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Abstract— Vision-based state estimation is challenging in
underwater environments due to color attenuation, low visibility
and floating particulates. All  visual-inertial estimators are
prone to failure due to degradation in image quality. However,
underwater robots are required to keep track of their pose
during field deployments. We propose robust estimator fusing
the robot’s dynamic and kinematic model with proprioceptive
sensors to propagate the pose whenever visual-inertial odometry
(VIO) fails. To detect the VIO failures, health tracking is used,
which enables switching between pose estimates from VIO and a
kinematic estimator. Loop closure implemented on weighted
posegraph for global trajectory optimization. Experimental
results from an Aqua2 Autonomous Underwater Vehicle field
deployments demonstrates the robustness of our approach over
different underwater environments such as over shipwrecks
and coral reefs. The proposed hybrid approach is robust to
VIO failures producing consistent trajectories even in harsh
conditions.

I . INTRODUC T I ON

The blue economy, which encompasses all economic activ-
ity around the coasts and oceans, contributes more than $373
billion to the US GDP and supports more than two million
jobs [1]. While seventy one percent of the Earth is covered
by water, only a tiny portion of the underwater environment is
adequately mapped and explored [2]. The role of robotics and
automation technology is critical in moving this needle. One
of the most challenging aspects of autonomous under-water
vehicle (AUV) deployment beneath the surface is still cost,
with a significant percentage associated to the robotic
platform and its sensor payload. And while platform cost is
gradually decreasing with advances in manufacturing and
electronics, and the ability to integrate commercial off-the-
shelf (COTS) components into effective perception, decision-
making, and action cyberphysical architectures, autonomous
underwater (and thus GPS-denied) navigation, in environ-
ments like those of Fig. 1 where ultra-short baseline (USBL)
technologies cannot easily be deployed, remains a critical
challenge.

Vision-based state estimation has gained traction in recent
years as cameras are lightweight, power efficient and pro-
vide semantic information easily understandable to humans.
Recent work has demonstrated that existing open source
packages for visual inertial odometry (VIO) are prone to
failure in an underwater environment [3], [4]. Exacerbating
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Fig. 1: Autonomous Underwater Vehicle over the Stavronikita
shipwreck, Barbados.

the challenges of GPS-denied state estimation and local-
ization, underwater environments often present instances of
rapid changes in visibility, lighting conditions and contrast,
loss of color, blurring, and “snow effects.” In addition,
one cannot assume uniform availability of optical features
and landmarks [5], [6] over the whole area of deployment
that a vision system can exploit. In alternative approaches,
when VIO fails, there is no recourse for state estimation
functionality recovery.

Unable to produce continuous estimate of AUV ’s pose
at best hampers control strategies that rely on robot’s state
to produce trajectories and at worse can results in vehicle
loss. As such, tracking robot’s pose at all times is very
important albeit with diminished accuracy. As such, in our
recent work we proposed using a primitive estimator to track
an AUV using proprioceptive sensors and a simple vehicle
kinematic model [7]. This paper makes a contribution in
the area of VIO-based underwater navigation by further
improving the accuracy and the robustness with focus on
better modeling of the AUV kinematics. This switching
estimator is inherently more robust than alternative solutions
because it can switch between visual-inertial estimation and
model-based state propagation, whenever the former fails to
acquire enough features from the environment to prevent
catastrophic estimate divergence.

Compared to earlier work [7] the proposed estimator here
incorporates a more advanced and accurate dynamical model
for the underwater platform, thus boosting the accuracy of
the model-based estimate which is used by the navigation
algorithm until the VIO estimator comes back online; which
we term here as kinematic estimator (KE). In addition, the
kinematic estimator uses recent gyroscope bias estimates
from VIO for more accurate orientation estimation. In the
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Fig. 2: Overview of the hybrid switching estimator.

event of loop closure, the weighted posegraph optimization
process gives less priority to the kinematic estimator edges
compared to VIO produced edges. The ability to switch
online between the two estimator modalities, with awareness
of the evolving accuracy performance of each one, provides
significant robustness to changes in the visual underwater
environment. This allows the AUV to carryout the underlying
tasks of coverage and exploration [8] while maintaining
it’s ability to localize accurately when visiting same area
again. We performed two experiments where an Aqua2
AUV [9], [10] performs lawnmower pattern over a shipwreck
and a square pattern over a coral reef. While most VIO
algorithms [11]–[13], either diverge or fail drastically, our
hybrid inference system is able to keep steady pose estimate
with lower error.

