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ABSTRACT

The kernel polynomial method (KPM) is a powerful numerical method for approximating spectral densities. Typical implementations of
the KPM require an a prior estimate for an interval containing the support of the target spectral density, and while such estimates can be
obtained by classical techniques, this incurs addition computational costs. We propose a spectrum adaptive KPM based on the Lanczos
algorithm without reorthogonalization, which allows the selection of KPM parameters to be deferred to after the expensive computation is
finished. Theoretical results from numerical analysis are given to justify the suitability of the Lanczos algorithm for our approach, even in finite
precision arithmetic. While conceptually simple, the paradigm of decoupling computation from approximation has a number of practical and

pedagogical benefits, which we highlight with numerical examples.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166678

I. INTRODUCTION

Over the past several decades, a number of moment-based
schemes have been developed to approximate spectral densities of
matrices." ~ These methods typically access the matrix of inter-
est through matrix-vector products and are, therefore, especially
well suited for applications where matrix—vector products can
be performed quickly or in which the matrix of interest is so
large that exact diagonalization techniques are infeasible. Perhaps,
the most prominent of these methods is the Kernel Polynomial
Method (KPM),""** which has found widespread use in quantum
physics/chemistry"**""” and beyond.'*"”

A standard implementation of the KPM® produces an approxi-
mate spectral density via a truncated Chebyshev polynomial expan-
sion obtained using the low-degree Chebyshev moments of the
target spectral density. These moments are computed using a Cheby-
shev recurrence shifted and scaled to an interval of approximation
containing the support of the target spectral density. If this inter-
val does not contain the support of the target spectral density, the
KPM approximation is unlikely to converge, but if the interval is too
large, then the KPM approximation will lose resolution. All imple-
mentations of the KPM that we are aware of require this interval
of approximation to be determined ahead of time. Thus, as a pre-
processing step, it is typical to run another algorithm to determine
bounds for the support of the target spectral density.

The focus of this paper is an implementation of the KPM, which
decouples computation from the choice of approximation method.
For instance, our implementation allows many different intervals of
approximation to be tested out at essentially no cost once the main
computation is completed. In fact, and more importantly, approxi-
mations corresponding to different families of polynomials can also
be efficiently obtained. The choice of polynomial family can sig-
nificantly impact the qualitative properties of the resulting KPM
approximation, but the use of non-standard orthogonal polynomial
families has been limited in practice thus far, arguably due to the
previous lack of a simple implementation.

Our spectrum adaptive KPM is based on the Lanczos algorithm
without reorthogonalization. It is well-known that the Lanczos algo-
rithm is unstable, and this has led to a general hesitance to use
Lanczos-based methods for approximate spectral densities unless
reorthogonalization is used.” """ Amazingly, this instability does
not limit the usefulness of the Lanczos algorithm for many tasks.
We use theoretical results from the numerical analysis literature
to justify the validity of our approach in finite precision arith-
metic. We believe that this commentary will be of general value to
the computational physics/chemistry communities. Complimentary
numerical experiments provide empirical evidence of the stability of
the proposed algorithm.

Finally, we note that there are a number of related Lanczos-
based algorithms, such as the Finite Temperature Lanczos Method
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(FTLM);’ see also stochastic Lanczos quadrature.”’” These methods
are also widely used in practice and are viewed by some as preferable
to KPM based methods in many settings."” >' We do not advocate
the use of the KPM over these methods nor the use of any of these
methods over KPM. Rather, our aim is to provide a new tool that
allows practitioners to test out all of these algorithms for essentially
free. For instance, users no longer need to make an a priori decision
to use FTLM or KPM; they can simply output both approximations
and then decide which to use later.

