

A review of the reproductive biology of mormyroid fishes: An emerging model for biomedical research

Alyssa N. Saunders^{1,2} | Jason R. Gallant^{1,2}

¹Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA

²Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA

Correspondence

Alyssa N. Saunders and Jason R. Gallant, Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA. Email: saund165@msu.edu and jgallant@msu.edu

Funding information

National Science Foundation, Grant/Award Number: 2243230; MSU EEB Core Faculty Seed Grant Program; Michigan State University Ecology, Evolution, and Behavior Core Faculty Seed Grant Program

Abstract

Mormyroidea is a superfamily of weakly electric African fishes with great potential as a model in a variety of biomedical research areas including systems neuroscience, muscle cell and craniofacial development, ion channel biophysics, and flagellar/ciliary biology. However, they are currently difficult to breed in the laboratory setting, which is essential for any tractable model organism. As such, there is a need to better understand the reproductive biology of mormyroids to breed them more reliably in the laboratory to effectively use them as a biomedical research model. This review seeks to (1) briefly highlight the biomedically relevant phenotypes of mormyroids and (2) compile information about mormyroid reproduction including sex differences, breeding season, sexual maturity, gonads, gametes, and courtship/spawning behaviors. We also highlight areas of mormyroid reproductive biology that are currently unexplored and/or have the potential for further investigation that may provide insights into more successful mormyroid laboratory breeding methods.

KEY WORDS

biomedicine, electric fish, mormyrid, reproduction, teleost

1 | INTRODUCTION

The ability to produce electric fields has independently evolved among fishes several times, famously noted by Darwin when considering electric organs (EOs) as a “special difficulty” to reconcile with his theory of natural selection (Darwin, 1859). A particularly difficult issue to resolve for Darwin was the existence of organs in some lineages that resembled the EOs of the strongly electric *Electrophorus* and *Torpedo*, but did not appear to produce electricity. Nearly 100 years later, Lissmann demonstrated that species used these organs to produce weak electric fields to sense surroundings and communicate (Lissmann, 1951, 1958). Strongly electric fish have served as a model system in biology, including biomedicine, since the times of Volta and von Humboldt (Finger & Piccolino, 2011),

providing deep insight into the nature of bioelectrogenesis and the molecular structure of the synapse (Godfrey et al., 1984; Nitkin et al., 1987; Noda et al., 1982; Unwin, 1993). Since their “discovery,” weakly electric fish have also shaped biomedical science, particularly as an important model system for understanding neuronal circuitry underlying complex vertebrate behaviors (e.g., Heiligenberg, 1991). More recently, a growing community of researchers has steadily progressed toward deeper understanding of the general biology of weakly electric fish, which has uncovered a wealth of phenotypes with great biomedical “potential.”

Weakly electric fish generate electric fields by discharging a specialized organ in the tail, called the electric organ (EO). These electric organ discharges (EODs) result from the simultaneous action potentials of a thousand or more electrocytes which determine EOD

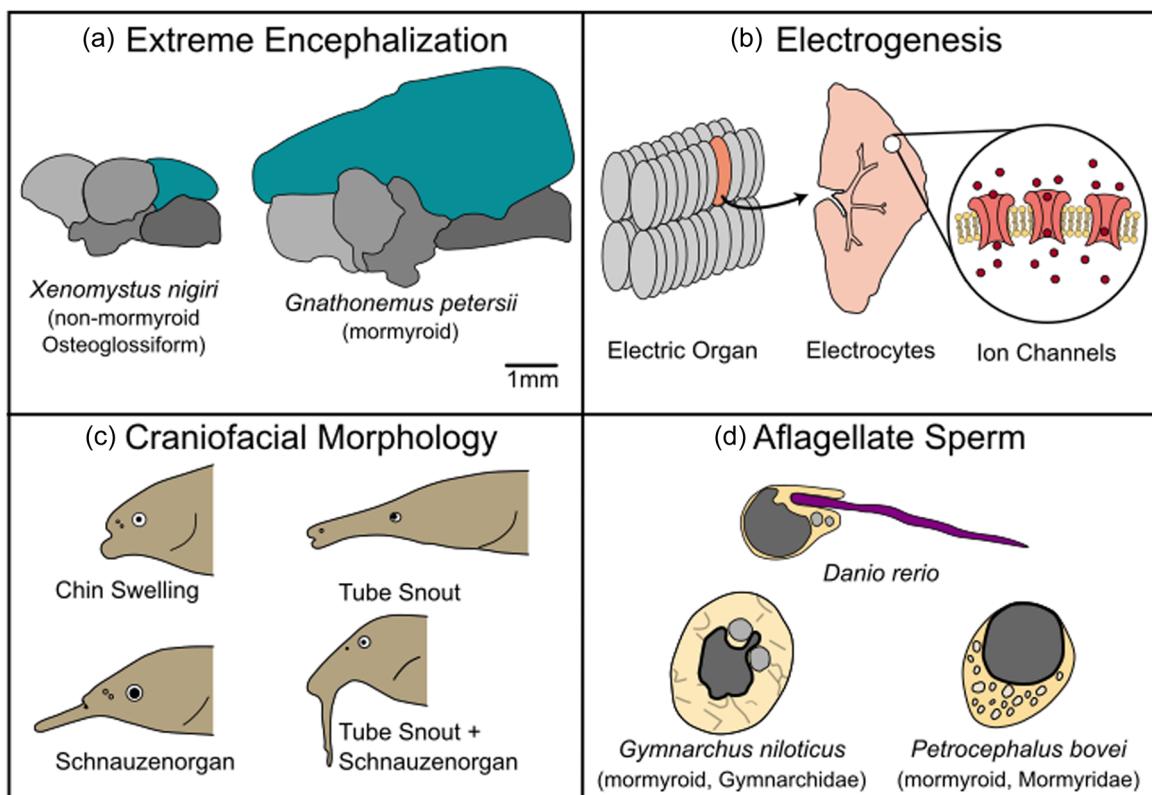
This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial License](#), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Authors. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution* published by Wiley Periodicals LLC.

waveform characteristics (Bass, 1986). Weakly electric fish detect self-generated and conspecific EODs using an array of electroreceptors on the skin (electroreception). The fish analyze distortions of their self-generated electric field caused by nearby objects in the water to create high-resolution electrical images of their surroundings (von der Emde, 1999) using dedicated electroreceptors and sensory processing circuits (von der Emde & Bell, 2003). In parallel, weakly electric fish use a second electroreceptor system to sense conspecific EOD waveforms, allowing them to use electricity as a social communication signal analogous to birdsong or frog vocalizations (Curtis & Stoddard, 2003; Hagedorn & Zelick, 1989). Perhaps most impressive about electric fish is the highly convergent nature of these abilities: two clades of weakly electric fishes, the Gymnotiformes of South America and the Mormyroidea of Africa, have independently evolved both EOs and two distinct sensory systems for the analysis of self-generated and conspecific electric fields (Gallant & O'Connell, 2020). The value of this to both evolutionary biology and biomedical science cannot be overstated: weakly electric fish provide an unparalleled opportunity whereby phenotypes at multiple levels of biological analysis can be studied in independent systems to make important discoveries.

This review focuses on one lineage of weakly electric fishes, the Mormyroidea, which have been extensively studied as a weakly electric fish model since Lissmann's famous experiments in the 1950s (Lissmann, 1951; Lissmann, 1958). Mormyroidea (mormyroids) is a superfamily of 232 Osteoglossiform fish species that consists of the monospecific family Gymnarchidae (*Gymnarchus niloticus*) and the species-rich family Mormyridae (mormyrids) (Peterson, Sullivan, Hopkins, et al., 2022). Mormyroids live in lacustrine and riverine habitats throughout the African continent and are culturally (Ouzman, 1995) and commercially (Okedi, 1965) significant in their native regions. With a strong history as model system for neurobiology and evolution, and more recently as a genetic model with the availability of genomic resources (e.g., Cheng et al., 2023; Gallant et al., 2017; Peterson, Sullivan, & Pirro, 2022) and gene-manipulation protocols (Constantinou et al., 2019), several unusual phenotypic properties of mormyroids represent fertile grounds for the investigation of biomedically relevant questions. Despite their great potential as a biomedical model system, mormyroid researchers face a significant hurdle: mormyroids are notoriously difficult to breed reliably within the laboratory setting. For several biomedically relevant questions, understanding the developmental mechanisms that result in phenotypes of interest is crucial. Hence, there is a need for access to embryological material to support this work. Therefore, to utilize the potential of mormyroids as a model in biomedical research and support comparative work with other electric fish lineages, a comprehensive understanding of mormyroid reproductive biology is needed. The purpose of this review is (1) to briefly illustrate the numerous biomedically relevant phenotypes afforded by the mormyroid system, (2) to provide an extensive review of the current state of knowledge of mormyroid reproductive biology, and (3) outline the challenges facing mormyroid breeding that prevent

the much-needed developmental data to enable this model system to make great strides in the future.


2 | BIOMEDICALLY RELEVANT PHENOTYPES IN MORMYROIDS

2.1 | Large brains and high metabolic costs: A model for extreme encephalization

Given that mormyroid fishes have evolved the ability to exploit a sensory modality unavailable to most other fishes, they are first and foremost an exciting system to ask questions about the evolution of sensory systems and how sensory information is integrated across sensory modalities (e.g., Skeels et al., 2023). An important key to understanding the sensory lives of mormyroid electric fishes is the fact that mormyroid brains are strikingly large (Figure 1a) in proportion to their body size, comparable to the brain-body proportion of humans (Kaufman et al., 2003). The mormyroid species *Gnathonemus petersii* has a brain that is 3.1% of its body mass and, critically, uses 60% of its total oxygen consumption. This proportional amount of oxygen consumption is higher than any other known vertebrate (Nilsson, 1996). A recent study comparing brain sizes among mormyroid genera reveals there have been multiple independent origins of large brains within mormyroids (Sukhum, 2018), making them a powerful system for the study of the mechanisms and consequences of extreme encephalization in vertebrates in a framework with multiple independent evolutionary events.

Much of the increased size in mormyroid brains is accounted for by the enlargement of regions involved in electroreception (Schumacher & Carlson, 2022). This, coupled with the ability of mormyroids to produce metabolically costly electric signals (Clarke et al., 2020), suggests that there is likely strong selective pressure on mormyroids to economize on metabolically costly biological functions, including redundant sensory processing.

Presently, there is some evidence of sensory trade-offs in weakly electric fish in cone opsin gene loss and brain region size evolution. Both gymnotiformes and mormyroids have lost the cone opsin gene *SWS1* indicating a link between loss of this gene and the evolution of electroreception (Liu et al., 2017, 2019). Studies on brain region size in mormyroids also indicate trade-offs in sensory system processing: regions associated with non-electrosensory sensory systems, including the optic (Lázár et al., 1984; Stevens et al., 2013) and olfactory systems (Moller, 1995; Schumacher & Carlson, 2022), are reduced. Further investigation in the nonelectrosensory sensory systems of mormyroids is likely to yield important clues into how mormyroids manage to support their metabolically costly brains. A mechanistic basis for understanding how total and regional brain size evolves is still poorly understood across vertebrates, but the considerable variation in brain size within mormyroids sets up mormyroids as a powerful experimental model for investigating these questions with a key caveat: poor availability of embryonic materials to study brain development.

FIGURE 1 Biomedically relevant phenotypes in mormyroids. (a) Mormyroid brains (represented by *Gnathonemus petersii*) exhibit extreme encephalization with significant enlargement of the cerebellum (blue) compared to other Osteoglossiforms (represented by *Xenomystus nigri*) (brain illustrations modified from Sukhum, 2018). (b) Mormyroids are capable of electogenesis using an electric organ located in the caudal peduncle. This organ is composed of specialized cells, electrocytes (pink), and discharges of the electric organ are the result of action potentials facilitated by the ion channels of individual electrocytes (Bass, 1986). (c) Mormyroid craniofacial morphology is diverse and includes several unique mouth/jaw morphologies including chin swellings (*Marcusenius moorii*), tube snouts (*Mormyrops zanclirostris*), Schnauzenorgans (*Gnathonemus petersii*), and a combination of tube snouts and Schnauzenorgans (*Campylomormyrus mirus*) (Ford et al., 2022; Peterson, Sullivan, Hopkins, et al., 2022). (d) The sperm of most teleosts is flagellated, but mormyroid sperm is uniquely aflagellate. The “typical” teleost sperm, represented by *Danio rerio* (modified from Zhang et al., 2014), has a flagellum (purple), a condensed nucleus (dark gray), and some varying number of mitochondria (light gray). Gymnarchidae sperm (modified from Mattei et al., 1967), represented by the only species *Gymnarchus niloticus*, has no flagella, an uncondensed nucleus, few mitochondria, and a network of submembrane microtubules which provides it ameboid-like motility. Mormyridae sperm (modified from Mattei et al., 1972), represented by *Petrocephalus bovei*, has no flagella and abundant mitochondria.

2.2 | Cerebellar-like circuits and the corollary discharge

It is commonly understood in modern neuroscience that many sensorimotor systems have a mechanism to cancel predictable reafferent input, a concept referred to as the *corollary discharge* or *efference copy* (Crapse & Sommer, 2008). Dysfunction in corollary discharge is associated with several disease phenotypes including aberrant limb movements (as in cases of bradykinesia and anarchic hand syndrome), Alzheimer’s disease, autism, and schizophrenia (Parlikar et al., 2019). Therefore, understanding the mechanisms of corollary discharge including what factors may lead to its dysfunction is crucial for understanding these diseases.

Teleost model systems have been key to understanding the anatomical and physiological basis of corollary discharges, particularly mormyrids (Bell et al., 2008; Fukutomi & Carlson, 2020; Sawtell

et al., 2005). Mormyrids produce a corollary discharge alongside the EOD motor command, which provides information to the electro-sensory system to modulate sensory processing (Bell, 1989) of electroreceptors dedicated to communication and electrolocation discussed above. Mormyrids have become a premier system for the study of corollary discharges because of how simple it is to record from and manipulate reafferent stimuli: the command signal for EOD production can be noninvasively recorded far away from the brain, and the reafferent input to electroreceptors is a simple pulse of electricity which can be easily manipulated (Fukutomi & Carlson, 2020).

