalization performance on data from an unseen
location. We validated the effectiveness of our weakly su-
pervised multi-phase training for several genres of prominent
state-of-the-art (SOTA) models based on convolutional neural
networks (CNNs), attention networks, conditional random
fields (CRFs), U-shaped encoder-decoders, and ViTs.

Moreover, we develop a novel ViT-based learning pipeline
named CL-ViT that offers the design choice of a base model
with EfficientNetB5 [9] backbone and a light model with
MobileNetV3 [10] backbone for offline use (by surface op-
erators) and online processing (onboard AUVs), respectively.
The base model surpasses SOTA detection performance and
provides fine-grained caveline localization in image space.
Additionally, with a highly efficient MobilenetV3 back-
bone [10] CL-ViT light model has only 12.67M parameters,
which is about 51.55% less than DeepLabv3+ [11] and
46.61% less than PAN [12] — two of the best competitor
baselines. As a result, it offers significantly faster inference
rates: over 215.79 FPS on an NVIDIA™ RTX 3060 and
10.71 FPS on a single-board Jetson TX2. A series of chal-
lenging test experiments reveal that CL-ViT offers consistent
performance for detecting cavelines with the presence of
shadow, lighting variations, and other optical artifacts.

Furthermore, we developed a post-processing algorithm to
filter the raw output masks of CL-ViT for more consistent
and smooth caveline localization. We achieve this by first
extracting a set of candidate lines from the binary output
mask, then applying a voting procedure for non-maxima sup-
pression based on the accumulator space of the probabilistic
Hough transform [13]. We demonstrate the effectiveness of
this post-processing step qualitatively for noisy predictions
in various challenging scenarios as well.

II. BACKGROUND & RELATED WORK
A. Underwater Cave Mapping and Exploration

In order to produce informative representations of under-
water caves, divers typically use photogrammetry [14], with
a special focus on recording archaeological sites [2], [15].
Attempts to automate underwater cave mapping by AUVs
have proven to be challenging and thus remain an open
problem. Mallios et al. [16] deployed an AUV to manually
collect acoustic data from inside a cave for offline mapping,
whereas Weidner et al. [17], [18] utilized a stereo camera to
map the walls of a cave. It is worth noting that vision-based
underwater state estimation is extremely challenging due to
the lighting variations, light absorption, and blurriness [19].
More recently, Rahman et al. [7], [20], [21] presented a
framework where acoustic, visual, inertial, and water depth
data are used to estimate the trajectory of the robot and also
a sparse representation of the cave. Denser representation
of the cave boundaries can be obtained by mapping the
contours [22], the moving shadows [23] or via dense stereo
reconstruction [24]. These approaches will be utilized to
enhance the mapping of an AUV following the caveline
safely in and out of the cave. Sunfish [25] a new man-
portable AUV is currently being deployed in caves in Florida.

B. Object Detection/Segmentation in Underwater Imagery

An essential capability of visually guided AUVs is to
identify relevant objects and interesting image regions to
make effective navigational decisions in real time. Various
model-based techniques are generally deployed in fast visual
search [26], [27], enhanced object detection [28], [29], and

9934

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:32:49 UTC from IEEE Xplore. Restrictions apply.



<3

(2) Devil system, FL, USA

(b) Dos Ojos Cenote, QR, Mexico

(c) Cueva del Agua, Murcia, Spain

Fig. 3: Datasets used in our experiments are collected using a GoPro-9 camera at three different locations. A sample for each dataset is
shown; notice the (a) grey/white thinner cavelines in the Florida dataset; (b) thick yellow cavelines and a decorated background in the

Mexico dataset; and (c) thick orange cavelines in the Spain dataset.

monitoring applications [30], [31]. For instance, Koreitem et
al. [26] used a bank of pre-specified image patches to learn
a similarity operator that guides the robot’s visual search in
an unconstrained setting. Besides, model-free approaches are
more feasible for autonomous exploratory applications [32].
For instance, Girdhar et al. [33] formulated an online topic-
modeling scheme that encodes visible features into a low-
dimensional semantic descriptor for AUV exploration. More
recent work by Modasshir et al. combined a deep learning-
based classifier model with VIO to identify and track the
locations of different types of corals to generate semantic
maps [34] as well as volumetric models [35].