Il. THE KERNEL POLYNOMIAL METHOD

We present the KPM from the perspective of orthogonal
polynomials. Throughout, H = ¥?_, E,|u;){u;| will be a Hermitian
Hamiltonian of finite dimension d < co with the corresponding
Density of States (DOSs)

ld*l
n=0

where §(E) is a Dirac delta mass centered at zero. Given a state |r),
the Local Density of State (LDOS)

n—1

p(E) = 3 (rlun)O(E - Ey) 2

k=1

is also of interest in many settings. For example, if |r) is a random
state drawn from the uniform distribution on the unit hypersphere,
then p(E) is an unbiased estimator for p(E). In fact, quantum typ-
icality””” ensures that p(E) concentrates around p(E). It therefore
often suffices to use p(E) as a proxy for p(E), but in the case that
the variance of a single sample is too large, one can sample multiple
random states independently and then average the correspond-
ing LDOSs to reduce the variance."”***” In numerical analysis,
this is called stochastic trace estimation and has been analyzed in
detail.” "

The aim of the KPM is to produce a “density” pypy; (E) approx-
imating the LDOS’! p(E). Toward this end, let o(E) be a fixed
reference density and expand p(E)/o(E) as a formal polynomial
series,

% = ni:;) ,“npn(E)> (3)

where {p, } are the orthonormal polynomials with respect to (E).
Using the orthonormality of {p,} with respect to o(E), we can
compute y, by

_ p(E)
= [ o(E) pypr(E)AE @
= [ p(E)pu(E)aE )
= (rlpa(HD)Ir). ©)

Thus, we see that {u,} are the so-called (modified) moments of
P(E) with respect to the orthogonal polynomials of ¢(E) and can be
computed without explicit knowledge of p(E) using the expression
in (6).
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Computing the first s moments naturally gives an approxima-
tion pypy, (E) to p(E) defined by

prowi(E) = o(E)g npn (E). 7)

When the degree of the approximation s — oo,
pxem(E) > 0(E) Y. pnpn(E) = p(E), (8)
n=0

and convergence is expected to be at a rate O(s™") in the Wasserstein
distance.”*"”* A rigorous theoretical understanding of other types
of convergence is important, particularly if a density approximation
is desired. However, this is not entirely straightforward as p(E) is a
linear combination of Dirac deltas and therefore is not even a density
itself.

A. Damping

Strictly speaking, pipy(E) need not be a proper density as it
may be negative for some values of E. This effect is particularly
noticeable if p(E) /a(E) is very spiky so that polynomial approxima-
tions have large Gibbs oscillations. To ensure positivity, it is often
suggested to use the so-called damping kernels that effectively results
in an approximation,

pxem(E) = 6(E) Y gupinpn(E)s ©)]
n=0

where the damping coefficients {g,} are carefully chosen. The
most common choice of coefficients corresponds to the so-called
Jackson’s damping kernel; see Ref. 8 for a detailed discussion on
damping. It is also possible to simply apply a standard convolu-
tion against the resulting approximation, although this does not
necessarily ensure positivity.

B. Evaluating orthogonal polynomials

Assuming that ¢(E) is a unit-mass (positive) density, the
orthogonal polynomials satisfy a symmetric three-term recurrence,

pra () = 5 (Bpu(E) = yopa(B) = dripra(B)  (10)

with initial conditions p,(E) = (1/80)(Ep,(E) = yoPo(E))> po(E)
= 1, for some set of recurrence coefficients {y,,d,} depending on
o(E). Throughout, we will assume that these coefficients are known
(or can be computed). Then, once the moments are known, the KPM
approximation pyp,,(E) defined in (7) can be obtained by evaluat-
ing the polynomials by this recurrence and then forming a linear
combination of these polynomials.

C. Choice of reference density
The most common choice of reference density is
1 1

mb-E)E-a)

which is the orthogonality weight for the Chebyshev polynomials
shifted and scaled from [-1,1] to [a, b]. For this choice of reference

Oup(E) = (11)
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FIG. 1. lllustration showing the impact of the support [a, b] for the standard Chebyshev KPM with s = 500 moments and Jackson’s damping kernel. Here, [a, b] = [Emin — 7,
Emax + 7] for varying choices of 1. Legend: n = 0 (—), # = =0.00007 (Emax — Emin) (), 7 = 0.5(Emax — Emin) (——), histogram of true eigenvalues (—=). Takeaway:
Observe that even a slight underestimate of [ Eqin, Emax ] results in a loss of convergence, while an overestimate of [ Enin, Emax ] results in a loss of resolution. Our spectrum

adaptive KPM allows the reference density o(E) to be chosen after computation. In fact, many different o(E) can be efficiently obtained and compared.

