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We consider sub-Laplacians in open bounded sets in a homogeneous Carnot group and
study their spectral properties. We prove that these operators have a pure point spectrum
and prove the existence of the spectral gap. In addition, we give applications to the small
ball problem for a hypoelliptic Brownian motion and the large time behavior of the heat

content in a regular domain.

1 Introduction

This paper is focused on spectral properties of sub-Laplacians in subsets of homoge-
neous Carnot groups. The main difficulties include hypoellipticity of these operators
and lack of smoothness of natural sets in such groups such as metric balls. Thus
we cannot rely on standard partial differential equations’ techniques. In particular,
we are interested in domains that are balls with respect to a homogeneous distance
on such groups. These are classical questions at the intersection of potential theory,
spectral analysis, and probability in the setting of degenerate second-order differential
operators.

The mathematical literature on the subject is vast, and while our goal is to prove
results of a classical flavor, it seems that they are not readily available. We rely on

the theory of Dirichlet forms to show that a sub-Laplacian with Dirichlet boundary
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conditions on sets with no restrictions on the boundary are infinitesimal generators
of a Hunt process, namely, a killed process. To further study boundary behavior of
eigenfunctions we address the issue of regularity of boundary points being defined
differently in analysis, potential theory, and probability.

Our main results include Theorem 3.3 where we collect spectral properties of
the Dirichlet sub-Laplacian — L, restricted to a bounded open connected subset Q2 of a
Carnot group G. We prove that the spectrum of —L, is discrete, and then we show that
the 1st Dirichlet eigenvalue is strictly positive and simple, that is, —£, has a spectral
gap. Moreover, in Proposition 3.6, we prove uniform LP-bounds and smoothness of the
eigenfunctions of —L,. These are well-known results for uniformly elliptic operators
on domains with a smooth boundary; see [12, Chapter 6], [38, Corollary 5.1.2], and [45,
Equation (3.3), p. 39]. Our results hold without assuming regularity of the boundary 9Q
and in particular apply to uniform elliptic operators on domains with a nonsmooth
boundary. If the boundary is regular, then we can show that the eigenfunctions are
zero on the boundary. As standard PDEs’ techniques are of limited use for hypoelliptic
operators and for domains with a nonsmooth boundary, we rely on the Dirichlet form
theory, the Krein-Rutman theorem and irreducibility of the corresponding semigroup.

The spectral analysis in Section 3 relies on the Dirichlet form theory on L? (G, dx),
where G is a homogeneous Carnot group and dx is a (bi-invariant) Haar measure. A
natural question is if these techniques are applicable to more general sub-Riemannian
manifolds, but in such a setting, we might not have a canonical choice of a mea-
sure m, which is needed to define a Dirichlet form on the corresponding L? space.
We also indirectly rely on the fact that the Haar measure on G satisfies a volume
doubling property. Finally, our approach uses the fact that sub-Laplacians on L? (G, dx)
are essentially self-adjoint on C° (G) in L? (G, dx) by [10, Section 3].

Note that [36] proves a number of related results for sub-Laplacians on domains
in homogeneous Carnot groups. The domains considered there are bounded open with a
piecewise smooth and simple boundary. Lower bounds on the spectral gap for Dirichlet
sub-Laplacians on compact domains with smooth boundary in sub-Riemannian
manifolds have been studied recently in [33]. Their methods are different, and in
particular, the Dirichlet form theory allows us to consider domains with a nonsmooth
boundary. Small time asymptotic expansions for hypoelliptic heat kernels can be found
in [7]. As one of the applications is to the heat content asymptotics, we mention that
one of the technical difficulties in the sub-Riemannian setting is potential presence of
characteristic points on 9. These are points x € 92 where the horizontal distribution

is tangent to 9Q2. We refer to [35, 43] for a more detailed analysis of such points.
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1896 M. Carfagnini and M. Gordina

We remark that Dirichlet forms in the context of free nilpotent groups have been
used in [15, 16] in connection with the theory of rough paths. Moreover, they relied on
the general Dirichlet forms such as [40-42] in the context of free nilpotent groups. In
this setting, they derived small ball estimates in the context of support theorem for
Markovian rough paths.

The paper is organized as follows. In Section 2, we describe homogeneous Carnot
groups, sub-Laplacians, and Dirichlet forms on such groups. In Section 3, we describe
spectral properties of Dirichlet sub-Laplacians that are collected in Theorem 3.3. In
Section 4, we prove that analytic and probabilistic notions of boundary regular points
are equivalent. We conclude Section 5 with two applications: the small ball problem for
a hypoelliptic Brownian motion and the large time behavior of the heat content in a
regular domain Q. The latter is done with a natural assumption on the boundary 92

being regular; therefore, we allow 92 to contain characteristic points.

2 Preliminaries
2.1 Carnot groups

In this paper, we concentrate on a particular class of nilpotent groups, namely Carnot
groups. We begin by recalling basic facts about Carnot (stratified) groups. A more
detailed description of these spaces can be found in a number of references; see for

example [3, 44].

Definition 2.1 (Carnot groups). We say that G is a Carnot group of step r if G is a
connected and simply connected Lie group whose Lie algebra g is stratified, that is, it

can be written as
9="& oV, (2.1)
where
[Veri—l] =V, 2<i<r,
[v,,V,]={0}.

The stratification (2.1) is not unique as pointed out in [3, Section 2.2.1]. Moreover,
if (Vy,...,V,)and (f/l, e, f/'s) are two stratification of a Carnot group G, then r = s, which
is referred to as the step and dim V; = dim f/’i foreveryi =1,...,r [3, Proposition 2.28].

If G is a Carnot group with stratification (Vy, ..., V,), by [3, Proposition 2.2.8], it follows
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that the step r and the number m := dim V; of generators of G do not depend on the
chosen stratification.

For the rest of the paper, we fix a stratification (V, ..., V) of G. This stratification
determines the space { := V; of horizontal vectors that generate the rest of the Lie
algebra, nothing that V, = [H,#],...,V, = H". The horizontal space H is used to
construct a sub-Laplacian on G for which we refer to [3, Section 2.2].

To avoid degenerate cases, we assume that the dimension of the Lie algebra g is
at least 3, which implies dim V; > 2. We generally assume that r > 2 to exclude the case
when the corresponding Laplacian is elliptic.

In particular, Carnot groups are nilpotent. We will use % := V; to denote the
space of horizontal vectors that generate the rest of the Lie algebra, noting that V, =
[H,H],...,V, = HP. As usual, we let

exp:g — G,

log:G— g

denote the exponential and logarithmic maps, which are global diffeomorphisms for
connected nilpotent groups; see for example [8, Theorem 1.2.1].

Finally, by [3, Propositions 2.2.17 and 2.2.18], we can assume without loss of
generality that a Carnot group can be identified with a homogeneous Carnot group. For

i=1,..,rletd; =dimV; and dy, = 0. The Euclidean space underlying G has dimension

r
N = z di
i=1

and the homogeneous dimension of G is given by
r
Q:=>"i-d, (2.2)
i=1

The identification of G with RY allows us to define exponential coordinates as follows.