Corollary discharges are found across a wide variety of sensory modalities and species; however, very little is known about their evolution and development. Comparative studies in mormyrids may be an excellent opportunity to study both: the monotypic Gymnarchidae, which produce quasinsinusoidal EOD discharges lack a corollary discharge (Kawasaki, 1994); however, all members of the Mormyridae,

which produce intermittent, variable rate EODs, possess a corollary discharge (Vélez & Carlson, 2016). Remarkably, EOD duration is highly variable among mormyrids (0.1–10 ms), and long-duration EODs have evolved several times within mormyrids (Gallant & O'Connell, 2020). Recent evidence suggests that corollary discharge function in mormyrids with long-duration EODs time-shift their corollary discharge to optimally block electrosensory responses to the fish's own EOD suggesting that corollary discharge mechanisms may evolve among species to match communication system evolution (Fukutomi & Carlson, 2020). The mechanisms by which the evolutionary changes in corollary discharge timing take place are presently unknown but remain an important area in understanding this common phenomenon found in sensory systems and mormyroids are well poised for such future studies, by virtue of their numerous experimental advantages.

2.3 | Electric organs and the evolution and development of muscle regulation

Several studies have begun to elucidate the genetic and developmental processes underlying major novel vertebrate traits including fins (Davis et al., 2007), limbs (Schneider et al., 2011), feathers (Harris et al., 2002), and teeth (McCollum & Sharpe, 2001); however, few of these structures have evolved repeatedly, particularly in extant lineages where molecular and developmental studies are possible, preventing the analysis of molecular and developmental processes underlying novel vertebrate traits in a comparative framework. EOs have evolved multiple times in vertebrates, and derive during development either from skeletal muscle precursors or directly from fully differentiated muscle through a process called transdifferentiation (Gallant, 2019). Mormyroid EOs (Figure 1b) very strongly resemble differentiated muscle fibers both anatomically (including the retention of sarcomeric structures, Bass et al., 1986; Denizot et al., 1978), and transcriptionally (Gallant et al., 2012, 2014). A recent study demonstrates that despite the considerable diversity of fishes that have evolved EOs, EO gene expression appears to be convergent in key genes across several lineages, including mormyroids (Gallant et al., 2014).

A major outstanding question concerning EO development is how the transformation from skeletal muscle to EO takes place: several key transcription factors (e.g., *myogenin*, *MyoD*, *Six2a*, and *Hey1*) have been identified in multiple lineages to exhibit unusual patterns of expression which may alter muscle development networks (Gallant et al., 2014), though these hypotheses have yet to be examined. Perhaps the most obvious and fundamental reasons behind this gap is the paucity of embryological materials available for developmental work. Therefore, to resolve this issue and exploit the potential of work on EO development, reliable breeding of electric fishes, including mormyroids, is crucial.

Aside from the impact on understanding how muscle development is altered to produce EOs, characterizing EO development may 1 day have broad impacts for fields such as developmental biology, regenerative medicine, and even biological engineering. The ability to

produce "biological batteries" from stem cells may 1 day inspire new classes of artificial biological devices with their own power supplies (Ozbolat & Hoshodiuk, 2016).

2.4 | Convergent evolution of craniofacial morphology

Craniofacial diseases are one of the most common types of congenital diseases in humans and can cause medical as well as social consequences (Naqvi et al., 2022). Therefore, understanding the underlying genetic and developmental mechanisms that lead to variation in facial morphology is pertinent. Historically, animal models for craniofacial biology were mostly limited to mammals due to their relatedness and similarity in facial muscle development to humans (Siegel & Mooney, 1990). However, due to the high level of conservation in developmental mechanisms across animals, model organisms within other taxa including birds (*Gallus gallus*, chicken), amphibians (*Xenopus laevis/tropicalis*, frogs), and fish (*Danio rerio*, zebrafish) have become common models in craniofacial research as well (Van Otterloo et al., 2016). Outside of these common model organisms, East African cichlids have also famously been used as an important model for craniofacial disease and development due to their extraordinary diversity in craniofacial morphologies which represent morphologies that are not present within other models including facial asymmetry (Albertson et al., 2008).

Mormyroids also possess unique craniofacial morphologies, particularly in the mouth and jaw, exhibiting blunt-nose snouts, tube snouts, chin-swellings, and Schnauzenorgans (Figure 1c) (Peterson, Sullivan, Hopkins, et al., 2022). Recent work by Peterson et al. (2023) demonstrates that some of these morphologies have convergently evolved within different mormyroid lineages at the macroscopic and histological scales. Remarkably, these unusual craniofacial morphologies have also convergently evolved between mormyrids and gymnotiforms (Ford et al., 2022). To date, there have been no developmental or genetic studies to examine potential genetic underpinnings of these unusual adaptations. Given the multiple scales of convergence in mormyroid craniofacial morphologies, identification of the responsible developmental mechanisms is of interest. Are these mechanisms the same among lineages and might they also play a role in craniofacial development in humans? To perform the developmental studies needed to answer these questions, reliable access to mormyroid embryos is necessary.

2.5 | Ion channel biophysics

Ion channels are crucially important molecules responsible for the regulation of action potentials in excitable tissues. In humans, mutations in ion channel genes can cause channelopathies, diseases characterized by aberrant ion channel function, such as epilepsy, cystic fibrosis, and some cases of sudden infant death syndrome (Kim, 2014; Köhling & Wolfart, 2016). Because of the vitally

important role of ion channels in maintaining homeostasis, they are subject to intense purifying selection, and ion channel sequences are highly conserved among vertebrates, and to some extent among metazoans. This general lack of variation presents a problem for those wishing to study the relationship between ion channel gene sequence and physiology through comparative means.

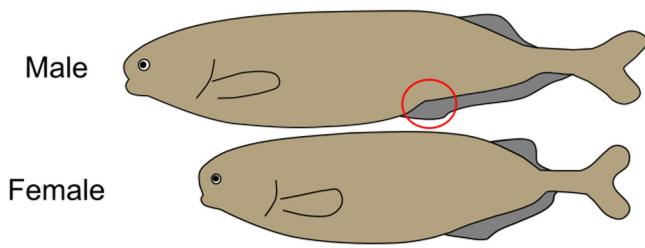
Weakly electric fish have managed to escape the constraints of purifying selection on the ion channels used in the generation of their electric discharges (Figure 1b) and serve as a natural "laboratory" to explore the biophysical consequences of sequence variation in key regions of sodium and potassium channels. A genome duplication at the origin of teleosts generated duplicate copies of all vertebrate genes (Glasauer & Neuhauss, 2014). All teleost fish muscle expresses two paralogous voltage-gated Na^+ channel genes (*scn4aa*, *scn4ab*). In both mormyroids and gymnotiforms one gene (*scn4aa*) is compartmentalized in the EO where it evolves rapidly, presumably under selection pressures associated with electrical signaling and sensing, and the other (*scn4ab*) retains its expression in muscle where it is functionally constrained and evolves slowly (Arnegard et al., 2010; Zakon et al., 2006). Recently, comparison of genomic sequences among weakly electric fish species uncovered a previously unknown conserved noncoding element (CNE), present in all vertebrates that drives *scn4a* expression in all vertebrate tissues. This small CNE is absent in the *scn4aa* genes found in South American weakly electric fish, where the mechanism of *scn4aa* loss in mormyroids is unknown (LaPotin et al., 2022).

Remarkably, a paralogous voltage-gated potassium channel gene (*kcna7a*, *kcna7b*) has followed a similar trajectory; however, most teleosts have lost the paralogous *kcna7b* while mormyroids have retained it. At the origin of the Mormyridae, *kcna7a* underwent rapid evolution, presumably under selective pressure associated with electric signaling where *kcna7b* retains its ancestral function (Swapna et al., 2018). Study of these ion channels in systems where they are released from their typical purifying selection pressures in nervous systems and muscles has been enormously fruitful for understanding the biophysics of voltage-gated ion channels (Swapna et al., 2018; Zakon et al., 2006). In mormyroids, a recent study found that the amino acid substitutions in the S3-S4 linker of the potassium channel lead to a shortening of the action potentials, uncovering a previously unknown role of "voltage tuning" in this protein region (Swapna et al., 2018). Outside of protein sequence, mutations in regulatory elements that affect gene expression are another factor that might have driven changes in mormyroid ion channel function. However, identification of these elements, through assay for transposase-accessible chromatin sequencing methods, has not yet been feasible since it would require embryological material.

2.6 | Flagellar loss and ciliary function

Finally, mormyroid sperm lacks flagella (Figure 1d) (Mattei et al., 1967, 1972). Aflagellate sperm has evolved several times within invertebrate lineages, but mormyroids are the only known

case of aflagellate sperm evolving within vertebrates (Morrow, 2004). In many taxa, sperm flagella are essential to the ability of sperm to swim to and subsequently fertilize eggs. Therefore, aberrant or absent sperm flagella can have immense consequences for fertilization success. For example, asthenospermia is a condition that causes the production of sperm with decreased motility due to a variety of possible issues in sperm flagella structure (Chemes et al., 1998). Asthenospermia is a common cause of male infertility and although the cause of asthenospermia at a gamete morphology level can be determined using microscopy, the underlying mechanism for why these morphological abnormalities occur is more difficult to assess (Chemes et al., 1998). Mormyroids are a vertebrate lineage in which aflagellate sperm are viable and, as such, provide the unique opportunity to understand the development of vertebrate aflagellate sperm. This line of research may provide insights into gene mutations and processes involved in the formation of aberrant/absent sperm flagella, but also has potential on a pleiotropic scale. Flagella and cilia are very similar in terms of development, structure, and function (Witman, 1990). Cilia are essential to numerous body processes including normal development during the embryonic stage across several taxa (Drummond, 2012). Mormyroids lack sperm flagella, but the state of cilia across other body tissues is unknown. Does the mechanism that results in mormyroid aflagellate sperm have pleiotropic consequences that affect cilia in other tissues? To tackle these questions surrounding sperm flagella and possible pleiotropic consequences, access to breeding populations in the laboratory to obtain sperm and embryos is necessary.


3 | MORMYROID REPRODUCTIVE BIOLOGY

3.1 | Sex differences

The ability to differentiate between sexes is important from both the perspective of the fish attempting to mate and researchers that need to determine the sex of individuals for mating or other purposes. In some mormyroids, sexual dimorphism in external anatomy can easily allow for sex identification, but in others, the sexes are externally indistinguishable. Another method for the identification of sex in some species is sexual dimorphism in electric signal structure and signaling behaviors.

3.1.1 | Anal fin notch

The major anatomical sexual dimorphism in Mormyroidea is the male anal fin notch (Figure 2). The earliest report of this anatomical feature is likely by Svensson (1933) in *Mormyrops delicious* and *Gnathonemus gambiensis*. It has since been described in several other species: *Brevimyrus niger* (Stell & Moller, 2017a, 2017b), *Brienomyrus brachystius* (Brown et al., 1996), *Gnathonemus cyprinoides* (Nawar, 1959a), *Gnathonemus petersii* (Pezzanite & Moller, 1998), *Hyperopisus*

FIGURE 2 Illustrations of the major anatomical sexual dimorphism in mormyroids: the male anal fin notch. Male mormyroids (top) have a characteristic notch (red circle) in the ventral body wall along the anal fin whereas females (bottom) have a relatively linear body wall along the anal fin.

bebe bebe (Nawar, 1959a), *Ivindomyrus marchei* and *Ivindomyrus opdenboschi* (Lavoué et al., 2008), *Mormyrops anguilloides* (Nawar, 1959a), *Mormyrus cashive* (Nawar, 1959a), *Mormyrus kannume* (Iles, 1960; Nawar, 1959a), *Paramormyrops kingsleyae* (Brown et al., 1996), *Petrocephalus bane* (Nawar, 1959a), and *Pollimyrus adspersus* (Kirschbaum, 1987).

With the onset of sexual maturity in males, the fin ray bases in the anal fin expand to create a characteristic notch shape along the ventral edge of the body (Stell & Moller, 2017a). Stell and Moller (2017a) measured the angle of the anal fin notch in *Brevimyrus niger* and found the angle was significantly different in mature males, immature males, and females. However, there is no defined minimum angle for this feature to be considered the anal fin notch and likely there cannot be given the immense diversity in morphology among mormyroids. Nawar (1959a) described it as "an S-shaped wave at the anterior region of [the] anal fin." Once formed, this feature is permanent in some species (Okedi, 1969) but seems to seasonally regress in others (Iles, 1960; Moller et al., 2004). Formation of the indentation is likely under androgen control. In female *Brevimyrus niger*, the formation of the anal fin notch can be induced by exposure to amortizable 17 α -methyltestosterone (Stell & Moller, 2017b). In juvenile and female *Gnathonemus petersii* anal fin notch formation can be induced by exposure to testosterone or dihydrotestosterone (Landsman & Moller, 1988; Landsman et al., 1990). Females and immature males of some species may naturally show a slight indentation in the body wall, but generally, this feature is noticeably more prominent in mature males. However, in some mature male individuals, the notch may be nonobvious and requires careful examination to observe as in some *Pollimyrus adspersus* (Kirschbaum, 1987), *Mormyrus cashive*, *Mormyrus kannume*, *Petrocephalus bane*, and *Mormyrops anguilloides* (Nawar, 1959a).

In response to tactile stimulation, both males and females of several species will concavely flex the anal fin (Brown et al., 1996; Kirschbaum, 1987). This behavior has been termed the anal fin reflex and in males is hypothesized to function in forming a fertilization pocket during spawning (Iles, 1960). This pocket would be created by the male curving his anal fin around the female's genital opening during spawning and then eggs and sperm would be released into this closed-off space. Pezzanite and Moller (1998) hypothesize that the

fin ray expansion may increase the surface area for muscle attachment and facilitate the anal fin reflex behavior. Nguyen et al. (2017) hypothesized that the formation of the fertilization pocket is an adaptation to compensate for sperm aflagellism and that coordinated formation of the fertilization pocket may increase fertilization rates. However, more research is needed to confirm these hypotheses.