Due to the difficulties in acquiring large-scale labeled
underwater data, the existing systems attempt to collect and
annotate small-scale application-specific image data [36],
[37]. Islam et al. [38] considered eight object categories
for human-robot cooperative missions: robots, human divers,
wrecks/ruins, aquatic plants, fish, reefs, and sea floor. Other
datasets consider even fewer object categories such as marine
debris or ship hull defects [39]. With limited training samples
per object category over only a few waterbody types, it is
extremely challenging to achieve good generalization perfor-
mance by deep learning-based models for image recognition
tasks. These limitations call for learning adaptations [40]
with limited supervision and rigorous model design to ensure
robust underwater visual perception.

III. WEAKLY SUPERVISED CAVELINE DETECTION
A. Problem Formulation and Data Preparation

We formulate the problem of caveline detection in the
RGB space as a binary image segmentation task, i.e., iden-
tifying pixels with caveline as a semantic map [41]. In our
task, the background pixels and caveline pixels are assigned
with 0 and 1 labels, respectively. For data-driven training
and evaluation, we extract video frames from our cave
exploration experiments [6], [7] conducted in three different
locations: the Devil’s system in Florida, USA; the Dos Ojos
Cenote, QR, Mexico; and the Cueva del Agua in Murcia,
Spain. We grouped the caveline frames from these locations
into three datasets, which we term as the Florida, Mexico,
and Spain dataset, respectively.

As illustrated in Fig. 3, we found that the three cave
locations exhibit different caveline characteristics in terms
of thickness, color, and background patterns. The cavelines
in Florida are thin and off-white colored, whereas the Mexico

caves are the most decorated with yellow colored lines.
Cavelines in Spain are also thick and of orange color. In
general, the main cavelines in popular locations are thicker,
while off the main path become thinner; the grey/white
colored lines take a darker color over time and often blend
with the background patterns. We identify these variety of
challenging cases and prepare 1050 images in each set, total-
ing 3 x 1050 = 3150 instances. We focused on maximizing
variance in the data by including varieties in caveline color,
distance, background/waterbody patterns as well as different
cave formations (e.g., stalactites, stalagmites, columns) and
navigational aids such as arrows and cookies. Four human
participants sorted these image samples and then pixel-
annotated the cavelines for ground truth generation, which
we utilizes for the training and evaluation of all models.

B. Proposed Model: CL-ViT

We develop a lightweight caveline detection model CL-
ViT for use by visually guided AUVs in underwater cave
mapping and exploration tasks. To this end, we focus on
enabling two important features: (¢) robustness to noisy low-
resolution inputs because cavelines are only a few pixels
wide even in a high-resolution camera feed; and (i7) efficient
inference on single-board embedded platforms. We attempt
to achieve this in CL-ViT model by integrating multi-scale
local hierarchical features and global spatial information for
efficient pixel-wise segmentation of cavelines. CL-ViT con-
sists of two major learning components: an efficient encoder-
decoder backbone and a ViT-based refinement module; the
network architecture is illustrated in Fig. 4.

1) Choice of Backbones: We incorporate two options for
the deep hierarchical feature extraction in CL-ViT: (%) a light
model with MobileNetV3 [10] backbone for on-board AUV
processing; and (i7) a base model with EfficientNetB5 [9]
backbone for offline use, e.g., when human operators on
surface control ROVs inside a cave. The MobileNetV3
is a lightweight CNN-based model designed for resource-
constrained platforms. The encoder contains a series of fully
convolutional layers with 16 filters followed by 15 residual
bottleneck layers. We then use a mirrored decoder with six
convolutional blocks to map the encoded features into 48
filters of 480270 resolution (with an input of 960 x 540X 3).
On the other hand, EfficientNet uses a technique called
compound coefficient to scale up models in a simple but
effective manner. It uniformly scales features in width, depth,
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Fig. 4: The end-to-end learning pipeline of our proposed CL-ViT model is shown. Input images are first fed to the backbone (light model:
MobileNetV3 backbone; base model: EfficientNetB5 backbone) for feature extraction. Those features are forwarded to our transformer-
based refinement module (ViT Refiner), followed by a convolution and upsampling block to generate the caveline detection mask.

and resolution to ensure effective receptive fields for feature
extraction. We use EfficientNetB5 which extracts 128 filters
of 480 x 270 resolution from 960 x 540 x 3 inputs.

