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We consider sub-Laplacians in open bounded sets in a homogeneous Carnot group and

study their spectral properties.We prove that these operators have a pure point spectrum

and prove the existence of the spectral gap. In addition,we give applications to the small

ball problem for a hypoelliptic Brownian motion and the large time behavior of the heat

content in a regular domain.

1 Introduction

This paper is focused on spectral properties of sub-Laplacians in subsets of homoge-

neous Carnot groups. The main difficulties include hypoellipticity of these operators

and lack of smoothness of natural sets in such groups such as metric balls. Thus

we cannot rely on standard partial differential equations’ techniques. In particular,

we are interested in domains that are balls with respect to a homogeneous distance

on such groups. These are classical questions at the intersection of potential theory,

spectral analysis, and probability in the setting of degenerate second-order differential

operators.

The mathematical literature on the subject is vast, and while our goal is to prove

results of a classical flavor, it seems that they are not readily available. We rely on

the theory of Dirichlet forms to show that a sub-Laplacian with Dirichlet boundary
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Sub-Laplacians, Spectral Properties 1895

conditions on sets with no restrictions on the boundary are infinitesimal generators

of a Hunt process, namely, a killed process. To further study boundary behavior of

eigenfunctions we address the issue of regularity of boundary points being defined

differently in analysis, potential theory, and probability.

Our main results include Theorem 3.3 where we collect spectral properties of

the Dirichlet sub-Laplacian −L� restricted to a bounded open connected subset � of a

Carnot group G. We prove that the spectrum of −L� is discrete, and then we show that

the 1st Dirichlet eigenvalue is strictly positive and simple, that is, −L� has a spectral

gap. Moreover, in Proposition 3.6, we prove uniform Lp-bounds and smoothness of the

eigenfunctions of −L�. These are well-known results for uniformly elliptic operators

on domains with a smooth boundary; see [12, Chapter 6], [38, Corollary 5.1.2], and [45,

Equation (3.3), p. 39]. Our results hold without assuming regularity of the boundary ∂�

and in particular apply to uniform elliptic operators on domains with a nonsmooth

boundary. If the boundary is regular, then we can show that the eigenfunctions are

zero on the boundary. As standard PDEs’ techniques are of limited use for hypoelliptic

operators and for domains with a nonsmooth boundary, we rely on the Dirichlet form

theory, the Krein–Rutman theorem and irreducibility of the corresponding semigroup.

The spectral analysis in Section 3 relies on the Dirichlet form theory on L2 (G,dx),

where G is a homogeneous Carnot group and dx is a (bi-invariant) Haar measure. A

natural question is if these techniques are applicable to more general sub-Riemannian

manifolds, but in such a setting, we might not have a canonical choice of a mea-

sure m, which is needed to define a Dirichlet form on the corresponding L2 space.

We also indirectly rely on the fact that the Haar measure on G satisfies a volume

doubling property. Finally, our approach uses the fact that sub-Laplacians on L2 (G,dx)

are essentially self-adjoint on C∞
c (G) in L2 (G,dx) by [10, Section 3].

Note that [36] proves a number of related results for sub-Laplacians on domains

in homogeneous Carnot groups. The domains considered there are bounded open with a

piecewise smooth and simple boundary. Lower bounds on the spectral gap for Dirichlet

sub-Laplacians on compact domains with smooth boundary in sub-Riemannian

manifolds have been studied recently in [33]. Their methods are different, and in

particular, the Dirichlet form theory allows us to consider domains with a nonsmooth

boundary. Small time asymptotic expansions for hypoelliptic heat kernels can be found

in [7]. As one of the applications is to the heat content asymptotics, we mention that

one of the technical difficulties in the sub-Riemannian setting is potential presence of

characteristic points on ∂�. These are points x ∈ ∂� where the horizontal distribution

is tangent to ∂�. We refer to [35, 43] for a more detailed analysis of such points.
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1896 M. Carfagnini and M. Gordina

We remark that Dirichlet forms in the context of free nilpotent groups have been

used in [15, 16] in connection with the theory of rough paths. Moreover, they relied on

the general Dirichlet forms such as [40–42] in the context of free nilpotent groups. In

this setting, they derived small ball estimates in the context of support theorem for

Markovian rough paths.

The paper is organized as follows. In Section 2,we describe homogeneous Carnot

groups, sub-Laplacians, and Dirichlet forms on such groups. In Section 3, we describe

spectral properties of Dirichlet sub-Laplacians that are collected in Theorem 3.3. In

Section 4, we prove that analytic and probabilistic notions of boundary regular points

are equivalent. We conclude Section 5 with two applications: the small ball problem for

a hypoelliptic Brownian motion and the large time behavior of the heat content in a

regular domain �. The latter is done with a natural assumption on the boundary ∂�

being regular; therefore, we allow ∂� to contain characteristic points.

2 Preliminaries

2.1 Carnot groups

In this paper, we concentrate on a particular class of nilpotent groups, namely Carnot

groups. We begin by recalling basic facts about Carnot (stratified) groups. A more

detailed description of these spaces can be found in a number of references; see for

example [3, 44].

Definition 2.1 (Carnot groups). We say that G is a Carnot group of step r if G is a

connected and simply connected Lie group whose Lie algebra g is stratified, that is, it

can be written as

g = V1 ⊕ · · · ⊕ Vr, (2.1)

where [
V1,Vi−1

] = Vi, 2 � i � r,

[V1,Vr] = {0} .

The stratification (2.1) is not unique as pointed out in [3, Section 2.2.1]. Moreover,

if (V1, . . . ,Vr) and (Ṽ1, . . . , Ṽs) are two stratification of a Carnot groupG, then r = s, which

is referred to as the step and dimVi = dim Ṽi for every i = 1, . . . , r [3, Proposition 2.28].

If G is a Carnot group with stratification (V1, . . . ,Vr), by [3, Proposition 2.2.8], it follows
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Sub-Laplacians, Spectral Properties 1897

that the step r and the number m := dimV1 of generators of G do not depend on the

chosen stratification.

For the rest of the paper,we fix a stratification (V1, . . . ,Vs) ofG. This stratification

determines the space H := V1 of horizontal vectors that generate the rest of the Lie

algebra, nothing that V2 = [H,H], ...,Vr = H(r). The horizontal space H is used to

construct a sub-Laplacian on G for which we refer to [3, Section 2.2].

To avoid degenerate cases, we assume that the dimension of the Lie algebra g is

at least 3, which implies dimV1 � 2. We generally assume that r � 2 to exclude the case

when the corresponding Laplacian is elliptic.

In particular, Carnot groups are nilpotent. We will use H := V1 to denote the

space of horizontal vectors that generate the rest of the Lie algebra, noting that V2 =
[H,H], ...,Vr = H(r). As usual, we let

exp : g −→ G,

log : G −→ g

denote the exponential and logarithmic maps, which are global diffeomorphisms for

connected nilpotent groups; see for example [8, Theorem 1.2.1].

Finally, by [3, Propositions 2.2.17 and 2.2.18], we can assume without loss of

generality that a Carnot group can be identified with a homogeneous Carnot group. For

i = 1, ..., r, let di = dimVi and d0 = 0. The Euclidean space underlying G has dimension

N :=
r∑

i=1

di

and the homogeneous dimension of G is given by

Q :=
r∑

i=1

i · di. (2.2)

The identification of G with R
N allows us to define exponential coordinates as follows.

Definition 2.2. We say that a collection of left-invariant vector fields
{
X1, ...,XN

}
on a

Carnot group G is a basis for g adapted to the stratification if the set
{
Xdi−1

, ...,Xdi−1+di
}

is a basis of Vi for each i = 1, . . . , r.
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1898 M. Carfagnini and M. Gordina

The fact that exp is a global diffeomorphism can be used to parameterize G by

its Lie algebra g. First, we recall the Baker–Campbell–Dynkin–Hausdorff formula.