Although the anal fin notch has been observed in several mormyroid species, it is notably absent from some, including *Gymnarchus niloticus* (Agbugui et al., 2021; Oladosu, 1997), and presence or absence is unknown in many species. Therefore, it should not be assumed that the anal fin notch can be used for sex identification in all mormyroids. In cases where this sexual dimorphism is not present, sex can be determined by inspecting internal anatomy for either an ovary or testis (Agbugui et al., 2021) or by inspecting fluid extracted by hand stripping for spermatozoa (Oladosu, 1997). However, in some cases, sex can also be determined by examination of the electric signal structure or behavior.

3.1.2 | Electric signal structure and signaling behavior

Sexual dimorphism with respect to EOD structure and electric signaling behavior is also present among species of Mormyroidea and the manifestation of this dimorphism varies. In *Ivindomyrus marchei* and *I. opdenboschi*, males produce EODs with longer duration waveforms and lower peak frequencies than females (Lavoué et al., 2008). In *Marcusenius macrolepidotus*, EOD duration is shortest in immature individuals (416.4 ms), longer in mature females (519 ms), and nearly 11.5 times longer in mature males than immature individuals (4779 ms) (Kramer, 1997). Longer duration waveforms in males compared to females are also seen in *Stomatorhinus corneti* (Hopkins, 1981) and *Paramormyrops magnostipes* (Arnegard et al., 2005). However, in *Petrocephalus catostoma*, males produce shorter duration EODs than females: 395 ms for males and 419 ms for females (Kramer, 1997).

In several species, sexual dimorphism in EOD structure is under hormonal control and related to differences in electrocyte structure. Females and juveniles treated with androgen hormones produce male-like EODs and in species where males produce longer duration EODs male electrocytes are thicker and have more surface invaginations along the anterior face (Bass & Hopkins, 1985; Bass et al., 1986). In addition to EOD structure, differences in electric signaling behavior may also be used for sex identification. Male and female *Pollimyrus adspersus* can be distinguished from one another by their responses to an artificial EOD stimulus (Bratton & Kramer, 1989). Males produce a preferred latency response (PLR)/echo response characterized by alternating bursts with respect to the stimulus (Hopkins, 1986). Females will produce a preferred latency avoidance (PLA) characterized by bursts in synchrony with the stimulus. However, it is unknown if males and females of other mormyroid species also respond in this way to electrical stimuli.

Mormyroids may use these differences in EOD structure and signaling behavior in sex identification and these differences can also be used by researchers to determine the sexes of individuals in cases where such sexual dimorphisms are known for the species.

3.2 | Breeding season and sexual maturity

3.2.1 | Breeding season period

In wild populations of Mormyroidea, the breeding season coincides with the rainy season. Several species of Mormyroidea are anadromous and move to smaller bodies of water that form during the rainy season to spawn (Blake, 1977; Corbet, 1961; Crawford et al., 1997; Daget, 1957; Okedi, 1969). The breeding seasons of several species have been reported (Table 1); however, it is important to consider that variations in the timing of the rainy season can consequently change the timing of the breeding season. For example, the breeding season for several different populations of *Mormyrus kanumbe* has been reported and there is great variation. Okedi (1970) studied *M. kanumbe* in Lake Victoria and found two extended spawning seasons with no ripe gonads observed only during July and August. Scott (1974) studied two populations in Lake Victoria and considered one to be monoestrous with spawning season between November to January and the other to have a long spawning period from October to May/June. Ashour et al. (1990) and Zaher et al. (1991) studied fish in the River Nile at Beni Seuf, Egypt and reported a spawning season between May and August with peaks in June/July. Aly (1993) similarly observed peaks in spawning during June/July in Lake Nasser. Mekkawy and Hassan (2012) observed year-round spawning in *M. kanumbe* from the Nile in Assiut, Egypt. With such variance in the breeding season, it is important for researchers wanting to study

wild populations during the breeding season to know when the rainy season where the population of interest occurs rather than plan field expeditions based on historical accounts of when a species is in breeding condition.

3.2.2 | Breeding season sex ratios

Several authors studying the reproductive biology of Mormyroidea populations have reported sex ratios during the breeding season. In some species, breeding season sex ratios are male-biased, including *Gymnarchus niloticus* (Agbugui et al., 2021; Odo et al., 2013; Opadokun & Ajani, 2015) and *Pollimyrus isidori* (Ikomi, 1996), which may indicate a reproductive strategy to ensure a small number of eggs have a very high chance of being fertilized. Interestingly, *Gymnarchus* and *Pollimyrus* are also the only two genera of mormyroids known to perform parental care (discussed below in Nest Building and Parental Care). In other species, the sex ratio is balanced including *Brienomyrus longianalis* (Ikomi, 1996) and *Hyperopisus bebe occidentalis* (Oniye & Onimisi, 2010). There have been no reports of female-biased sex ratios in mormyroids during the breeding season. Knowing the sex ratios of wild breeding populations for a species of interest may inform more successful laboratory breeding setups. For example, laboratory breeding success for *Hyperopisus bebe occidentalis* may be greatest in setups with an equal number of males and females, but breeding success for *Pollimyrus isidori* might be greatest with a male-biased sex ratio. Previous work in species of *Campylomormyrus* does demonstrate that species breeding success may depend on pair versus group mating setups (see Section 3.2.4), but it is currently unknown how differences in sex ratios among groups may change laboratory breeding success.

TABLE 1 The breeding seasons of several species of mormyroids.

Species	Breeding season months	Reference(s)
<i>Gymnarchus niloticus</i>	May to July and October/ November to January	Agbugui et al. (2021); Opadokun & Ajani (2015)
<i>Brienomyrus longianalis</i>	May to July	Ikomi (1996)
<i>Gnathonemus cyprinoides</i>	May to August	Nawar (1959a)
<i>Hyperopisus bebe bebe</i>	July to October	Nawar (1959a)
<i>Hyperopisus bebe occidentalis</i>	June to October	Oniye & Onimisi (2010)
<i>Petrocephalus bane</i>	May to August	Nawar (1959a)
<i>Pollimyrus isidori</i>	July to October	Crawford et al. (1997)
<i>Mormyrops anguilloides</i>	July to August	Nawar (1959a)
<i>Mormyrus cashive</i>	July to August	Nawar (1959a)
<i>Mormyrus kanumbe</i>	Varies greatly by population	Aly (1993); Ashour et al. (1990); Mekkawy & Hassan (2012); Okedi (1970); Scott (1974); Zaher et al. (1991)

3.2.3 | Gonadal recrudescence

Mormyroidea exhibit cyclic changes in gonadal state that coincide with the rainy and dry seasons. With the onset of the rainy season, gonadal recrudescence initiates and during the dry season the gonad regresses. Aly (1993) defined six maturity stages for the ovary in *Mormyrus kanname*: (1) immature, (2) resting stage, (3) maturation, (4) maturity, (5) reproduction, and (6) spent. Similar stages for testis recrudescence have not been defined. As an individual progresses through the reproductive cycle, gonadal somatic index (GSI) fluctuates. GSI has been measured in several mormyroid species including *Brienomyrus longianalis* (Ikomi, 1996), *Gymnarchus niloticus* (Opadokun & Ajani, 2015), *Hippopotamyrus ansorgii* (Odedeyi & Odedire, 2017), *Hyperopisus bebe occidentalis* (Oniye & Onimisi, 2010), *Marcusenius senegalensis* (Adjibade et al., 2020), *Mormyrus kanname* (Khallaf & Authman, 2012), *Mormyrus rume proboscirostris* (Kirschbaum et al., 2008; Schugardt & Kirschbaum, 2004), and *Pollimyrus isidori* (Crawford et al., 1997). However, many authors do not report the phase of the reproductive cycle during which measurements were made and therefore comparison of these measurements is confounded. Despite this, mormyroid GSI, similar to other Osteoglossiformes (Adite et al., 2006; Hussain et al., 2015), is generally considered low, especially male GSI. However, as Koenig and Gallant (2021) state, it is unclear how these low GSI values compare to other teleost species because, again, many authors do not report the phase of the reproductive cycle and, unlike many other teleosts, Osteoglossiformes have singular rather than paired gonads.

Additionally, body length at first sexual maturity has been reported for four species (Table 2). As many studied individuals come

from wild populations that are not strictly monitored, it can be difficult to assess the age of a fish when it is caught. Therefore, body length often acts as a sort of proxy for age although there is not a defined age-length relationship as many factors can influence body size. In any case, body length at first sexual maturity can be a useful measure for researchers to determine whether or not an individual is likely to be able to breed. However, seeing as this measurement is only currently known for four species, it would be useful for future mormyroid researchers to report body length at first sexual maturity for other species.

3.2.4 | Laboratory-induced breeding

Induction of gonadal recrudescence, gamete production, and spawning behavior has been achieved in the laboratory for several species of mormyroids (Table 3). However, as acknowledged by Constantinou et al. (2019), obtaining fertilized embryos from weakly electric fish can be challenging and requires careful monitoring of husbandry conditions. Aforementioned, mormyroids breed during the rainy season when the environment undergoes a myriad of changes. This prompted researchers to investigate which environmental factors induce sexual maturation and spawning. In *Pollimyrus adspersus* Kirschbaum (1987) studied several possible factors (conductivity, water hardness, water level, simulated rain drops, water temperature, photoperiod, and pH) and determined that gonadal recrudescence in *P. adspersus* can be induced by decreasing water conductivity. However, there is no target low conductivity that must be reached. Rather, the relative drop in conductivity acts as the trigger. For example, Kirschbaum (1987) was able to induce gonadal recrudescence under several ranges of conductivity including 2300–1200, 800–450, and 350–160 $\mu\text{S cm}^{-1}$.

This method of decreasing water conductivity was used to induce reproductive condition in all species in Table 3. However, a couple of important considerations must be made with regard to using this method to induce breeding. First, this method seems to have varied success among species as well as among individuals of the same species. For example, Nguyen et al. (2017) attempted to induce reproduction in four species of *Campylomormyrus*: *C. compressirostris*, *C. rhynchophorus*, *C. tshokwe*, and *C. numenius*. *C. compressirostris* and *C. rhynchophorus* produced some fertilized eggs during spawning events, but many spawning events resulted in unfertilized eggs. *C. tshokwe* spawning events only resulted in unfertilized eggs, but Nguyen et al. were able to collect gametes to perform artificial reproduction. Finally, in *C. numenius* reproductive condition was achieved in males, but not in females. Second, although Table 3 clearly demonstrates that decreasing water conductivity to induce reproductive condition has worked for a number of species, there are still over 200 species on which this method has not been tested. As such, we cannot claim this method works for all mormyroids, but it does appear to be a good guiding principle for researchers wanting to breed mormyroids in the laboratory.

TABLE 2 Length at first sexual maturity for four mormyroid species.

Species	Length at first sexual maturity (cm)	Reference
<i>Hyperopisus bebe bebe</i>		Nawar (1959a)
Females	30	
Males	28	
<i>Marcusenius macrolepidotus</i>		Kramer (1997)
Females	unknown	
Males	12.3–12.4	
<i>Mormyrops anguilloides</i>		Nawar (1959a)
Females	38	
Males	41	
<i>Mormyrus kanname</i>		Mekkawy & Hassan (2012)
Females	31.7–31.8	
Males	31.5–46.6	

Note: Length at first sexual maturity is unknown for other species.

TABLE 3 Mormyroid species in which gonadal recrudescence and gamete production has been induced by decreasing water conductivity in laboratory housing.

Species	References(s)
<i>Brienomyrus brachystius</i>	Carlson et al. (2000); Constantinou et al. (2019)
<i>Campylomormyrus cassaicus</i>	Kirschbaum & Schugardt (2002)
<i>Campylomormyrus compressirostris</i>	Nguyen et al. (2017)
<i>Campylomormyrus phantasticus</i>	Kirschbaum & Schugardt (2002)
<i>Campylomormyrus rhynchophorus</i>	Nguyen et al. (2017)
<i>Campylomormyrus tamandua</i>	Schugardt & Kirschbaum (1998)
<i>Campylomormyrus tshokwe^a</i>	Nguyen et al. (2017)
<i>Gnathonemus petersii</i>	Kirschbaum et al. (2016)
<i>Hippopotamyrus pictus</i>	Kirschbaum & Schugardt (2002)
<i>Marcusenius mento</i>	Schugardt & Kirschbaum (2006)
<i>Marcusenius macrolepidotus</i>	Werneyer & Kramer (2005)
<i>Mormyrus rume proboscirostris</i>	Kirschbaum & Schugardt (1995); Kirschbaum & Schugardt (2002); Schugardt & Kirschbaum (1998); Schugardt & Kirschbaum (2004)
<i>Mormyrus rume</i>	Schugardt & Kirschbaum (2006)
<i>Paramormyrops magnostipes</i>	Nguyen (2011)
<i>Petrocephalus soudanensis</i>	Kirschbaum & Schugardt (2002); Kirschbaum (2006)
<i>Pollimyrus adspersus</i>	Bratton & Kramer (1989); Kirschbaum & Schugardt (2002); Kirschbaum (1987); Kramer & Postner (1997); Postner & Kramer (1995)
<i>Pollimyrus isidori</i>	Diedhiou et al. (2007)
<i>Pollimyrus castelnau</i>	Baier & Kramer (2007)
<i>Pollimyrus marianne</i>	Baier & Kramer (2007)

^aSuccessfully bred using artificial fertilization but did not naturally spawn due to male aggression towards the female.

