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Abstract

Idiomatic expression (IE) processing and com-
prehension have challenged pre-trained lan-
guage models (PTLMs) because their mean-
ings are non-compositional. Unlike prior works
that enable IE comprehension through fine-
tuning PTLMs with sentences containing IEs,
in this work, we construct IEKG, a common-
sense knowledge graph for figurative interpre-
tations of IEs. This extends the established
ATOMIC3) (Hwang et al., 2021) graph, con-
verting PTLMs into knowledge models (KMs)
that encode and infer commonsense knowledge
related to IE use. Experiments show that var-
ious PTLMs can be converted into KMs with
IEKG. We verify the quality of IEKG and the
ability of the trained KMs with automatic and
human evaluation. Through applications in nat-
ural language understanding, we show that a
PTLM injected with knowledge from IEKG ex-
hibits improved IE comprehension ability and
can generalize to IEs unseen during training.

1 Introduction

Idiomatic expressions (IEs) are frequently used in
natural language and include a variety of versa-
tile figures of speech that improve language flu-
ency and conciseness in multiple genres (Moon
et al., 1998; Baldwin and Kim, 2010; Haagsma
et al., 2020). Prior NLP research in IE process-
ing has focused on detecting idiomaticity ((Liu,
2019; Zeng and Bhat, 2021) among others), in-
cluding tasks and applications that require IE com-
prehension, e.g., sentiment classification (Biddle
et al., 2020), machine translation (Fadaee et al.,
2018), natural language inference (Stowe et al.,
2022; Chakrabarty et al., 2022b), and dialog sys-
tems (Jhamtani et al., 2021). IE comprehension
poses challenges to NLP systems (Sag et al., 2002;
Tayyar Madabushi et al., 2021; Stowe et al., 2022)
mainly owing to their failure to account for IEs’
characteristic non-compositionality, i.e., the mean-
ing of an expression is not derivable from the mean-

ings of its components (Baldwin and Kim, 2010).
For example, consider the case of a sentiment clas-
sifier that incorrectly recognizes the negative senti-
ment in the statement They have stirred up a hor-
net’s nest'. by failing to account for the figura-
tive interpretation of the IE (Balahur et al., 2010).
This study focuses on injecting IE-related knowl-
edge into small-frame PTLMs known for their wide
use, such as BERT (Devlin et al., 2019) and BART
(Lewis et al., 2020), considering their struggle to
understand the figurative meanings of IEs (Bhar-
gava and Ng, 2022; Zeng and Bhat, 2022). We dis-
cuss the corresponding capabilities of large PTLMs,
such as GPT-3.5, in the limitation section.
Towards enabling IE comprehension, prior ef-
forts range from automatic idiom-detection meth-
ods (Liu and Hwa, 2019; Skvorc et al., 2022; Zhou
et al., 2021) to learning IE representations, all us-
ing sentences with IEs (i.e., idiomatic sentences),
where IE-specific information would be learned im-
plicitly from limited samples and sparse contextual
information (Zeng and Bhat, 2022). For instance,
MAGTPIE (Haagsma et al., 2020), the largest-to-
date corpus for IEs, spans 1,755 distinct IEs, where
a staggering 81% of them each have less than 50
idiomatic sentences (IEs are individually rare in
natural language), and certain idiomatic sentences
therein contain little to no contextual information to
allow models to learn the IEs’ meanings (e.g., The
thing was on the blink again.). As such, prior work
on [E embedding learning relied on the auxiliary
aid of IE dictionary definitions to augment the infor-
mation available in idiomatic sentences (Zeng and
Bhat, 2022). An alternative approach of explicitly
learning commonsense knowledge about IEs with-
out significantly scaling the data/parameters consti-
tutes the crux of this study. We rely on psycholin-
guistic findings about the impact of IE-related as-
pects, such as mental states, emotions, and likely

'The idiom "Stir up a hornet’s nest" is used to convey the
idea of causing trouble or inciting a commotion.
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Figure 1: Example IE lick someone’s boot in IEKG.

actions, on human IE comprehension (Rohani et al.,
2012; Saban-Bezalel and Mashal, 2019), to explore
the use of commonsense knowledge about IEs to-
wards their comprehension.