Notation 2.3. For any X,Y ∈ g, we define the Baker–Campbell–Dynkin–Hausdorff

formula by

BCDH (X,Y) := log (expX expY)

=
∞∑

m=1

∑
pi+qi�1

(−1)m−1

m(
m∑
i=1

pi + qi)

×

p1︷ ︸︸ ︷
[[· · · [X,X], · · · ],X],

q1︷ ︸︸ ︷
Y], · · · ,Y], · · ·

pm︷ ︸︸ ︷
· · · ,X], · · ·X

qm︷ ︸︸ ︷
· · · ,Y], · · ·Y]

p1!q1! · · ·pm!qm!
.

Definition 2.4. Suppose
{
X1, . . . ,XN

}
is a basis of g adapted to the stratification. For a

point g ∈ G ∼= R
N , we say that

(
x1, . . . , xN

) ∈ R
N are exponential coordinates of the 1st

kind relative to the basis
{
X1, . . . ,XN

}
if

g = exp

(
N∑
i=1

xiXi

)
.

We equip R
N with the group operation pulled back from G by

z := x � y,

N∑
i=1

ziXi = BCDH

(
N∑
i=1

xiXi,
N∑
i=1

yjXj

)
.

In particular, in this identification x−1 = −x. Note that R
N with this group

law is a Lie group whose Lie algebra is isomorphic to g. Both G and
(
R
N , �

)
are

nilpotent connected and simply connected; therefore, the exponential coordinates give a

diffeomorphism between G and R
N .

A stratified Lie algebra is equipped with a natural family of dilations defined for

any a > 0 by

δa (X) := aiX, for X ∈ Vi.

For each a > 0, δa is a Lie algebra isomorphism, and the family of all dilations {δa}a>0

forms a one-parameter group of Lie algebra isomorphisms. We again can use the fact

that exp is a global diffeomorphism to define the automorphisms Da on G. The maps
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Sub-Laplacians, Spectral Properties 1899

Da := exp ◦ δa ◦ log : G −→ G satisfy the following properties.

Da ◦ exp = exp ◦ δa for any a > 0,

Da1 ◦ Da2 = Da1a2 ,D1 = I for any a1,a2 > 0,

Da

(
g1

)
Da

(
g2

) = Da

(
g1g2

)
for any a > 0 and g1, g2 ∈ G,

dDa = δa.

(2.3)

That is, the group G has a family of dilations, which is adapted to its stratified

structure. Actually Da is the unique Lie group automorphism corresponding to δa. On

a homogeneous Carnot group R
N the dilation Da can be described explicitly by

Da

(
x1, . . . , xN

)
:= (

aσ1x1, . . . ,a
σNxN

)
,

where σj ∈ N is called the homogeneity of xj, with

σj = i for
i−1∑
k=0

dk + 1 � j �
i∑

k=1

dk,

with i = 1, . . . , r and recalling that d0 = 0. That is, σ1 = · · · = σd1
= 1, σd1+1 = · · · =

σd1+d2
= 2, and so on.

We assume that H is equipped with an inner product 〈·, ·〉H, in which case

the Carnot group has a natural sub-Riemannian structure. Namely, one may use left

translation to define a horizontal distribution D as a sub-bundle of the tangent bundle

TG, and a metric on D. First, we identify the space H ⊂ g with De ⊂ TeG. Then, for g ∈ G,

let Lg denote left translation Lgh = gh, and define Dg := (Lg)∗De for any g ∈ G. A metric

on D may then be defined by

〈u,v〉Dg
:= 〈(Lg−1)∗u, (Lg−1)∗v〉De

= 〈(Lg−1)∗u, (Lg−1)∗v〉H for all u,v ∈ Dg.

We will sometimes identify the horizontal distribution D and H. Vectors in D are called

horizontal.

2.2 Sub-Laplacians and Dirichlet forms

For sub-Laplacians on sub-Riemannian complete manifolds [39, pp. 41–42] claimed

that these operators are essentially self-adjoint, though without a complete proof or

indication of how to choose the reference measure. If the manifold is a Lie group, a
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1900 M. Carfagnini and M. Gordina

natural choice is a Haar measure, and we review relevant results below. For a more

recent approach, we refer to [14]. To tackle more general sub-Riemannian manifolds in

the future, one might also use the semigroup approach in [19, 20] combined with the

Dirichlet form theory in [17, 31].

Suppose G is a real connected Lie group and
{
Xi

}m
i=1 is a family of left-invariant

vector fields on G satisfying Hörmander’s condition, then the sum of squares operator

L :=
m∑
i=1

X2
i

is essentially self-adjoint on C∞
c (G) in L2 (G,dx) according to [10, p. 950]. Here, dx is

a (right) Haar measure on G. In particular, the following integration by parts formula

holds:

∫
G

m∑
i=1

X2
i fdx = −〈L∗f , f 〉L2(G,dx) < ∞

for any f ∈ C∞ (G) ∩ DL∗ . If G = G is a homogeneous Carnot group and
{
X1, ...,Xd1

}
is an

orthonormal basis of H of left-invariant vector fields and m = d1, then by [10, Section

3], the operator L depends only on the inner product on H and not on the choice of the

basis. This is what [3, Example 1.5.2] calls a canonical sub-Laplacian. More background

on sub-Laplacians can be found in [19, Section 3.1]. This is not the subject of this paper,

though we mention that by [19, Corollary 3.4] all sub-Laplacians differ only by 1st-order

terms.We abuse notation and denote by Xj both the vector inH and the unique extension

of this vector to the left-invariant vector field on G.

Remark 2.5 (Choice of the measure). We chose a Haar measure as the reference measure

for several reasons. First of all, the sub-Laplacians we are interested in are essential

self-adjoint on C∞
c (G) in L2 (G,dy) by [10, Section 3]. Secondly, a Haar measure on the

metric space (G, | · |) is doubling which is needed for using heat kernel estimates in [40].

The fact that a Haar measure is doubling in this setting follows from [10, Theorem 3.2]

and [25, 32, 44]. For more comments on how the sub-Laplacians might depend on the

choice of a reference measure including on when we can write it as div∇H we refer

to [19, Section 4].

Before listing basic properties of this second-order differential operator, recall

thatG is unimodular, and so we can assume that it is equipped with a (bi-invariant) Haar
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Sub-Laplacians, Spectral Properties 1901

measure dx. Moreover, if μ is the push-forward of the N-dimensional Lebesgue measure

LN via the exponential map, then it is a bi-invariant Haar measure on G and

dμ
(
y ◦ δλ

) = λQdμ (y) . (2.4)

If we identify G with the homogeneous Carnot group
(
R
N , �, δλ

)
via exponential coordi-

nates in Definition 2.4, then for a measurable set E ⊂ G, its Haar measure is explicitly

given by μ (E) = LN
(
exp−1 (E)

)
. We will abuse notation and use the same notation for

both measures.

As observed in [10, Section 3], the operator L is essentially self-adjoint on

C∞
c (G) in L2 (G,dy). Thus, the corresponding semigroup etL can be defined by the

spectral theorem. This semigroup commutes with left translations since its infinitesimal

generator is left-invariant as well. Namely, for every y ∈ G, we have

L(f (y ◦ x)) = (Lf )(y ◦ x) for every x ∈ G and f ∈ C∞
c (G).

We now recall some basic properties of such sub-Laplacians, for more properties

including regularity of the corresponding heat kernel, parabolic Harnack inequality,

Gaussian upper, and lower bounds we refer to [10, Theorem 3.4] in a more general

setting. Some of these properties rely on the fact that L is hypoelliptic by Hörmander’s

hypoellipticity theorem [24, Theorem 1.1] and doubling property for the metric we

describe below. In addition, on Carnot groups the operatorL is δλ-homogeneous of degree

two, that is, for every fixed λ > 0

L(f (δλ(x))) = λ2(Lf )(δλ(x)) for every x ∈ G and f ∈ C∞
c (G),

since vector fields Xjs are δλ-homogeneous of degree one. For more details, we refer to [3,

p. 63] on homogeneous Carnot groups.