2) ViT-based Refinement Module: Following feature ex-
traction, we design a ViT-based refinement module to trans-
form and embed the contextual features into an efficient
prediction head. Our idea is to allow each feature posi-
tion to have consistent receptive fields so that the global
spatial information is accurately embedded. As shown in
Fig. 4, the N=48/128 filters extracted by the backbone are
16 x 16 convolved and flattened to patch embeddings, which
are concatenated with learnable position embeddings. These
embeddings are then propagated to the transformer encoder,
which applies a four-layer multi-head attention mapping.
Subsequently, the normalized and 3 x 3 convolved feature
maps are projected (dot product operation) with N output
embeddings; the remaining embeddings in the MLP head
are dropped. The selected attention maps then generate the
binary caveline segmentation map after a final convolution
and upsampling operation at 960 x 540 resolution.

3) Learning Objective: The end-to-end training is driven
by two loss functions: the standard cross-entropy loss [42]
and the Dice loss proposed by Milletari et al. [43]. The cross-
entropy loss quantifies the dissimilarity in pixel intensity
distributions between the generated caveline map () and its
ground truth (y). For a total of n,, pixels, it is calculated as:

1
Lpcp =~ Zi[_yi log i — (1 — ys)log(1 — 95)]. )
P

While we initially trained all caveline detectors with Lo
alone, we noticed a severe class imbalance problem, since
there are very few positive (caveline) pixels compared to
the negative (background) pixels. We address this issue
by adding the Dice loss, which balances foreground and
background classes by normalizing y and ¢ as follows:

2 ZZ Yi Ui

_ 2
RES I @

Lpice =1—

Finally, the end-to-end learning objective is formulated as:
Lor =Ace LBCE + AD Lpice- 3

Here, we find the A\cp and Ap empirically for different
models independently through hyper-parameters tuning.

4) Weakly-Supervised Iterative Training: Pixel-annotated
training data is very scarce for unique problems such as
caveline detection in underwater caves. As discussed earlier,
caveline characteristics and background waterbody patterns
in each cave locations differ greatly, making it difficult to
compile a comprehensive dataset for supervised training. We
address this limitation by a weakly supervised formulation,
where model accuracy is improved incrementally on new
locations’ data. This speeds up model adaptations during
robotics field deployments to a new location by eliminating
the need for labeling entire datasets for supervised training.
We validate this hypothesis on each dataset (i.e., Florida,
Spain, and Mexico data) based on the leave-one-out mecha-
nism, as illustrated in Fig. 5.

Training set Training set Training set

Florida Spain Spain Mexico Florida Mexico

o o o
TrainT Train\r TrainT

L [Gesi T’ /R

(p) Test set (p) Test set (p)
Mexico Florida
(n-m-p) (n) (n-m-p) (n)

(n-m)|No
» Good qulaity result?
Yes

(m)

Test set

m’ Spain(n)
]

(n-m)|No ' (n-m)|No
Good qulaity result? i Good qulaity result?
Yes | Yes
(m)

(m)

Fig. 5: Our weakly-supervised iterative training process is shown.

For each of the three cases shown in Fig. 5, the weak
supervision is carried out as follows. The initial model
is evaluated on the full test set (of 1050 samples), from
which a human expert sorts out the good quality predictions
to reinforce the learning in the next phase. The human
expert also selects a set of challenging samples where the
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TABLE I: Quantitative comparison for caveline detection performance by CL-ViT and other SOTA models are shown for our weakly
supervised iterative learning phases (see Sec. III-B.4 for the discussion on how these training phases are carried out).