density, there is an elegant and widely used algorithm for com-
puting the moments, which we summarize in Sec. IT D. In Fig. 1,
we illustrate some of the impacts of the choice of [a,b] on the
KPM approximation when this reference density is used. In par-
ticular, it is very important that [a, b] contains the spectrum of H.
Thus, it is often suggested to take [a,b] = [Emin — > Emax + 1], where
# > 0, to avoid the risk of [4, b] not containing the entire spectrum.”
However, using nonzero values of # reduces the resolution of the
approach.”’

The choice of reference density o(E) impacts the qualitative
features of the KPM approximation py,,(E), and in principle, any
choice of unit-mass density with finite moments is possible.”" First,
observe that the KPM approximation is exact, if p(E) /o(E) is a poly-
nomial of degree at most s. Thus, one perspective is that p(E) should
be chosen to try and make p(E)/o(E) as easy to approximate with
polynomials as possible. In particular, the support of p(E) must con-
tain the support of ¢(E). The difficulty of such an approach is that
many properties of the spectrum of p(E) are not known ahead of
time. Even the most basic properties such as an interval [a, b] con-
taining the support of p(E) are often unknown a priori and must be
approximated numerically as a pre-processing step. The approach
we describe in Sec. 111 addresses these difficulties by allowing o(E)
to be chosen after the computation has completed.

In our experiments, we will make use of reference densities of
the form

o(E) = ) wid,, (E). (12)

The recurrence coefficients for the orthogonal polynomials of distri-
butions such as (12) are easily computed since integrals of polyno-
mials against each term can be computed exactly using quadrature
rules.””

D. Computing Chebyshev moments

In the case that o(E) = o, ,(E) is the Chebyshev density (11),
the modified moments can be computed efficiently using properties
of Chebyshev recurrences. Such an approach is described in detail
in the literature,”*" but as this is by far the most common approach

to implementing the KPM, we provide a brief overview to put the
contributions of this paper into context.

Recall that the Chebyshev polynomials are defined by the
recurrence

Te1(E) = 2T (E) — To1 (E) (13)

with initial conditions T1(E) = E and To(E) = 1. These polynomials

are orthogonal with respect to the weight 1/1/1 — E%. The Chebyshev
polynomials also satisfy the useful identities

Ton(E) = 2T4(E)* - 1, (14)

Tons1(E) = 2Tps1 (E)To(E) — Ti (E). (15)

The Chebyshev polynomials shifted and scaled from [-1,1] to
[a,b] are defined by

Tw(E) = Tu((E- 2)/B), (16)

where

a=(b+a)/2, B=(b-a)/2 (17)

It is straightforward to see that the orthonormal polynomials of

oy, (E) are

p"(E)z V2_60,nTn(E); (18)

where 8o, is the Kronecker delta.
In order to compute the moments, one can run the matrix
version of the Chebyshev recurrence (16),

[vasr) = (2/B)(H - aD) [y} ~ vt ), (19)

with initial conditions |vi) = (1/8) (H - al)|n) and [vo) = |r).
Then, at step n, we have |v,) = T,(H)|r). Using (14) and (15),
we see that the moments can then be computed by y, =1,

= \/2(r|v1), and
pian = 2V 2(vu|vn) =/ 2u0, (20)
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ALGORITHM 1. Chebyshev moments.

ARTICLE pubs.aip.org/aipl/jcp

ALGORITHM 2. Lanczos.

1: procedure CHEB-MOMENTS(H, |r), k, a, b)

2 a=(b-a)/2,B=(b+a)/2

3 [vo) = [r), [v1) = (1/B) (H — aI)|vo)

4 to = 1,1 = V2(wi|wo)

5: forn=1,2,...,k—1do

6 Vi) = (2/B) (H = aI)|vn) = |[vn-1)
7 tan = 23/ 2(va|vn) = V20

8 ton1 = 2V 2(Vas1 [va) —

9 return pg, ..., fy

panet = 2V 2(Viet|va) — 1. (21)

Note that the factors of 1/2 are due to the fact that we are working
with the orthonormal Chebyshev polynomials (18) rather than the
typical Chebyshev polynomials.