The sub-Laplacian is symmetric since the group is unimodular, and hence the

integration by parts formula reads

∫
G

d1∑
j=1

Xjf · Xjgdy = −
∫
G

Lf · gdy, f , g ∈ C∞
c (G) . (2.5)

The symmetric form corresponding to the semigroup etL is

f → E (f ) :=
∫
G

|∇Lf (y)|2
Rd1

dy, (2.6)

where ∇L := (
X1, ...,Xd1

)
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1902 M. Carfagnini and M. Gordina

is the horizontal gradient and

DE := W1
2 (G)

:=
{
f ∈ L2(G,dx) : Xif ∈ L2(G,dx), for all i = 1, . . . ,d1

}
,

where Xif is to understood in the distributional sense. The form E is a Dirichlet form by

[10, p. 951]. Note that E is a closed form, that is,DE is a Hilbert space with respect to the

inner product

〈f , g〉W1
2 (G) = E(f , g) + 〈f , g〉L2(G,dx),

where E(f , g) is obtained from (2.6) by polarization. Moreover, by (2.5), we have that for

f ∈ DE ∫
G

|∇Lf (y) |2Hdy = −
∫
G

f (y)Lf (y)dy. (2.7)

The next step is to check that (2.6) can be extended to a regular Dirichlet form.

Recall that a Dirichlet form
(
E ,DE

)
is called regular if it admits a core, that is, if there

exists a subset C of DE ∩ C0 (G) that is dense both in DE with respect to the Sobolev

norm ‖ · ‖W1
2 (G), and in C0 (G), with respect to the sup-norm. Note that C∞

c (G) is dense

in L2 (G,dx), and it is a core for the bilinear form E . Thus,
(
E ,DE

)
is a regular Dirichlet

form. In addition, it is strongly local as defined in [22, Definition 1.2].

Definition 2.6. Suppose G = (
R
N , �, δλ

)
is a homogeneous Carnot group and ρ : G →

[0,∞) is a continuous function with respect to the Euclidean topology. Then ρ is a

homogeneous norm if it satisfies the following properties:

ρ
(
δλ(x)

) = λρ(x) for every λ > 0 and x ∈ G,

ρ(x) > 0 if and only if x �= 0.

The norm ρ is called symmetric if it satisfies ρ
(
x−1

) = ρ (x) for every x ∈ G.

If ρ1 and ρ2 are two homogeneous norms, then there exists a constant c > 0 such

that

c−1ρ1(x) � ρ2(x) � cρ1(x), for every x ∈ G, (2.8)
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Sub-Laplacians, Spectral Properties 1903

see, for example, [3, Proposition 5.1.4, p. 230]. On every homogeneous Carnot group,

there exist distinguished symmetric homogeneous norms related to a sub-Laplacian as

follows.

Definition 2.7. A homogeneous symmetric norm ρ on G is called an L-gauge if it is

smooth everywhere except at the origin and

L(ρ2−Q(x)) = 0,x ∈ G \ {0} , (2.9)

where Q is the homogeneous dimension of G.

By [3, Section 5.3], we know that there exists a unique fundamental solution 	

for the Poisson equation with a sub-Laplacian L, that is, 	 ∈ C∞ (G \ {0}) ⋂
L1loc(G,dx)

and

L	 = −Dirac0,

where Dirac0 is the Dirac measure supported at {0}.
L-Gauges and the fundamental solution for L are related as follows. If G is a

Carnot group of homogeneous dimension Q and 	 is a fundamental solution for L, then

ρ(x) :=
{

	(x)
1

2−Q , x ∈ G\{0};
0, x = 0

(2.10)

is an L-gauge onG. By [3, Section 5.5], if ρ is an L-gauge onG, then there exists a constant

αd such that 	 = αρρ2−Q is Green’s function for L. As a consequence, the L-gauge is

unique up to a multiplicative constant.

2.3 Regular boundary points: a probabilistic approach

We now recall the notion of regular points for a differential operator L in a bounded open

connected set � ⊂ R
N as found in a number of references, in particular for Brownian

motion in [37, Chapter 8]. The connection with classical potential theory goes back to

Doob et al. [9, 11, 27].

Suppose that g · := {
gt

}
t is a G-valued diffusion process whose infinitesimal

generator is L. Using exponential coordinates of the 1st type, we can view g · as an R
N-

valued process. We start with a probabilistic definition of regular points as found in
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1904 M. Carfagnini and M. Gordina

[28, Definition 8.2.1], and this is the definition used in [18] for L = −1
2�H on R

3 ∼= H, the

three-dimensional Heisenberg group.

Definition 2.8. Let gx· be the diffusion process with generatorL started at x ∈ ∂�,where

� is a bounded open connected set, and define

τx� := inf
{
t > 0 : gxt ∈ �c} .

We call x a regular point of ∂� if P
x

(
τx� = 0

) = 1. We call the set � regular if every

boundary point of � is regular. If Px
(
τx� = 0

)
< 1, the point x is called a singular point

of the boundary.

In Section 4, we compare Definition 2.8 with an analytic definition of regular

points used for hypoelliptic operators such as sub-Laplacians on homogeneous Carnot

groups. Moreover, we prove that the two notion of regular points are equivalent.

3 Spectral Properties of the Sub-Laplacian L Restricted to a Set �

We rely on the Dirichlet form theory to describe a restriction of L to a set � in G. Our

main reference here is [17], and in a more relevant setting of metric measure spaces [21,

Section 6.1] and [22, p. 173]. In particular, we use this approach to show that L� has a

discrete spectrum with minimal assumptions on the boundary of �.

Let � be a bounded open connected set in G, and define

DE (�) := {
f ∈ DE : supp f ⊂ �

}W1
2 ,

where ‖f ‖2
W1

2
= E(f ) + ‖f ‖2

L2(G,dx)
and (E ,DE ) is given in (2.6). Then, by [22, Section 3.2

Theorem 3.3], we know that
(
E ,DE (�)

)
is a regular Dirichlet form on L2(�,dx). Note that

DE (�) is dense in L2(�,dx) since
(
E ,DE (�)

)
is a regular Dirichlet form. We denote by

−L� the nonnegative self-adjoint operator on L2 (�,dx) corresponding to the Dirichlet

form
(
E ,DE (�)

)
.

Notation 3.1. We denote the semigroups corresponding to the Dirichlet forms
(
E ,DE

)
and

(
E ,DE (�)

)
by

Pt := etL,

P�
t := etL� ,

respectively.
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The domains of the corresponding infinitesimal generators are given by

D(−L) :=
{
f ∈ L2(G,dx) : lim

t↓0
Ptf − f

t
exists

}
,

D(−L�) :=
{
f ∈ L2(�,dx) : lim

t↓0
P�
t f − f

t
exists

}
.

We now give a probabilistic description of the semigroups Pt and P�
t . Homogeneous

Carnot groups are complete metric spaces; therefore, by [40, Proposition 3.1], the

semigroup Pt has a heat kernel pt (x, y), which is continuous in x, y ∈ G. We also know

that by Chow–Rashevskii’s theorem that the intrinsic metric induced by the Dirichlet

form E coincides with the original topology, so the Dirichlet form is strongly regular.

The heat kernel pt(x, y) is the transition density of gt, that is,

P
x (
gt ∈ E

) =
∫
E
pt(x, y)dy, (3.1)

for any Borel set E in G, where gt is the Markov process whose generator is the sub-

Laplacian L. The strongly continuous semigroup associated with the Dirichlet form(
E ,DE

)
is given in terms of gt by

Ptf (x) = E
x[f (gt)], x ∈ G, f ∈ L2(G,dx).

Definition 3.2. Let gt be theG-valued Markov process with the transition density given

by the heat kernel pt(x, y). Then we refer to gt as the hypoelliptic Brownian motion.

The heat kernel is the fundamental solution to the heat equation

(
∂t − 1

2
L

)
pt(x, ·) = 0,

pt(x, y)dy → Diracx(dy) weakly as t → 0, (3.2)

where Diracx(dy) is the Dirac measure centered at {x}, see [10, Equation (3.6)].