Training data Test set | Phase | Metric (1) EMANet | UNet DPT PAN DeepLabv3+ (2’1{;[-\731’)1‘ C(Ié;;;l)’r
1 ToU 13.43 32.65 | 35.07 | 38.39 46.16 25.08 50.92
F1 77.39 66.35 | 68.42 | 82.12 84.65 59.04 85.72
Florida + Spain Mexico 9 ToU 15.90 45.56 | 51.21 | 62.41 61.90 33.08 68.73
F1 83.35 82.50 | 89.29 | 96.62 95.99 73.95 97.84
3 ToU 15.98 46.05 | 54.07 | 55.84 60.57 32.60 70.28
F1 79.74 83.45 | 88.53 | 95.04 96.98 72.45 98.34
1 TIoU 13.10 55.32 | 48.23 | 54.86 58.19 42.07 66.47
F1 77.67 91.24 | 84.60 | 93.65 95.43 84.24 96.03
Florida + Mexico Spain 9 TIoU 24.45 60.30 | 64.23 | 66.78 70.70 48.78 76.00
F1 92.54 96.80 | 97.14 | 98.07 98.47 92.92 98.48
3 ToU 18.67 62.88 [ 67.24 | 69.86 71.13 48.29 77.39
F1 79.13 96.93 | 97.06 | 98.39 98.64 91.71 98.74
1 IoU 6.87 19.21 | 18.89 | 27.87 28.78 16.18 39.11
F1 31.45 37.50 | 35.45 | 55.90 56.50 37.68 74.23
Spain + Mexico Florida 9 ToU 13.60 24.24 | 26.17 | 28.53 33.30 20.64 41.16
F1 65.66 52.75 | 57.24 | 71.64 77.73 54.49 85.26
3 ToU 13.20 26.49 | 22.01 | 34.81 31.67 15.79 40.53
F1 69.33 57.79 | 51.23 | 79.21 76.71 47.69 85.00
s
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Fig. 6: Effectiveness of our weakly supervised caveline detection pipeline is shown with an example. Output maps a/d, b/e, and c/f are the
test results for CL-ViT model with MobileNetV3/EfficientNetBS backbone after the first, second, and third phase of training, respectively.
As seen, the visual prediction results and metric scores gradually get better after each learning phase. The final post-processed predictions

are also shown on the right overlayed on the input image.

model failed, then annotates and combines them into the
training set in order to balance distribution positive (accurate)
and negative (erroneous) samples. This process is repeated
several times until a satisfactory number of training samples
are compiled. Our experiments reveal that we get 15%-20%
good quality predictions in the first phase and another 34%-
47% in the second phase. All 1050 images get labelled within
3 phases, where human experts relabelled only 200-250
images as negative samples. Thus the remaining labels are
weak labels generated by intermediate sub-optimal models
for subsequent weak supervision.

5) Post-processing: In the post-processing step, we
smooth the raw CL-ViT output of binary pixel predictions
into continuous line segments. We achieve this by first
interpolating a sequence of connected straight line segments
by modeling a probabilistic Hough transform [13]. Then we
apply a voting procedure for non-maxima suppression and
generate the most dominant line. To ensure robustness of this
suppression mechanism for all types of noisy and incomplete
predictions, we empirically tuned the hyper-parameters, e.g.,
the distance metric, acute angle threshold for merging pair-
wise lines, and the number of iterations.

IV. EXPERIMENTAL RESULTS
A. Baseline Models and Evaluation metrics

We developed a unified training pipeline for SOTA models
across the CNN, CRF, and ViT literature. Specifically, we

use: EMANet [44], UNet [45], DPT [46]. PAN [12], and
DeepLabv3+ [11] for baseline performance analyses. We use
Pytorch libraries to implement a unified learning pipelines for
CL-ViT and all SOTA models in comparison. RMSprop [47]
is used as the optimizer with an initial learning rate of 107>,
a momentum of 0.9, and a weight decay of 10~8. The input-
output resolution is set to 960 x 540 for all models; other
SOTA model-specific parameters are chosen based on their
respective recommended configurations.

For performance evaluation, we use two standard metrics:
IOU and F1 score. The IoU (Intersection Over Union)
measures caveline localization performance using the area of
overlapping regions of the predicted and ground truth labels.
it is defined as IoU = %. Besides, the F1 score
quantifies the correctness of predicted labels compared to
ground truth by the normalized precision (P) and recall (R)

_ 2XPXR
scores as F = e o

B. Qualitative and Quantitative Evaluation

1) Effectiveness of Weak Supervision: We first demon-
strate the utility and effectiveness of our weakly supervised
learning pipeline for the three cases depicted in Fig. 5. The
corresponding quantitative results are listed in Table I, which
shows that all models exhibit incremental improvements over
learning phases 1, 2, and 3. This validates our intuition that
robust generalization performance by standard deep visual
learning models can be achieved with very few labeled
data from a new location for fast model adaptation. Fig. 6
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Raw input EMANet UNet DPT

PAN Deeplabv3+

CL-VIT (MV3) CL-ViT (EBS)

Fig. 7: A few qualitative comparisons are shown for caveline detection by CL-ViT and other SOTA models on cross-location test images.
The DeepLabv3+, DPT, and PAN models provide well-localized predictions, while CL-ViT (EfficientNetB5) generates the most fine-
grained caveline detection (i.e., thinnest continuous lines). Note that all images are overlayed with raw outputs without post-processing.

shows a particular example where IoU scores improved
from 0.36/0.38 to 0.55/0.72, while F1 scores improved from
0.62/0.72 to 0.92/0.99 for the CL-ViT light/base model,
respectively. The generated maps become increasingly fine-
grained as well; the final output maps can be further post-
processed for well-localized detection of cavelines.