Other factors to consider when breeding mormyroids are the number of individuals housed together, materials present in the tank, and the possibility of aggressive behavior. As demonstrated by Nguyen et al. (2017), *C. rhynchophorus* will spawn as a mating pair, but *C. compressirostris* only successfully spawn as a group of two males and two females. Some species require or prefer certain materials in the tank. For example, *Pollimyrus* species require material such as plants for males to build nests (Kirschbaum, 1987). Many mormyroids do not build nests and thus do not need such materials, yet they may still demonstrate a preference for certain spawning substrates. For example, *Campylomormyrus cassaicus* and *Mormyrus rume proboscirostris* demonstrate a preference for gravel substrate and running water during spawning and *Hippopotamyrus pictus* prefers substrate with holes (Kirschbaum & Schugardt, 2002). Finally, as in many animal species, male aggression is heightened when reproductive condition is achieved in many mormyroid species (Constantinou et al., 2019; Nguyen et al., 2017). This aggression can be intrasexual or intersexual and can even prevent breeding pairs from being able to spawn naturally, as seen in *C. tshokwe* (Nguyen et al., 2017).

3.3 | Gonads and gametes

3.3.1 | Ovary structure and oogenesis

Mormyroidea females have a single unpaired ovary located on the left side of the body. However, Nawar (1959a) reported two cases of a right ovary represented by a vestigial hind part of the gono-duct (in *Gnathonemus cyprinoides* and *Hyperopisus bebe bebe*) and two cases of fully formed paired ovaries have been reported in *Mormyrus kannume* (Golubtsov & Orlov, 2014; Okedi, 1970). Although unique in comparison to many teleosts, a singular ovary is characteristic of Osteoglossiformes (with the exception of *Pantodon buchholzi*; Nysten, 1962). Ovary structure and oogenesis has been studied in four species of mormyroids (*Brevimyrus niger*, *Gnathonemus petersii*, *Marcusenius cyprinoides*, and *Mormyrus rume*) and in all four species the ovary is cystovarian, the ovarian wall is formed by a multilayer epithelium, and the epithelium lining the lumen is squamous (Dymek et al., 2022). In wild populations, ovary recrudescence occurs with the onset of the rainy season and in the laboratory can be induced by decreasing water conductivity (Kirschbaum, 1987). One study has

examined the effects of hormones in ovary recrudescence and found that exposure to amortizable 17 α -methyltestosterone results in acceleration of ovary growth and induction of vitellogenesis in *Brevimyrus niger* (Stell & Moller, 2017b). Ovary maturity stages have been described in one species, *Mormyrus kanume*: (1) immature, (2) resting stage, (3) maturation, (4) maturity, (5) reproduction, and (6) spent (Aly, 1993).

3.3.2 | Eggs

Egg size in Mormyroidea varies from 0.69 mm for the smallest reported eggs in *Mormyrus kanume* (El-Etriby, 1985) to 7.9 mm for the largest reported eggs in *Gymnarchus niloticus* (Agbugui et al., 2021). Table 4 lists reports of average egg diameter by species. For *Gymnarchus*, two measurements are given because average egg diameter has been calculated in two separate populations. In one species, *Mormyrus kanume*, authors acknowledge that egg diameter varies with fish size and age, time of year, and population (Aly, 1993; Ashour et al., 1990; El-Etriby, 1985; Mekkawy & Hassan, 2012; Zaher et al., 1991). Therefore, it is possible that these factors also have an effect on egg size in other species. In other fish species, egg size is used as an indicator of egg quality as it can represent the maternal investment in gamete production (Lahnsteiner et al., 2008). Typically,

fish egg size tends to decrease as the female's egg reserves gradually deplete over subsequent spawns (Lahnsteiner et al., 2008). The link between egg size and offspring viability in mormyroids is unknown, but may represent a fertile area of research. For example, if large egg size is positively correlated with offspring survival in mormyroids then measuring egg sizes of reproductively active females could be a method to assess females for reproductive potential.

Other mormyroid egg characteristics described include coloration, adhesiveness, and, in one species, accessory structure morphology. In *Gymnarchus niloticus*, egg color has been described as golden yellow or amber-like (Budgett, 1901; Oladosu, 1997). *Hyperopisus bebe bebe* eggs are yellow in color, semitransparent, and are slightly ovular in shape (Budgett, 1901). *Pollimyrus* eggs are nonadhesive (Diedhiou et al., 2007; Kirschbaum, 1987), but eggs of some species (*Campylomormyrus tamandua*, *C. phantasticus*, *Hippopotamyrus pictus*, and *Mormyrus rume proboscirostris*) have been described as slightly to strongly adhesive (Kirschbaum & Schugardt, 2002). Diedhiou et al. (2007) described the chorion of *Pollimyrus isidori* eggs as appearing smooth at low magnification, but at high magnifications using scanning electron microscopy a "curly microplicae net" can be seen covering the entire surface of the egg. The function of these accessory structures on the surface of *P. isidori* eggs is unknown. It is also unknown if these structures are widespread among the eggs of mormyroids or if they are unique to *P. isidori*.

TABLE 4 Average egg diameters for several Mormyroidea species.

Species	Average egg diameter (mm \pm standard deviation)	Reference(s)
<i>Gymnarchus niloticus</i>	5.41 \pm 1.29	Agbugui et al. (2021); Opadokun & Ajani (2015)
	4.72 \pm 1.69	
<i>Campylomormyrus cassaicus</i>	2.0	Kirschbaum & Schugardt (2002)
<i>Campylomormyrus phantasticus</i>	3.0	Kirschbaum & Schugardt (2002)
<i>Gnathonemus cyprinoides</i>	1.35	Nawar (1959a)
<i>Gnathonemus victoriae</i>	1.63 \pm 0.007	Okedi (1970)
<i>Gnathonemus longibarbis</i>	1.60 \pm 0.012	Okedi (1970)
<i>Hippopotamyrus pictus</i>	3.0	Kirschbaum & Schugardt (2002)
<i>Hyperopisus bebe bebe</i>	1.72	Nawar (1959a)
<i>Marcusenius grahami</i>	1.52 \pm 0.014	Okedi (1970)
<i>Marcusenius nigricans</i>	2.38 \pm 0.025	Okedi (1970)
<i>Mormyrus cashive</i>	1.7	Nawar (1959a)
<i>Mormyrus kanume</i>	2.14 \pm 0.014	Okedi (1970)
<i>Mormyrus rume proboscirostris</i>	2.5	Kirschbaum & Schugardt (2002)
<i>Petrocephalus bane</i>	1.45	Nawar (1959a)
<i>Petrocephalus catostoma</i>	1.57 \pm 0.012	Okedi (1970)
<i>Petrocephalus soudanensis</i>	1.8	Kirschbaum & Schugardt (2002)
<i>Pollimyrus adspersus</i>	2.5	Kirschbaum & Schugardt (2002)

Note: Diameter is measured in millimeters. When available, standard deviation for the measurement is also given.

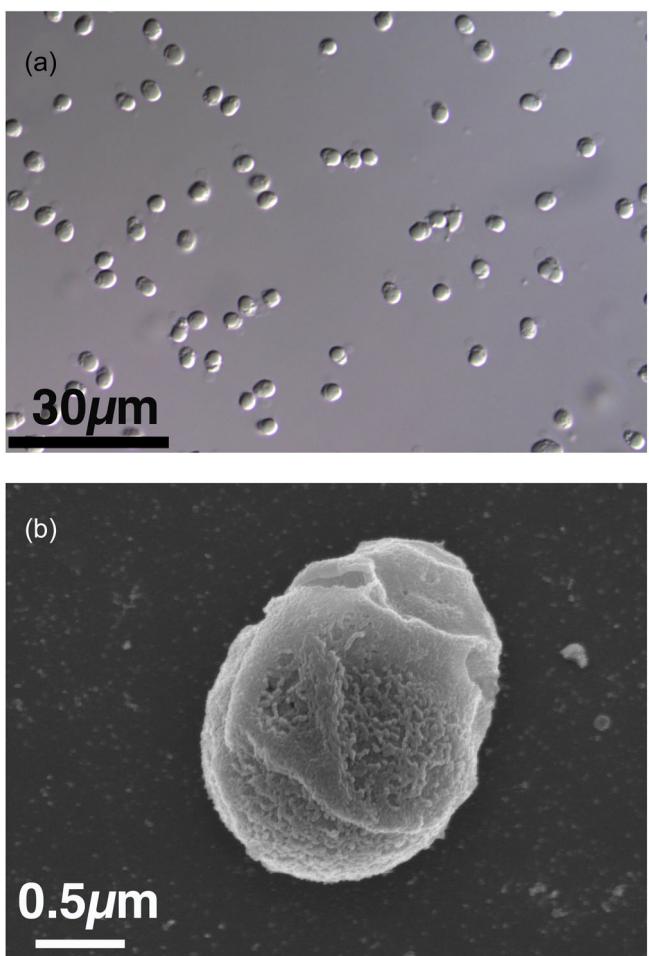
3.3.3 | Female fecundity

Measures of female fecundity have been conducted in several species; however, the measurement method varies. For example, fecundity can be measured as the total number of eggs within the ovary of a mature female (absolute fecundity) or the total number of eggs in the ovary with relation to weight (relative fecundity). Here, we will discuss absolute fecundity because it is the most common measurement method within the literature. However, readers should be hesitant to compare absolute fecundity among species since mormyroid species vary greatly in size and thus in possible capacity for eggs. Table 5 lists reported averages for absolute fecundity of mature females for several mormyroid species.

When measuring fecundity, it is important to consider the reproductive stage of the fish. For example, a fish with an immature or spent ovary will have fewer eggs than a fish with a fully mature ripe ovary. Fecundity can also vary with factors such as weight, length, age, and time of year. Authors have found a significant positive correlation between weight and fecundity in *Hyperopisus bebe bebe* (Nawar, 1959b), *Hyperopisus bebe occidentalis* (Oniye & Onimisi, 2010), *Gymnarchus niloticus* (Agbugui et al., 2021; Opadokun & Ajani, 2015), and *Mormyrus kannume* (Mekkawy & Hassan, 2012). Positive significant correlations between length and fecundity have been found in *Mormyrus kannume* (Mekkawy & Hassan, 2012), *Gymnarchus niloticus* (Agbugui et al., 2021; Opadokun & Ajani, 2015), and *Hyperopisus bebe bebe* (Nawar, 1959b). However, the correlation between length and fecundity was determined insignificant in *Hyperopisus bebe occidentalis* (Oniye & Onimisi, 2010). Mekkawy and Hassan (2012) found variation in fecundity based on age and time of year in *Mormyrus kannume*: fecundity increased with age (up to 6 years old) and average fecundity was highest during the month of December. Kankonda et al. (2016) also demonstrated variation in fecundity based on time of year in *Stomatorhinus cf. polli* which has higher fecundity during rainy season periods and lower fecundity

during other parts of the year. These variations in fecundity based on season are concordant with the breeding season occurring during the rainy season. Similar to egg size, female fecundity might be a useful indicator of mormyroid female reproductive potential. Therefore, it is significant to consider factors that may affect female fecundity when designing breeding setups.

3.3.4 | Testis and sperm


Mormyroidea males have a single unpaired testis located on the left side of the body. Testis structure has been studied in one species, *Pollimyrus isidori*, and was determined to be tubular (Lücker & Kramer, 1981). In wild populations, testis recrudescence occurs with the onset of the rainy season and in the laboratory can be induced by decreasing water conductivity (Kirschbaum, 1987). Stages of testis growth throughout sexual maturity and spawning have not been defined.

Mormyroidea sperm is unique because it is the only known case of aflagellate sperm in a vertebrate lineage (Morrow, 2004). This phenotype was first described in *Gymnarchus niloticus* by Mattei et al. (1967) and has subsequently been described in other species including *Gnathonemus senegalensis*, *Hyperopisus bebe bebe*, *Mormyrus rume*, *Petrocephalus bovei* (Mattei et al., 1972), and *Paramormyrops kingsleyae* (Figure 3). The sperm of Gymnarchidae and Mormyridae have notable differences. Gymnarchidae sperm lack the typical motility apparatus of sperm, the flagellum, but have secondarily evolved motility utilizing a submembrane network of microtubules (Mattei et al., 1967). This microtubule network allows them to move in an ameboid-like fashion and is similar to the evolutionary trajectory of sperm motility seen in some insect lineages (Dallai, 1979). According to Mattei (1991), Gymnarchidae sperm "no longer has the appearance of a spermatic cell" due to its uncondensed central nucleus, abundant cytoplasm, and the submembrane microtubule

TABLE 5 Absolute fecundity of several species of Mormyroidea.

Species	Average number of eggs within the mature ovary \pm SD	Reference(s)
<i>Gymnarchus niloticus</i>	925.61 \pm 106.90	Agbugui et al. (2021); Opadokun & Ajani (2015)
	957.69 \pm 112.31	
<i>Hippopotamyrus ansorgii</i>	3231 (SD not reported)	Odedeyi & Odedire (2017)
<i>Hyperopisus bebe occidentalis</i>	2822.4 \pm 781.43	Oniye & Onimisi (2010)
<i>Marcusenius grahami</i>	2177 \pm 224	Okedi (1970)
<i>Marcusenius nigricans</i>	408 \pm 18	Okedi (1970)
<i>Mormyrus kannume</i>	6869 \pm 421	Okedi (1970)
<i>Gnathonemus victoriae</i>	6363 \pm 421	Okedi (1970)
<i>Gnathonemus longibarbis</i>	4688 \pm 507	Okedi (1970)
<i>Petrocephalus catostoma</i>	557 \pm 25	Okedi (1970)

Abbreviation: SD, standard deviation.

FIGURE 3 Light microscope (a) and scanning electron microscope (b) images of mormyroid sperm (species *Paramormyrops kingsleyae*). The sperm cells lack flagella, but retain the spherical head and distinct midpiece sections typical of simple teleost sperm.

network. On the other hand, Mormyridae sperm structure is more similar to that of other fishes with a round nucleus, two centrioles at the nucleus base, and mitochondria in vesicular cytoplasm (Figure 1d) (Mattei, 1991). The overall shape of Mormyridae sperm is ovoid with the diameter of the larger side being 5–6.5 μm and the smaller side being 3.5–4 μm (Mattei et al., 1972). The aflagellate sperm of mormyroids has great potential as a focus of research on the evolution of gametes and evolutionary pressures that act upon sex traits. The mechanisms by which mormyroid sperm travel to the egg and subsequent sperm-egg interactions are unknown in. A deeper understanding of these gamete-level interactions may prove to be a fruitful area of research in regard to the goal of mormyroid laboratory breeding.