Specifically, we build on the findings that
commonsense knowledge graphs (KGs), e.g.,
ATOMIC%g (Hwang et al., 2021), organized as
if-then relations for inferential knowledge enable
linguistic and social reasoning abilities for PTLMs
(Bhargava and Ng, 2022). Indeed, models rely-
ing on their applications have benefited figura-
tive language processing, such as their interpre-
tation (Chakrabarty et al., 2022a) and generation
(Chakrabarty et al., 2021b). However, the sparse IE
coverage in these large-scale KGs limits their wider
applicability for [E-related reasoning; as an illustra-
tion, ATOMIC%) covers only 347 out of the 1,755
IEs ( 20%) in MAGPIE, with some contextually
semantically ambiguous IEs only annotated with
their literal sense while their figurative meanings
are either missing or inaccurate. For example, for
the IE out of sight, the only instance in ATOMIC3)
is <AtLocation, arctic>.

Hence, we construct the Idiomatic Expression
Knowledge Graph (IEKG), an IE-centered ex-
tension to the ATOMICZ) KG, that serves as an
instance-efficient and explicit IE-related source of
knowledge (compared to the implicit knowledge
available in a large number of idiomatic sentences)
for IE processing. This permits a novel exploration
of how IE-related knowledge from a KG can be
used for IE-related comprehension in parameter-
efficient and sample-limited scenarios.

IEKG follows the schema of ATOMIC3) (see
Figure 1) and organizes the idiomatic interpreta-
tions for IEs into reasoning types covering the ef-

fects, causes, and attributes for both the subject
and the object in an IE (see Section 3). Working
closely with human annotators that created 56,315
instances for 1,229 idiomatic events and 11 rela-
tion types, IEKG’s quality and diversity were then
ascertained via human and automatic evaluation.

We exhibit its wide utility via (1) neural knowl-
edge models (KMs) trained on IEKG to show
IEKG equips PTLMs with IE knowledge that is
generalizable to out-of-graph instances; and (2) IE
knowledge injection to showcase the usefulness of
IEKG for IE comprehension tasks, such as natural
language inference (NLI) with IEs and continua-
tion classification in which the model decides if a
continuation is appropriate for a given context with
an IE.

The contributions of this work are as follows.

(1) We propose IEKG, a commonsense knowledge
graph focusing on idiomatically interpreted IEs;
(2) We show that IEKG transforms various PTLMs
into [E-aware KMs to infer IE knowledge; com-
pared to the ATOMIC3) trained KM, IE-aware
KMs can generalize better to unseen IEs (+22%
METEOR (Lavie and Denkowski, 2009)) and to
unseen relations for seen IEs (+30% METEOR) on
IE knowledge tuple completion.
(3) We show IEKG endows PTLMs with improved
IE comprehension ability; after injecting IEKG,
PTLM achieves SOTA results on the IE NLI bench-
mark IMPLI (+12% accuracy), and exhibits a sig-
nificant increase on the continuation classification
task on the Figurative Narrative Benchmark com-
pared to the baseline PTLM (+25%. accuracy)?

2 Related Work

Datasets with Idiomatic Expressions. Classic
datasets for idiomatic sentences, such as VNC
(Cook et al., 2008), SemEval5b (Korkontzelos
et al., 2013), and MAGPIE (Haagsma et al., 2020),
have been the primary source of implicit idiomatic
knowledge in tasks such as IE identification (Zeng
and Bhat, 2021; Skvorc et al., 2022), IE type dis-
ambiguation (Feldman and Peng, 2013; Rajani
et al.,, 2014; Peng and Feldman, 2016; Salton
et al., 2016; Liu and Hwa, 2017; Taslimipoor et al.,
2018; Peng et al., 2014; Liu and Hwa, 2019),
and IE representation learning (Zeng and Bhat,
2022). However, the contextual information avail-
able in these collections has been sparse and a

2IEKG data and the related code can be found at https:
//github.com/zzeng13/IEKG.


https://github.com/zzeng13/IEKG
https://github.com/zzeng13/IEKG

non-uniform number of instances per IE for LMs
to learn their meanings from (Zeng and Bhat,
2022). Datasets of idiomatic sentences are avail-
able for specific tasks, such as machine translation
(Fadaee et al., 2018), paraphrase generation (Zhou
et al., 2021), natural language inference (Stowe
et al., 2022; Chakrabarty et al., 2022b), and lan-
guage generation (Chakrabarty et al., 2022a). This
study presents an alternative general-purpose IE-
related dataset as a knowledge graph, aiming to pro-
vide a more comprehensive, explicit, and instance-
efficient way to represent IE usage.