Definition 2.2. We say that a collection of left-invariant vector fields {Xl, XN} on a
Carnot group G is a basis for g adapted to the stratification if the set [Xdi_1 , ""Xdi—1+di]

isabasisof V;foreachi=1,...,r.
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The fact that exp is a global diffeomorphism can be used to parameterize G by

its Lie algebra g. First, we recall the Baker-Campbell-Dynkin-Hausdorff formula.

Notation 2.3. For any X,Y € g, we define the Baker-Campbell-Dynkin-Hausdorff
formula by

BCDH (X,Y) :=log(expXexpY)

-5 (—nm!
=2 2 =
m=1p;+¢;>1 m(Y. p; + q;)

i=1
b1 q1 Pm dm
——
N [..x,x1---1,x1,vl,---,vl,...--- X, X---,Y],--- Y]
P1'a! P! Q! '

Definition 2.4. Suppose {Xl,...,XN} is a basis of g adapted to the stratification. For a
point g € G = RY, we say that (x;,...,xy) € RY are exponential coordinates of the 1st
kind relative to the basis {X;,..., Xy} if

N
g = exp (Z XiXi).
i=1

We equip RY with the group operation pulled back from G by

Z:=Xx*Y,

N N N
> zX; = BCDH (inxi, > ijj).
i=1 i=1 i=1
In particular, in this identification x~! = —x. Note that RY with this group
law is a Lie group whose Lie algebra is isomorphic to g. Both G and (RV,) are
nilpotent connected and simply connected; therefore, the exponential coordinates give a
diffeomorphism between G and RY.
A stratified Lie algebra is equipped with a natural family of dilations defined for
any a > 0 by

8, (X):=a'X, forXeV,

For each a > 0, §, is a Lie algebra isomorphism, and the family of all dilations {5,},.

forms a one-parameter group of Lie algebra isomorphisms. We again can use the fact

that exp is a global diffeomorphism to define the automorphisms D, on G. The maps
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Sub-Laplacians, Spectral Properties 1899
D, :=expof, olog: G — G satisfy the following properties.
D,oexp =expod, foranya=>0,

D, oD,, =D, ,,D; =1 foranya,a,>0,

(2.3)
D, (9,) D, (92) =D4(9,9;) foranya >0andg,,g,€G,

That is, the group G has a family of dilations, which is adapted to its stratified
structure. Actually D, is the unique Lie group automorphism corresponding to §,. On

a homogeneous Carnot group RY the dilation D, can be described explicitly by
D, (x1,....xy) == (@”'xy,...,aVxy),

where o; € N is called the homogeneity of x;, with

i—1

i
oj=i for > dp+1<j< D dy,
k=0 k=1

with i = 1,...,r and recalling that d; = 0. Thatis, 0y = -+ =04, = l,04, 4 = -+ =
04,+d, = 2,and so on.

We assume that H is equipped with an inner product (.,-)4, in which case
the Carnot group has a natural sub-Riemannian structure. Namely, one may use left
translation to define a horizontal distribution D as a sub-bundle of the tangent bundle
TG, and a metric on D. First, we identify the space # C g with D, C T,G. Then, forg € G,
let L, denote left translation Lk = gh, and define Dy := (Ly),D, for any g € G. A metric
on D may then be defined by

<urV>'Dg = ((Lgfl)*ur(Lgfl)*V>De

= (Lg-1)y U, (Lg-1),V)y forall u,v e Dg.

We will sometimes identify the horizontal distribution D and #. Vectors in D are called

horizontal.

2.2 Sub-Laplacians and Dirichlet forms

For sub-Laplacians on sub-Riemannian complete manifolds [39, pp. 41-42] claimed
that these operators are essentially self-adjoint, though without a complete proof or

indication of how to choose the reference measure. If the manifold is a Lie group, a
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1900 M. Carfagnini and M. Gordina

natural choice is a Haar measure, and we review relevant results below. For a more
recent approach, we refer to [14]. To tackle more general sub-Riemannian manifolds in
the future, one might also use the semigroup approach in [19, 20] combined with the
Dirichlet form theory in [17, 31].

Suppose G is a real connected Lie group and {Xi}:ll is a family of left-invariant

vector fields on G satisfying Hérmander’'s condition, then the sum of squares operator

m
L:= ZXLZ
i=1

is essentially self-adjoint on C° (G) in L? (G,dx) according to [10, p. 950]. Here, dx is
a (right) Haar measure on G. In particular, the following integration by parts formula
holds:

m
/G D Xfdx = —(LF Przean < 0
i=1

forany f € C*° (G) N D .. If G = G is a homogeneous Carnot group and {Xl,...,Xdl} is an
orthonormal basis of H of left-invariant vector fields and m = d,, then by [10, Section
3], the operator £ depends only on the inner product on A and not on the choice of the
basis. This is what [3, Example 1.5.2] calls a canonical sub-Laplacian. More background
on sub-Laplacians can be found in [19, Section 3.1]. This is not the subject of this paper,
though we mention that by [19, Corollary 3.4] all sub-Laplacians differ only by 1st-order
terms. We abuse notation and denote by X; both the vector in # and the unique extension

of this vector to the left-invariant vector field on G.

Remark 2.5 (Choice of the measure). We chose a Haar measure as the reference measure
for several reasons. First of all, the sub-Laplacians we are interested in are essential
self-adjoint on C¥ (G) in L? (G, dy) by [10, Section 3]. Secondly, a Haar measure on the
metric space (G, | - |) is doubling which is needed for using heat kernel estimates in [40].
The fact that a Haar measure is doubling in this setting follows from [10, Theorem 3.2]
and [25, 32, 44]. For more comments on how the sub-Laplacians might depend on the
choice of a reference measure including on when we can write it as divV,, we refer
to [19, Section 4].

Before listing basic properties of this second-order differential operator, recall

that G is unimodular, and so we can assume that it is equipped with a (bi-invariant) Haar

20z Aleniged p| UO Josn uuog >oujolqIqsepueT pun SpesIaAlun Ad 681.660./7681/€/720Z/2101E/UIW/W0d"dNO"0ILSPEDE)/:SARY W) PAPEOIUMOQ



Sub-Laplacians, Spectral Properties 1901

measure dx. Moreover, if u is the push-forward of the N-dimensional Lebesgue measure

LY via the exponential map, then it is a bi-invariant Haar measure on G and
du(yos,) =1%u(y). (2.4)

If we identify G with the homogeneous Carnot group (RY,,§,) via exponential coordi-
nates in Definition 2.4, then for a measurable set E C G, its Haar measure is explicitly
given by u (E) = LV (exp_1 (E)). We will abuse notation and use the same notation for
both measures.

As observed in [10, Section 3], the operator £ is essentially self-adjoint on
C® (G) in L?(G,dy). Thus, the corresponding semigroup e'* can be defined by the
spectral theorem. This semigroup commutes with left translations since its infinitesimal

generator is left-invariant as well. Namely, for every y € G, we have

LEYox)=(Lf)yox) foreveryxeG andf e CX(G).