3.4 | Courtship and spawning behavior

Understanding mormyroid courtship and spawning behavior is essential to the researcher wanting to breed mormyroids in the laboratory. For example, mormyroids are fractional spawners which

means that fish cannot reach their full reproductive potential with just one night of laboratory spawning and as such need to be allowed to spawn for multiple days/weeks. Furthermore, for species with identifiable courtship and spawning behavior, careful observation of fish behavior can be indicative of reproductive condition and therefore if laboratory-induced sexual maturity and spawning were successful. Finally, some species, including the nest-building species of the genus *Pollimyrus*, require materials to build nests within the breeding aquaria, and without knowing this and providing them with such materials breeding may not be successful. The below sections describe fractional spawning and fertilization rates, nest building and parental care, and courtship and spawning behaviors in mormyroids.

3.4.1 | Fractional spawning and fertilization rate

Mormyroidea are external fertilizers and fractional spawners (Kirschbaum, 1987; Nguyen, 2011; Schugardt & Kirschbaum, 2004). Fish will mate on several different nights throughout the breeding season, but also have multiple bouts of spawning during a single night. For example, *Pollimyrus adspersus* females lay between 2 and 4 eggs per spawning bout and will lay between 50 and 92 eggs per spawning night after multiple bouts of spawning in the laboratory (Kirschbaum, 1987). Both the number of eggs produced during a spawning night and the spawning interval, time between subsequent spawning nights, vary among species (Table 6). Species differences in size, which can directly influence female fecundity (discussed in Section 3.3.3), may explain some of the variation among species in egg production per night. Furthermore, some species are known to engage in egg-eating, such as *Campylomormyrus compressirostris* (Nguyen et al., 2017) and *Marcusenius macrolepidotus* (Werneyer & Kramer, 2005), so actual number of eggs spawned may be higher in some cases. With regard to spawning interval, for some species, the spawning interval for a pair of fish is much longer after the first spawn and/or just before the last spawn and is shorter in between other spawning nights (Kirschbaum, 1987).

Fertilization rate has been assessed in a few species. Using artificial fertilization in *Mormyrus kanume*, Iles (1960) reports that 10%–25% of eggs were fertilized. During laboratory matings of *Campylomormyrus*, 7.3%–42.4% of *C. compressirostris* eggs were fertilized and 0%–67.1% of *C. rhynchophorus* eggs were fertilized (Nguyen et al., 2017). Nguyen et al. (2017) observed that fertilization rates for specific pairs of fish increased over successive spawning events and hypothesizes that this could be due to increased coordination of the fertilization pocket during spawning. Rates of fertilization using artificial fertilization or natural spawning within a laboratory setting have been shown to decrease fertilization rates in other fishes (Coward et al., 2002) and therefore these rates may not reflect fertilization rates in wild populations of mormyroids. Furthermore, fertilization rates in mormyroids are low relative to some other fishes, such as the zebrafish which has a fertilization rate of 86% (Mukhi & Patiño, 2007).

3.4.2 | Nest building and parental care

Nest building and parental care have been reported in two genera, *Gymnarchus* and *Pollimyrus*, and appears to be absent from others. With the onset of the rainy season, wild *G. niloticus* build elliptical floating nests of plant material. Budgett (1901) reported the exterior measurements of the nest to be two feet by one foot (60.96 × 30.48 cm) and interior measurements to be one foot by six inches (30.5 × 15.24 cm). In terms of nest structure, three sides project out of the water and the fourth lies approximately two inches (5.08 cm) below the surface. Spawning occurs within 10 days of nest building (Hopkins, 1986; Oladosu, 1997). Adults demonstrate parental care by guarding nests and offspring from potential threats including humans who have reported the fish have a “very formidable bite” (Agbugui et al., 2021; Budgett, 1901). In laboratory populations of *Pollimyrus adspersus*, males build 3 × 3 × 4 cm nests using plant materials within their territories days to weeks before spawning occurs (Bratton & Kramer, 1989; Kirschbaum, 1987). Males may build additional nests if subsequent spawning events occur less than 18 days apart. After spawning, males will collect the eggs in their mouth and deposit them into the nest. Males guard embryos and larvae for several weeks and occasionally fan the eggs using the caudal fin.

3.4.3 | Locomotor, acoustic, and electrical behavior

Courtship and spawning behavior have been studied in some mormyroid species including *Marcusenius macrolepidotus*, *Brienomyrus brachystius*, and four species of *Pollimyrus*. These behaviors can consist of locomotor, acoustic, and electrical displays and may be simple or complex. For characterization of communication signals discussed below see Crawford et al. (1986) for acoustic signals and Bratton and Kramer (1989), Werneyer and Kramer (2005), and Wong and Hopkins (2007) for electrical signals.

Locomotor behavior: Locomotor behavior during courtship/spawning varies among species, but generally may consist of behaviors such as the female repeatedly entering/exiting the male's territory, initial male aggression towards the female (including lunging and chasing), decrease in male aggression, fish hovering near each other, head-to-tail circling, and coupling at the genital pore (Baier & Kramer, 2007; Bratton & Kramer, 1989; Kirschbaum, 1987; Werneyer & Kramer, 2005; Wong & Hopkins, 2007). Upon coupling, the male flexes his anal fin concavely around the female's genital pore to create a closed-off fertilization pocket into which eggs and sperm are released. In *Pollimyrus* courtship, fish may become coupled but not release gametes and instead will rotate vertically before separating (Bratton & Kramer, 1989; Kirschbaum, 1987). In terms of duration, courtship before spawning may last minutes, as in *M. macrolepidotus* (Werneyer & Kramer, 2005), or several hours, as in *Pollimyrus* (Bratton & Kramer, 1989; Kirschbaum, 1987). In *P. adspersus*, periods of courtship with no spawning event on the same night have been observed (Bratton & Kramer, 1989). Spawning duration also varies; *Pollimyrus* may spawn for 2–6 h (Bratton & Kramer, 1989) while the two described spawning events in *M. macrolepidotus* lasted 20 and 45 min each (Werneyer & Kramer, 2005). However, fish do not remain coupled during this entire duration. Rather, fish repeatedly couple, spawn, and separate over this period of time. After spawning, *Pollimyrus* males will return to the spawn site, collect eggs, and deposit them into a nest constructed of plant material where they will engage in parental care of eggs and larvae (Baier & Kramer, 2007; Bratton & Kramer, 1989; Kirschbaum, 1987). Other species do not exhibit parental care.

Acoustic behavior: Mormyroidea are well-known for electric communication, but they are also capable of acoustic communication. In the context of breeding, these acoustic signals have only been studied in *Pollimyrus*. During courtship/spawning *P. adspersus* males produce three types of vocalizations: grunts, moans, and growls. The male begins producing these vocalizations before nest building.

TABLE 6 Eggs produced per spawning night and spawning intervals for several mormyroid species.

Species	Eggs produced per spawning night	Spawning interval (days)	Reference(s)
<i>Hippopotamyrus pictus</i>	66–772	20–30	Kirschbaum & Schugardt (2002)
<i>Marcusenius macrolepidotus</i>	25–60 per bout, 27 bouts ^a	12	Werneyer & Kramer (2005)
<i>Mormyrus rume proboscirostris</i>	364	21	Schugardt & Kirschbaum (2004)
<i>Petrocephalus soudanensis</i>	180–283	34	Kirschbaum & Schugardt (2002)
<i>Pollimyrus adspersus</i>	50–192	5–20	Bratton & Kramer (1989); Kirschbaum (1987)
<i>Campylomormyrus cassaicus</i>	121–1662	15–80	Kirschbaum & Schugardt (2002)
<i>Campylomormyrus compressirostris</i>	132 ^a	18	Nguyen et al. (2017)
<i>Campylomormyrus phantasticus</i>	250–400	14–43	Kirschbaum & Schugardt (2002)
<i>Campylomormyrus rhynchophorus</i>	645	6–66	Nguyen et al. (2017)
<i>Campylomormyrus tshokwe</i>	608	10–75	Nguyen et al. (2017)

Note: All measurements come from breeding in laboratory experiments.

^aKnown to engage in egg eating so actual counts may be higher.

Vocalization frequency increases as the spawning night approaches and is inversely correlated with aggression towards the female as she visits the male's territory. Vocalization frequency peaks during the hours before courtship but decreases significantly during courtship and spawning activity. In between spawning bouts, the male will resume vocalization but will cease vocalization when the female returns. Vocalizations produced by the female have not been reported. Crawford et al. (1986) concluded that these vocalizations are advertisement calls to inform the female of a potential mate and breeding site. Similar vocalizations have also been reported in *P. isidori* (Crawford et al., 1997) and *P. castelnau* and *P. marianne* (Baier & Kramer, 2007).

Electrical behavior: Finally, electrical behaviors during courtship and spawning have been observed and vary among species. In *B. brachystius*, fish engage in "electrical duetting" where a pair will produce an alternating sequence electrical communication signals. Males will produce rasps and females will produce bursts in response, or vice versa (Wong & Hopkins, 2007). Wong and Hopkins (2007) hypothesize that rasps and bursts may function as the male's advertisement signal or convey fitness information. In *M. macrolepidotus*, males will switch between periods of extremely short interdischarge intervals (IDIs) and longer IDIs during courtship; however, these electrical patterns were not correlated with any specific courtship behavior and have also been observed in agonistic interactions (Werneyer & Kramer, 2005).

Pollimyrus exhibit more complex electrical behavior during courtship/spawning than the other species. These electrical behaviors consist of different patterns of EOD pulses that can be described as either low and/or medium, depending on how quickly pulses are produced, and uniform or sporadic, depending on if pulses are produced at a regular interval or not. On nights when a spawning event occurs, *P. adspersus* females will produce a medium uniform rate before entering the males territory, but will become electrically silent when entering the territory. Once courtship is initiated, the female will produce a low-medium sporadic rate and after fish separate the female resumes a medium uniform rate. When the female enters his territory, the male switches from the typical territory patrol EOD pattern, a medium sporadic rate, to a medium uniform rate. The male continues to produce this medium uniform rate throughout courtship, but is electrically silent during coupling. After fish separate, the male resumes a medium uniform rate. In *P. castelnau* and *P. marianne* electrical behavior is different (Baier & Kramer, 2007). The male is electrically silent when the female approaches the spawning site, but will produce double pulse patterns of alternating short and long IDIs during other steps of courtship and spawning. The female produces regular 50 ms IDIs during all steps of courtship and spawning.

3.5 | Artificial reproduction and hybridization

Attempts at artificial reproduction have only been reported in a few species of mormyroids: *Mormyrus kanume* (Iles, 1960),

Campylomormyrus tshokwe (Nguyen et al., 2017), and *Brienomyrus brachystius* (Constantinou et al., 2019). There have been no reports of cryopreservation of sperm for later use in artificial fertilization. Artificial reproduction has also been used to create Intragenus and intergenus mormyroid hybrids which is discussed below.

Successful hybrid matings of individuals from different species morphs and even different genera have occurred. The *Paramormyrops magnostipes* (previously *Brienomyrus magnostipes*) species complex is a group of three closely related species that are indistinguishable with regard to external morphology, but differ in EOD waveform (Arnegard et al., 2005). It is hypothesized that differences in waveform are used for species recognition during courtship, but successful hybridization between morphs has been observed in wild populations in Gabon. Similarly, there is evidence for hybridization between different electric signal morphs of *Paramormyrops kingsleyae* which also reside in Gabon (Gallant et al., 2011; Picq et al., 2020). Viable hybrids of mormyroids in wild populations can have great consequences for studies in which species is an important variable, including speciation work, and as such the possibility of hybridization should be considered by researchers.

Hybridization has also been achieved in the laboratory. Intragenus and intergenus *Campylomormyrus* hybrids have been created in the laboratory using artificial fertilization (Kirschbaum et al., 2016; Kornienko et al., 2022). Intragenus hybrids were created using pairs from the following species: *C. compressirostris*, *C. tamandua*, *C. tshokwe*, and *C. rhynchophorus*, and *C. numenius*. Hybrids from all pairs of species were viable, and *C. compressirostris* female × *C. tamandua* male hybrids were fertile. Attempted intergenus hybridizations include *Hippopotamyrus pictus* female × *C. numenius* male (embryos nonviable), *C. rhynchophorus* female × *Mormyrus rume proboscirostris* male (viable up to 40 days), and *C. rhynchophorus* female × *Gnathonemus petersii* male (viable to adulthood, fertile).

4 | CONCLUSIONS AND FUTURE DIRECTIONS

The Osteoglossiform superfamily Mormyroidea is a species-rich and diverse group of teleost fishes that possesses great potential in biomedical research (see Section 2). However, the inability to reliably breed these fishes in the laboratory setting has hindered widespread use of mormyroids as biomedical models. To facilitate progress toward the goal of reliable mormyroid laboratory breeding, we extensively examined the current landscape of mormyroid reproductive biology literature in this review. While mormyroids exhibit considerable variation across species, there are several common themes within the group including (1) sexual dimorphism in anal fin morphology and/or electric signal structure/signaling behavior in several species, (2) unpaired gonads that recrudesce during the rainy season in the wild or with decreasing water conductivity in the laboratory, (3) aflagellate sperm in all species examined thus far, and (4) fractional spawning and external fertilization in all species and courtship/parental care present in some species. We would also like

to recognize several key points that the aspiring mormyroid breeder should be aware of. First, reproductive condition can be induced in the laboratory by exposing fish to a decrease in water conductivity. However, there is varied success among and within species using this method. Second, some species (such as *Pollimyrus* sp. and *Gymnarchus niloticus*) build nests and as such require additional materials to be present in the tank. Although other species do not build nests, they may show some preference for certain spawning substrates. Third, since mormyroids are fractional spawners, they cannot reach their full reproductive output with a single night of spawning. Therefore, fish should be set up for mating for several weeks and allowed to spawn for multiple nights. Finally, reported fertilization rates range from 0% to 67.1% and vary with species and fertilization method (natural spawning vs artificial fertilization). Despite the abundance of information pertaining to mormyroid reproductive biology that is available, there are several areas that are understudied or wholly unexplored, many of which may lead to insights about how to improve laboratory breeding success.