This approach is summarized in Algorithm 1 and clearly
requires a and b to be specified ahead of time. If [a,b] does not
contain all of the energies of H, then the algorithm is exponentially
unstable. Meanwhile, if [a, b] is much wider than the energies of H,
then the convergence may be slowed.

Ill. A LANCZOS-BASED SPECTRUM ADAPTIVE KPM

We now describe our proposed algorithm, which allows o(E)
(including its support) to be chosen after the expensive aspects of the
algorithm have been carried out. This allows the KPM approxima-
tion generated to adapt to the energy spectrum of the Hamiltonian
H. A related and very general approach to obtaining quadrature
approximations from moment data has recently been described.”’
The approach in this paper is more focused/straightforward, as we
focus only on implementing the KPM using Lanczos. Indeed, our
approach can be summarized in one sentence: use the output of
Lanczos to compute the KPM moments.

A. The Lanczos algorithm

When run on H and |r) for k iterations, the Lanczos algorithm
(Algorithm 2) iteratively produces an orthonormal basis |v,) for the
Krylov subspace,

span{|r), H|r),...,H'|r)}. (22)

This is performed via a symmetric three-term recurrence
1
|Vn+1> = F(Hh’n) _an|vn) _ﬁn—l|vn71>) (23)
n

with initial conditions |v1) = (1/B,)(H|vo) — ao|ve)) and |w)
= |r). At each step, a, is chosen so that (v,41|v,) = 0 and then 8,
is chosen so that (v,41|ve+1) = 1. In exact arithmetic, [v,.1) is auto-
matically orthogonal to |v;) for all i < n — 2 by symmetry. However,
those familiar with the Lanczos algorithm in finite precision arith-
metic may be skeptical that we have omitted any form of reorthog-
onalization. We discuss the stability of our approach in finite
precision arithmetic in Sec. 111 C and argue that reorthogonalization
is not needed.

1: procedure LANCZOS(H, |r), k)

2: [vo) = |r)

3: ‘f’l) = H|V()>

4. ‘1}1 = |f/1> - (Xo‘Vo), X = (V0|f/1>
5 vi) = 91/Bo, fo = (1[1)

6: forn=12,...,k—1do

7: ‘{’n+1) = H|Vn) - ﬁn—l|vn—1>
8: On = (Vn|‘~’n>

9: “;ﬂ‘i’l) = |i’n+1> - ‘xn|vn>

10: [))n = ("}n+l|‘;n+l>

11: ‘Vn+1) = Wn-*—l)/ﬁn

12: return g, a1, . . . ,ak,l,ﬁo,ﬁl,...,ﬂk_l

After k iterations of the Lanczos iteration, the recurrence
coefficients form a (k + 1) x (k + 1) symmetric tridiagonal matrix,

ﬂo ﬂl ﬁk—l

o a -+ ag; 0 | (24)
ﬂO ﬁl /jk—l

Hj = tridiag

If we write the Lanczos basis as V = $5_ |v,)(e,|, where |e,) is the
all-zeros vector with a one in index n, it is not hard to see that (23)
implies

HV = VH + |v)(ek| (25)

for some vector |v). Note that it is somewhat more common to write
such a recurrence with the upper-left k x k principle submatrix of
H,, which is closely related to Gaussian quadrature.”® However, as
will become apparent in Sec. 11 B, using Hy as defined in (24) will
provide slightly more approximation power in our Lanczos-based
KPM.

B. Getting the KPM moments

It is well-known that the Lanczos tridiagonal matrix Hj con-
tains information suitable for computing the polynomial moments
of p(E) through degree 2k.

Theorem 1. Let p be any polynomial of degree at most 2k. Then,
(rlp(H)|r) = ff)(E)P(E)dE = (eolp(Hi)leo)- (26)

Proof. The first equality is by definition of the LDOS p(E). Due
to the linearity of polynomials, it suffices to show

(rH"|r) = (eo|Hileo) (27)

for n=0,1,...,2k. We will first show that H"|r) = VH;]ey) for all
n < k. Since V'V = I, this immediately implies the desired result.