We now recall some basic properties of such sub-Laplacians, for more properties
including regularity of the corresponding heat kernel, parabolic Harnack inequality,
Gaussian upper, and lower bounds we refer to [10, Theorem 3.4] in a more general
setting. Some of these properties rely on the fact that £ is hypoelliptic by Hérmander's
hypoellipticity theorem [24, Theorem 1.1] and doubling property for the metric we
describe below. In addition, on Carnot groups the operator £ is §, -homogeneous of degree

two, that is, for every fixed A > 0
L(f (6, (x)) = Az(ﬁf)(al(x)) forevery x € G and f € C°(G),

since vector fields st are §,-homogeneous of degree one. For more details, we refer to [3,
p- 63] on homogeneous Carnot groups.
The sub-Laplacian is symmetric since the group is unimodular, and hence the

integration by parts formula reads

di
/ ZXjf-ngdyz—/ Lf-gdy,f,g€CX(G). (2.5)
G G

j=1
The symmetric form corresponding to the semigroup e~ is

f=&):= /G IVof )24, dy, (2.6)

where V, := (X),..., Xg,)
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1902 M. Carfagnini and M. Gordina

is the horizontal gradient and

De =W, (G)
= {f € L*(G, dx) 1 Xif € L%(G,dx), foralli = 1,...,d1},
where X;f is to understood in the distributional sense. The form € is a Dirichlet form by

[10, p. 951]. Note that £ is a closed form, that is, D, is a Hilbert space with respect to the

inner product

(f:g)wzl(((;) =&(f, 9+ (f’g>L2(G,dX)'

where £(f, g) is obtained from (2.6) by polarization. Moreover, by (2.5), we have that for
f (S Dg

/GIVUc ) 5,dy = —/(;f(y)ﬁf(y)dy- (2.7)

The next step is to check that (2.6) can be extended to a regular Dirichlet form.
Recall that a Dirichlet form (5, Dg) is called regular if it admits a core, that is, if there
exists a subset C of Do N Cy (G) that is dense both in D¢ with respect to the Sobolev
norm || - ||W21 - and in Cy (G), with respect to the sup-norm. Note that CZ° (G) is dense
in L% (G, dx), and it is a core for the bilinear form &£. Thus, (5, Dg) is a regular Dirichlet

form. In addition, it is strongly local as defined in [22, Definition 1.2].

Definition 2.6. Suppose G = (R, «,3,) is a homogeneous Carnot group and p : G —
[0,00) is a continuous function with respect to the Euclidean topology. Then p is a

homogeneous norm if it satisfies the following properties:

p (8, (%)) = Ap(x) for every » > 0 and x € G,

o(x) > 0if and only if x # 0.
The norm p is called symmetric if it satisfies p (X_l) = p (x) for every x € G.

If p; and p, are two homogeneous norms, then there exists a constant ¢ > 0 such
that

¢ 1p (%) < po(x) < cpp(x), for every x € G, (2.8)
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see, for example, [3, Proposition 5.1.4, p. 230]. On every homogeneous Carnot group,
there exist distinguished symmetric homogeneous norms related to a sub-Laplacian as

follows.

Definition 2.7. A homogeneous symmetric norm p on G is called an £-gauge if it is

smooth everywhere except at the origin and
L(p* %) =0,xe G\ {0}, (2.9)

where Q is the homogeneous dimension of G.

By [3, Section 5.3], we know that there exists a unique fundamental solution I'
for the Poisson equation with a sub-Laplacian £, that is, ' € C® (G \ {0}) N L. (G, dx)

loc
and

LT = —Diracy,

where Dirac, is the Dirac measure supported at {0}.
L-Gauges and the fundamental solution for £ are related as follows. If G is a
Carnot group of homogeneous dimension Q and I' is a fundamental solution for £, then
rx=e, xeG\(o)
X)Z-0, xE€ ;
p(x) = { (2.10)

, x=0

is an £-gauge on G. By [3, Section 5.5], if p is an £-gauge on G, then there exists a constant

2-Q

ag such that I' = o,p is Green's function for £. As a consequence, the £-gauge is

unique up to a multiplicative constant.

2.3 Regular boundary points: a probabilistic approach

We now recall the notion of regular points for a differential operator £ in a bounded open
connected set @ C RY as found in a number of references, in particular for Brownian
motion in [37, Chapter 8]. The connection with classical potential theory goes back to
Doob et al.[9, 11, 27].

Suppose that g := {gt}t is a G-valued diffusion process whose infinitesimal
generator is £. Using exponential coordinates of the 1st type, we can view g, as an R"-

valued process. We start with a probabilistic definition of regular points as found in
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1904 M. Carfagnini and M. Gordina

[28, Definition 8.2.1], and this is the definition used in [18] for £ = —%AH on R3 = H, the

three-dimensional Heisenberg group.

Definition 2.8. Let g* be the diffusion process with generator £ started at x € 92, where

Q is a bounded open connected set, and define
1y =inf{¢t > 0: g} € Q°}.

We call x a regular point of 9 if P¥ (¢§ = 0) = 1. We call the set Q regular if every
boundary point of Q is regular. If P* (rg = 0) < 1, the point x is called a singular point
of the boundary.

In Section 4, we compare Definition 2.8 with an analytic definition of regular
points used for hypoelliptic operators such as sub-Laplacians on homogeneous Carnot

groups. Moreover, we prove that the two notion of regular points are equivalent.

3 Spectral Properties of the Sub-Laplacian £ Restricted to a Set

We rely on the Dirichlet form theory to describe a restriction of £ to a set Q in G. Our
main reference here is [17], and in a more relevant setting of metric measure spaces [21,
Section 6.1] and [22, p. 173]. In particular, we use this approach to show that £ has a
discrete spectrum with minimal assumptions on the boundary of €.

Let Q2 be a bounded open connected set in G, and define

W,
Dg(Q) :={f € D¢ : suppf C 2} °,

where ||f||§vé = &(f) + ”fHEZ(G,dx) and (£, Dg) is given in (2.6). Then, by [22, Section 3.2
Theorem 3.3], we know that (€, D¢ (Q)) is a regular Dirichlet form on L?(€, dx). Note that
Dg(R2) is dense in L?(R, dx) since (E,DE(Q)) is a regular Dirichlet form. We denote by
—L the nonnegative self-adjoint operator on L? (R, dx) corresponding to the Dirichlet
form (£, Dg(Q)).

Notation 3.1. We denote the semigroups corresponding to the Dirichlet forms (€, D¢)
and (£, Dg (Q)) by
P, :=e'*,

Q._ otL
Py i=e"t

respectively.
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Sub-Laplacians, Spectral Properties 1905

The domains of the corresponding infinitesimal generators are given by

D(-L) := {f e L*G,dx) : ltil%l P‘ft_f exists ] ,

Qr _
D(—Lg) = [f € L*(Q,dx) : ltiftx)lpthf exists ] .

We now give a probabilistic description of the semigroups P, and P{’. Homogeneous
Carnot groups are complete metric spaces; therefore, by [40, Proposition 3.1], the
semigroup P, has a heat kernel p, (x,y), which is continuous in x,y € G. We also know
that by Chow—Rashevskii's theorem that the intrinsic metric induced by the Dirichlet
form £ coincides with the original topology, so the Dirichlet form is strongly regular.

