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In two-dimensional electronic systems, direct first-order phase transitions are prohibited as a consequence of
the long-range Coulomb interaction, which implies a stiff energetic penalty for macroscopic phase separation. A
prominent proposal is that any direct first-order transition is instead replaced by a sequence of “microemulsion”
phases, in which the two phases are mixed in patterns of mesoscopic domains. In this Letter, we comment on
the range �n of average electron density that such microemulsion phases may occupy. We point out that, even
without knowing the value of a phenomenological parameter associated with surface tension between the two
phases, one can place a fairly strong upper bound on the value of �n. We make numerical estimates for �n in
the case of the Fermi liquid to Wigner crystal transition and find �n to be on the order of 107 cm−2. This value is
much smaller than the width of the phase transition observed in experiments, suggesting that disorder is a more
likely explanation for the apparent broadening of the transition.
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Introduction. Over two decades ago, it was established that
there can be no direct first-order transition between solid and
liquid phases of a two-dimensional electron system (2DES)
[1–3]. The authors of Refs. [1–3] proposed that the nom-
inal first-order transition is instead replaced by a series of
“microemulsion” phases, in which the two distinct states are
blended together in spatially structured mesoscopic domains
(similar ideas appeared earlier in Ref. [4]). Subsequent work
has developed this idea further and explored its experimental
implications [5–7]. The possibility of microemulsion phases
is now commonly invoked when experiments show a phase
transition in a 2DES that occupies a finite window of average
electron density rather than an abrupt transition at a single
density (e.g., Refs. [8–10]). In this Letter, we comment on
how large, exactly, can the window of average density be, �n,
occupied by microemulsion phases. After deriving a general
bound on �n, we focus specifically on the quantum melting
transition between the Wigner crystal and Fermi liquid states.

A first-order phase transition and its associated (macro-
scopic) phase coexistence is typically understood using the
framework of the Maxwell construction. Before consider-
ing the role of long-range Coulomb interactions between
phase-segregated domains, we first briefly summarize the con-
ventional Maxwell construction. Consider a (first-order) phase
transition between two different phases, which we label as 1
and 2. If εi(n) denotes the energy per particle as a function of
the particle density n in phase i = 1, 2, then at zero tempera-
ture, the free energy per unit area in phase i is fi(n) = nεi(n).
In the usual Maxwell construction for phase coexistence, one
considers that the total free energy for a fixed number of
particles is minimized with respect to the area fraction x that
is occupied by one of the two phases (say, phase 2). That
is, if n1, n2 denote the particle densities in spatial regions
occupied by phases 1 and 2, respectively, then the region of
average density which produces phase coexistence is found

by minimizing the total free energy (1 − x) f1(n1) + x f2(n2)
with respect to x and δn = n2 − n1 for a fixed average den-
sity n̄ = (1 − x)n1 + xn2. From this procedure, one can easily
show that, within the regime of phase coexistence, the two
phases have the same chemical potential μi = dfi(n)/dn (see
Fig. 1). 1

In electron systems, however, there is an additional
Coulombic energy cost associated with the difference be-
tween the local electron density (n1 or n2) and the charge
density +en̄ of the positive background. (Throughout this
Letter, we assume that the gate electrode containing the neu-
tralizing background charge is much further away from the
plane of the 2DES than the size of microemulsion domains;
this assumption allows us to treat the neutralizing charge
as spatially uniform. We comment at the end of this Letter
about the effect of allowing the distance to the gate to be
finite.) This Coulombic energy suppresses phase coexistence
and generally prohibits the formation of macroscopic phase
domains (since a region of size L and charge density η has
a Coulombic self-energy per unit area that grows extensively
with the region size, ∼η2L) [11]. Instead, one ends up with
the microemulsion phase, where stripes or droplets of the less
abundant phase are interspersed periodically among the more
abundant phase.