First, the information known about Mormyroidea reproductive biology comes from 42 species (considering the *Paramormyrops magnostipes* complex as a single species, the subspecies *M. rume rume* and *M. rume proboscirostris* as one species, and the subspecies *H. bebe bebe* and *H. bebe occidentalis* as one species) which represents approximately 18% of the 232 currently recognized species (Peterson, Sullivan, Hopkins, et al., 2022). Furthermore, there is disparity in the depth of information known about each species. For example, there has been only one study of the genus *Ivindomyrus* (Lavoué et al., 2008), whereas the genus *Pollimyrus* has been studied extensively with regard to anatomical and electrical sex differences (Bratton & Kramer, 1989; Kirschbaum, 1987), breeding season (Crawford et al., 1997), testis structure (Lücker & Kramer, 1981), triggers of gonadal recrudescence (Kirschbaum, 1987), egg size (Kirschbaum & Schugardt, 2002; Postner & Kramer, 1995), and detailed accounts of courtship and spawning behaviors (Baier & Kramer, 2007; Bratton & Kramer, 1989; Kirschbaum, 1987). Since Mormyroidea are so diverse, it would be imprudent to assume that the reproductive biology of any individual mormyroid species applies to the entire group. Our main message is to encourage future researchers to increase the taxonomic scope of mormyroid reproductive research, which may help answer questions relevant to laboratory breeding success. In particular, (1) How prevalent are the anal fin and electric signal sexual dimorphisms across the group? And are there any other notable sexual dimorphisms that may be used for sex identification purposes in some species? (2) Is decreased water conductivity a reliable trigger for gonadal recrudescence in all mormyroids, as it seems to have varied success? (3) What is the ideal laboratory mating setup for different species (sex ratios, pair/group mating dynamics, nesting materials, preferred spawning substrate)?

A second, poorly understood aspect of mormyroid reproduction are the physiological and anatomical changes induced by the onset of the rainy season or decrease in water conductivity. One study examined ovary structure in four mormyroid species (Dymek et al., 2022) which gives some insights into changes that occur within the ovary throughout oogenesis. However, the use of only 1–2

specimens per species in this study limits known information about oogenesis to a single point of the reproductive cycle for each species. An expansion upon this study to include (1) more species and (2) multiple points during the reproductive cycle for each species would be beneficial to understanding female gonadal recrudescence and gamete production. Similarly, a study such as this should be completed for males as well to understand spermatogenesis, particularly given the aflagellate morphology of mormyroid sperm. Furthermore, the mechanisms by which environmental triggers lead to reproductive condition in mormyroids are presently unknown, and may be a fruitful area of future study: elementary physics suggest that the electrosensory system of mormyroids is susceptible to changes in water conductivity, suggesting a potential mechanism for detecting seasonal change in conductivity, but the connection between these reliable environmental cues, hormonal state, and gonadal development needs much deeper exploration.

Finally, there are several outstanding questions regarding mormyroid sperm. First, mormyroid sperm is the only known case of aflagellate sperm evolving within a vertebrate lineage (Morrow, 2004). What evolutionary pressures resulted in the evolution of aflagellate sperm within only this vertebrate lineage? Second, in other animal taxa, absent or abnormal sperm flagella is a common cause of infertility and typically is linked to some genetic mutation (Chemes et al., 1998). What is the genomic basis of sperm aflagellism within mormyroids and might be it something to scan for in human males with asthenospermia? Finally, the fertilization dynamics of mormyroid sperm are wholly unknown. How does mormyroid sperm successfully travel to the egg and down the micropyle to initiate fertilization without the typical motility apparatus? There are several possible avenues to approach this question. In some teleost species, accessory structures on the egg surface function in guidance of sperm to the micropyle (Amanze & Iyengar, 1990; Riehl & Kokoscha, 1993) and similar structures even appear within species of Osteoglossiformes (Britz, 2004; Daget, 1957; Mookerjee & Mazumdar, 1946; Yanwirsal et al., 2017). Therefore, it is possible that such features exist within mormyroids that have yet to be discovered due to lack of studies on egg morphology (with the exception of Diedhiou et al. (2007) which provides only a brief description of the *Pollimyrus isidori* egg surface). Other areas that may be pertinent to explore regarding mormyroid fertilization dynamics may be ovarian fluid composition and presence of chemoattractants, both of which are important in fertilization in some teleosts (Alonso et al., 2016; Kholodnyy et al., 2020; Myers et al., 2020) but are completely unexplored within mormyroids.

Mormyroids have great potential as a model system in several areas including extreme encephalization, the neural basis of behavior, muscle evolution and development, craniofacial evolution and development, ion channel function, and flagella/ciliary function. Despite this enormous potential, they are notoriously difficult to breed in the laboratory setting which currently hinders widespread use of mormyroids as biomedical model organisms. Here, we have comprehensively integrated available data on mormyrid breeding with the ultimate goal of breaking this present impasse, and have

highlighted major questions and future directions for research that may 1 day promote the more widespread use of mormyroids as a biomedical research model.

ACKNOWLEDGMENTS

The authors would like to acknowledge Michigan State University's (MSU) Ecology, Evolution, and Behavior Program for their support during the writing of the manuscript, the MSU VERGE group for feedback on the manuscript, Dr. Bruce Carlson for providing brain images to guide our illustrations, and the organizers of the Aquatic Models for Biomedical Evo-Devo special issue for the opportunity to submit our review. This work was supported through the National Science Foundation (grant number 2243230) and the Michigan State University Ecology, Evolution, and Behavior Core Faculty Seed Grant Program.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

ORCID

Alyssa N. Saunders <http://orcid.org/0009-0005-0569-4843>

REFERENCES

Adite, A., Winemiller, K. O., & Fiogb  , E. D. (2006). Population structure and reproduction of the African bonytongue *Heterotis niloticus* in the S   River-Floodplain system (West Africa): Implications for management. *Ecology of Freshwater Fish*, 15(1), 30–39.

Adjibade, K. N., Adite, A., Arame, H., Chikou, A., & Abou, Y. (2020). Aspects of life-history strategy of *Marcusenius senegalensis* (Pisces: Osteoglossiformes: Mormyridae; Steindachner, 1870) from Niger river in Northern Benin. *International Journal of Forest, Animal and Fisheries Research*, 4, 1–13.

Abugui, M. O., Abhulimen, F. E., & Adeniyi, A. O. (2021). Abundance, distribution, morphometric, feeding evaluation and the reproductive strategies of *Gymnarchus niloticus* in the lower river Niger at Agenebode, Edo State Nigeria. *Journal of Applied Sciences and Environmental Management*, 25(8), 1371–1377.

Albertson, R. C., Cresko, W., Detrich, H. W., & Postlethwait, J. H. (2009). Evolutionary mutant models for human disease. *Trends in Genetics*, 25(2), 74–81.

Alonso, S. H., Stiver, K. A., & Marsh-Rollo, S. E. (2016). Ovarian fluid allows directional cryptic female choice despite external fertilization. *Nature Communications*, 7(1), 12452.

Aly, A. M. (1993). *Biological studies on mormyrid fishes of the High Dam reservoir* (M.Sc. Thesis). Assiut University, Egypt.

Amanze, D., & Iyengar, A. (1990). The micropyle: A sperm guidance system in teleost fertilization. *Development*, 109(2), 495–500.

Arnegard, M. E., Bogdanowicz, S. M., & Hopkins, C. D. (2005). Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry. *Evolution*, 59(2), 324–343.

Arnegard, M. E., Zwickl, D. J., Lu, Y., & Zakon, H. H. (2010). Old gene duplication facilitates origin and diversification of an innovative communication system—Twice. *Proceedings of the National Academy of Sciences of the United States of America*, 107(51), 22172–22177.

Ashour, M. B., Zaher, M. M., & Rida, S. (1990). Ecological studies on the female reproductive cycle of some fishes of the river Nile at Beni Suef area III. Histological studies of the seasonal cycle of the ovary of *Chrysichthys auratus*. *Journal of the Egyptian German Society of Zoology*, 2, 287–297.

Baier, B., & Kramer, B. (2007). Electric communication during courtship and spawning in two sibling species of dwarf stonebasher from southern Africa, *Pollimyrus castelnau* and *P. marianne* (Mormyridae, Teleostei): Evidence for a non species-specific communication code? *Behaviour*, 144(1), 115–142.

Bass, A. H. (1986). Electric organs revisited: Evolution of a vertebrate communication and orientation organ. In T. H. Bullock & W. Heiligenberg (Eds.), *Electroreception* (pp. 13–70). John Wiley and Sons.

Bass, A. H., Denizot, J. P., & Marchaterre, M. A. (1986). Ultrastructural features and hormone-dependent sex differences of Mormyrid electric organs. *Journal of Comparative Neurology*, 254(4), 511–528.

Bass, A. H., & Hopkins, C. D. (1985). Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishes. *Journal of Comparative Physiology A*, 156(5), 587–604.

Bell, C. C. (1989). Sensory coding and corollary discharge effects in mormyrid electric fish. *Journal of Experimental Biology*, 146(1), 229–253.

Bell, C. C., Han, V., & Sawtell, N. B. (2008). Cerebellum-like structures and their implications for cerebellar function. *Annual Review of Neuroscience*, 31, 1–24.

Blake, B. F. (1977). Aspects of the reproductive biology of Hippopotamymus pictus from Lake Kainji, with notes on four other mormyrid species. *Journal of Fish Biology*, 11(5), 437–445.

Bratton, B. O., & Kramer, B. (1989). Patterns of the electric organ discharge during courtship and spawning in the mormyrid fish, *Pollimyrus isidori*. *Behavioral Ecology and Sociobiology*, 24(6), 349–368.

Britz, R. (2004). Egg structure and larval development of *Pantodon buchholzi* (Teleostei: Osteoglossomorpha), with a review of data on reproduction and early life history in other osteoglossomorphs. *Ichthyological Exploration of Freshwaters*, 15, 209–224.

Brown, B., Benveniste, L. M., & Moller, P. (1996). Basal expansion of anal-fin rays: A new osteological character in weakly discharging electric fish (Mormyridae). *Journal of Fish Biology*, 49(6), 1216–1225.

Budgett, J. S. (1901). On the breeding-habits of some West-African fishes, with an account of the external features in development of *Protopterus annectens*, and a description of the larva of *Polypterus lapradei*. *The Transactions of the Zoological Society of London*, 16(2), 115–136.

Carlson, B. A., Hopkins, C. D., & Thomas, P. (2000). Androgen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish. *Hormones and Behavior*, 38(3), 177–186.

Chemes, H. E., Olmedo, S. B., Carrere, C., Oses, R., Carizza, C., Leisner, M., & Blaquier, J. (1998). Ultrastructural pathology of the sperm flagellum: Association between flagellar pathology and fertility prognosis in severely asthenozoospermic men. *Human Reproduction*, 13(9), 2521–2526.

Cheng, F., Dennis, A. B., Osuoha, J. I., Canitz, J., Kirschbaum, F., & Tiedemann, R. (2023). A new genome assembly of an African weakly electric fish (*Campylomormyrus compressirostris*, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha. *BMC Genomics*, 24(1), 129.

Clarke, S. B., Chapman, L. J., & Krahe, R. (2020). The effect of normoxia exposure on hypoxia tolerance and sensory sampling in a swamp-dwelling mormyrid fish. *Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology*, 240, 110586.

Constantinou, S. J., Nguyen, L., Kirschbaum, F., Salazar, V. L., & Gallant, J. R. (2019). Silencing the spark: CRISPR/Cas9 genome editing in weakly electric fish. *Journal of Visualized Experiments*, 152, e60253.

Corbet, P. S. (1961). The food of non-cichlid fishes in the Lake Victoria basin, with remarks on their evolution and adaptation to lacustrine conditions. *Proceedings of the Zoological Society of London*, 136, 1–101.

Coward, K., Bromage, N. R., Hibbitt, O., & Parrington, J. (2002). Gamete physiology, fertilization and egg activation in teleost fish. *Reviews in Fish Biology and Fisheries*, 12, 33–58.

Crapse, T. B., & Sommer, M. A. (2008). Corollary discharge across the animal kingdom. *Nature Reviews Neuroscience*, 9(8), 587–600.

Crawford, J. D., Hagedorn, M., & Hopkins, C. D. (1986). Acoustic communication in an electric fish, *Pollimyrus isidori* (Mormyridae). *Journal of Comparative Physiology A*, 159(3), 297–310.

Crawford, J. D., Jacob, P., & Benech, V. (1997). Sound production and reproductive ecology of strongly acoustic fish in Africa: *Pollimyrus isidori*, Mormyridae. *Behaviour*, 134(9–10), 677–725.

Curtis, C. C., & Stoddard, P. K. (2003). Mate preference in female electric fish, *Brachyhypopomus pinnicaudatus*. *Animal Behaviour*, 66(2), 329–336.

Daget, J. (1957). Mémoires sur la biologie des poissons du Niger moyen. III. Reproduction et croissance *Heterotis niloticus* Ehrenberg. *Bulletin de l'Institut Français de l'Afrique Noire, Series A*, 1, 295–323.

Dallai, R. (1979). An overview of atypical spermatozoa in insects. In D. W. Fawcett & J. M. Bedford (Eds.), *The spermatozoon* (pp. 253–265). Urban & Schwanzenberg, Inc.

Darwin, C. R. (1859). On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life. John Murray.

Davis, M. C., Dahn, R. D., & Shubin, N. H. (2007). An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. *Nature*, 447(7143), 473–476.