Suppose H"™'|r) = VH} '|eo). Then, since |r) = V]ey), we can
use (25) to write

H'"|r) = HVH} '|e)) = VH}|eo) + |v)(ex|H}|eo). (28)
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ALGORITHM 3. Get KPM moments from Lanczos.

—

procedure MOMENTS-FROM-LANCZOS(Hy, 0(E))
Obtain recurrence coefficients {y,, 8.} for the orthogonal
polynomials of ¢ (E)
|uo) = leo), [u1) = (1/80) (Hiluo) — y,t0))
to = {eoluo), p; = (eofun)
forn=1,2,...,2k-1do
it = (1/8:) (Hilua) — 7, ) = 851 lts1))
Uiy = (€olttns1)
return o> B> -+ o> By

»

Since Hy is tridiagonal, H has a bandwidth 2n + 1 and (ex|H}|eo)
= 0 provided n < k. The base case |r) = Vlep) is trivial. ]

The critical observation is that this allows us to obtain the KPM
moments {y, } with respect to a reference density o(E), which we
can choose after we have run the Lanczos computation. In fact,
we can cheaply produce approximations corresponding to vari-
ous different reference measures as this process no longer involves
computations with H or any vectors of length d.

If we choose o(E) = 0, ,(E), we can compute the moments by
applying Algorithm 1 to Hy and |e). Of note is the fact that the
Lanczos algorithm produces high accuracy estimates of extremal
eigenvalues when started on a random vector.”” " In particular, the
largest and smallest eigenvalues of the top-left k x k sub-matrix of
H; approximate those of H from the interior. We can use this to
help guide our choice of a and b.

For other choices of o(E), we can compute the moments
directly via the three-term recurrence for the orthogonal polynomi-
als. In particular, we use the matrix version of (10),

1) = 5i(Hk|un> — Jalttn) = Sut|t-r)) (29)

with initial conditions |u1) = (1/80)(Hy|uo) —y,|u0)) and |uo)
= |eo). Then, |u,) = |p, (Hy)|eo), so we can compute p, = (eo|un) for
n < 2k. This is summarized in Algorithm 3. The cost of this process
depends only on k and not on d, so tricks for halving the number of
matrix-vector products with Hy are not needed.

C. Stability of the Lanczos algorithm

The Lanczos algorithm is unstable in the sense that the tridi-
agonal matrix Hy and basis vectors {|v,)} produced in finite pre-
cision arithmetic may be nothing like what would be obtained in
exact arithmetic. In particular, by symmetry, [v,+1) is automatically
orthogonal to |vg), . .., |vu—1) in exact arithmetic. However, in finite
precision arithmetic, this is no longer even approximately true and
the Lanczos basis vectors produced can completely lose orthogonal-
ity and even linear independence. To fix this, it is common to use
reorthogonalization, that is, to explicitly orthogonalize | V,+, against
[v0), - . .,|va—1) before normalizing in Line 10 of Algorithm 2. This,
of course, drastically increases the computational requirements to
be able to run the algorithm; in particular, the memory required
for rezorthogonalization scales as O(dk) and the arithmetic cost as
O(dk™).

ARTICLE pubs.aip.org/aipl/jcp

Despite the instabilities of the Lanczos algorithm with-
out reorthogonalization, there is significant theoretical’’"" and
empirical """ evidence that the Lanczos algorithm is highly effec-
tive for tasks related to the density of state approximation. In fact,
while not widely known, the Lanczos algorithm is forward stable for
the tasks of computing Chebyshev polynomials and moments."*
We summarize the high-level ideas behind these works, the results
of which we believe are relevant to the computational physics and
chemistry communities.

In finite precision arithmetic, the outputs of the Lanczos
algorithm satisfy a perturbed version of (25),

HV = VHk+|v)(ek|+F, (30)

where F accounts for local errors, which can be expected to be on
the size of machine precision. In addition, while V' need not be
orthonormal, |1 = (Vu41|Va+1)| and |(vui1]|va)| are on the order of
machine precision. This (and much more) is analyzed in detail in
Refs. 40-42. These assumptions form the basis of essentially all anal-
yses of the behavior of Lanczos-based methods in finite precision
arithmetic.