Following [4, Section 2.11], we let � be a bounded open connected set and

τ� := inf
{
t > 0 : gt /∈ �

}
.
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1906 M. Carfagnini and M. Gordina

Then we can use Hunt’s formula

p�
t (x, y) := pt(x, y) − E

x
[
11{τ�<t} pt−τ�

(
gτ�

, y
)]

(3.3)

for the transition density p�
t (x, y) of the killed Markov process g�

t given by

g�
t :=

{
gt t < τ�,

∂ t � τ�,

where ∂ is the cemetery point. More precisely, we have that

P
x (
g�
t ∈ E

) = P
x (
gt ∈ E, t < τ�

) =
∫
E
p�
t (x, y)dy, (3.4)

for any x ∈ � and any Borel subset E of �. In particular,

P
x (

τ� > t
) =

∫
�

p�
t (x, y)dy. (3.5)

We refer to p�
t as the Dirichlet heat kernel. Note that regularity of the Dirichlet form

implies that g�
t is a Hunt process as well. Then the semigroup P�

t can be viewed as

P�
t : L2(�,dx) −→ L2(�,dx),

P�
t f (x) = E

x [
f (g�

t )
] = E

x [
f (gt), t < τ�

] =
∫

�

p�
t (x, y)f (y)dy, (3.6)

for any f ∈ L2(�,dx). Note that by [40, Proposition 3.1] applied to the Dirichlet form

(E ,DE (�)) on L2(�,dx) it follows that the function p�
t (x, y) is Hölder continuous on

[T,∞) × � × �.

The following theorem is themain result of this section,wherewe collect spectral

properties of the operator L�.

Theorem 3.3. Let � be a bounded open connected subset of G and P�
t the semigroup

associated with the Dirichlet form
(
E ,DE (�)

)
with generator L�. Then,

(1) for every t > 0, P�
t is a Hilbert–Schmidt operator on L2(�,dx) and its

spectrum is given by

σ(P�
t )\{0} = {

e−λnt
}
n∈N ,

where {λn}n∈N = σpp(−L�) is the point spectrum of −L�, with 0 � λ1 � λ2 �
· · · .
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Sub-Laplacians, Spectral Properties 1907

(2) The operator −L� has a spectral gap, that is, λ1 > 0.

(3) There exists an orthonormal basis {φn}n∈N of L2(�,dx) such that, for every

n ∈ N, t > 0,

P�
t φn = e−λntφn.

Moreover, for every n ∈ N, φn ∈ D(−L�) and

−L�φn = λnφn.

Corollary 3.4. The operator L� has a pure point spectrum.

Proof of Corollary 3.4. By [34, Theorem XIII.64 p. 245] and Theorem 3.3 part (3), it

follows that (−μ − L�)−1 is a compact operator for every μ in the resolvent set of L�,

proving that L� has a pure point spectrum. �

Proof of Theorem 3.3. (1) Let us first show that the semigroup P�
t is a Hilbert–Schmidt

operator for each t. We rely on [40] for a heat kernel estimate that only requires volume

doubling and Poincaré’s inequality without compactness assumption on the underlying

metric space, unlike in [26]. Doubling and Poincaré’s inequality are known to hold in our

setting, for example, by [10, Theorem 3.2]. By [40, Equation (4.2)] with ε = 1, there exists

a constant A > 0 such that

pt(x, y) � At−
Q
2 , (3.7)

for all t > 0 and x, y ∈ G, where Q is the homogeneous dimension of G. Thus, for any

t > 0,

‖p�
t ‖2L2(�×�)

=
∫

�

∫
�

p�
t (x, y)2dxdy �

∫
�

∫
�

pt(x, y)2dxdy

� A2|�|2t−Q < ∞,

where we used that p�
t (x, y) � pt(x, y) for almost all x, y ∈ �. Indeed, for any Borel set

E ⊂ �, t > 0, and all x ∈ � we have that

∫
E
p�
t (x, y)dy = P

x (
g�
t ∈ E

) = P
x (
gt ∈ E, τ� > t

)
� P

x (
gt ∈ E

) =
∫
E
pt(x, y)dy,
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1908 M. Carfagnini and M. Gordina

and hence p�
t (x, y) � pt(x, y) for any x ∈ � and for a.e. y ∈ �. The estimate then follows

for every y ∈ � since both pt and p�
t are continuous on � × �.

The operator P�
t is then Hilbert–Schmidt since p�

t ∈ L2(� × �). In particular,

for every t > 0, the operator P�
t is compact, and hence by the spectral theorem for

compact operators, there exists a sequence of decreasing eigenvalues {λn(t)}n∈N and

corresponding eigenfunctions {φ(t)
n,k}n,k∈N such that for every t > 0,

σ(P�
t )\{0} = σpp(P

�
t )\{0} = {λn(t)}n∈N,

ker
(
λn(t) − P�

t

) = Span{φ(t)
n,k, k ∈ N} for every n ∈ N,

L2(�,dx) =
∞⊕
n=1

Span{φ(t)
n,k, k ∈ N}. (3.8)

The semigroup P�
t is strongly continuous because the Dirichlet form

(
E ,DE (�)

)
is

regular, and hence by the spectral mapping theorem for semigroups [1, Theorem 6.3]

σpp(P
�
t )\{0} = exp

(
t σpp(L�)

)
, for any t > 0. (3.9)

Thus, the eigenvalues of P�
t are given by eμnt for μn ∈ σpp(L�). By the theory of Dirichlet

forms [17], the operator L� is nonpositive definite, and hence we can write μn = −λn,

where λn → ∞ as n → ∞, which completes the proof of (1).

(2) Let us now prove that λ1 > 0.Assume that λ1 = 0, then by the spectral mapping

theorem (3.9), we have that 1 ∈ σpp
(
P�
t

)
for all t > 0, and hence

1 � ‖P�
t ‖,

since σpp(P
�
t ) ⊂ {z ∈ C, |z| � ‖P�

t ‖}. By (3.7), we have that

1 � ‖P�
t ‖2 � ‖p�

t ‖2L2(�×�)
� A2|�|2t−Q,

for some finite constant A > 0. Thus, tQ � A2|�|2 for any t > 0, which is a contradiction.

(3) Let−λn ∈ σpp(L�), and let {φn,k}n,k∈N be an orthonormal basis of ker
(−λn − L�

)
.

By [1, Corollary 6.4], it follows that

Span{φ(t)
n,k, k ∈ N} = ker

(
e−λnt − P�

t

)
= Span

{
ker

(
−λn + 2π j

t
i− L�

)
, j ∈ Z

}
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Sub-Laplacians, Spectral Properties 1909

for any t > 0. The point spectrum of L� is real since L� is self-adjoint, and hence

ker
(

−λn + 2π j

t
i− L�

)
= {0}

for all j �= 0. Thus, we have that

Span{φ(t)
n,k, k ∈ N} = ker

(
e−λnt − P�

t

)
= ker

(−λn − L�

) = Span{φn,k, k ∈ N}, for all n ∈ N.

The operator P�
t is compact, and thus for every n ∈ N, the eigenspace ker

(
e−λnt − P�

t

)
is finite-dimensional. Therefore, for every n ∈ N, there exists an Mn such that for every

t > 0

ker
(
e−λnt − P�

t

) = Span{φn,k, k = 1, . . . ,Mn}. (3.10)

We proved that for every n ∈ N, there exists an orthonormal basis {φn,k}Mn
k=1 of

ker
(
e−λnt − P�

t

)
for any t > 0 such that for any k = 1, . . . ,Mn

P�
t φn,k = e−λntφn,k,

L�φn,k = −λnφn,k.