I I . R E L AT E D  WO R K

Several open source packages solving the problem of
estimating visual and visual/inertial odometry (VO and VIO)
have been published [14]–[25]. The VO/VIO methods can
be broadly divided into direct methods [26], [27] and
indirect (features-based) [11], [23], [28]–[30] based on
how the information from the images is incorporated into
the proposed framework. Visual SLAM methods can be
classified depending on the backend into non-linear filtering
[23], [31]–[33] and least squares optimization [11], [27]–
[29], [34] approaches. Comparing the performance of these
packages over a variety of datasets demonstrated several
challenges; see Quattrini L i  et al. [3]. More recently, Joshi et
al. [4] examined the performance of different VIO packages
in the underwater domain. The above research showed that
many approaches are strictly offline [35], require special
motions [15], or are computationally constrained to a small
number of images [36], [37]. In addition, intermittent failures
appeared, where the randomness of the RANSAC tech-
nique [38] was the cause. SVIN by Rahman et al. [13],

an underwater VIO showed better robustness and accuracy;
unfortunately, SVIN did diverged when the health of the
vision estimator failed.

I I I . PROPOSED S Y S T E M

The proposed computational architecture for robust un-
derwater state estimation intends to combine a dynamical
model-predictive estimator with a VIO [13] module (Fig. 2).

The idea is to rely on VIO as long as the vehicle operates
in feature rich environments where the associated estimator
is expected to yield accurate estimates, and intermittently
switch to a dynamical model-based estimator to propagate
the state estimate forward until the VIO algorithm observes
images with sufficient features to yield a better estimate of
robot’s pose. A  supervisory logic will switch between the two
estimators using an estimate of their expected state accuracy.

The VIO module fuses velocity and acceleration measure-
ments from an inertial measurement unit (IMU) at 100 Hz,
depth measurements from a water pressure sensor, and stereo
camera images at 15 frames per second (fps). This sensor
fusion algorithm leverages earlier work and a codebase that
has been introduced under the name SVIN [13], [24], [25]. In
our earlier realizations, the model-based predictive estimator
has been utilizing a simple kinematic model of the form
W p I (t  +  1) =  W pI (t )  +  W R I ( t ) [ v̄ x ( t )  0 v̄ z ( t )  ]� ∆t,  where W
pt +1  represents the position of the robot’s frame I  in the
fixed world frame W at time step t +  1, W R I  denotes the
rotation matrix from frame I  to frame W, v̄x  and v̄z are the
vehicle commanded speed components along the surge and
heave directions, and ∆ t  is the length of the time interval
between successive updates.

In this paper, the simple kinematic model is upgraded
by utilizing a more complete kinematic model for motion
prediction, that takes into account the full kinematic state
(p I , η I )  of the system, where η I  =  (ϕ, θ, ψ) denotes the
vector of the robot’s roll, pitch, and yaw angles.
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(a) (b) (c)
Fig. 3: (a) representative frame when the AUV has sufficient visual features. (b) Example of a case of barely adequate features to produce
estimates from visual odometry. (c) The AUV now has too few features and VIO will fail.

A. VIO Overview

An extension to visual-inertial SLAM was proposed by
Rahman et al. [13] to incorporate water pressure and sonar
measurements. This Sonar Visual Inertial Navigation (SVIN)
system is found to be effective in underwater environments
and used as our visual inertial estimator.