Denizot, J. P., Kirschbaum, F., Max Westby, G. W., & Tsuji, S. (1978). The larval electric organ of the weakly electric fish *Pollimyrus (Marcusenius) isidori* (Mormyridae, Teleostei). *Journal of Neurocytology*, 7(2), 165–181.

Diedhiou, S., Bartsch, P., & Kirschbaum, F. (2007). The embryonic and larval development of *Pollimyrus isidori* (Mormyridae, Osteoglossomorpha): Its staging with reference to structure and behavior. *Bull. Fish Biol.*, 9, 61–88.

Drummond, I. A. (2012). Cilia functions in development. *Current Opinion in Cell Biology*, 24(1), 24–30.

Dymek, A. M., Piprek, R. P., Boroń, A., Kirschbaum, F., & Pecio, A. (2022). Ovary structure and oogenesis in internally and externally fertilizing osteoglossiformes (Teleostei: Osteoglossomorpha). *Acta Zoologica*, 103(3), 346–364.

El-Etriby, S. G. (1985). Biological studies on *Mormyrus kannume* forsk. In *Lake Nasser. Proceedings of First International Conference on Applied Science*, March 30–April 1, 1985, Zagazig University, Zagazig, Egypt.

Finger, S., & Piccolino, M. (2011). *The shocking history of electric fishes: From ancient epochs to the birth of modern neurophysiology*. Oxford University Press.

Ford, K. L., Peterson, R., Bernt, M., & Albert, J. S. (2022). Convergence is only skin deep: Craniofacial evolution in electric fishes from South America and Africa (Apterodontidae and Mormyridae). *Integrative Organismal Biology*, 4(1), obac022.

Fukutomi, M., & Carlson, B. A. (2020). A history of corollary discharge: Contributions of mormyrid weakly electric fish. *Frontiers in Integrative Neuroscience*, 14, 42.

Gallant, J. R. (2019). The evolution and development of electric organs. In B. Carlson, J. Sisneros, A. Popper, & R. Fay (Eds.), *Electroreception: Fundamental insights from comparative approaches*. Springer handbook of auditory research (Vol. 70). Springer. https://doi.org/10.1007/978-3-030-29105-1_4

Gallant, J. R., Arnegard, M. E., Sullivan, J. P., Carlson, B. A., & Hopkins, C. D. (2011). Signal variation and its morphological correlates in *Paramormyrops kingsleyae* provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish. *Journal of Comparative Physiology A*, 197, 799–817.

Gallant, J. R., Hopkins, C. D., & Deitcher, D. L. (2012). Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish *Brienomyrus brachynotus*. *Journal of Experimental Biology*, 215(14), 2479–2494.

Gallant, J. R., Losilla, M., Tomlinson, C., & Warren, W. C. (2017). The genome and adult somatic transcriptome of the mormyrid electric fish *Paramormyrops kingsleyae*. *Genome Biology and Evolution*, 9(12), 3525–3530.

Gallant, J. R., & O'Connell, L. A. (2020). Studying convergent evolution to relate genotype to behavioral phenotype. *Journal of Experimental Biology*, 223(Suppl 1), jeb213447.

Gallant, J. R., Traeger, L. L., Volkening, J. D., Moffett, H., Chen, P. H., Novina, C. D., Phillips, G. N., Anand, R., Wells, G. B., Pinch, M., Guth, R., Unguez, G. A., Albert, J. S., Zakon, H. H., Samanta, M. P., & Sussman, M. R. (2014). Genomic basis for the convergent evolution of electric organs. *Science*, 344(6191), 1522–1525.

Glasauer, S. M. K., & Neuhauss, S. C. F. (2014). Whole-genome duplication in teleost fishes and its evolutionary consequences. *Molecular Genetics and Genomics*, 289, 1045–1060.

Godfrey, E. W., Nitkin, R. M., Wallace, B. G., Rubin, L. L., & McMahan, U. J. (1984). Components of *Torpedo* electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. *The Journal of Cell Biology*, 99(2), 615–627.

Golubtsov, A. S., & Orlov, A. A. (2014). Variation of electric organ discharge in *Mormyrus kannume* (Mormyridae) from south-western Ethiopia in relation to individual size, sex and reproductive status. *Journal of Ichthyology*, 54(2), 177–185.

Hagedorn, M., & Zelick, R. (1989). Relative dominance among males is expressed in the electric organ discharge characteristics of a weakly electric fish. *Animal Behaviour*, 38(3), 520–525.

Harris, M. P., Fallon, J. F., & Prum, R. O. (2002). Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. *Journal of Experimental Zoology*, 294(2), 160–176.

Heiligenberg, W. (1991). *Neural nets in electric fish*. MIT Press.

Hopkins, C. D. (1981). On the diversity of electric signals in a community of mormyrid electric fish in West Africa. *American Zoologist*, 21(1), 211–222.

Hopkins, C. D. (1986). Behavior of Mormyridae. In T. H. Bullock & W. Heiligenberg (Eds.), *Electroreception* (pp. 527–576). John Wiley & Sons, Inc.

Hussain, A., Shakir, H. A., Ali, S., & Qazi, J. I. (2015). Growth coefficient and fecundity of *Chitala chitala* (Osteoglossiformes: Notopteridae) from the river Ravi, Pakistan. *The Journal of Animal & Plant Sciences*, 25, 401.

Ikomi, R. B. (1996). Studies on the growth pattern, feeding habits and reproductive characteristics of the mormyrid *Brienomyrus longianalis* (Boulenger 1901) in the upper Warri River, Nigeria. *Fisheries Research*, 26(1–2), 187–198.

Iles, R. B. (1960). External sexual differences and their significance in *Mormyrus kannume* Forskal. 1775. *Nature*, 188(4749), 516.

Kankonda, A. B., Shabani, I. E., Ndjaki, J. N., Kaswera, C., Tambwe, E. L., & Bolonga, A. B. (2016). Preliminary data on biology of *Stomatorhinus cf Polli* matthes. *International Journal of Aquaculture and Fishery Sciences*, 2(1), 001–007.

Kaufman, J. A., Marcel Hladik, C., & Pasquet, P. (2003). On the expensive-tissue hypothesis: Independent support from highly encephalized fish. *Current Anthropology*, 44(5), 705–707.

Kawasaki, M. (1994). The African wave-type electric fish, *Gymnarchus niloticus*, lacks corollary discharge mechanisms for electrosensory gating. *Journal of Comparative Physiology A*, 174, 133–144.

Khalla, E., & Authman, M. (2012). Interaction of the mormyrid fish *Mormyrus kannume* (Forsskål, 1775) reproduction and feeding intensity with the environment in a Nile Delta Canal, Egypt. *Egyptian Journal of Aquatic Biology and Fisheries*, 16(1), 73–94.

Kholodnyy, V., Gadêlha, H., Cosson, J., & Boryshpolets, S. (2020). How do freshwater fish sperm find the egg? The physicochemical factors guiding the gamete encounters of externally fertilizing freshwater fish. *Reviews in Aquaculture*, 12(2), 1165–1192.

Kim, J. B. (2014). Channelopathies. *Korean Journal of Pediatrics*, 57(1), 1–18.

Kirschbaum, F. (1987). Reproduction and development of the weakly electric fish, *Pollimyrus isidori* (Mormyridae, Teleostei) in captivity. *Environmental Biology of Fishes*, 20(1), 11–31.

Kirschbaum, F. (2006). Erstmalige Zucht eines Vertreters der Nilhechtgattung *Petrocephalus* (*P. soudanensis*) induziert durch Imitation von Hochwasserbedingungen. In H. Greven & R. Riehl (Eds.), *Biologie der Aquarienfische* (pp. 65–71). Tetra Verlag GmbH.

Kirschbaum, F., Leyendecker, U., Nyonge, B., Schulz, C., Weitkamp, H., Didhiou, S., Thomas, M., & Schugardt, C. (2008). Environmental control of cyclical reproduction of tropical freshwater fish: Evidence from comparative experimental data. *Cybium*, 32(2), 294–296.

Kirschbaum, F., Nguyen, L., Baumgartner, S., Chi, H. W. L., Wolfart, R., Elarbani, K., Eppenstein, H., Korniienko, Y., Guido-Böhm, L., Mamonekene, V., Vater, M., & Tiedemann, R. (2016). Intragenus (*Campylomormyrus*) and intergenus hybrids in mormyrid fish: Physiological and histological investigations of the electric organ ontogeny. *Journal of Physiology-Paris*, 110(3), 281–301.

Kirschbaum, F., & Schugardt, C. (1995). Vergleichende Daten zur Fortpflanzungsbiologie von zwei Nilhecht-Arten (Mormyridae). In H. Greven & R. Riehl (Eds.), *Fortpflanzungsbiologie der Aquarienfische* (pp. 81–90). Birgit Schmettkamp Verlage, Bronheim.

Kirschbaum, F., & Schugardt, C. (2002). Reproductive strategies and developmental aspects in mormyrid and gymnotiform fishes. *Journal of Physiology-Paris*, 96(5–6), 557–566.

Koenig, L. A., & Gallant, J. R. (2021). Sperm competition, sexual selection and the diverse reproductive biology of Osteoglossiformes. *Journal of Fish Biology*, 99(3), 740–754.

Köhling, R., & Wolfart, J. (2016). Potassium channels in epilepsy. *Cold Spring Harbor Perspectives in Medicine*, 6(5), a022871.

Korniienko, Y., Nsimora, K. C., Vater, M., Tiedemann, R., & Kirschbaum, F. (2022). Intergenus F1-hybrids of African weakly electric fish (Mormyridae: *Gnathonemus petersii*♂ × *Campylomormyrus compressirostris*♀) are fertile. *Journal of Comparative Physiology A*, 208(3), 355–371.

Kramer, B. (1997). A field study of African elephantfish (Mormyridae, Teleostei): Electric organ discharges in *Marcusenius macrolepidotus* (Peters, 1852) and *Petrocephalus catostoma* (Günther, 1866) as related to sex. *Journal of African Zoology*, 111, 313–341.

Kramer, B., & Postner, M. (1997). Development of electrical signalling in larvae of the African fish, *Pollimyrus adspersus* (Mormyridae, Teleostei): The patterns of interdischarge intervals. *Journal of Zoology*, 243(2), 329–340.

Lahnsteiner, F., Soares, F., Ribeiro, L., & Dinis, M. T. (2008). Egg quality determination in teleost fish. In E. Cabrita, V. Robles, & P. Herráez (Eds.), *Methods in reproductive aquaculture: Marine and freshwater species* (pp. 171–202). CRC Press.

Landsman, R. E., Harding, C. F., Moller, P., & Thomas, P. (1990). The effects of androgens and estrogen on the external morphology and electric organ discharge waveform of *Gnathonemus petersii* (Mormyridae, Teleostei). *Hormones and Behavior*, 24(4), 532–553.

Landsman, R. E., & Moller, P. (1988). Testosterone changes the electric organ discharge and external morphology of the mormyrid fish, *Gnathonemus petersii* (Mormyridae). *Experientia*, 44(10), 900–903.

LaPotin, S., Swartz, M. E., Luecke, D. M., Constantinou, S. J., Gallant, J. R., Eberhart, J. K., & Zakon, H. H. (2022). Divergent cis-regulatory evolution underlies the convergent loss of sodium channel expression in electric fish. *Science Advances*, 8(22), eabm2970.

Lavoué, S., Sullivan, J. P., Arnegard, M. E., & Hopkins, C. D. (2008). Differentiation of morphology, genetics and electric signals in a region of sympatry between sister species of African electric fish (Mormyridae). *Journal of Evolutionary Biology*, 21(4), 1030–1045.

Lázár, G., Libouban, S., & Szabo, T. (1984). The mormyrid mesencephalon. III. Retinal projections in a weakly electric fish, *Gnathonemus petersii*. *Journal of Comparative Neurology*, 230(1), 1–12.

Lissmann, H. W. (1951). Continuous electrical signals from the tail of a fish, *Gymnarchus niloticus* Cuv. *Nature*, 167, 201–202.

Lissmann, H. W. (1958). On the function and evolution of electric organs in fish. *Journal of Experimental Biology*, 35(1), 156–191.

Liu, D. W., Lu, Y., Yan, H. Y., & Zakon, H. H. (2017). South American weakly electric fish (Gymnotiformes) are long-wavelength-sensitive cone monochromats. *Brain Behavior and Evolution*, 88(3–4), 204–212.

Liu, D. W., Wang, F. Y., Lin, J. J., Thompson, A., Lu, Y., Vo, D., Yan, H. Y., & Zakon, H. (2019). The cone opsin repertoire of osteoglossomorph fishes: Gene loss in mormyrid electric fish and a long wavelength-sensitive cone opsin that survived 3R. *Molecular Biology and Evolution*, 36(3), 447–457.

Lücker, H., & Kramer, B. (1981). Development of a sex difference in the preferred latency response in the weakly electric fish, *Pollimyrus isidori* (Cuvier et Valenciennes) (Mormyridae, Teleostei). *Behavioral Ecology and Sociobiology*, 9(2), 103–109.

Mattei, X. (1991). Spermatozoon ultrastructure and its systematic implications in fishes. *Canadian Journal of Zoology*, 69(12), 3038–3055.

Mattei, X., Boisson, C., Mattei, C., & Reizer, C. (1967). Spermatozoïdes aflagellés chez un poisson: *Gymnarchus niloticus* (Téléostéen, Gymnarchidae). *Comptes rendus hebdomadaires des séances de l'Académie des Sciences, Série D*, 265, 2010–2012.

Mattei, X., Mattei, C., Reizer, C., & Chevalier, J. L. (1972). Ultrastructure des spermatozoïdes aflagellés des mormyres (Poissons Téléostéens). *Journal of Microscopy*, 15, 67–78.

McCollum, M., & Sharpe, P. T. (2001). Evolution and development of teeth. *Journal of Anatomy*, 199(1–2), 153–159.

Mekkawy, I. A. A., & Hassan, A. A. (2011). Reproductive characteristics of the elephant-snout fish *Mormyrus kanumne* Forsskal, 1775 from the Nile, Egypt. *Journal of Biological Sciences*, 12(1), 15–24.