We emphasize that, while we discuss our results through-
out this Letter in terms of electrons, the physics we invoke

1The slope of the common tangent is given by ( f2(n2) −
f1(n1))/(n2 − n1) = μ2(n2) = μ1(n1). This condition is equivalent
to the more widely recognized version of the Maxwell construction,
known as the equal area rule:

∫ n2
n1
(μ(n) − μ�) dn = 0, where μ� is

the chemical potential of the system during phase coexistence and
μ(n) denotes the chemical potential of whichever uniform phase has
lower energy at density n.
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FIG. 1. Schematic depiction of the conventional Maxwell con-
struction for a first-order phase transition. The red and blue curves
represent the free energy per unit area of phases 1 and 2, respectively,
as a function of the average density n̄. The common tangent repre-
sents the coexistence line, in which there is a (macroscopic) phase
separation. During this phase separation regime, both phases have
the same chemical potential (the slope of the tangent).

is agnostic to whether the particles are bosons or fermions,
or quantum or classical in nature. Our considerations apply
generically to any 2D system with long-range Coulomb inter-
actions.

Argument for the absence of a direct first-order transition.
Before discussing an upper limit on �n, we first briefly re-
capitulate the argument that there can be no direct first-order
phase transitions in a 2DES (see Ref. [6] for a more complete
review). The argument proceeds by considering the system at
the critical density n = nc for which the two phases have equal
energy (the nominal location of the first-order transition) and
showing that one can construct a trial microemulsion state
with the same average density but lower free energy than
either pure phase. The existence of such a lower-energy state
implies that the system must not pass directly from a pure
phase 1 to a pure phase 2 as a function of increasing average
density, and a direct first-order transition between the two
pure phases is precluded. The argument is simplest if one
assumes that the interaction between electrons is of the form
V (r) = k/rα , where 1 < α < 2. The limit α → 1 is discussed
below.

Consider a trial state consisting of alternating stripes of
phases 1 and 2, each with the same width � (assumed to
be much longer than the interelectron spacing) and having
uniform electron density n1 = nc − δn (phase 1) and n2 =
nc + δn (phase 2), so that the global average density is nc. The
free energy per area of this phase, relative to either uniform
phase at n = nc, can be written

δ f = fbulk + fCoulomb + fsurface. (1)

The first contribution, fbulk, represents the change in free
energy (per unit area) associated with shifting some electrons
from phase 1 to phase 2, which has a lower chemical potential.
To leading order in δn, fbulk is given by

fbulk = −δn

2
(μ1(nc) − μ2(nc)). (2)

The second contribution, fCoulomb, corresponds to the elec-
trostatic energy cost associated with the two stripe regions
having an overall net charge ±eδn per unit area:

fCoulomb = A(eδn)2V (�)�2, (3)

where A is a numerical constant of order unity.
The final contribution, fsurface, represents the energy re-

quired to create an interface between the two phases:

fsurface = σ

�
, (4)

where σ is the interfacial tension.
Keeping � fixed, we minimize δ f with respect to δn, which

gives

δn = μ1(nc) − μ2(nc)

4Ake2�2−α
. (5)

The corresponding (minimum) free energy change is given by

δ f = − (μ1(nc) − μ2(nc))2

16Ake2�2−α
+ σ

�
. (6)

Notice that so long as 1 < α < 2, the change in free energy
δ f is negative whenever � is sufficiently long. Thus, we have
constructed a trial microemulsion state that has a lower energy
than either uniform state, and there must not be a direct first-
order transition between two uniform states.

In the limit α → 1, both terms in Eq. (6) are proportional
to 1/�, and the analysis is inconclusive. However, a more
carefully constructed trial state, in which the electron density
is allowed to vary within each stripe, still yields a negative
value of δ f in the limit of very long � [3].

Coulomb-frustrated phase coexistence. Because of the
long-ranged Coulomb interactions between regions of differ-
ent charge densities, phase coexistence cannot be understood
without simultaneously considering the spatial structure of
domains. This problem has been studied extensively for both
2D and 3D electron gases (3D in [12–14], 2D in [15], and both
in [16,17]).

Here, we briefly recap the primary results of these studies
for a 2DES and show how the Maxwell construction for phase
coexistence is modified. Following Ref. [15], we assume uni-
form density within each domain. We comment on the effect
of relaxing this assumption below.