Following the Proof of Theorem 1, we might try to use (30)
to understand the difference between H"|r) and VH}]ey); i.e., how
closely (27) holds in finite precision arithmetic. However, it is not
hard to see that this results in an error term with an exponential
dependence on k. This is fundamentally because the monomial basis
is very poorly conditioned and therefore not a good choice to work
with numerically. Indeed, if, instead, we use a Chebyshev basis, then
it can be shown the error term itself satisfies Chebyshev-like three-
term recurrence and grows only polynomially with k. This yields the
following bound.

Theorem 2 (Druskin and Knizhnerman,* informal). Suppose
[a,b] = [Emin — #> Emax + 1] for some 1 = O(€machpoly(k)). Let Hy, be
the output of the Lanczos algorithm run on H and |r) for k iterations
in finite precision arithmetic without reorthogonalization. Then, for
any n < 2k,

||Tn(H)\r) - VTn(Hk)|eo)H = O(€émach poly(k)), (31)

where T, is as in (16) and the big-O hides mild dimensional con-
stants and dependencies on a and b. The actual statement of Ref. 45
(Theorem 1) is more precise and gives explicit bounds for the degree
of the poly(k) terms. We remark that in numerical analysis, the pre-
cise numerical value of bounds is often much less important than the
intuition conveyed by the bound.

With some additional knowledge of properties satisfied by
V'V in finite precision arithmetic (which can be very far from the
identity), a similar result can be shown for the Chebyshev moments:

Theorem 3 (Knizhnerman," informal). Under similar

assumptions to Theorem 2, for any n < 2k,
[(r( T (H)|r) = (eol Ta(Hi)leo)| = Oemacn poly(k)).  (32)

Theorem 3 implies that the (appropriately scaled) Chebyshev
moments can be obtained from the matrix Hy, even when Lanc-
zos was carried out in finite precision arithmetic. Thus, the KPM
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with aaT, »(E) can be implemented from Lanczos after Hy has been
obtained, even in finite precision arithmetic. As with Theorem 2,"
Theorem 1 is much more precise than what is stated in Theorem 3.

Note that any polynomial p(x) of degree 2k can be decomposed
in a Chebyshev series

2k

P(E) =Y caTu(E). (33)

n=0

Moreover, if [p(E)| < M for all E € [a, b], then
o] = |(2 ~ o) [ ol(B(BYTu(E)E| <2M. (30

Applying the triangle inequality gives the bound

|{rlp(H)|r) = (eolp(H)leo)| = O(Memach poly(k)).  (35)

In other words, Theorem 3 can be upgraded to hold for any bounded
polynomial. Thus, the KPM can also be implemented for choices of
o (E) whose orthogonal polynomials are well-behaved.

We remark this that a similar argument also implies that,
even in finite precision arithmetic, the FTLM approximation to
(r|f(H)|r) is accurate provided f(E) has a good polynomial approx-
imation, i.e., the same sort of result as would be expected in exact
arithmetic. A more detailed analysis is found in Ref. 48. This pro-
vides a theoretical justification for the observation that the FTLM
works well, even without reorthogonalization."”

D. Computational costs

The overall computational costs of our energy adaptive KPM
and the standard KPM (assuming [a, b] is known) are almost iden-
tical. In addition to the storage required for H, both algorithms
require storage for three vectors of length d. At iteration n, the
Lanczos algorithm (without reorthogonalization) and a standard
implementation of the KPM require one matrix—vector product, sev-
eral vector updates, and two inner products. The algorithms also
have additional lower-order arithmetic and storage costs, which
depend only on the maximum number of iterations k but not the
dimension d. Assuming k < d, these costs are negligible.

As noted above, the standard KPM typically requires a pre-
processing step in which a suitable interval [a,b] is determined,
often via a few iterations of Lanczos. While our Lanczos-based KPM
avoids the need for such a pre-processing step, this pre-processing
step is often cheap relative to the overall computation. In such
cases, the fact that our algorithm avoids this step is not particularly
significant from a runtime perspective.