The visual frontend detects and tracks B R I S K [39]
features across multiple frames. An IMU preintegration
technique similar to     [40] is employed to propagate IMU
measurements between frames. The backend estimates the
robot’s pose by jointly minimizing the reprojection error
from feature tracking, the IMU error from propagation, the
water pressure depth and the sonar error. A  sliding window of
keyframes along with associated error terms optimized for
real-time processing. In addition, the depth error is formu-
lated as the difference in AUV’s along the z-direction and
the water depth measurement from the pressure sensor. To
calculate the sonar error, we accumulate the 3D points in the
current optimization window nearby the sonar measurement
and calculate the error as the difference of the centroid of
the 3D point cluster and the sonar range measurement.

A  separate loop-closure and relocalization module uses the
output of VIO and maintains a posegraph of relative transfor-
mations between keyframes. We only optimize the posegraph
with 4 degrees of freedom (DoF) involving position and yaw
as roll and pitch are observable in the VIO system. The loop-
closure module implemented using the BRIEF  [41] vocab-
ulary with a bag-of-words place recognition module [42]. In
the event of a loop closure, an odometry edge is added
between the current and the candidate keyframe when they
have enough descriptor matches and pass the PnP-RANSAC
based geometric verification. The     loop-closure module is
extended to accept odometry information from the kinematic
estimator with lower weight assigned to odometry edge from
K E  compared to their visual counterparts. These K E  frames
are not used for loop closing as they lack visual information.

B. Health Tracking

In our previous work [3], [4], we compared the perfor-
mance of various visual SLAM algorithms in underwater
domain. These studies found that visual failures are frequent
especially when there is no visible structure in front of

the camera. For the continuous operation of the robot, it is
important to detect divergence in pose estimation. In
Kalman-filter based VIO, a set limit on covariance estimate
can be used as health indicator. However, estimating the
pose covariance is inefficient in optimization-based methods
as other states need to be marginalized. Moreover, the
covariance in optimization packages such as ceres [43] is
estimated using jacobians 1 and does not follow the SLAM
intuition which is often time consuming. Thus, we employ a
health monitoring mechanism tailored to vision-based state
estimation. The health monitoring considers multiple criteria
hierarchically with most important criterion considered first.
We employ the following criteria hierarchically and health
status of the VIO is updated based on:

• Keyframe detection: We wait for kf wait time between
two keyframe and if there is no new keyframe during
this time, we assume VIO frontend has failed. An
exception to this criterion is when the robot is stationary
which can be handled using zero velocity updates. We
use kf wait time of around ≈  2 secs.

• Number of triangulated points: The number of 3D
keypoints triangulated in the current keyframe should
be more than a set threshold, min kf points. We used
min kf points ranging between 10 and 20 depending on
the dataset.

• Spatial distribution of features: It is desirable that the
features are detected and tracked uniformly across all
image regions. Thus, we keep track of feature detections
per quadrant in the current keyframe and check if is less
than a certain threshold, min kps per quadrant. How-
ever, there are situations where large number of good
features are detected in a small region in an images; for
example Fig. 3b, 3c where the bottom half contains
all the features. To account for such instances, we only
apply quadrant criterion if the total number of feature
detections is less than 10 ×  min kps per quadrant.

• Feature track length: In an ideal scenario, we want
the features to be tracked across multiple keyframes.
So, we calculate the ratio of new keypoints to the
total keypoints and set the threshold at 0.75. These

1 h t t p : / / c e r e s - s o l v e r . o r g / n n l s _ c o v a r i a n c e . h t m l
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new keypoints are those not tracked across multiple
keyframes.

• Feature detector response: Finally, we compute the
average corner response of the feature detections in an
image. We set a higher threshold of ratio of keypoints
less than the average response in an image to 0.85. The
higher threshold is used as this is considered the least
important criterion.

These threshold values are chosen empirically based on
the visual SLAM literature. For instance, at least 6 feature
matches are required between two images to calculate the
relative transformation based on epipolar geometry. Also, for
accurate pose estimation a feature is required to be tracked
across multiple keyframes. We found that slight changes
in these parameters did not have any significant effect
on the performance of hybrid switching estimator. Hence,
these parameters are provided as reference and we suggest
practitioners to slightly tune these parameters depending on
the target environment.