By (3.8) and (3.10), it follows that

L2(�,dx) =
∞⊕
n=1

Span{φn,k, k = 1, . . . ,Mn}, (3.11)

and hence {φn,k}Mn,∞
k=1,n=1 is the desired orthonormal basis of L2(�,dx). �

Notation 3.5. Throughout the paper instead of using the orthonormal basis {φn,k}Mn,∞
k=1,n=1

given in the proof of Theorem 3.3, we denote by {φn}∞n=1 the same orthonormal basis,

where for each repeated eigenvalue λn, we index the corresponding eigenfunctions

consequently according to its (finite) multiplicity Mn. In particular, we have that

P�
t f =

∞∑
n=1

e−λnt
Mn∑
k=1

〈f ,φn,k〉φn,k =
∞∑
n=1

e−λnt〈f ,φn〉φn (3.12)

for every f ∈ L2(�,dx).
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1910 M. Carfagnini and M. Gordina

We next prove regularity properties of the eigenfunctions of −L�.

Proposition 3.6. Let � be a bounded open connected subset of G and {φn}∞n=1 be the

eigensystem of −L� with eigenvalues {λn}∞n=1. Then,

(1) there exists a constant d(�) such that for any 1 � p � ∞,

‖φn‖Lp(�,dx) � d(�)λ
Q
2
n ,

where Q is the homogeneous dimension of G;

(2) for every n ∈ N, the function φn is continuous in �;

(3) the series

∞∑
n=1

e−λntφn(x)φn(y),

converges uniformly on � × � × [ε,∞), for any ε > 0;

(4) if � is regular in the sense of Definition 2.8, then for every n ∈ N and z ∈ ∂�,

lim
x→z

φn(x) = 0. (3.13)

Proof. (1) First, note that P�
t : L2(�,dx) → L2(�,dx) is a self-adjoint operator since its

generator L� is self-adjoint. Thus,

(P�
t )∗f = P�

t f , for any f ∈ L2(�,dx), (3.14)

where (P�
t )∗ denotes the adjoint of P�

t . By (3.7), there exists a constant A > 0 such that,

for any x, y ∈ �

p�
t (x, y) � pt(x, y) � At−

Q
2 .

Therefore, for any 1 � p � ∞ and any x ∈ �,

‖p�
t (x, ·)‖pLp(�) =

∫
�

p�
t (x, y)pdy � |�|Apt−

Q
2 p,

that is,

‖p�
t (x, ·)‖Lp(�) � |�| 1p At−Q

2 .
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Sub-Laplacians, Spectral Properties 1911

Therefore, for any 1 � q � ∞ and f ∈ Lq(�,dx),

‖P�
t f ‖2L2(�)

=
∫

�

[∫
�

f (y)p�
t (x, y)dy

]2
dx

�
∫

�

‖f ‖2Lq(�)‖p�
t (x, ·)‖2

L
q

q−1 (�)

dx � ‖f ‖2Lq(�)|�|1+ 2q−2
q A2t−Q.

Thus, the operator P�
t : Lq(�,dx) → L2(�,dx) is well defined for every 1 � q � ∞, and it

satisfies

‖P�
t ‖Lq(�)→L2(�) � c(q,�)t−

Q
2 , (3.15)

where c(q,�) := |�| 12+ q−1
q A � Amax(|�| 12 , |�| 32 ) =: c(�). The adjoint (P�

t )∗ : L2(�,dx) →
Lp(�,dx) then satisfies

‖(P�
t )∗‖L2(�)→Lp(�) � c(�)t−

Q
2 ,

where p is the conjugate of q. Thus, by (3.14),

‖P�
t ‖L2(�)→Lp(�) � c(�)t−

Q
2 ,

for any 1 � p � ∞.

Let φn be an eigenfunction for P�
t with the eigenvalue e−λnt, then it follows that

‖φn‖Lp(�) � c(�)t−
Q
2 eλnt‖φn‖L2(�),

and taking the infimum over t > 0, we see that

‖φn‖Lp(�) � c(�)

(
2e

Q

)Q
2 ‖φn‖L2(�)λ

Q
2
n .

(2) Note that, for any f ∈ L2(�,dx), the function

x −→
∫

�

f (y)p�
t (x, y)dy

is continuous in x since p�
t (x, y) is continuous in x and y in �. Then,

φn(x) = eλnt(P�
t φn)(x) = eλnt

∫
�

φn(y)p�
t (x, y)dy

is continuous for any x ∈ �.
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1912 M. Carfagnini and M. Gordina

(3) Let ε > 0. Then, for every x, y ∈ �, t � ε, we have that

∞∑
n=1

e−λnt|φn(x)φn(y)| �
∞∑
n=1

e−λnt‖φn‖2L∞(�,dx)

� d(�)2
∞∑
n=1

e−λntλQn � d(�)2
∞∑
n=1

e−λnελQn ,

which is convergent.

(4) For any t > 0, n ∈ N, and x ∈ �, we have that

|φn(x)| = eλnt
∣∣∣∣
∫

�

p�
t (x, y)φn(y)dy

∣∣∣∣ � eλnt‖φn‖L∞(�,dx)

∫
�

p�
t (x, y)dy

= eλnt‖φn‖L∞(�,dx)P
x (

τ� > t
)
.

By [6, Proposition 1, p. 163], we have that the function x → P
x

(
τ� > t

)
is upper semi-

continuous for any x ∈ G. Though their proof is for a standard Brownian motion, it only

relies on the semigroup property, and thus the argument applies in our setting. If � is

regular, then for any z ∈ ∂�, we have that

lim
x→z

|φn(x)| � eλnt‖φn‖L∞(�,dx) limsup
x→z

P
x (

τ� > t
)

� eλnt‖φn‖L∞(�,dx)P
z (

τ� > t
)

� eλnt‖φn‖L∞(�,dx)P
z (

τ� > 0
) = 0.

�

Regularity of � was only used in the proof of Part (4) of Proposition 3.6 to check

that the eigenfunctions vanish on ∂�. For the rest of this section, we do not assume

regularity of the set �.

Corollary 3.7. Let x, y ∈ �, and t > 0, then

p�
t (x, y) =

∞∑
n=1

e−λntφn(x)φn(y),

P
x (

τ� > t
) =

∞∑
n=1

e−λntcnφn(x),

where cn := ∫
�

φn(y)dy.
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Sub-Laplacians, Spectral Properties 1913

Proof. By (3.12) and Proposition 3.6 part (3), we have that

∫
�

f (y)p�
t (x, y)dy = P�

t f (x) =
∞∑
n=1

e−λnt〈f ,φn〉L2(�,dx)φn(x)

=
∞∑
n=1

e−λnt
∫

�

f (y)φn(y)dyφn(x) =
∫

�

f (y)

∞∑
n=1

e−λntφn(y)φn(x)dy,

for any f ∈ L2(�,dx), and hence p�
t (x, y) = ∑∞

n=1 e
−λntφn(x)φn(y). Then,

P
x (

τ� > t
) =

∫
�

p�
t (x, y)dy =

∫
�

∞∑
n=1

e−λntφn(x)φn(y)dy

=
∞∑
n=1

e−λntφn(x)

∫
�

φn(y)dy =
∞∑
n=1

e−λntcnφn(x),

where cn := ∫
�

φn(y)dy is finite by Proposition 3.6 part (1). �

Our next goal is to prove that the first eigenvalue λ1 is a simple eigenvalue

for −L� or equivalently, by Theorem 3.3, that e−λ1t is a simple eigenvalue for P�
t . This

will follow from the irreducibility of the semigroup P�
t . The definition of irreducibility

of Dirichlet forms and corresponding semigroups can be found in [17, p. 55]. For a

definition of irreducible semigroups on Banach lattices, we refer to [2, Section 14.3].

We will use the following characterization of irreducible semigroups [2, Example 14.11].

Let Tt be a strongly continuous semigroup on Lp(�,dx), 1 � p < ∞ with generator

A. Let s(A) := sup{Re(λ), λ ∈ σ(A)} and Rμ = (A − μ)−1 for μ in the resolvent set

of A.

Lemma 3.8 (Example 14.11 in [2]). The semigroup Tt is irreducible if and only if for any

positive f ∈ Lp(�,dx), we have that

Rμf (x) > 0, for a.e.x ∈ � and some μ > s(A).