Finally, we note one situation in which the runtimes of the
two algorithms may differ is on high-performance clusters where
the time spent on communication for inner products can dominant
the time spent on arithmetic computation. Indeed, in the case of
the KPM, the two inner products are used to compute g, and p,_,
and do not prevent the algorithm from proceeding. Meanwhile, the
two inner products in Lanczos are used to compute «, and §, for
blocking and therefore must be completed before the algorithm can
proceed.

In such settings, if the cost of the pre-processing step is sig-
nificant, one could run the energy-adaptive KPM suggested here
for several iterations to determine good choices of [a, b] and o(E).

ARTICLE pubs.aip.org/aipl/jcp

Assuming that the Lanczos basis vectors are stored, p,(H)|r) and
P, (H)|r) can be computed without any additional matrix-vector
products at which point an explicit three-term recurrence can
be continued without the need for blocking inner products. We
leave such implementation details to practitioners who have better
knowledge of their individual computing environments.

IV. NUMERICAL EXPERIMENTS

Here, we provide several numerical examples to demonstrate
the potential usefulness of our spectrum adaptive KPM. Rather than
focusing on any single domain area, we aim to provide a diverse
collection of examples from a variety of applications. Each of these
examples demonstrates a particular aspect of the paradigm of decou-
pling computation from approximation, which may prove useful in
practical settings. Unless stated otherwise, all KPM approximations
are computed using our Lanczos-based approach.

A. Spin systems

One of the main uses of KPM and related algorithms is in the
study of thermodynamic properties of Heisenberg spin systems. "’
Here, we consider the simplest example: the 1D XX spin chain of

length m with Hamiltonian

m—1
H=]

i

m
(oi0is +0l0),,) + hz; g’
P

Il
—

This system is exactly solvable, meaning that the true spectrum can
be computed analytically.”” For our numerical experiments, we set
m =20 so thatd = 2%° ~ 10° and use ] = 1/6 and h = 6.

Figure 1 shows a histogram of the exact spectrum, along with
the degree s = 500 KPM approximation of the LDOS corresponding
to a single random state |r). The support [a, b] of the KPM approx-
imation is varied to study the impact of estimating [Emin, Emax]. If
E, ¢ [a,b] for some index n, then the KPM approximation deteri-
orates, but if [a,b] is taken too large, then convergence is slowed.
Thus, reasonably accurate estimates of Emin and Enmax are required.
Our spectrum adaptive KPM allows these estimates to be determined
after computation with H has occurred.

In Fig. 2, we study the impact of finite precision arithmetic.
We first consider how accurately the moments 4, can be computed.
In particular, we compare our Lanczos-based algorithm and a stan-
dard implementation of the KPM and observe that the computed
moments agree with essentially machine precision. This is expected
due to Theorem 3. For reference, we also show the orthogonality of
the Lanczos vector without reorthogonalization as well as the differ-
ence between the Lanczos recurrence coefficients {ay, 8, } and what
would have been obtained with reorthogonalization {ay;, 8, }. There
is a complete loss of orthogonality, and the coefficients obtained with
and without reorthogonalization are vastly different. This implies
that the moments agreeing are not simply due to the outputs with
and without reorthogonalization being similar.

B. Tight binding models

Another common use of the KPM is in tight binding models.
Here, we consider a cuboid section of a zinc blende crystal with
nearest neighbor hopping. The Hamiltonian and visualization of the
zinc blende crystal in Fig. 3 were generated using the Kwant code.”
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FIG. 2. Study of relevant quantities in finite precision arithmetic. Legend: Left: error between Chebyshev moments computed directly and using the finite precision Lanczos

recurrence and Theorem 1. Right: level of orthogonality of the Lanczos basis vectors max;<j<x|(vi|v;)| (

) and error in Lanczos coefficients with and without reorthogonal-

ization |ty — o | (— ) and |8, — ;| (— ). Takeaway: Even though the Lanczos algorithm completely lost orthogonality, the Chebyshev moments are computed stably!
This enables us to stably implement the Chebyshev KPM with Lanczos, even without reorthogonalization.