The heat kernel p,(x,y) is the transition density of g,, that is,

P* (9, € E) =/Ept(&y) dy, (3.1)

for any Borel set E in G, where g, is the Markov process whose generator is the sub-
Laplacian L. The strongly continuous semigroup associated with the Dirichlet form

(£, Dg) is given in terms of g, by
Pf(x) = EX[f(g,)], x€G, f e L*G,dx).

Definition 3.2. Let g, be the G-valued Markov process with the transition density given

by the heat kernel p,(x, y). Then we refer to g, as the hypoelliptic Brownian motion.

The heat kernel is the fundamental solution to the heat equation

1
(at - Eﬁ) pi(x,:) =0,

p;(x,y)dy — Dirac,(dy) weaklyast— 0, (3.2)

where Dirac, (dy) is the Dirac measure centered at {x}, see [10, Equation (3.6)].

Following [4, Section 2.11], we let © be a bounded open connected set and

g =inf{t>0: g, ¢ Q}.
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1906 M. Carfagnini and M. Gordina
Then we can use Hunt's formula
PR, Y) =P, Y) B [ Ly Prrg (9101 ¥) ] (3.3)

for the transition density p$}(x, y) of the killed Markov process g given by

g; t<rtg,
gi=1 "
a t=1q,

where 9 is the cemetery point. More precisely, we have that
P* (g € E)=P*(g, € E, t < 1) = / pi(x,y)dy, (3.4)
E

for any x € Q and any Borel subset E of Q. In particular,
P* (tq > t) = / p¥(x,y) dy. (3.5)
Q

We refer to p as the Dirichlet heat kernel. Note that regularity of the Dirichlet form

implies that g§* is a Hunt process as well. Then the semigroup P§* can be viewed as
P L2(Q,dx) — L%(Q,dx),
PEf(x) = EX [fg)] = E*[f(gp), t < 0] = /Q pf & f(y) dy, (3.6)

for any f € L?(Q,dx). Note that by [40, Proposition 3.1] applied to the Dirichlet form
(€,Dg (R2)) on L2(§, dx) it follows that the function p?(x, y) is Holder continuous on
[T,o00) x 2 x Q.

The following theorem is the main result of this section, where we collect spectral

properties of the operator L.

Theorem 3.3. Let Q2 be a bounded open connected subset of G and P? the semigroup
associated with the Dirichlet form (€, D¢ (R2)) with generator L. Then,

(1) for every t > 0, P{* is a Hilbert-Schmidt operator on L%*(Q,dx) and its

spectrum is given by

o (PO} = {e ™} .

where {A,},n = 0, (—Lg) is the point spectrum of —Lq, with 0 < A4 <A, <
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Sub-Laplacians, Spectral Properties 1907

(2) The operator —Lg has a spectral gap, thatis, 1; > 0.
(3) There exists an orthonormal basis {¢,},y of L2(Q, dx) such that, for every
neN, t>0,

Pl =e 'ty .

Moreover, for every n € N, ¢,, € D(—L,) and
—Lobp = ryy.
Corollary 3.4. The operator L, has a pure point spectrum.

Proof of Corollary 3.4. By [34, Theorem XIII.64 p. 245] and Theorem 3.3 part (3), it
follows that (—u — Lg)~! is a compact operator for every u in the resolvent set of L,

proving that £, has a pure point spectrum. |

Proof of Theorem 3.3. (1) Let us first show that the semigroup P{’ is a Hilbert-Schmidt
operator for each t. We rely on [40] for a heat kernel estimate that only requires volume
doubling and Poincaré’s inequality without compactness assumption on the underlying
metric space, unlike in [26]. Doubling and Poincaré’s inequality are known to hold in our
setting, for example, by [10, Theorem 3.2]. By [40, Equation (4.2)] with ¢ = 1, there exists

a constant A > 0 such that
Q
p:(x,y) <At 2, (3.7)

for all ¢ > 0 and x,y € G, where Q is the homogeneous dimension of G. Thus, for any
t>0,

P12 =//p9(x,y)2dxdy<//p (x,y)*dxdy
Phr@xa) o Jott alot
< A%Q1%t79 < o0,

where we used that p?(x, y) < py(x,y) for almost all x,y € Q. Indeed, for any Borel set
EcCQ,t>0,and all x € Q we have that

/Ep?(x,y)dy=ﬂ”" (97 € E) =P* (g9, € E, 7 > 1)

<P*(g9,€E) = /Ept(x, y)dy,
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1908 M. Carfagnini and M. Gordina

and hence p? (x,y) < p;(x,y) for any x € Q and for a.e. y € Q. The estimate then follows
for every y € Q since both p, and p{? are continuous on Q x Q.

The operator P{ is then Hilbert-Schmidt since p$* € L?(2 x Q). In particular,
for every t > 0, the operator P is compact, and hence by the spectral theorem for
compact operators, there exists a sequence of decreasing eigenvalues {,(?)},cn and

corresponding eigenfunctions {¢1(qt)k}n,keN such that for every ¢ > 0,

7 (PO} = 0, PON(O)} = (A, ()} ey,

ker (A, (¢) — P,?) = Span{¢'?, , k € N} for every n € N,

n,k’

o0
L%(Q,dx) = @ Span{d:ﬁf’)k, k e N}. (3.8)
n=1

The semigroup P{’ is strongly continuous because the Dirichlet form (€, Dg (Q)) is

regular, and hence by the spectral mapping theorem for semigroups [1, Theorem 6.3]

0,p (P[0} = exp (t opp(cg)) , for any ¢ > 0. (3.9)

Thus, the eigenvalues of PtQ are given by etn! for pu,, € opp(Lg). By the theory of Dirichlet

forms [17], the operator L is nonpositive definite, and hence we can write u,, = —4,,

where A,, - 0o as n — oo, which completes the proof of (1).
(2) Let us now prove that A; > 0. Assume that A; = 0, then by the spectral mapping
theorem (3.9), we have that 1 € o), (P?) for all ¢ > 0, and hence
1< [IP2],
since app(PtQ) c{zeC(C, |z £ ||Pt9||}. By (3.7), we have that

1< IIPE1? < IPE 122 gy < A%IQ1PEC,

for some finite constant A > 0. Thus, t2 < A%|Q2|? for any ¢ > 0, which is a contradiction.

(3) Let —A,, € 0,,(Lg), and let {¢,, ), ke be an orthonormal basis of ker (—4,, — Lg).

By [1, Corollary 6.4], it follows that

Span{¢'’, , k € N} = ker (e~ — P?)

nk’

o
= Span [ker (—An + %Ji — EQ) J € Z]
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Sub-Laplacians, Spectral Properties 1909

for any t > 0. The point spectrum of L, is real since L, is self-adjoint, and hence
o
ker (—)»n + %Ji - EQ) = {0}

for all j # 0. Thus, we have that

Span{¢'?, , k € N} = ker (et — Ptﬂ)

n,k’

=ker (—4, — Lg) = Span{¢,, ;. k € N}, forall n € N.