Theorem 3.9. The semigroup P�
t is irreducible.

Proof. We first prove that

p�
t (x, y) > 0, (3.16)
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1914 M. Carfagnini and M. Gordina

for every t > 0 and x, y ∈ �. We claim that for every y ∈ � and r small enough, there

exists a time t0 such that for any x ∈ Br(y), z ∈ ∂� and s < t < t0 one has that

pt(x, y) − ps(z,y) > 0. (3.17)

Indeed, if we assume (3.17), then

p�
t (x, y) := pt(x, y) − E

x
[
11{τ�<t} pt−τ�

(
gτ�

, y
)]

� pt(x, y) − E
x [
pt−τ�

(
gτ�

, y
)] = E

x [
pt(x, y) − pt−τ�

(
gτ�

, y
)]

> 0

for any t < t0 and x ∈ Br(y). The result would then follow for any x ∈ � by a standard

chaining argument. Let us now prove (3.17). By [10, Equation (3.7)], for any k ∈ (0, 1), there

exists a ck ∈ (0,∞) such that

ps(z,y) � ck

(
1 + 1

s

) θ
2

eckse−kd(z,y)2

s � ck

(
1 + 1

s

) θ
2

eckse−kd(y,∂�)2

s ,

where the last inequality follows from the fact that d(y, ∂�) � d(z,y) since z ∈ ∂�. By

[10, Equation (3.8)], there exist constants c1, c2 ∈ (0,∞) such that

pt(x, y) � c1

(
1 + 1

t

) θ
2

e−c2te−c2 d(x,y)2

t ,

where θ is an integer defined in [10, eq. (3.4)]. For the sake of conciseness, set

u := 1 + 1

t
, v := 1 + 1

s
,

α := θ

2
, β := c2d(x, y)2, γ := kd(y, ∂�)2.

Then,

pt(x, y) − ps(z,y) � c1u
αe−c2te− β

t − ckv
αeckse− γ

s

= ckv
αeckse− γ

s

(
c1
ck

uα

vα

e−c2t

ecks
e− β

t

e− γ
s

− 1

)
,
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and hence, it is enough to prove that

uα

vα

e− β
t

e− γ
s

>
cke

cks

c1e
−c2t ,

for all 0 < s < t small enough, that is,

uα

vα
e−βu+γv+β−γ >

cke
cks

c1e
−c2t , (3.18)

for all 0 < s < t small enough. If we let F(v) := uα

vα e−βu+γv+β−γ for v > u > 0 and u fixed,

then

F ′(v) = F(v)
(
γ − α

v

)
> 0

for v large enough, and

F(u) = e
γ−β
t ,

Thus, if we choose r small enough so that γ − β > 0, then we can find a t0 =
t0(x, y, c1, ck,�) such that (3.18) is satisfied and the proof of (3.16) is complete.

We can now prove the irreducibility of P�
t . We can use [17, Exercise 1.3.1] to

express the resolvent Rμ in terms of the semigroup P�. Then, by Lemma 3.8 and (3.16)

and for any μ ∈ R, for any f > 0, and for a.e. x ∈ �, we have that

Rμf (x) =
∫ ∞

0
e−μt(P�

t f )(x)dx = 0

if and only if (P�
t f )(x) = 0 for a.e. t > 0, since P�

t is a positive operator. Thus, Rμf (x) = 0

if and only if

∫
�

f (y)p�
t (x, y)dy = 0,

that is, if and only if for a. e. x ∈ �, p�
t (x, y) is zero on a set of positive Haar measure,

which is not possible by (3.16). �

Theorem 3.10. Let λ1 be the first nonzero eigenvalue of −L�. Then λ1 is a simple

eigenvalue and there exists a corresponding eigenfunction φ such that φ(x) > 0 for every

x ∈ �.
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1916 M. Carfagnini and M. Gordina

Proof. For every t > 0, the operator P�
t is compact with spectral radius given by e−λ1t,

and K := {
f ∈ L2(�,dx)f � 0 a.s.

}
is a cone in L2(�,dx) such that P�

t (K) ⊂ K. Thus, by

Krein–Rutman theorem [30], there exists an eigenfunction φ of P�
t with eigenvalue e−λ1t

such that φ ∈ K\{0}. By Theorem 3.3, we know that φ is an eigenfunction of −L� with

eigenvalue λ1. Let us assume that φ(x) = 0 for some x ∈ �. Then,

0 = φ(x) = eλ1t
∫

�

φ(y)p�
t (x, y)dy � 0,

and hence φ(y)p�
t (x, y) = 0 for a.e. y ∈ �. The set

A := {z ∈ � : φ(z) > 0}

has positive Haar measure since φ ∈ K\{0}. Thus, p�
t (x, y) = 0 for almost every y ∈ A,

which leads to a contradiction by (3.16).

The semigroup P�
t is irreducible by Theorem 3.9, and its generator L� is self-

adjoint, and we proved that there exists φ ∈ ker(−λ1 − L�) such that φ > 0. Thus, by [2,

Proposition 14.42 (c)], it follows that dimker(−λ1 − L�) = 1. �

4 Regular Boundary Points: An Analytic Approach

In this section, we compare the probabilistic notion of regular points in Definition 2.8

with an analytic definition used for hypoelliptic operators. The main goal is to prove that

these two notions are indeed equivalent.

Let L be a diffusion operator and � be a bounded open connected subset of a

homogeneous Carnot group G ∼= R
N . Consider the boundary value problem

{
Lu = 0 in �,

u = φ in ∂�,

where φ : ∂� −→ R is a continuous function. If� is an open set with compact closure and

non-empty boundary, then there exists a generalized solution H�
φ in the sense of Perron–

Wiener–Brelot, which in this setting is described in [3, II.6.7, p. 359]. We now recall an

analytic definition of regular points that can be found in [3, II.7.11].

Definition 4.1. A point x ∈ ∂� is called regular (or L-regular) if

lim
��z→x

H�
φ (z) = φ (x)
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Sub-Laplacians, Spectral Properties 1917

for every continuous function φ : ∂� −→ R. We call the set � regular (or L-regular) if
every boundary point of � is regular.

The notion of regular points depends on the operator. The Euclidean space R
N

is an example of a homogeneous Carnot group with respect to the Euclidean dilation,

and the corresponding differential operator is the standard Laplacian �RN . If � is any

bounded domain in R
N with a C2-smooth boundary, then � is �RN -regular in the sense

of Definition 4.1 since it satisfies the exterior ball condition [3, Proposition 7.1.5]. In

[23], it was shown that this is not true for more general Carnot groups. In particular,

there are sub-Laplacians L on Carnot groups and bounded convex domains with smooth

boundary that are not L-regular. Nonetheless, given a Carnot group, it is always possible

to construct nice regular domains. More precisely, in [3, Proposition 7.2.8], it is shown

that on a homogeneous Carnot group G the balls Br (x) , r > 0,x ∈ G, with respect to the

L-gauge are regular in the sense of Definition 4.1.

Example 4.2 (Heisenberg group). Suppose H is the Heisenberg group with the group

operation given by

(x1, x2, x3) � (y1, y2, y3)

:=
(
x1 + y1, x2 + y2, x3 + y3 + 1

2
(x1y2 − x2y1)

)
,

then by [3, Example 5.4.7], the L-gauge is given by

|x| := 4
√

(x21 + x22)
2 + 16x23.

We can endow H with a different homogeneous norm by

ρ(x) := 4
√

(x21 + x22)
2 + x23

and denote by Br the corresponding ball of radius r centered at the identity. Then, in [18],

it is shown that Br is a regular set in the sense of Definition 2.8.

Let us recall some notions from potential theory [3, Chapter 7]. If V is L-regular,
then for every fixed x ∈ V, the map

C (∂V,R) −→ R

φ �−→ HV
φ (x)
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1918 M. Carfagnini and M. Gordina

is a linear positive functional on C (∂V,R), and hence by the Riesz representation

theorem, there exists a Radon measure μV
x supported on ∂V such that

HV
φ (x) =

∫
∂V

φ(y)dμV
x (y).