C. Kinematic Estimator
Figure 4 depicts the frames used for the motion analysis

of the robot and the rotations involved in the kinematic
representation.
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Fig. 4: Frames and rotations associated with the robot kinematics.

Let w =  [p, q, r] be the angular velocity measured using
gyroscope expressed in the body frame. Whenever the VIO
is working, it able able to estimate accelerometer and gy-
roscope biases correctly. Thus, we use the recent gyroscope
bias estimates bg from VIO to further correct angular velocity
estimates as

w =  w −  bg

The kinematic state of the robot is being updated according
to the following equations:

W p I ( t  +  1) =  W pI ( t )  +  W R I ( t )  
v

x

( t )       
∆ t

η I ( t  +  1) =  η I ( t)
1 sin ϕ tan θ cos ϕ tan θ           p(t)
0         cos ϕ             −  sin ϕ               q (t )

| 
0

 
sin ϕ/  cos θ cos ϕ/  cos θ 

}  r ( t )

S ( t )

where W R I ( t )  represents the rotation matrix correspond-
ing to euler angles η I .

D. Integration of VIO and Kinematic Estimator
The pose estimates from the VIO and the kinematic

estimator are combined in a switching framework proposed
in [7]. The VIO framework described in Rahman et al. [13]
is augmented to use pose estimates from multiple odometry
sources into a single posegraph with different weights. The
relative pose constraints in posegraph are classified as visual
or kinematic; with double weight assigned to relative pose
constraints pertaining to VIO. Whenever a loop closure is
performed, the relative pose between visual keyframes is
retained whereas those between kinematic estimator is
relaxed owning to their lower accuracy.

The switching estimator is designed to track either the
VIO or the kinematic estimator trajectory locally based on
the health tracking status. Let W  Tv i o  and W  Tk e  be the
pose of AUV represented in the world coordinate frame as
4×4 transformation matrices. The switching estimator locally
resembles W  Tv i o  when the VIO is working properly. When-
ever, the health tracking reports VIO failure, it resembles
W  Tk e . Initially, when VIO starts tracking, the pose of the
robust switching estimator W  T r o  is equivalent to W  Tv io .
When the VIO health tracker indicates imminent failure,
switching to the kinematic estimator occurs. We keep track
of the robust pose and the kinematic estimator at switching
time s as W  T s       and W  T s       respectively. Now, we calculate
to local displacement of the kinematic estimator with respect
to the kinematic estimator pose at switching time as W  T s − 1  

W

Tk e . This local displacement estimates robot motion using the
kinematic estimator from the time switching occurs and is
used to propagate the robust pose using Eq. (1); here ·
represents matrix multiplication.

W  T r o  =  W  Ts
o  · W  Ts

e
1  

· W  Tk e (1)

This makes sure that the robust estimator tracks the
kinematic estimator propagation locally. Please note that
W  T s       · W  T s − 1       

remains constant until the next switching
occurs.

Extending the same analogy, the switching to VIO occurs
when health tracking shows that the VIO has recovered.
When switching back to the VIO, the robust estimator tracks
the local displacement from the VIO pose at switching time W
T s as shown in Eq. (2) which remains constant until the
next switching to the kinematic estimator happens.

W  T r o  =  W  T r o  · W  Tv i o  · W  Tv i o (2)

The accuracy and robustness of the proposed estimator
comes from it’s capability to track the robot’s motion using
either the VIO or the kinematic estimator (KE) depending
on the health tracking status. Whenever the VIO recovers
from failures, it is always the preferred estimator owing to
it’s better accuracy compared to the KE.  As SVIn2 is able
to propagate the state using IMU measurements whenever
the visual frontend tracking fails for a small amount of time

Authorized licensed use limited to: University of South Carolina. Downloaded on March 25,2024 at 00:37:48 UTC from IEEE Xplore. Restrictions apply.