Commonsense Knowledge Graphs. Knowledge
graphs organize information into an ontology as
a multi-relational graph of edges and entity nodes
(Zou, 2020; Ji et al., 2022). Commonsense KGs,
such as ATOMIC (Sap et al., 2019), ConceptNet
(Speer et al., 2017), CSKG (Ilievski et al., 2021),
ASER (Zhang et al., 2022), and TRANSOMCS
(Zhang et al., 2020a), are a subset of KGs that focus
on generic world commonsense knowledge. Specif-
ically, ATOMIC (and its successor ATOMIC3)
(Hwang et al., 2021)) utilizes if-then relations to de-
scribe rich causal and inferential knowledge span-
ning several dimensions, including causes vs. ef-
fects, agents vs. themes, and voluntary vs. in-
voluntary events. ATOMIC has also been used in
figurative language-related applications, such as
interpretation and generation of figurative language
(e.g., simile, idioms, and metaphor) (Chakrabarty
et al., 2021b, 2022a). However, as mentioned in
Section 1, ATOMICZ)’s coverage of IEs is lim-
ited. Through the current work, IEKG extends
ATOMIC3)’s representation to idiomatic events to
further IE-related applications.

Explicit Knowledge Injection using KGs. Tradi-
tionally, entities in general KGs are converted into
embeddings before being used for downstream ap-
plications (Wang et al., 2017; Dai et al., 2020).
For commonsense KGs, most prior works fol-
low the COMET paradigm (Bosselut et al., 2019),
where the knowledge model (KM) is trained via
the knowledge tuple completion task, where given
a tuple <head, relation, tail>, the KM uses
the head and relation to predict the tail. The KM,
thus trained, becomes an on-demand commonsense
knowledge query machine equipped with knowl-
edge about any head entity. Additionally, it can
generalize to previously unseen head entities or
unseen relation types for a seen head entity, infer-
ring additional information to aid tasks, e.g., lan-

guage generation (Chakrabarty et al., 2021b, 2022a;
Sabour et al., 2021). To inject explicit knowledge
while preserving the PTLMs’ ability as general-
purpose LMs, prior works have continued LM pre-
training on sentences converted from knowledge
tuples (Chang et al., 2020; Agarwal et al., 2021).
These broad schemes of KG-PTLMs combinations
inspire our work to explore linguistic reasoning us-
ing the explicit knowledge in the IE-centric IEKG
that we construct. Comparing various KG/PTLMs
incorporation methods (Hu et al., 2022) constitutes
a concrete direction for future work. Finally, others
(Phang et al., 2018; Wang et al., 2020; Chang and
Lu, 2021) use task-specific knowledge injection
before or to replace fine-tuning when the task data
is limited. We explore combining task-specific and
IEKG knowledge injection (see Section 5) to en-
able IE comprehension on tasks with limited data.

3 Idiomatic Expression Knowledge
Graph

By design, IEKG aligns with ATOMIC%%’S gen-
eral structure and relation types to describe the
linguistic knowledge of IE uses so that it enables
commonsense inference on figurative language.

3.1 Expressions and Relation Types Selection

Idiomatic event creation. Given a collection of
IEs, we first convert them into idiomatic events >.
For example, the IE, add fuel to the fire, is con-
verted to the idiomatic event, PersonX adds fuel to
the fire. We use the 1,755 IEs from MAGPIE* as
the initial set and apply a heuristic-based algorithm
that automatically converts verbs and pronouns into
appropriate and grammatically correct forms while
adding subject/object placeholders, such as Per-
sonX, to convert all the IEs to their corresponding
idiomatic events. For the current scope of IEKG,
we focus on IEs with persons as subjects and/or
objects. Thus, in the second phase, two members
of the research team went through the entire list
of idiomatic events (1) to correct any grammatical
errors in the idiomatic event and (2) to filter out IEs
that cannot be used with persons as subject/object
(conflicts were resolved via mutual agreements be-
tween the evaluators). Finally, 1,229 IEs (70%)

%IE” and “idiomatic event” are equivalent hereafter due to
the one-to-one mapping between them.

*Note that the IEs from MAGPIE are sourced from the
British National Corpus (BNC Consortium, 2007), and, as
such, predominantly reflect their British usage.



are preserved in the IE collection with their corre-
sponding idiomatic event created.