The measure μV
x is called the L-harmonic measure related to V and x.

Definition 4.3. Let � be an bounded open connected set. A function u : � → (−∞,+∞]

is called L-superharmonic in � if

(1) u is lower semi-continuous and u < ∞ in a dense subset of �;

(2) for every L-regular open set V with V ⊂ � and for ever x ∈ V

u(x) �
∫

∂V
u(y)dμV

x (y).

The following result can be found in [6, Theorem 1, p. 177], for a standard

Brownian motion on R
d. The proof relies on the Markov property of the process, the

semigroup property of the associated semigroup, and the definition of superharmonic

functions. Thus, it carries over to the setting of the current paper, and therefore, we do

not give a proof. We recall that
{
gt

}
t refers to the hypoelliptic Brownian motion, that is,

the diffusion associated with L.

Theorem 4.4. SupposeD is a set such thatD ⊂ �, and u is an L-superharmonic function

defined in �. Then,

{
u

(
gτD∧t

)}
t�0

is a supermartingale under Px for any x ∈ D for which u(x) < ∞.

Theorem 4.5. Suppose � is an open bounded set and u is an L-superharmonic function

defined on �. Then,

E
x [
u

(
gτD

)]
� u(x) (4.1)

for every x ∈ �.
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Proof. Let {�n}n�1 be a family of open bounded sets such that �n ⊂ � and ∪∞
n=1�n =

�, and let τn := τ�n
. By Theorem 4.4 with D = �n, it follows that

{
u

(
gτn∧t

)}
t�0

is a

supermartingale, and hence for any t > 0,

E
x [
u

(
gt∧τn

)]
� u(x).

Note that {t < τn} ↗ {t < τ�} as n → ∞, and hence, if we let n → ∞ by Fatou’s lemma,

the previous estimate becomes

E
x [
u

(
gt∧τ�

)]
� u(x). (4.2)

Note that τ� < ∞ P
x-a.s. for any x ∈ �. Indeed, {τ� = ∞} = ∩∞

M=1{τ� > M}, and hence by

(3.7), for any x ∈ �,

P
x (

τ� = ∞)
� P

x (
τ� > M

)
=

∫
�

p�
M(x, y)dy � A|�|M−Q

2 ,

and by letting M → ∞, it follows that Px
(
τ� = ∞) = 0. Thus, the proof is completed by

letting t → ∞ in (4.2). �

We now need the following version of [29, Theorem 2.12, p. 245].

Proposition 4.6. Let y ∈ ∂�, and assume that

lim
x→y

E
x [
f

(
gτ�

)] = f (y),

for every bounded measurable function f : ∂� → R that is continuous at y. Then y is a

regular point in the sense of Definition 2.8.

Proof. The proof given in [29, Theorem 2.12, p. 245] holds for a standard Brownian

motion inR
d withd � 2,but it only uses theMarkov property and the fact that a standard

Brownian motion never returns to its starting point when d � 2. The hypoelliptic

Brownian motion g · is a Markov process that never returns to its starting point. Indeed,

one can write

gt = (
Bt,A2(t), . . . ,Ar(t)

)
,
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1920 M. Carfagnini and M. Gordina

where Bt is a d1-dimensional standard Brownian motion and Aj(t) ∈ R
dj is an iterated

stochastic integral for j = 2, . . . , r. Thus, if gt were to return to its starting point so would

Bt, and that is not possible since d1 � 2. The proof of Proposition 4.6 then follows as in

[29, Theorem 2.12, p. 245]. �

Definition 4.7. Let y ∈ ∂�. An L-barrier at y in � is a superharmonic map w : � →
(−∞,+∞] such that

(1) w(x) > 0 for every x ∈ �,

(2) limx→y w(x) = 0.

In [3, Theorem 6.10.4], it is shown that a point y ∈ ∂� is regular in the sense of

Definition 4.1 if and only if there exists an L-barrier at y in �. More precisely, for every

regular point y ∈ ∂�, one can construct an L-barrier s�y such that

(1) s�y is L-harmonic in �;

(2) inf�\U s�y > 0 for every neighborhood U of y.

In particular, for every z ∈ ∂� with z �= y, we have that

lim inf
x→z

s�y (x) > 0.

We can now prove the main theorem of this section.

Theorem 4.8. Let � be an open bounded connected set, and let y ∈ ∂� be fixed. Then

y is regular in the sense of Definition 2.8 if and only if is regular in the sense of

Definition 4.1.

Proof. To simplify the notation, we say that a point y ∈ ∂� is P-regular (A-regular) if it

is regular in the sense of Definition 2.8 (Definition 4.1).

Let y ∈ ∂� be an A-regular point and w(x) := s�y (x) be the L-barrier defined

above. By Proposition 4.6, it is enough to show that

lim
x→y

E
x [
f

(
gτ�

)] = f (y),

for every bounded measurable function f : ∂� → R that is continuous at y. The following

argument is amodification of [29, Proposition 2.15, p. 248]. SetM := supz∈∂� |f (z)|, and for

any ε > 0, let δ > 0 be such that |f (z)−f (y)| � ε for any z ∈ ∂� with d(z,y) < δ, where d is

a homogeneous distance.We know thatw(x) > 0 for every x ∈ � and lim infx→z w(x) > 0
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for any z ∈ ∂� with z �= y. Thus, there exists a k such that kw(x) � 2M for any x ∈ �

with d(x, y) � δ. Thus, for any z ∈ ∂�, we have that |f (z) − f (y)| � ε if d(z,y) < δ and

|f (z) − f (y)| � 2M � kw(z) if d(z,y) � δ. Hence, for any z ∈ ∂�,

|f (z) − f (y)| � max(ε, kw(z)).

L-Barriers are superharmonic, and thus by Theorem 4.5, it follows that

|Ex [
f

(
gτ�

)] − f (y)| � E
x [|f (

gτ�

) − f (y)|]
� E

x [
max

(
ε, kw

(
gτ�

))] = max
(
ε, kEx

[
w

(
gτ�

)])
� max (ε, kw(x)) ,

and then

limsup
x→y

|Ex [
f

(
gτ�

)] − f (y)| � max

(
ε, k limsup

x→y
w(x)

)
= max(ε, 0) = ε,

for any ε > 0 and for any bounded measurable function f : ∂� → R, which is continuous

at y.

We now need to prove that P-regularity implies A-regularity. Let y ∈ ∂� be a

P-regular point. By [3, Theorem 6.10.4], it is enough to construct an L-barrier at y in �.

Following [6, Exercise 10, p. 188], it is easy to prove that w(x) := E
x

[
τ�

]
is the desired

L-barrier. �

5 Applications

5.1 Small deviations

Let � ⊂ G be an open bounded connected set such that e ∈ �, and for every ε > 0, let

�ε := δε (�) , (5.1)

where δε : G −→ G is the group dilation. In this section, we describe how the spectral

results from Section 3 can be applied to find the asymptotic of the exit time τ�ε
of gt

from �ε as ε → 0.

First, let pt be the heat kernel given by (3.1).Then,pt satisfies the following scaling

property [13, Theorem 3.1 (i)], for any ε > 0,

p t
ε2

(x, y) = εQpt
(
δε(x), δε(y)

)
, (5.2)

for any x, y ∈ G, where Q denotes the homogeneous dimension of G.
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1922 M. Carfagnini and M. Gordina

Remark 5.1 (Space-time scaling in homogeneous Carnot groups). Let gt be a hypoelliptic

Brownian motion. Then, for any x ∈ G and for any ε > 0, we have that

gxt
ε2

(d)= δ 1
ε

(
gδε(x)
t

)
. (5.3)

Indeed, by (5.2) for any Borel, set A ⊂ G

P

(
gxt

ε2
∈ A

)
= P

x
(
g t

ε2
∈ A

)

=
∫
A
p t

ε2
(x, y)dy = εQ

∫
A
pt

(
δε(x), δε(y)

)
dy

=
∫

δε(A)

pt
(
δε(x), z

)
dz = P

δε(x)
(
gt ∈ δε(A)

) = P

(
δ 1

ε

(
gδε(x)
t

)
∈ A

)
.