(a) (b) (c)
Fig. 5: Three environments where the AUV was deployed (Barbados): (a) over a shipwreck performing a lawnmower pattern; (b) over a
mixed sand and coral area performing multiple squares; (c) over a coral reef performing a lawnmower pattern.

upto ≈  2 secs VIO is still operational. As such, we do not
want frequent switching between VIO and KE.  To reduce
frequent switching between VIO and KE,  we wait for a
certain number of successive failures before switching from
VIO to K E  and the same number of successive good tracking
attempts before switching from K E  to VIO.

The keyframes from K E  are added in the posegraph
differently than the regular VIO keyframes as they only
contain relative pose constraints without image information.
In addition, these K E  keyframes can not be used for loop
closure as they do not contain information required for loop
closure such as feature detections and 3D triangulated key-
points used for PnP RANSAC based geometric verification.
Also, the relative pose error between consecutive keyframes
is implemented as a 4DoF posegraph optimization owing to
the gravity direction observability from IMU. To account for
the lower accuracy of K E  keyframes, the weights between
successive keyframes is multiplied by 0.5 such that the
section of final trajectory coming from K E  is deformed more
after loop closure.

I V. DATA S E T S

We performed multiple experiments using an Aqua2 AUV
performing motion patterns over a variety of challenging
environments including lawnmower over a shipwreck see
Fig.     5a; multiple squares over sand and coral heads, see
Fig. 5b; and lawnmower over a coral reef, see Fig. 5c. The
Aqua2 AUV performs predefined trajectory patterns while
using odometry information from the primitive estimator
(PE). We conducted the field trials on the following datasets:

A. Shipwreck Lawnmower
The Aqua2 AUV is performing a lawnmower pattern

over the Stavronikita shipwreck, Barbados. The Aqua2 AUV
maneuvers over the side of shipwreck facing open water, see
Fig. 3b and Fig. 3c. Since the visual frontend can not detect
and track features when facing open water, the VIO is not
able to track the AUV’s pose and diverges. The ground truth is
obtained using COLMAP [35] using images registered that
have view of the shipwreck. The scale is enforced using
known stereo-rig constraints.

B. Coral Square
The Aqua2 AUV performs square patterns over sandy

coral reef area in Barbados; see      Fig.      5b. During the

operation the AUV veers into areas only seeing either sandy
patches or open water; thus the VIO diverges. We do not have
ground truth for this dataset and only use it for qualitative
evaluation.

C. Coral Lawnmower

In this dataset, the Aqua2 AUV performs a lawnmower
pattern over a coral reef in Barbados; see     Fig.     5c. The
VIO is able to track the robot’s pose over the whole time of
operation. This dataset is artificially degraded by applying
Gaussian blur on the images for 30 seconds at 3 different
times. Thus, we induced VIO failures in sections of the
trajectory by using Gaussian blue. For this dataset, we use
the VIO trajectory as ground truth. It is worth noting that
COLMAP was not able to register all the images due to fast
rotation, and thus it was not used as ground-truth.

V. E X P E R I M E N TA L R E S U LT S

We tested the proposed hybrid robust estimator in the
above described three different datasets and the trajectories
estimated using kinematic estimator (KE), SVIN and robust
hybrid estimator are shown in Fig. 6. The kinematic
estimator tracks the requested pattern almost perfectly as
a similar primitive estimator is used to generate control
strategies (shown with blue dash-dotted line). The SVIN VIO
losses track and diverges in all the trajectories and the VIO
trajectory is plotted as dash-dotted red line. The proposed
hybrid estimator is able to keep track of AUV ’s pose during
the whole operation and the resulting trajectory is shown as a
solid blue and red line with green diamonds marking the
places where switching occurred.