Relation type selection. To allow IEKG to be-
come a natural extension to ATOMIC3), we se-
lect a subset of relation types from ATOMIC%g
for IEKG. Several of ATOMICZ) relation types
are not suitable when the subject/object of a given
event are persons, e.g., the relation type is made
of. Hence, we exclude such relation types to se-
lect 11 relation types (See Table 5 in Appendix A)
that are appropriate for the idiomatic events, cover-
ing, for instance, the intent, reaction, effect, causes,
and attributes for the subject/object of the events,
providing a multifaceted view of IE usage and in-
terpretation (See Appendix D for a case study).

3.2 Knowledge Graph Construction

Human anneotators. Prior efforts (Hwang et al.,
2021; Haagsma et al., 2020) construct KGs and
idiomatic sentence corpora via crowd-sourcing
tools, such as Mechanical Turk, and control qual-
ity via numerous performance testing and ongo-
ing monitoring schemes. For the construction of
IEKG, three accountable, knowledgeable, and na-
tive English-speaking college students interested in
an undergraduate research experience, volunteered
their time. We communicated with the annotators
throughout the annotation process, ensuring they
understood the expectations, talking to them about
research in NLP/ML with our research projects
as examples, and, after our study, sharing our ex-
perimental results with them. Each annotator per-
formed their annotation individually at their own
pace with no time or monetization pressure to rush
the annotation process. It may appear that our an-
notation would lack the diversity of typical crowd-
sourced annotation; a diversity analysis (see Sec-
tion 3.4) indicates that our resulting annotation was
reasonably diverse. Thus, we believe that the gain
in annotation quality in our non-crowd-sourced ap-
proach outweighs the loss in diversity.

Annotation procedures. To construct IEKG, for
each idiomatic event, the annotators: (1) Confirm
the understanding of the given IE and the validity
of its idiomatic event by first looking up the IE and
recording its dictionary definition and then verify-
ing the idiomatic event is appropriate for the IE
meaning and is grammatical. (2) Select the relation
types, as applicable, to avoid forcing unreasonable
annotations for unsuitable relation types. (3) Write
annotations for each selected relation type; annota-

tors think of possible contexts and write up to four
free-form phrases as tails, given the head (IE) and
relations, to complete the annotations.

Quality assurance. We implemented various mea-
sures to ascertain annotation quality. During re-
cruitment, we conducted annotator interviews to
confirm their interest, background, and English pro-
ficiency as native speakers. Before the annotation
phase, we organized info sessions on the research
background and tutorials on the annotation proce-
dure. We prepared detailed instructions with exam-
ples of completed annotations for ten events and
four examples per relation type to demonstrate the
definitions and differences among relation types.
During the annotation phase, we held weekly office
hours to provide clarification as needed.

3.3 IEKG Statistics

IEKG comprises 56,315 knowledge tuples, cover-
ing 1,229 idiomatic events and 11 relation types,
with a mean annotation (tail) length of 2.98 words
and a mean number of knowledge tuples per IE
of 45.82 (standard deviation 13.67). On average,
each IE has annotations for 7.41 applicable relation
types (standard deviation 1.69).

Knowledge tuples are not evenly distributed over
the 11 relation types. The most frequent relation
type, xEffect, attributes to 18.63% of knowledge
tuples, while the least frequent relation type, oWant,
appears in only 2.63% of tuples. We account for
this uneven distribution later in our sampling strat-
egy for evaluations.

3.4 Annotation Quality Assessment

As shown in Table 1, IEKG provides more accurate
idiomatic interpretations compared to ATOMIC3).
We perform a human evaluation and diversity anal-
ysis to rate the annotation quality.

Human evaluation. Members of the research team
rated a sample of 500 knowledge tuples, with each
sample evaluated by three members. To ensure the
samples represent the overall quality, we mix anno-
tations from all annotators and stratify sample tu-
ples, preserving the original tuple distribution over
the relation types. We use a 4-point Likert scale as
our scoring metric (Hwang et al., 2021), reflecting
how reasonable each knowledge tuple is and rang-
ing from Invalid (score 4) to Always/Often (score
1), with a lower score indicating higher quality. We
average the metric scores across human evaluators
on each sample and then average across all samples.
The final score is 1.51 (inter-annotator agreement



Idiomatic Event Relation ATOMIC3) IEKG
xNeed save up money a tragic event

PersonX buys the farm xIntent to grow crop and earn a living. To pass away peacefully
HinderedBy The farm cost too much money. a lack of immediate dangers

Table 1: A comparison between ATOMIC§8 and IEKG for the PersonX buys the farm which means die. Unlike
ATOMIC%g, IEKG provides accurate idiomatic interpretations.

is 50%), i.e., most annotations are either always or
sometimes reasonable, indicating the annotations
are of good quality.