The operator Pi is compact, and thus for every n € N, the eigenspace ker (e‘*"t — PtQ)
is finite-dimensional. Therefore, for every n € N, there exists an M,, such that for every
t>0

ker (e — P{) = Span{¢,, . k=1,...,M,}. (3.10)

We proved that for every n € N, there exists an orthonormal basis {¢nlk}1,'f:”1 of
ker (e*nt — PtQ) for any ¢ > 0 such that forany k=1,..., M,

Q —nt
Pl =¢€ """ Ink

[’Qd’n,k = _)‘nd)n,k'

By (3.8) and (3.10), it follows that

(e.¢]
1*(Q,dx) = ) Span{g,  k=1,...,M,}, (3.11)
n=1
and hence {¢n'k}1,g[:"ii’,°;=1 is the desired orthonormal basis of L($2, dx). [ |

Notation 3.5. Throughout the paperinstead of using the orthonormal basis {¢n,k}ll‘2io;:1

given in the proof of Theorem 3.3, we denote by {¢,}5° ; the same orthonormal basis,

where for each repeated eigenvalue A,, we index the corresponding eigenfunctions

n'

consequently according to its (finite) multiplicity M,,. In particular, we have that

00 My, 00
Pé-zf = Z e_knt Z(f/ ¢n,k>¢n,k = z e_)\nt(f, ¢n>¢)n (312)
k=1 n=1

n=1

for every f € L?(2, dx).
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1910 M. Carfagnini and M. Gordina

We next prove regularity properties of the eigenfunctions of —L,.

Proposition 3.6. Let Q be a bounded open connected subset of G and {¢,}7> ; be the

eigensystem of —Lq, with eigenvalues {1,}5° ;. Then,

(1) there exists a constant d(2) such that for any 1 < p < oo,

Q
16l e < AR,

where Q is the homogeneous dimension of G;
(2) for every n € N, the function ¢,, is continuous in &;

(3) the series

> e, (06,1),

n=1
converges uniformly on Q x Q x [g, 00), for any ¢ > 0;

(4) if Qis regular in the sense of Definition 2.8, then for every n € N and z € 9€2,
lim ¢, (x) = 0. (3.13)
X—>Z

Proof. (1) First, note that PtQ : L2(Q,dx) — L?(Q,dx) is a self-adjoint operator since its

generator L, is self-adjoint. Thus,
(PY*f = PEf, for any f € L4(Q, dx), (3.14)

where (P{%)* denotes the adjoint of P{%. By (3.7), there exists a constant A > 0 such that,
forany x,y € @

p(xy) <p(xy) <At 2.
Therefore, for any 1 < p < oo and any x € €,
Ipg x, ) = /Q pi(x, p)Pdy < |QUAPL P,
that is,

Q a2
Ips" (X, ey < IR[PAL2.
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Therefore, for any 1 < g < oo and f € L1(R2, dx),

2
1P ey = [ [ /| f(y)p?(x,wdy] dx

1422 o _
/ e IPF ()12 Sa dxs If 112 gyl A%@

IQ)

Thus, the operator P : L9(Q, dx) — L?(, dx) is well defined for every 1 < g < oo, and it

satisfies

Q _a
1Pt N pac)—12(0) < €(q, )t 2, (3.15)

where ¢(q, Q) = |2/77T 4 < Amax(1Q/%,1213) =: ¢(). The adjoint (P)* : L2(Q, dx) —
LP(Q,dx) then satisfies

where p is the conjugate of g. Thus, by (3.14),
Q _a
1Pt N2y 1p(0) < €8T 2,

for any 1 < p < oo.

Let ¢,, be an eigenfunction for P{* with the eigenvalue e~*, then it follows that

16l < €@t 26,1120,

and taking the infimum over ¢ > 0, we see that

XS]

Pnllp @) < c(€2) (Ze) ”(pn”LZ(Q))"r%
(2) Note that, for any f € L2(2, dx), the function
X — /Q fwpi& ydy
is continuous in x since p?(x, y) is continuous in x and y in Q. Then,
3000 = PR 00 = & [ 6, rIpf )y

is continuous for any x € Q.
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1912 M. Carfagnini and M. Gordina
(3) Let ¢ > 0. Then, for every x,y € @, t > ¢, we have that

D e, (06, < D e Iz )

n=1 n=1

o0 o0
<A@ D e G <d@)? D e AT,

n=1 n=1

which is convergent.

(4) Forany t > 0, n € N, and x € 2, we have that

¢, ()| = €™t

/Q p?(x,ywn(y)dy‘ < bl ,ax /Q p(x,y)dy

= ¢y |1 ,a0 P (T > 1) -

By [6, Proposition 1, p. 163], we have that the function x — P* (g > t) is upper semi-
continuous for any x € G. Though their proof is for a standard Brownian motion, it only
relies on the semigroup property, and thus the argument applies in our setting. If Q is

regular, then for any z € 92, we have that

lim |¢,, (x)| < eA”t||¢n||Lm(QldX) lim sup P* (g, > t)
X—z X—Z

< eknt||¢n||L°°(sz,dx)PZ (tq > t)

< &yl (@,a0P” (g > 0) = 0. =

Regularity of Q2 was only used in the proof of Part (4) of Proposition 3.6 to check
that the eigenfunctions vanish on 9. For the rest of this section, we do not assume

regularity of the set Q.

Corollary 3.7. Letx,y € Q,and t > 0, then

pixy) =D e, ()¢, (1),
n=1

o0

P (g > t) = > e ey, (),

n=1

where ¢, := [, ¢,(y)dy.

20z Aleniged p| UO Josn uuog >oujolqIqsepueT pun SpesIaAlun Ad 681.660./7681/€/720Z/2101E/UIW/W0d"dNO"0ILSPEDE)/:SARY W) PAPEOIUMOQ



Sub-Laplacians, Spectral Properties 1913

Proof. By (3.12) and Proposition 3.6 part (3), we have that

F@PE e y)dy = PEF(x) = D e " (f, ¢) 120,450 X)

n=1

5~

Q

- g e nt /Q F@¢ @)y, (x) = /Q fw g‘; e, (V) g (x)dy,
for any f € L?(Q, dx), and hence p$(x,y) = > o0, e *!p, (x)¢,,(¥). Then,
PX (tg > t) = /S2 pd(x,y)dy = /Q g ey (X)y (Y)dy
= g e, (x) /Q ¢ (y)dy = é e i, ¢, (%),

where ¢, := [, ¢,(y)dy is finite by Proposition 3.6 part (1). |

Our next goal is to prove that the first eigenvalue A, is a simple eigenvalue

~Mt is a simple eigenvalue for P{%. This

for —L, or equivalently, by Theorem 3.3, that e
will follow from the irreducibility of the semigroup PtQ . The definition of irreducibility
of Dirichlet forms and corresponding semigroups can be found in [17, p. 55]. For a
definition of irreducible semigroups on Banach lattices, we refer to [2, Section 14.3].
We will use the following characterization of irreducible semigroups [2, Example 14.11].
Let T, be a strongly continuous semigroup on LP(2,dx), 1 < p < oo with generator
A. Let s(A) := sup{Re(L),A € o(A)} and R, = (A - w)~! for u in the resolvent set

of A.