Moller, P. (1995). *Electric fishes: History and behavior* (17). Chapman & Hall.

Moller, P., Schugardt, C., & Kirschbaum, F. (2004). Permanent and seasonal expressions of sexual dimorphisms in a weakly electric fish, *Mormyrus rume proboscirostris* Boulenger 1898 (Mormyridae, Teleostei). *Environmental Biology of Fishes*, 70(2), 175–184.

Mookerjee, H., & Mazumdar, S. (1946). On the life history of *Notopterus notopterus* (Pallas). *Journal of the Department of Sciences, Calcutta University*, 2, 88–100.

Morrow, E. H. (2004). How the sperm lost its tail: The evolution of aflagellate sperm. *Biological Reviews*, 79(4), 795–814.

Mukhi, S., & Patino, R. (2006). Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish. *Toxicological Sciences*, 96(2), 246–254.

Myers, J. N., Senior, A., Zadmaid, V., Sørensen, S. R., & Butts, I. A. E. (2020). Associations between ovarian fluid and sperm swimming trajectories in marine and freshwater teleosts: A meta-analysis. *Reviews in Fisheries Science & Aquaculture*, 28(3), 322–339.

Naqvi, S., Hoskens, H., Wilke, F., Weinberg, S. M., Shaffer, J. R., Walsh, S., Shriner, M. D., Wysocka, J., & Claes, P. (2022). Decoding the human face: Progress and challenges in understanding the genetics of craniofacial morphology. *Annual Review of Genomics and Human Genetics*, 23, 383–412.

Nawar, G. (1959a). Observations on breeding of six members of the Nile Mormyridae. *Journal of Natural History*, 2(20), 493–504.

Nawar, G. (1959b). A study on the fecundity of the Nile mormyrid *Hyperopisus bebe* Lacepede. *Annals and Magazine of Natural History*, 2(22), 603–606.

Nguyen, L., Paul, C., Mamonekene, V., Bartsch, P., Tiedemann, R., & Kirschbaum, F. (2017). Reproduction and development in some species of the weakly electric genus *Campylomormyrus* (Mormyridae, Teleostei). *Environmental Biology of Fishes*, 100(1), 49–68.

Nguyen, M. D. L. (2011). *Reproduction and development of mormyrid fish of the Paramormyrops magnostipes-complex* (Doctoral dissertation, Master Thesis). Humboldt Universität zu Berlin.

Nilsson, G. E. (1996). Brain and body oxygen requirements of *Gnathonemus petersii*, a fish with an exceptionally large brain. *Journal of Experimental Biology*, 199(3), 603–607.

Nitkin, R. M., Smith, M. A., Magill, C., Fallon, J. R., Yao, Y. M., Wallace, B. G., & McMahan, U. J. (1987). Identification of agrin, a synaptic organizing protein from *Torpedo* electric organ. *The Journal of Cell Biology*, 105(6), 2471–2478.

Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., & Numa, S. (1982). Primary structure of α -subunit precursor of *Torpedo californica* acetylcholine receptor deduced from cDNA sequence. *Nature*, 299(5886), 793–797.

Nysten, M. (1962). Étude anatomique des rapports de la vessie aérienne avec l'axe vertébral chez *Pantodon buchholzi* Peters. *Annales du Musée Royal de l'Afrique Centrale Serie 8: Sciences Zoologiques*, 108, 185–225.

Odedeyi, D. O., & Odedire, I. M. (2017). Fecundity and food habits of the slender stonebasher (*Hippopotamyrus ansorgii* Boulenger, 1905) (Mormyridae) in Ogbese river. *Nigerian Journal of Animal Production*, 44(3), 161–166.

Odo, G. E., Dibua, E., Ekeh, F. N., Ivoke, N., Asogwa, C. N., Avoaja, D. A., & Atama, C. I. (2013). The breeding biology and hematological profile of *Gymnarchus niloticus* Cuvier 1829 (Osteoglossiformes: Gymnarchidae) in semi-intensively managed ponds in the floodplain of the River Anambra, Nigeria. *Journal of Fisheries and Aquaculture*, 4(2), 103.

Okedi, J. (1965). Some aspects of the commercial fishery of the Mormyridae with special reference to the smaller species. (East African freshwater fisheries research Organization Annual Report, 49–55).

Okedi, J. (1969). Observations on the breeding and growth of certain mormyrid fishes of the lake Victoria basin. *Revue de Zoologie et de Botanique Africaines*, 79, 34–64.

Okedi, J. (1970). A study of the fecundity of some mormyrid fishes from lake Victoria. *East African Agricultural and Forestry Journal*, 35(4), 436–442.

Oladosu, G. A. (1997). Environmental induction of natural spawning in *Gymnarchus niloticus* (Cuvier 1829) in an earthen pond. *Aquaculture Research*, 28(8), 641–643.

Oniye, S. J., & Onimisi, H. U. (2010). Aspects of reproductive biology of *Hyperopisus bebe* occidentalis (Gunther) in Zaria Dam, Nigeria. *Proceedings of the Fisheries Society of Nigeria (FISON) ASCON, Badagry 25th-29th, October 2010*, 253–257.

Opadokun, I. O., & Ajani, E. K. (2015). Some aspects of the reproductive biology of *Gymnarchus niloticus* Cuvier, 1829 (Knife-fish) in Lekki Lagoon, Nigeria. *International Journal of Fisheries and Aquatic Studies*, 2(3), 166–170.

Ouzman, S. (1995). The fish, the shaman and the peregrination: San rock paintings of mormyrid fish as religious and social metaphors. *Southern African Field Archaeology*, 4(1), 3–17.

Ozbolat, I. T., & Hosphodiuk, M. (2016). Current advances and future perspectives in extrusion-based bioprinting. *Biomaterials*, 76, 321–343.

Parlikar, R., Bose, A., & Venkatasubramanian, G. (2019). Schizophrenia and corollary discharge: A neuroscientific overview and translational implications. *Clinical Psychopharmacology and Neuroscience*, 17(2), 170–182.

Peterson, R. D., Evans, A. J., & Hernandez, L. P. (2023). Histology of convergent probing appendages in mormyrids. *Integrative Organismal Biology*, 5(1), obad001.

Peterson, R. D., Sullivan, J. P., Hopkins, C. D., Santaquiteria, A., Dillman, C. B., Pirro, S., Betancur-R R., Arcila D., Hughes L. C., & Ortí, G. (2022). Phylogenomics of bony-tongue fishes (Osteoglossomorpha) shed light on the craniofacial evolution and biogeography of the weakly electric clade (Mormyridae). *Systematic Biology*, 71(5), 1032–1044.

Peterson, R., Sullivan, J., & Pirro, S. (2022). The complete genome sequences of 38 species of elephantfishes (Mormyridae, Osteoglossiformes). *Biodiversity Genomes*. <https://doi.org/10.56179/001c.56077>

Pezzanite, B., & Moller, P. (1998). A sexually dimorphic basal anal-fin ray expansion in the weakly discharging electric fish *Gnathonemus petersii*. *Journal of Fish Biology*, 53(3), 638–644.

Picq, S., Sperling, J., Cheng, C. J., Carlson, B. A., & Gallant, J. R. (2020). Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish *Paramormyrops kingsleyae*. *Evolution*, 74(5), 911–935.

Postner, M., & Kramer, B. (1995). Electrosensory thresholds in larvae of the weakly electric fish *Pollimyrus isidori* (Mormyridae, Teleostei) during ontogeny. *Journal of Experimental Biology*, 198(3), 783–791.

Riehl, R., & Kokoscha, M. (1993). A unique surface pattern and micropylar apparatus in the eggs of *Luciocephalus* sp. (Perciformes, Luciocephalidae). *Journal of Fish Biology*, 43(4), 617–620.

Sawtell, N. B., Williams, A., & Bell, C. C. (2005). From sparks to spikes: Information processing in the electrosensory systems of fish. *Current Opinion in Neurobiology*, 15(4), 437–443.

Schneider, I., Aneas, I., Gehrke, A. R., Dahn, R. D., Nobrega, M. A., & Shubin, N. H. (2011). Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. *Proceedings of the National Academy of Sciences of the United States of America*, 108(31), 12782–12786.

Schugardt, C., & Kirschbaum, F. (1998). Sozial- und Fortpflanzungsverhalten von Mormyriden (Nilhechten). In H. Greven & R. Riehl (Eds.), *Verhalten von Aquarienfischen* (pp. 87–98). Birgit Schmettkamp Verlag.

Schugardt, C., & Kirschbaum, F. (2004). Control of gonadal maturation and regression by experimental variation of environmental factors in the mormyrid fish, *Mormyrus rume* proboscirostris. *Environmental Biology of Fishes*, 70(3), 227–233.

Schugardt, C., & Kirschbaum, F. (2006). Erstmaliges Ablaichen der zwei Nilhechtarten *Mormyrus* sp. und *Marcusenius mento* unter Aquarienbedingungen induziert durch Imitation von Hochwasserbedingungen. In H. Greven & R. Riehl (Eds.), *Biologie der Aquarienfische* (pp. 159–169). Tetra Verlag GmbH.

Schumacher, E. L., & Carlson, B. A. (2022). Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes. *eLife*, 11, e74159.

Scott, D. B. C. (1974). The reproductive cycle of *Mormyrus kannume* Forsk (Osteoglossomorpha, Mormyridae) in lake Victoria Uganda. *Journal of Fish Biology*, 6(4), 447–454.

Siegel, M. I., & Mooney, M. P. (1990). Appropriate animal models for craniofacial biology. *Cleft Palate Journal*, 27(1), 18–25.

Skeels, S., von der Emde, G., & Burt de Perera, T. (2023). Mormyrid fish as models for investigating sensory-motor integration: A behavioural perspective. *Journal of Zoology*, 319, 243–253.

Stell, S. K., & Moller, P. (2017a). Anal-fin ray morphology indicates sexual maturity in *Brevimyrus niger* (Teleostei, Mormyridae). *Journal of Fish Biology*, 90(1), 147–155.

Stell, S. K., & Moller, P. (2017b). Androgen-induced pseudo-hermaphroditic phenotypes in female *Brevimyrus niger* Günther

1866 (Teleostei, Mormyridae). *Fish Physiology and Biochemistry*, 43(6), 1517–1529.

Stevens, J. A., Sukhum, K. V., & Carlson, B. A. (2013). Independent evolution of visual and electrosensory specializations in different lineages of mormyrid electric fishes. *Brain, Behavior and Evolution*, 82(3), 185–198.

Sukhum, K. V. (2018). *The costs of a big brain: How region scaling and energetic costs influence brain size evolution in weakly electric african fishes (Mormyridae)*. Washington University in St. Louis.

Svensson, G. S. O. (1933). Fresh water fishes from the Gambia river (British West Africa)—Results of the Swedish expedition 1931. *Kongliga Vetenskaps Akademiens Nya Handlingar*, 12(3), 102.

Swapna, I., Ghezzi, A., York, J. M., Markham, M. R., Halling, D. B., Lu, Y., Gallant, J. R., & Zakon, H. H. (2018). Electrostatic tuning of a potassium channel in electric fish. *Current Biology*, 28(13), 2094–2102.e5.

Unwin, N. (1993). Nicotinic acetylcholine receptor an 9 Å resolution. *Journal of Molecular Biology*, 229(4), 1101–1124.

Van Otterloo, E., Williams, T., & Artinger, K. B. (2016). The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. *Developmental Biology*, 415(2), 171–187.

Vélez, A., & Carlson, B. A. (2016). Detection of transient synchrony across oscillating receptors by the central electrosensory system of mormyrid fish. *eLife*, 5, e16851.

von der Emde, G. (1999). Active electrolocation of objects in weakly electric fish. *Journal of Experimental Biology*, 202(10), 1205–1215.

von der Emde, G., & Bell, C. C. (2003). Active electrolocation and its neural processing in mormyrid electric fishes. In S. P. Collin & N. J. Marshall (Eds.), *Sensory processing in aquatic environments* (pp. 92–107). Springer.

Werneyer, M., & Kramer, B. (2005). Electric signalling and reproductive behaviour in a mormyrid fish, the bulldog *Marcusenius macrolepidotus* (South African form). *Journal of Ethology*, 23(2), 113–125.

Witman, G. B. (1990). Introduction to cilia and flagella. In *Ciliary and Flagellar Membranes* (pp. 1–30). Springer.

Wong, R. Y., & Hopkins, C. D. (2007). Electrical and behavioral courtship displays in the mormyrid fish *Brienomyrus brachyistius*. *Journal of Experimental Biology*, 210(13), 2244–2252.

Yanwirsal, H., Bartsch, P., & Kirschbaum, F. (2017). Reproduction and development of the asian bronze featherback *Notopterus notopterus* (Pallas, 1769) (Osteoglossiformes, Notopteridae) in captivity. *Zoosystematics and Evolution*, 93(2), 299–324.

Zaher, M. M., Ashour, M. B., & Rida, S. (1991). Ecological studies on the female reproductive cycle of some fishes of the River Nile at Beni Seuf area seasonal morphological and macroscopic changes of the ovary of *Mormyerus Kannume*, *Chrysichthyes auratus* and *Schilbe mystus*. *Journal of the Egyptian German Society of Zoology*, 3, 313–334.

Zakon, H. H., Lu, Y., Zwickl, D. J., & Hillis, D. M. (2006). Sodium channel genes and the evolution of diversity in communication signals of electric fishes: Convergent molecular evolution. *Proceedings of the National Academy of Sciences of the United States of America*, 103(10), 3675–3680.

Zhang, L., Wang, S., Chen, W., Hu, B., Ullah, S., Zhang, Q., & Hu, J. (2014). Fine structure of zebrafish (*Danio rerio*) spermatozoa. *Pakistan Veterinary Journal*, 34, 518–521.

How to cite this article: Saunders, A. N., & Gallant, J. R. (2024). A review of the reproductive biology of mormyroid fishes: An emerging model for biomedical research. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, 1–20.

<https://doi.org/10.1002/jezb.23242>