Diversity analysis. Having established annotation
quality, we show annotations have high semantic
and lexical diversity across annotators as follows.
First, for a given event and relation type annotated
by all three annotators, we connect the tails from
each annotator with “and” into three respective
sentences. Then, with these triplets of annotation
sentences, we compute the semantic diversity using
average pairwise BERT score (Zhang et al., 2020b)
and embedding cosine similarity> across all triplets
of annotations. The resulting mean/std. BERT
score after baseline scaling is 0.42/0.13, and the
mean/std. embedding cosine similarity is 0.58/0.14,
both indicating low semantic similarity among the
annotations from different annotators. For lexical
diversity, we concatenate each triplet of annotation
sentences into a single sentence and compute the
mean Google-BLEU score (i.e., mBLEU (Zhang
et al., 2020b)) that captures the distinctiveness of
the n-grams across annotations and has a range
between 0 (no match) and 1 (all matches). Our
dataset shows an average score of 0.16, indicating
a low lexical overlap across annotators.

4 Neural Knowledge Model for IEs

We experiment with KG/PTLM incorporation by
training KMs on IEKG and comparing their ca-
pability in processing idiomatic events to the KM
trained on ATOMIC3) to showcase the additional
IE knowledge that can be learned from IEKG.

4.1 Learning to Infer Knowledge

Our neural KM is a knowledge completion model
that performs the knowledge tuple completion task.
Various PTLMs that have a conditional generation
ability (e.g., BART (Lewis et al., 2020), GPT-2
(Radford et al., 2019), and T5 (Raffel et al., 2020))
and previously used for commonsense knowledge
learning can be converted into KMs with common-

We used sentence-transformer’s best encoder
(all-mpnet-base-v2) to generate sentence embedding.

sense idiomatic knowledge after training on IEKG.
We include the following baseline models (more
details in Appendix B):

BART-Comet is the baseline 12-layer BART-large
model trained on ATOMIC3) and we use the
trained checkpoint released by Hwang et al. (2021).

BART/GPT2/TS-IEKG are the 12-layer BART-
large, GPT2, and TS5 models fine-tuned on IEKG
for the knowledge tuple completion task. We
record the checkpoints with the best Rouge-L score
on the test set during training.

4.2 Knowledge Model Experiments

Data. To evaluate a KM’s ability to generalize
to unseen relation types for seen idiomatic events
and to new idiomatic events, we create two types
of train/test splits of IEKG: (1) relation-type split
and (2) IE-type split. For the relation-type split,
we separate the relation types per idiomatic event
and randomly assign a fraction of the relation types
(and associated annotations) to a test set, retaining
the rest in the train set, thereby ensuring that the
two sets do not have overlapping relation types for
the same events. This generalization ability is es-
sential because IEKG’s annotations for existing
idiomatic events could be incomplete, as evidenced
by the uneven distribution over the relation types
(see 3.2). For the IE-type split, we ensure no over-
lap between the IE types in the train and test sets
and test a KMs’ ability to generalize to IEs outside
of the KG. This uses the explicit information from
the KG and the implicit language knowledge en-
coded in the PTLM and accommodates the need
to grow the KG to new IE types. We maintain an
80720 train/test ratio: for the relation-type split, we
have 45,103/11,212 training/testing tuples; for the
IE-type split, we have 45,317/10,998 (983/246 1E
types) training/testing tuples.

Automatic Evaluation. We used three widely used
metrics for language generation to evaluate the tail
generation quality, i.e., ROUGE (Lin, 2004), ME-
TEOR, and BERTscore. For a given test event and
relation, we took the top-1 KM-generated tail as the



Model BERT P | BERTR | BERT F1 | ROUGE-1 | ROUGE-L | METEOR
BART-Comet 0.8737 0.8742 0.8721 0.1576 0.1532 0.1189
T5-IEKG 0.9274 0.9342 0.9293 0.4415 0.4365 0.3488
GPT2-IEKG 0.9313 0.9285 0.9287 0.4420 0.4397 0.3069
BART-IEKG 0.9484 0.9465 0.9463 0.5688 0.5670 0.4161
(a) Performance on the relation-type split.
Model BERT P | BERT R | BERT F1 | ROUGE-1 | ROUGE-L | METEOR
BART-Comet 0.8745 0.8749 0.8729 0.1664 0.1640 0.1262
T5-IEKG 0.9202 0.9277 0.9222 0.3800 0.3761 0.2914
GPT2-IEKG 0.9254 0.9218 0.9222 0.3902 0.3893 0.2711
BART-IEKG 0.9401 0.9377 0.9377 0.4937 0.4905 0.3474

(b) Performance on the IE-type split.