Lemma 3.8 (Example 14.11 in [2]). The semigroup T, is irreducible if and only if for any
positive f € LP (2, dx), we have that

R“f(x) > 0, for a.e.x € Q and some i > s(4).

Theorem 3.9. The semigroup P{ is irreducible.

Proof. We first prove that

pix,y) >0, (3.16)
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1914 M. Carfagnini and M. Gordina

for every t > 0 and x,y € Q. We claim that for every y € Q and r small enough, there

exists a time ¢, such that for any x € B.(y), z € dQ and s < t < t, one has that

pP:(x,y) — ps(z,y) > 0. (3.17)

Indeed, if we assume (3.17), then

p?(XrY) = pt(XfY) — EX []]'{'EQ<t}pt7TQ (grgz’y)]

2pt(x'y) - E* [ptftg (gtg’y)] =E* [pt(X’y) _ptf‘[g (grg’y)] >0

for any t < ty and x € B,.(y). The result would then follow for any x € Q by a standard
chaining argument. Let us now prove (3.17). By [10, Equation (3.7)], for any k € (0, 1), there

exists a ¢, € (0,00) such that

9 0
1)? dep? z w22
ps(2z,y) < ¢ (1 + —) e k5 <o (1 + B s
s

where the last inequality follows from the fact that d(y,9Q) < d(z,y) since z € 9Q2. By

[10, Equation (3.8)], there exist constants c¢;, ¢, € (0, 00) such that

0
1\2 dxy)?
pt(Xr y) > Cl (1 + z) e—C2te—Cz Y )

where 6 is an integer defined in [10, eq. (3.4)]. For the sake of conciseness, set

1 . 1
0
o= o B = cyd(x, )2, y = kd(y, 9Q)2.

Then,

—Cat

p:(x,y) —ps(z,y) = ciu’e
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and hence, it is enough to prove that

8
u“et cr %8
o Y

N

v o c,e¢t’

for all 0 < s < t small enough, that is,

o CkS
U o—Butyvip—y . Ck€

w = (3.18)

for all 0 < s < ¢ small enough. If we let F(v) := Y e Put7V+F~7 for v > u > 0 and u fixed,
then

F'(v) = F(v) (y - g) ~0
v
for v large enough, and
Fu) =e'7,

Thus, if we choose r small enough so that y — § > 0, then we can find a t; =
to(x,y, ¢, c, Q) such that (3.18) is satisfied and the proof of (3.16) is complete.

We can now prove the irreducibility of PtQ. We can use [17, Exercise 1.3.1] to
express the resolvent R, in terms of the semigroup P%. Then, by Lemma 3.8 and (3.16)

and for any i € R, for any f > 0, and for a.e. x € @, we have that

RS0 = [ e @ edx =0

0
0

if and only if (P?f) (x) =0 fora.e.t > 0, since P? is a positive operator. Thus, R”f(x) =0
if and only if

/Q f@pix, y)dy =0,

that is, if and only if for a. e. x € Q, p?(x, y) is zero on a set of positive Haar measure,
which is not possible by (3.16). [ |

Theorem 3.10. Let A; be the first nonzero eigenvalue of —Lj. Then A, is a simple
eigenvalue and there exists a corresponding eigenfunction ¢ such that ¢ (x) > 0 for every

x e Q.
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1916 M. Carfagnini and M. Gordina

Proof. For every t > O, the operator P,? is compact with spectral radius given by e *1?,

and K := {f € L*(Q,dx)f > 0 a.s.} is a cone in L?(Q, dx) such that P{(K) C K. Thus, by
Krein-Rutman theorem [30], there exists an eigenfunction ¢ of P{! with eigenvalue e~*1!
such that ¢ € K\{0}. By Theorem 3.3, we know that ¢ is an eigenfunction of —L, with

eigenvalue 1. Let us assume that ¢(x) = 0 for some x € Q. Then,
0=00 =" [ ppfenpdy >0,
and hence qb(y)p?(x,y) =0 for a.e. y € Q. The set
A={zeQ:¢(z2) > 0}

has positive Haar measure since ¢ € K\{0}. Thus, p?(x, y) = 0 for almost every y € 4,
which leads to a contradiction by (3.16).

The semigroup P{ is irreducible by Theorem 3.9, and its generator L, is self-
adjoint, and we proved that there exists ¢ € ker(—A, — L) such that ¢ > 0. Thus, by [2,
Proposition 14.42 (c)], it follows that dimker(—A; — Ly) = 1. n

4 Regular Boundary Points: An Analytic Approach

In this section, we compare the probabilistic notion of regular points in Definition 2.8
with an analytic definition used for hypoelliptic operators. The main goal is to prove that
these two notions are indeed equivalent.

Let £ be a diffusion operator and 2 be a bounded open connected subset of a

homogeneous Carnot group G = RY. Consider the boundary value problem

Lu=0 1inQ,
u=q¢ in 9%2,

where ¢ : 92 —> R is a continuous function. If Q2 is an open set with compact closure and
non-empty boundary, then there exists a generalized solution Hg in the sense of Perron—
Wiener-Brelot, which in this setting is described in [3, I1.6.7, p. 359]. We now recall an

analytic definition of regular points that can be found in [3, I1.7.11].

Definition 4.1. A point x € 9Q is called regular (or L-regular) if

im0 =0

20z Aleniged p| UO Josn uuog >oujolqIqsepueT pun SpesIaAlun Ad 681.660./7681/€/720Z/2101E/UIW/W0d"dNO"0ILSPEDE)/:SARY W) PAPEOIUMOQ



Sub-Laplacians, Spectral Properties 1917

for every continuous function ¢ : 32 — R. We call the set Q regular (or L-regular) if

every boundary point of Q is regular.

The notion of regular points depends on the operator. The Euclidean space RV
is an example of a homogeneous Carnot group with respect to the Euclidean dilation,
and the corresponding differential operator is the standard Laplacian Agw. If Q is any
bounded domain in RY with a C2-smooth boundary, then  is Agv-regular in the sense
of Definition 4.1 since it satisfies the exterior ball condition [3, Proposition 7.1.5]. In
[23], it was shown that this is not true for more general Carnot groups. In particular,
there are sub-Laplacians £ on Carnot groups and bounded convex domains with smooth
boundary that are not £-regular. Nonetheless, given a Carnot group, it is always possible
to construct nice regular domains. More precisely, in [3, Proposition 7.2.8], it is shown
that on a homogeneous Carnot group G the balls B, (x) ,r > 0,x € G, with respect to the

L-gauge are regular in the sense of Definition 4.1.