One can generically write the free energy per unit area of a
mixed phase as

f = (1 − x) f1(n1) + x f2(n2) + em, (7)

where em is the energy density of mixing, which contains both
electrostatic and surface energy terms. The energy em has been
considered in detail in Ref. [15] for both the droplet and the
stripe geometry. For the case of droplet configurations, em is
well approximated by

em = 8√
3
|n2 − n1|

√
e2σ

ε
x(1 − x), (8)

where σ is the surface tension, and ε is the dielectric constant.
(Refer to the Supplemental Material [18] for a brief derivation
of Eq. (8), as well as an analysis of the stripe geometry
contained therein, which yields identical results up to overall
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FIG. 2. Schematic of the modified Maxwell construction ac-
counting for long-range interactions. As in Fig. 1, the red and blue
curves represent the free energy per unit area of phases 1 and 2,
respectively, as a function of the average density n̄. The phase coex-
istence curve (purple line) exhibits a difference in chemical potential
between the two phases, as given by Eq. (10). The corresponding
window �n = n2 − n1 of phase coexistence is smaller than in the
conventional Maxwell construction (Fig. 1).

numerical coefficients). The corresponding optimal droplet
size Rd is

Rd =
√
e2σ/ε

(e2/ε)|n2 − n1|

√
3

2
√
x(1 − x)

. (9)

(A similar expression was presented in the context of quantum
Hall stripe and bubble phases in Ref. [11].)

Thus, both the droplet size and the energy of mixing
depend on the parameter β ≡

√
e2σ/ε, which has units of

energy. One can think of β as a parametrization of surface
tension: large β favors large domains so that the total amount
of surface area in the sample is smaller, while small β favors
small domains. Minimizing the free energy in Eq. (7), with
respect to δn = n2 − n1 (as in the Maxwell construction)2, we
arrive at the following relation:

μ1(n1) − μ2(n2) = 8√
3
β. (10)

That is, while in the conventional Maxwell construction, the
two phases have the same chemical potential, the inclusion of
the term em implies that two coexisting phases have a differ-
ence in chemical potential ∼β.3 This difference in chemical
potential can be interpreted as a result of electrochemical
equilibrium, in which the difference in electrostatic potential
between neighboring domains must be compensated by a
difference in the intrinsic chemical potentials. The modified
Maxwell construction is depicted schematically in Fig. 2.

2Similarly, minimizing the free energy in Eq. (7) with respect to x
produces a relation between the difference in pressure between the
two phases [15].
3We also note that minimizing Eq. (7) gives densities n1 and n2

that vary as a function of the area fraction x, unlike the conventional
Maxwell construction, in which the densities of the two phases
remain fixed as the average density is varied.

Upper bound on �n. Having outlined the modified
Maxwell construction, we now consider the bound it places
on the window of phase coexistence. The previous analysis
provides two fundamental criteria for the presence of a mi-
croemulsion phase over any finite interval �n of the average
density n̄. First, there is a maximum value for the difference
in chemical potential between the two phases, effectively de-
termining an upper limit for β. In a scenario for which phase
coexistence is barely possible (i.e., it exists over a very small
window of n̄), the two phases have densities that are very close
to the value nc at which the two phases have the same energy,
f1(nc) = f2(nc). In this scenario, the difference in chemical
potential is near its maximum value, �μ = μ1(nc) − μ2(nc).
Correspondingly, phase coexistence is only permitted when

β <

√
3

8
�μ. (11)

Equation (11) is derived under the assumption that each do-
main has a spatially uniform density. In fact, if β is large
compared to �μ, then this uniform density approximation
breaks down [3,16], and one should instead do a more careful
calculation that allows for the charge density within each
domain to increase near the domain walls. For large β/�μ,
this calculation can produce a stable microemulsion phase, but
only over a window of density that is exponentially small in
the parameter β/�μ [16]. We can thus conclude that in order
for there to be a significant window of phase coexistence,
β must be small enough that Eq. (11) must not be strongly
violated.