The resulting Hamiltonian is of dimension d = 56 000, and we out-
put the average of 10 LDOSs corresponding to random independent
samples of |r).

The DOS has a large spike at zero, and this spike causes an
undamped Chebyshev KPM to exhibit massive Gibbs oscillations.
These oscillations can be mitigated somewhat through the use of a
damping kernel. However, as shown in Fig. 3, the resolution is only
O(1/k), and therefore, s must be taken large to get high resolution.

Instead, we can construct a reference density, which is adaptive
to this spike. In particular, we define

(E) = 0.0501_,,1+,(E) +0.950,,(E), (36)
where 5 = 1072, Note that the relative weighting of the spike and the
bulk spectrum, as well as the width of the spike, can be tuned using

our energy adaptive KPM. When properly chosen, this in higher res-
olution in other parts of the spectrum as the KPM approximation
does not have to use as much of its approximation power on approx-
imating the spike in p(E)/o(E). Moreover, even without damping,
Gibbs oscillations are relatively minor.

C. Density functional theory

In this example, we consider a matrix obtained in the study
of GayAsyH7, with the pseudo-potential algorithm for real-
space electronic structure calculation (PARSEC).”! The matrix
GasiAsaiH7o can be obtained from the sparse matrix collection®
and has been used as a test matrix in a past numerical study.”"’
This matrix is of dimension d=268096 and has many low-
lying eigenvalues |E,| < 100 and a cluster of 123 large eigenvalues

0.25

0.20

0.15

density of states

0.10

0.05 +

0.00

0 2 4
energy £

FIG. 3. Approximation of DOS of a cubic zinc blende crystal with nearest neighbor hopping. Legend: reference density (36) with s = 240 (— ) and Chebyshev KPM with

Jackson’s damping with s = 240 ( ) and s = 800 (— ). Takeaway: Large spikes

in the spectrum are hard to resolve with regular Chebyshev KPM but can be resolved

with a suitable choice of reference density o(E). Our spectrum adaptive KPM allows such an approximation to be computed without prior knowledge of the spectrum.
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FIG. 4. Approximation of DOS with a large gap in the spectrum. Legend: reference density (37) with a convolutional filter and s = 200 (— ), Chebyshev KPM with Jackson’s

damping s = 200 (

)and s = 800 (— ), and histogram of top eigenvalues (—= ). Takeaway: Even with four times the computation, the standard Chebyshev KPM does

match the resolution of KPM with a more suitable choice of reference density o(E). Our spectrum adaptive KPM allows such an approximation to be computed without prior

knowledge of the spectrum.

E, € [1299,1301]. Thus, while the spectrum can be contained in two
reasonably sized intervals, any single interval containing the spec-
trum must be large. In this experiment, we output the average of 10
random LDOSs.

If the standard Chebyshev KPM is used, the zero part of
P(E)/o(E) in the gap must be approximated with a polyno-
mial.”* This significantly slows convergence, and even with s = 800
moments, the fine-grained structure of the upper spectrum is not
resolved. To avoid this delay of convergence, we can take o(E) as
a density supported on two disjoint intervals [ai,b1] and [a2, 2]
containing the spectrum of H. In particular, we take

o(E) = 0.950, ;, (E) +0.050,, ;. (E), (37)

where the intervals [ai,b1] and [az,b,] are computed based on
the eigenvalues of Hy. As shown in Fig. 4, this provides a higher
resolution in each interval and the structure of the upper cluster
is visible. Here, we have applied a simple convolutional filter to
the KPM approximation of the upper eigenvalues to reduce Gibbs
oscillations.

V. CONCLUSION

We have described an energy adaptive kernel polynomial
method based on the Lanczos algorithm. Our approach allows many
different KPM approximations to be tested out for close to zero cost,
after computation with H has finished. Experiments demonstrate
situations in which this allows the reference density o(E) to be cho-
sen in such a way to improve the resolution of the approximation.
It is our belief that the paradigm of separating computation from
the desired approximation is beneficial in most settings in which the
KPM is used and that our algorithm has the potential to improve the
usability of the KPM.
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