Lemma 5.2. Let � be an open set and p�
t be the Dirichlet heat kernel. Then, for any

ε > 0, and any x, y ∈ �

p�
t

ε2
(x, y) = εQp�ε

t

(
δε(x), δε(y)

)
, (5.4)

where �ε is defined in (5.1).

Proof. First, note that

1{
τx�> t

ε2

} (d)= 1{
τ

δε(x)
�ε

>t
}. (5.5)

Indeed, by Remark 5.1,

P

(
τx� >

t

ε2

)
= P

x
(
gs ∈ � for all 0 � s � t

ε2

)

= P

(
Xx

s
ε2

∈ � for all 0 � s � t
)

= P

(
δ 1

ε

(
gδε(x)
s

)
∈ � for all 0 � s � t

)
= P

δε(x)
(
gs ∈ �ε for all 0 � s � t

) = P

(
τ

δε(x)
�ε

> t
)
.
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Thus, for any f ∈ L2(�,dx), we have that

∫
�

f (y)p�
t

ε2
(x, y)dy = E

x
[
f

(
g t

ε2

)
, τ� >

t

ε2

]
= E

[
f

(
Xx

t
ε2

)
, τx� >

t

ε2

]

= E

[
f

(
δ 1

ε
(gδε(x)

t )
)
, τ δε(x)

�ε
> t

]
= E

δε(x)
[
f

(
δ 1

ε
(gt)

)
, τ�ε

> t
]

=
∫

�ε

f
(
δ 1

ε
(z)

)
p�ε
t (δε(x), z)dz =

∫
�

f (y)εQp�ε
t

(
δε(x), δε(y)

)
dy,

which completes the proof. �

We conclude with an application to small deviations.

Theorem 5.3. Let G be a homogeneous Carnot group with the sub-Laplacian L and �

be a bounded open connected set containing the identity e, and set �ε := δε (�). Let gt be

a hypoelliptic Brownian motion such that g0 = e a.s. Then,

lim
ε→0

e
λ1
ε2
t
P
e (

τ�ε
> t

) = cφ(e),

where λ1 is the spectral gap of −L� given by Theorem 3.3 and φ is the corresponding

positive eigenfunction given by Theorem 3.10, and c = ∫
�

φ(y)dy.

Corollary 5.4. Under the same assumption of Theorem 5.3, we have that

lim
ε→0

−ε2 logPe
(
τ�ε

> t
) = λ1t, (5.6)

for every t > 0.

Example 5.5. Let | · | be a homogeneous norm on G. Then,

lim
ε→0

e
λ1
ε2
t
P
e
(
max
0�s�t

|gs| < ε

)
= cφ(e),

lim
ε→0

−ε2 logPe
(
max
0�s�t

|gs| < ε

)
= λ1t,

where λ1 > 0 is the spectral gap of −LB and B := {x ∈ G, |x| < 1}.
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Remark 5.6 (Spectral gap estimates). If G = H is the Heisenberg group, it is shown in

[5, Theorem 3.4] that

lim
ε→0

−ε2 logPe
(
max
0�s�t

|gs| < ε

)
= c2t,

for some finite constant c > 0. Moreover, Example 5.5 and [5, Theorem 5.6] provide an

explicit estimate for the 1st Dirichlet eigenvalue λ1 = c2 for the sub-Laplacian on H in

the Korányi ball. More precisely,

λ
(2)
1 � λ1 � c

(
λ

(1)
1 , λ(2)

1

)
,

where

c
(
λ

(1)
1 , λ(2)

1

)
:= f

(
x∗) = inf

x∈(0,1)
f (x),

f (x) = λ
(2)
1√

1 − x
+ λ

(1)
1

√
1 − x

4x
,

x∗ =

√(
λ

(1)
1

)2 + 32λ
(1)
1 λ

(2)
1 − 3λ

(1)
1

2
(
4λ

(2)
1 − λ

(1)
1

) ,

and λ
(n)
1 are the lowest Dirichlet eigenvalues of −1

2�
Rn in the unit ball in R

n.

Proof of Theorem 5.3. By (5.5), we have that

P
δε(x)

(
τ�ε

> t
) = P

x
(

τ� >
t

ε2

)

for any x ∈ �. Thus, by Corollary 3.7, we have that

P
e (

τ�ε
> t

) =
∞∑
n=1

e−λn
t

ε2 cnφn(e),

where {φn}∞n=1 and {λn}∞n=1 are defined as in Notation 3.5 with cn = ∫
�

φn(y)dy. By

Theorems 3.10 and 3.3, there exists a φ > 0 such that ker(e−λ1t − P�
t ) = ker(−λ1 − L�) =
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Span{φ}. Thus,

eλ1
t

ε2 P
e (

τ�ε
> t

) = cφ(e) +
∞∑
n=2

e−(λn−λ1)
t

ε2 cnφn(e),

where λn � λ2 for all n � 3 and λ2 > λ1 since dimker(−λ1 − L�) = 1. Thus, the result

follows by letting ε go to zero. �

Proof of Corollary 5.4. By Theorem 5.3, we know that

lim
ε→0

e
λ1
ε2
t
P
e (

τ�ε
> t

) = cφ(e),

with cφ(e) > 0. Then,

log(cφ(e)) = lim
ε→0

log
(
e

λ1
ε2
t
P
e (

τ�ε
> t

))

= lim
ε→0

(
logPe

(
τ�ε

> t
) + λ1

ε2
t
)

= lim
ε→0

(
ε2 logPe

(
τ�ε

> t
) + λ1t

ε2

)
,

which is finite if and only if

lim
ε→0

(
ε2 logPe

(
τ�ε

> t
) + λ1t

)
= 0,

that is,

lim
ε→0

−ε2 logPe
(
τ�ε

> t
) = λ1t.

�

5.2 Large time behavior of the heat content

In this section, we use the spectral analysis from Section 3 to describe the large time

behavior of the heat content. Let � be a bounded open connected regular set.We consider

the Dirichlet problem for the heat equation on �

(
∂t − L

)
u(x, t) = 0, (t, x) ∈ (0,∞) × �,

u(t, x) = 0, (t, x) ∈ (0,∞) × ∂�, (5.7)

u(0,x) = 1, x ∈ �.
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Definition 5.7. Let u be the solution to the boundary value problem (5.7). The heat

content associated with � is given by

Q�(t) :=
∫

�

u(t, x)dx,

for t > 0.

If � is regular, it is easy to see that Px
(
τ� > t

)
is the solution to (5.7), and hence

we can write

Q�(t) =
∫

�

∫
�

p�
t (x, y)dydx.

By Corollary 3.7, we have that

Q�(t) =
∫

�

∞∑
n=1

e−λntcnφn(x)dx, (5.8)

where cn = ∫
�

φn(y)dy. Note that the series
∑∞

n=1 e
−λntcnφn(x) converges uniformly on

[ε,∞) × � for any ε > 0. Indeed, by Proposition 3.6, we have that, for any x ∈ � and t � ε

|e−λntcnφn(x)| � e−λntcn‖φn‖L∞(�,dx)

� |�|e−λnt‖φn‖2L∞(�,dx) � |�|d(�)e−λnελQn

for any n ∈ N. Thus,
∑∞

n=1 e
−λntcnφn(x) converges uniformly on the set [ε,∞) × � for any

ε > 0 by Weierstraß’ M-test since the series
∑∞

n=1 e
−λnελQn is convergent.

Thus, by (5.8), it follows that

Q�(t) =
∫

�

∞∑
n=1

e−λntcnφn(x)dx

=
∞∑
n=1

e−λntcn

∫
�

φn(x)dx =
∞∑
n=1

e−λntc2n,

for any t > 0. We can then deduce the following large time asymptotics for the heat

content:

lim
t→∞ eλ1tQ�(t) = c21.
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