Example 4.2 (Heisenberg group). Suppose H is the Heisenberg group with the group

operation given by
(X1, X9, X3) * (V1, V2, V3)
1
= (Xl tV1. Xy + Y2 X3t Y3+ §(X1Y2 —X2Y1)) .

then by [3, Example 5.4.7], the £-gauge is given by

x| = 2 + x2)2 + 16x2.
We can endow H with a different homogeneous norm by
p(x) i= \J (x? + x2)% + x>

and denote by B, the corresponding ball of radius r centered at the identity. Then, in [18],

it is shown that B, is a regular set in the sense of Definition 2.8.

Let us recall some notions from potential theory [3, Chapter 7]. If V is L-regular,

then for every fixed x € V, the map

COV,R) — R

¢ — H (x)
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is a linear positive functional on C(dV,R), and hence by the Riesz representation

theorem, there exists a Radon measure 1Y supported on dV such that
HY () = /d o dnl ).
oV

The measure u” is called the £L-harmonic measure related to V and x.

Definition 4.3. Let Q be an bounded open connected set. A function u : @ — (—00, +00]

is called L-superharmonic in Q if

(1) wu is lower semi-continuous and u < oo in a dense subset of Q;

(2) for every L£-regular open set V with V C Q and for ever x € V
u(x) > /a L umdul ).

The following result can be found in [6, Theorem 1, p. 177], for a standard
Brownian motion on R%. The proof relies on the Markov property of the process, the
semigroup property of the associated semigroup, and the definition of superharmonic
functions. Thus, it carries over to the setting of the current paper, and therefore, we do
not give a proof. We recall that {gt} . refers to the hypoelliptic Brownian motion, that is,

the diffusion associated with L.

Theorem 4.4. Suppose D is a set such that D ¢ Q, and u is an £-superharmonic function
defined in 2. Then,

{u (grpAt)}t>0

is a supermartingale under P* for any x € D for which u(x) < oo.

Theorem 4.5. Suppose Q2 is an open bounded set and u is an £-superharmonic function
defined on 2. Then,

E*[u(9,,)] < ux) (4.1)

for every x € Q.
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Proof. Let {$2,},>; be a family of open bounded sets such that Q, C Qand U ,Q, =

n=
Q, and let 7, := 7o . By Theorem 4.4 with D = Q,, it follows that {u (g, ,)},5, 15 @
supermartingale, and hence for any ¢t > 0,

E* [u (gtmn)] < ux).

Note that {t < 7,,} / {t < 7o} as n — oo, and hence, if we let n — oo by Fatou's lemma,

the previous estimate becomes
B [u (9100,)] < U0, €2)

Note that 7, < oo P*-a.s. for any x € Q. Indeed, {r, = oo} = Nj;_,{rq > M}, and hence by

(3.7), for any x € Q,
P* (1 = 00) < P¥ (g > M)

_Qa
=/Qp§5[<x,y>dy<A|sz|M 2,

and by letting M — oo, it follows that P* (rQ = oo) = 0. Thus, the proof is completed by
letting t — oo in (4.2). ]

We now need the following version of [29, Theorem 2.12, p. 245].

Proposition 4.6. Let y € 92, and assume that

lim E* [f (9,,)] = f(¥),

X—=>y

for every bounded measurable function f : 32 — R that is continuous at y. Then y is a

regular point in the sense of Definition 2.8.

Proof. The proof given in [29, Theorem 2.12, p. 245] holds for a standard Brownian
motion in R% with d > 2, but it only uses the Markov property and the fact that a standard
Brownian motion never returns to its starting point when d > 2. The hypoelliptic
Brownian motion g is a Markov process that never returns to its starting point. Indeed,

one can write

gt = (BtrAz(t)l e !Ar(t)) ’
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where B, is a d,-dimensional standard Brownian motion and Ai(t) € R% is an iterated
stochastic integral forj = 2, ..., r. Thus, if g, were to return to its starting point so would
B,, and that is not possible since d; > 2. The proof of Proposition 4.6 then follows as in
[29, Theorem 2.12, p. 245]. | |

Definition 4.7. Let y € 39Q. An L-barrier at y in Q is a superharmonic map w : Q@ —
(=00, +00] such that

(1) w(x) > 0 for every x € €,

(2) limX_)y w(x) = 0.

In [3, Theorem 6.10.4], it is shown that a point y € 92 is regular in the sense of
Definition 4.1 if and only if there exists an £-barrier at y in Q. More precisely, for every

regular point y € 9€2, one can construct an £-barrier s? such that

(1) s§,2 is £-harmonic in Q;

(2) infg, sy > 0 for every neighborhood U of y.

In particular, for every z € 9Q2 with z # y, we have that
lim inf S;Z (x) > 0.
X—>Z
We can now prove the main theorem of this section.

Theorem 4.8. Let Q2 be an open bounded connected set, and let y € 92 be fixed. Then
y is regular in the sense of Definition 2.8 if and only if is regular in the sense of
Definition 4.1.

Proof. To simplify the notation, we say that a point y € 9Q2 is P-regular (A-regular) if it
is regular in the sense of Definition 2.8 (Definition 4.1).
Let y € 92 be an A-regular point and w(x) := s?(x) be the L-barrier defined

above. By Proposition 4.6, it is enough to show that

lim E* [f (g,,)] = f(¥),

X—y

for every bounded measurable function f : 9Q — R that is continuous at y. The following
argument is a modification of [29, Proposition 2.15, p. 248]. Set M := sup,.4q |f (2)|, and for
any ¢ > 0,let § > 0 be such that |f(z) —f(y)| < ¢ for any z € 9Q with d(z, y) < §, where d is

a homogeneous distance. We know that w(x) > 0 for every x € Q and liminf, , w(x) >0
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for any z € 3Q with z # y. Thus, there exists a k such that kw(x) > 2M for any x € Q
with d(x,y) > 8. Thus, for any z € 092, we have that [f(z) — f(y)| < ¢ if d(z,y) < § and
If(2) —f(y)| < 2M < kw(z) if d(z,y) > 8. Hence, for any z € 022,

f @) — f(¥)| < max(e, kw(2)).
L-Barriers are superharmonic, and thus by Theorem 4.5, it follows that
EX [f (9eg)] = F D) < EX[If (92,) — F D]
< E*[max (e, kw (g,,))] = max (e, kE* [w (9,,,)])
< max (¢, kw(x)),

and then

lim sup |E* [f (gm)] —fwI< max(s, klim sup W(X)) = max(¢g,0) = ¢,

for any ¢ > 0 and for any bounded measurable function f : 92 — R, which is continuous
aty.

We now need to prove that P-regularity implies A-regularity. Let y € 9Q be a
P-regular point. By [3, Theorem 6.10.4], it is enough to construct an £-barrier at y in Q.
Following [6, Exercise 10, p. 188], it is easy to prove that w(x) := E¥ [rQ] is the desired
L-barrier. |

5 Applications
5.1 Small deviations
Let Q C G be an open bounded connected set such that e € 2, and for every ¢ > 0, let
Q. =93, (R), (5.1)

where §, : G — G is the group dilation. In this section, we describe how the spectral
results from Section 3 can be applied to find the asymptotic of the exit time 7, of g,
from Q, as ¢ — 0.