On the other hand, if β is too small, then the length scale
associated with microemulsion droplets becomes unrealisti-
cally small. Specifically, phase coexistence is not possible
unless the corresponding minimal droplet size [the minimum
value of Rd is at x = 1/2 in Eq. (9)] is much larger than
the interelectron spacing. That is, Rd � n−1/2

1,2 ≈ n−1/2
c . This

condition produces strong inequality

n−1/2
c �

√
3β

(e2/ε)|n2 − n1| . (12)

Equation (12) sets a lower bound on the parameter β:

e2|n2 − n1|√
3εn1/2c

� β. (13)

Combining Eq. (11) with Eq. (13) produces an upper bound
for the difference in density between the two phases:

�n

nc
� 3

8

�μ

e2n1/2c
/
ε
. (14)

Equation (14) constitutes the main result of this Letter. We
note that this result is generic in the sense that it does not
make any assumptions regarding the nature of the electronic
phases involved. Below, we comment on two specific exam-
ples: the transition from a Wigner crystal to a Fermi Liquid at
zero magnetic field and the phase transition between different
bubble phases in high Landau levels.

We emphasize that Eq. (14) makes no assumptions about
the value of the surface tension parameter β. In a given sys-
tem, the size �n of the microemulsion window, of course,
depends on β, but even without knowing the value of β,
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TABLE I. The bounds on �n/nc for various WC-FL transitions
are tabulated using Eq. (14) and numerical results for the chemical
potential of each phase from [21]. Here, FM, AF, and PM represent
the Ferromagnetic, Antiferromagnetic, and Paramagnetic phases,
respectively.

Transition Critical rs max�n/nc

PM FL to FM WC 32.89 1.16 × 10−3

PM FL to AF WC 31.26 8.45 × 10−4

AF WC to FM WC 37.40 3.04 × 10−4

one can place a strong upper bound on �n by combining
the requirements that the system should reach electrochemical
equilibrium and that droplets should be larger than the inter-
electron spacing. Notice also from Eq. (14) that, for a fixed
chemical potential difference �μ between the two phases,
increasing the dielectric constant ε leads to a wider window
of phase coexistence since it reduces the associated Coulomb
energy cost.

Wigner crystal to Fermi liquid transition. We now use the
inequality in Eq. (14) to make estimates for the range of phase
coexistence in the well-studied case of the quantum melting
of the Wigner crystal (WC) phase. For this estimate, we use
the numerically fitted formulas presented in Ref. [21], derived
from quantum Monte Carlo methods, for the energy per elec-
tron of the FL and WC phases. The resulting estimated upper
bounds on �n/nc are given in Table I Ref. [21] considers
WC trial states with both ferromagnetic (FM) and antiferro-
magnetic (AFM) spin ordering and suggests a narrow window
of the interaction parameter rs for which the AFM WC has
the lowest energy. For completeness, we provide estimates
of �n/nc for all three possible transitions. A similar analysis
is presented for the case of phase transitions between bubble
phases in the Landau levels of graphene in the Supplemental
Material [18]. In that case, we find that microemulsion phases
occupy a range of filling factors δν of order 10−2. The tran-
sition between such bubble phases has recently been explored
experimentally by Yang et al. [22].

In Table II we estimate the value of �n, in absolute units,
for different 2DES systems for which a WC-FL transition has
been reported (see Table II). In each case, �n is of order
107 cm−2, which is generally too small to be observed in
current experiments.

Disorder-induced density fluctuation. So far, we have been
considering a nondisordered 2DES, and we have shown that
the maximum value of �n for such systems is very small,
on the order of 107 cm−2 for the WC-FL transition. In real

TABLE II. The maximum density window of microemulsion
phase coexistence between WC and FL phases is estimated for
different experimental 2DES platforms. The listed value of �n cor-
responds to the PM FL to FMWC transition (the first row in Table I).

System nc (cm−2) Ref. �n (cm−2)

MgZnO/ZnO 1.6 × 1010 [23] 1.85 × 107

AlAs 2 × 1010 [24] 2.32 × 107

GaAs (holes) 0.77 × 1010 [25] 0.89 × 107

experiments, the disorder tends to produce a much larger
modulation of the density, even in the cleanest samples. The
finite width of the WC-FL transition seen in experiments (e.g.,
Refs. [23–26]) is, therefore, more likely to be attributable to
disorder rather than to microemulsion physics.