A. Shipwreck lawnmower

The shipwreck lawnmower dataset is very challenging for
any VIO method as AUV performs lawnmower patter over
the Stavronikita shipwreck. Initially the robot starts from the
middle of the shipwreck with feature rich areas Fig. 3a, then
the AUV slowly maneuvers towards side of the shipwreck
with the number of detected features decreasing gradually,
see Fig. 3b. Eventually, the AUV reaches the side of the
shipwreck facing mostly open water with very few features
visible; see Fig. 3c. As the number of detected features
are greatly diminished, the VIO loses track and deviates from
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Fig. 6: Trajectories of the evaluated algorithm on lawnmower pattern over shipwreck; squares over a mixture of sand and corals; and
lawnmower pattern over the coral reef utilizing an Aqua2 AUV. COLMAP (black) obtained using global bundle adjustment is used as
ground truth up to scale for the first dataset. SVIn2 is marked with dashed red line; K E  is marked in dashed blue line; and the proposed
approach is represented by a solid red and blue line with green diamonds indicating the switching spots.

TA B L E  I: Performance of popular open-source VIO packages and
SM/VIO on the shipwreck dataset taken from [7]. The root
mean squared AT E  compared to COLMAP trajectory after SE(3)
alignment.

VIO Algorithm                 Time to first            Recovery?       RMSE
track loss (in sec)                                 (in m)

OpenVINS [23] 23.7 No ×
OKVIS  [11] 23.4                       Partial            5.199
VINS-Fusion [12] 23.6                       Partial           53.189
SVIN [25] 23.4 Yes              1.438
SM/VIO [7] N/A Yes              1.295
Ours N/A Yes              0.878

the true trajectory. The VIO is able to recover and decrease
the error after loop closure.

The shipwreck lawnmower dataset contains ground-truth
obtained using COLMAP [35] which was able to register
images when the robot was moving over the shipwreck and
does not require continuous tracking. Thus, this dataset is
used to compare the performance of the hybrid switching
estimator with other VIO algorithms [11]–[13], [23] and our
previous work SM/VIO [7]. Absolute trajectory error (ATE)
metric is used to compare the trajectories with COLMAP af-
ter SE(3) alignment. As seen in Table I, the hybrid switching
estimator is able to maintain consistent pose over the whole
trajectory with the least root mean squared (RMSE) error.
All other VIO algorithms lose track when the robot reaches
the side of shipwreck facing open water. OpenVINS [23]
did not recover after losing track the first time and diverges.

B. Coral Square

In the coral reef dataset, the AUV performs three squares
over coral heads next to large sandy patches. One section of
the square had good features as seen in Fig. 5b and VIO
only tracks this section of the square. However, since this
section is visited multiple times, there were frequent loop
closures as evident in Fig. 6b. The VIO quickly diverges

when moving over the sandy area and hybrid switching
estimator is able to keep track over the whole duration using
pose estimates from kinematic estimator. Since only very
small section contains good quality images, this dataset is
only used for qualitative evaluation.

C. Coral Lawnmower

In this dataset, the Aqua2 AUV performs lawnmower
patterns over the coral reef and VIO does not loose track
during the operation. The images in this dataset are arti-
ficially degraded using Gaussian blur with a kernel size of
21 and standard deviation 11 on three sections for 30
seconds each. Thus, we induced controlled failures to test
the robustness of our approach. COLMAP     [35] was not
able to register all images due to fast rotation around the
corners producing multiple disconnected trajectories. Hence,
the VIO trajectories on original dataset was used as ground-
truth; see Fig. 6c. It should be noted that pure VIO diverges
rapidly upon degradation of images as seen in Fig. 6c red
dash-dotted trajectory. Moreover, using the K E  we were able
to improve the switching estimator producing an RMSE error
of 1.50m compared to 3.01m in our previous work [7].

V I . CO N C L U S I O N

A  supervisory logic that enables the AUV’s state estima-
tion system to monitor the accuracy of underwater VIO and
switch it off by temporarily replacing state estimation with a
model-based dead-reckoning system until sufficient visual
features are re-acquired, has shown significant promise in
making state estimation below the surface more robust and
suitable for advanced motion control feedback. This paper
advances the state of the art further in this direction by
providing additional fidelity to the fail-safe dead-reckoning
function of the estimator, through the utilization of a nonlin-
ear rigid-body vehicle dynamical model.
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