First,let p, be the heat kernel given by (3.1). Then, p, satisfies the following scaling
property [13, Theorem 3.1 (i)], for any ¢ > 0,

ps(x,y) =ep, (5,(0),5.(), (5.2)

for any x,y € G, where Q denotes the homogeneous dimension of G.

20z Aleniged p| UO Josn uuog >oujolqIqsepueT pun SpesIaAlun Ad 681.660./7681/€/720Z/2101E/UIW/W0d"dNO"0ILSPEDE)/:SARY W) PAPEOIUMOQ



1922 M. Carfagnini and M. Gordina

Remark 5.1 (Space-time scaling in homogeneous Carnot groups)

. Let g, be a hypoelliptic

Brownian motion. Then, for any x € G and for any ¢ > 0, we have that

t
o2

Indeed, by (5.2) for any Borel, set A C G

P(g’g‘tz eA):IP’X(g;2 eA)

= / p (x,y)dy = ? / P (8.0, 8,(v)) dy
A ¢ A

B / pe (3.(x),2) dz = P*® (g, € 5,(4)) = P (51 (g
3:(A) ¢

5.0
@) ea).

Lemma 5.2. Let Q be an open set and pgz be the Dirichlet heat kernel. Then, for any

&> 0,and any x,y € Q

piz x,y) = e9pf (5.%),8,(¥))

where ©, is defined in (5.1).

Proof. First, note that

Indeed, by Remark 5.1,

t t
]P(Tg>8—2)=]P’X(gs€§2fora110<s<8—2)

=P(X’§e§2fora110<s<t)
2

£

=P (8% (g?(x)) eQ forall0 <s< t)

= P (9s€ @, forallO<s<t)=P (tgfg(x) > t) .
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Thus, for any f € L?(Q2, dx), we have that

t t
/Qf(y)piiz(x,y)dy=E" [f (952) T > 8—2] =E [f (X’iz) (T > 8—2]

&

ot ) =50 1 sr00). 1 -

- /Q £ (5:@) P 5,00, 207 = /Q F@epi (5.0,8.() dy,

which completes the proof. |
We conclude with an application to small deviations.

Theorem 5.3. Let G be a homogeneous Carnot group with the sub-Laplacian £ and Q
be a bounded open connected set containing the identity e, and set 2, := §, (22). Let g, be

a hypoelliptic Brownian motion such that g, = e a.s. Then,

A1
lin(1) e2'pe (TQS > t) = cg(e),
£—

where 1, is the spectral gap of —L given by Theorem 3.3 and ¢ is the corresponding
positive eigenfunction given by Theorem 3.10, and ¢ = [, ¢(y)dy.

Corollary 5.4. Under the same assumption of Theorem 5.3, we have that

lim —e?log P¢ (g, > t) = Ay, (5.6)

e—0
for every t > 0.

Example 5.5. Let |- | be a homogeneous norm on G. Then,

s
lim ee%t]P’e (max lgsl < 8) =c¢(e),

e—0 <8<

SR

lim —¢? log IP® (max gl < s) =t
e—0

where 1, > 0 is the spectral gap of —Lz; and B:={x € G, |x| < 1}.
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Remark 5.6 (Spectral gap estimates). If G = H is the Heisenberg group, it is shown in
[5, Theorem 3.4] that

lim —&2log P¢ ( max <e) =c?t,
>0 g 0< <t|gs|

SRS

for some finite constant ¢ > 0. Moreover, Example 5.5 and [5, Theorem 5.6] provide an
explicit estimate for the 1st Dirichlet eigenvalue A; = c¢? for the sub-Laplacian on H in

the Koranyi ball. More precisely,

(2) 0 4@
1P <o <e(1aP),

where
c (Agl),k(lz)) =f(x*)= inf f(x),
x€(0,1)
fay= M MIVIEX
x) = ,
J1—x 4x
2
(1 (1)4(2) (&)
) \/(xl ) +322Ma P - 32
2(42? —2(")
and /\gn) are the lowest Dirichlet eigenvalues of —1 A. in the unit ball in R".

Proof of Theorem 5.3. By (5.5), we have that

% ®) (tq, > t) =P (rg > i)

g2

for any x € Q. Thus, by Corollary 3.7, we have that

where {¢,}>° | and {1,}%°, are defined as in Notation 3.5 with ¢, = [, ¢,(y)dy. By
Theorems 3.10 and 3.3, there exists a ¢ > 0 such that ker(e 1! — P$?) = ker(—A; — Lg) =
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Span{¢}. Thus,
t s t
P (1, > t) =cpe)+ Y e g0, (),
n=2

where A, > X, foralln > 3 and A, > A, since dimker(—A; — Ly) = 1. Thus, the result

follows by letting ¢ go to zero. |

Proof of Corollary 5.4. By Theorem 5.3, we know that

A
lim e+? ‘pe (tg, > t) = co(e),

e—0

with c¢ (e) > 0. Then,

A
log(co(e)) = 21_1)% log (es%tPe (tq, > t))

?log P t) + Ayt
:lim(logIP’e(rQS >t)+2—1t)=lim(8 0gP* (rg, > 1) + 4, ),

e—0 82

which is finite if and only if
. 2
21_1)1(1) (e logP° (zg, > t) +A1t) =0,
that is,

lim —e?1og P? (tq, > t) = Aqt.
e—0 €

5.2 Large time behavior of the heat content

In this section, we use the spectral analysis from Section 3 to describe the large time
behavior of the heat content. Let 2 be a bounded open connected regular set. We consider

the Dirichlet problem for the heat equation on

(3; — L) u(x,t) =0, (t,x) € (0,00) x Q,
u(t,x) =0, (t,x) € (0,00) x 092, (5.7)

u0,x)=1, x e Q.
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Definition 5.7. Let u be the solution to the boundary value problem (5.7). The heat

content associated with Q is given by
Qq(t) == / u(t, x)dx,
Q

for ¢t > 0.

If Q is regular, it is easy to see that P* (r, > t) is the solution to (5.7), and hence

we can write

Qq(t) = / / p%(x, y)dydx.
QJIQ

By Corollary 3.7, we have that
o
Qq(t) = / > e, ¢, (x)dx, (5.8)
@ =1

where ¢, = [, ¢, (y)dy. Note that the series > ; e~*n’c, ¢, (x) converges uniformly on
[e,00) x Q for any ¢ > 0. Indeed, by Proposition 3.6, we have that, forany x € Qand t > ¢

—Ant —Ant
|e " Cn¢n(X)| g e Cn||¢n”L00(Q'dx)

< 1Qle Iy 17w ,ax) < 1Q1A(Q)e 17

for any n € N. Thus, > 2> | e~*nc, ¢, (x) converges uniformly on the set [¢, 00) x Q for any
¢ > 0 by WeierstraR’ M-test since the series > oo ; e ***A2 is convergent.
Thus, by (5.8), it follows that

aQ(t)z/QZe*n‘c,ﬁpn(x)dx
n=1

o0 o0
~nt —hnt -2
=Ze ”cn/¢n(x)dX=Ze nter,

n=1 Q@ n=1

for any t > 0. We can then deduce the following large time asymptotics for the heat

content:

lim e*'Qq(t) = 2.
t—o0
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