Specifically, disorder creates a spatially varying electric
potential so that in equilibrium, the local chemical potential
also varies spatially. When the electron density is close to
nc, the resulting modulation in chemical potential produces
puddles of the minority phase embedded in the majority
phase [27–30], which appears experimentally as an effective
smearing of the transition. For example, a common source
of disorder in experimental samples is a three-dimensional
concentration Nimp of impurity charges embedded in the sub-
strate, which produces relatively large and long-wavelength
fluctuations of the 2DES density even when Nimp is low [31].
One can estimate the corresponding value of �n using a self-
consistent Thomas-Fermi approximation [28], which gives
�nimp ∼ (|dn/dμ| e2Nimp/ε)1/2 [31]. In the case of a 2DES
at large rs, |dn/dμ| is of the order of ε n1/2c /e2, resulting in
�nimp ∼ (N2

impnc)
1/4. In the case of MgZnO/ZnO, for exam-

ple, �nimp was estimated to be on the order of several times
109 cm−2 even for a bulk impurity concentration as low as
1014 cm−3 (∼10 parts per billion) [23].

Closing remarks. We have shown how one can arrive at
an upper bound for the window �n of phase coexistence
by combining two criteria: (i) the existence of an electro-
chemical equilibrium between the two phases, which puts
an upper bound on the surface tension parameter β; and (ii)
the requirement that the size of a domain be larger than
the interelectron spacing, which puts a lower bound on β.
Combining these two inequalities produces Eq. (14), which
is a seemingly generic upper bound on �n that depends only
on the difference in chemical potential �μ between the two
phases at the critical point. (An equivalent expression for
the context of quantum Hall phase transitions is presented in
the Supplemental Material [18]). For the case of the WC-FL
transition, we use numerical results for �μ [21] to arrive at an
upper bound �n/nc � 10−3. This very small window of den-
sity is consistent with quantum Monte Carlo studies, which
have failed to find evidence for a regime of phase coexistence
at the WC-FL transition [21,32].

We emphasize that the inequality we derive only applies
to phase coexistence in the sense of mesoscopic domains.
That is, one can only talk about “phase 1 coexisting with
phase 2” if the domains of each phase are much larger than
the interelectron spacing so that, locally, each region re-
sembles the corresponding bulk phase. However, we cannot
rule out the possibility that an instability toward micro-
scopic level mixing [a violation of Eq. (12)] implies the
existence of a new phase in the vicinity of nc, distinct from
either of the bulk phases 1 or 2. (For example, one can think
of the quantum Hall stripe and bubble phases [11,33–35]
as similar to a “microemulsion” phase with modulation of
density at the scale of the interelectron spacing). Such new
phases cannot be described by a Maxwell construction-type
argument.

Let us now comment on the effect of allowing the distance
d between the plane of the 2DES and the gate electrode to
be finite. So far, we have adopted the usual assumption that
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the electron charge is neutralized by a uniform, coplanar sheet
of positive background charge. This assumption is valid when
d is much larger than the size of the microemulsion domains
so that any modulation in the surface charge density of the
gate electrode is very weak. In general, however, when d
is finite, the long-ranged part of the Coulomb interaction is
truncated due to the formation of image charges in the gate
electrode, such that at distances r � d , the electron-electron
interaction becomes an effectively short-ranged dipole-dipole
interaction, V (r) 	 2e2d2/r3. Thus, a microemulsion domain
of size Rd � d has a finite electric potential in its interior even
in the limit Rd → ∞ (unlike in the case of the unscreened
Coulomb potential, for which the electric potential diverges,
as mentioned above). Requiring equilibration of the electro-
chemical potential between the interior of two such large
domains gives [1,2] �μ = (e2d�n)/ε, where the right-hand
side of this expression represents the difference in electric

potential energy between the two domains. Consequently, the
difference in density �n between the two phases can be no
smaller than (�μ)/(e2d/ε).

Notice, however, that this lower bound for �n is much
smaller than the bound given by Eq. (14) unless d � n−1/2

c .
For such small d , even the interaction between nearest-
neighboring electrons is of a dipole type, and the bulk phases
are strongly modified. For the case of the WC-FL transition,
for example, the WC phase is completely eliminated by the
gate screening when d � n−1/2

c (where nc denotes the critical
density without gate screening) [6,36,37]. Thus, the upper
bound given by Eq. (14) still applies even when d is allowed
to be finite.
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