2) Performance Analyses of CL-ViT: We conduct a thor-
ough performance evaluation of CL-ViT and other SOTA
models based on all cross-location test images. A few qualita-
tive comparisons are shown in Fig. 7, which shows consistent
results from CL-ViT, DeepLabv3+, DPT, and PAN. Our CL-
ViT (EfficentNetB5) model achieves the most fine-grained
caveline detection performance with the thinnest continuous
line segments. While not as fine-grained, oue light CL-ViT
(MobileNetV3) model localizes the cavelines reasonably as
well, which can be further refined by post-processing.

We show the corresponding quantitative test results in
Table I; it confirms the superior performance from CL-
ViT (EfficentNetB5) for both IoU and F1 score metrics.
Although CL-ViT (MobileNetV3) does not surpass the SOTA
performance, with a significantly lighter model architec-
ture, it offers 51.52%-89.74% memory efficiency and 7-43
times faster inference rates. It runs at 10+ FPS rates on
Nvidia™ Jetson TX2 devices, which makes it feasible for
single-board deployments in AUVs’ autonomy pipeline.

TABLE II: Quantitative test results are shown for CL-ViT and other
top three models from Table I; their memory requirements in Mega-
Bytes (MB), and inference rates in FPS (Core 19-12900 CPU) and
FPS™ (single-board Jetson TX2) are compared as well.

Metric || UNet | DPT | DeepLabv3+ C(l{j“‘,’;)T C(IéB‘;‘)T
T ToU 3834 | 38883 1977 2857 | 58.30
1 Fl 86.68 | 77.89 93.07 77.79 | 95.87
T FPS 2.34 0.46 241 20.21 0.77
+FPS* || 1.15 0.23 1.19 10.71 0.38
1 MB 124.20 | 496.20 105.00 50.90 | 313.70

3) Challenging Cases: As discussed earlier, very low
resolutions of positive (caveline) pixels compared to the neg-
ative (background) pixels cause the class imbalance problem
in caveline detection learning. While we eliminate this by
using a relatively high input resolution of 960 x 540, there

CL-ViT (MV3) CL-ViT (EB5)
Fig. 8: Post-processed CL-ViT output for a few test cases from the
CL-Challenge dataset; notice the (a) lack of contrast in the caveline
regions; (b) presence of arrows/cookies; (c) caveline shadow ap-

pears similar to another line; (d) caveline is outside the illuminated
area; (e) scattering and distortions around the caveline.

Raw input

are other scenarios where CL-ViT (and other models) are
faced with challenges. We identify a subset of such cases
and compile a CL-Challenge test set with 200 samples.
It includes images with severe optical distortions, lack of
contrast, over-saturation, shadows, low-light conditions, oc-
clusion, and other issues that make it extremely challenging
to locate the caveline, even for a human observer. As shown
in Fig. 8, CL-ViT models are still able to localize the caveline
for the most part. Despite some noisy predictions, these
inspiring results indicate that caveline detection by CL-ViT
can facilitate safe AUV navigation inside underwater caves.
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V. CONCLUSIONS [11]
In this paper, we presented a novel learning pipeline for
fast caveline detection in images from underwater caves.
We formulated a weakly supervised approach that facili-
tates a rapid model adaptation to data from new location
by requiring very few ground truth labels. A comparison [12]
with SOTA frameworks demonstrated higher accuracy and
efficiency of the proposed approach. Cavelines traverse the
majority of explored underwater caves providing a roadmap [13]
that can guide a robot inside a cave and then safely back
out. Of paramount importance is robustness across different
appearances both of the line but also of the surrounding [14]
background. Tests on three different locales demonstrated
accurate performance across different domains and lines.
Currently, we are developing an autonomous caveline-fol-
lowing system that uses CL-ViT’s caveline predictions in
tandem with a VIO system for visual servoing.
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