Table 2: Knowledge models performances by automatic metrics, including BERT score precision (BERT P), recall
(BERT R), F1 (BERT F1), ROUGE-1, ROUGE-L, and METEOR score. Best performances are boldfaced.

candidate and used all corresponding annotations
as references to compute the scores.

Human Evaluation. Three annotators of IEKG
manually evaluated the tail generation quality.
We utilize the same 4-point Likert scoring met-
ric for annotation quality assessment as detailed
in Section 3.4. Finally, we average the manual
scores per sample and then average over the in-
stances. We sample 100 generated instances from
the relation-type test split of BART-Comet (indiffer-
ent to [E/relation-type split) and BART-IEKG; and
100 generated instances from the IE-type test split
of BART-IEKG. Comparing BART-Comet’s gen-
erated instances against BART-IEKG’s, we assess
the quality gain from IEKG. Evaluating BART-
IEKG’s generated instances on the IE-type split,
we assess its ability to generalize to unseen IEs.

4.3 Results and Discussion

As shown in Table 2, and unsurprisingly, all
PTLMs trained on IEKG substantially outperform
the baseline BART-Comet in the tuple completion
task across all metrics and both splits. Compared to
BART-Comet, BART-IEKG attains absolute gains
of 7.4% in BERT F1, 41% (260% relative) in
ROUGE-L, and 27% (225% relative) in METEOR
score in relation-type split. Considering an IE-type
split, it achieves a comparable gain over BART-
Comet with a gain of 6.5% in BERT F1, 33%
(201% relative) in ROUGE-L, and 22% (174%)
in METEOR score. Besides, BART-IEKG outper-
forms GPT-2 and T5-based models (which is con-
sistent with the results from Hwang et al. (2021))
achieving the best performances across both splits.

Then, we compare the best-performing BART-
IEKG model and the baseline BART-Comet via
human evaluation. Quantitatively, for the test sam-

ples from the relation-type split, the average human
evaluation score for BART-Comet is 2.12, while the
score for BART-IEKG is 1.65, gaining around 0.47
points (lower is better). To put this gain into per-
spective, we also check the human evaluators’ pref-
erences between the outputs from BART-Comet
and BART-IEKG. Specifically, given a pair of out-
puts from the same test instance, we say BART-
IEKG’s output is preferred over BART-Comet’s
output if the BART-IEKG’s score is strictly smaller
or equals 1 (the best score) by two or more anno-
tators out of three. The evaluators prefer BART-
IEKG’s outputs on 74% of the test samples. The
average evaluation score for BART-IEKG’s out-
puts on the IE-type split is 1.64, suggesting that
BART-IEKG can generalize to unseen IEs and pro-
duce reasonable outputs (based on the mean score
is less than 2) according to human judgment. See
Appendix C for more example generations.

5 Applications

We show how IEKG enables IE comprehension
through two applications that require a model to un-
derstand IEs’ semantics to perform correctly with
their largest and most recent benchmark datasets.

5.1 IEKG Injection

Many prior works (e.g., (Chakrabarty et al., 2021a))
combine input sentences and additional common-
sense information queried from a KM to perform
downstream tasks. However, this incurs significant
computational overhead and does not endow the
PTLM with an innate IE comprehension ability. In-
stead, we fine-tune PTLMs using the mask-infilling
objective to imbue a pretrained BART model with



explicit IE-related knowledge from the IEKG®,
similar to Agarwal et al. (2021). First, we trans-
form each knowledge tuple into a two-mask tem-
plate. For example, the knowledge tuple <PersonX
wins by a hair’s breadth, xAttr, Ambitious> is con-
verted into In PersonX wins by a hair’s breadth, a
hair’s breadth means <MASK>. PersonX is seen
as <MASK>. The model must infill the first mask
with the IE definition and the second mask with
the appropriate inference given the relation type
(xAttr in this example). Unlike KMs, IEKG injec-
tion allows the PTLM to learn the IE semantics and
related commonsense knowledge while preserving
its ability to be further fine-tuned for other tasks.

5.2 Tasks in the presence of IEs

Natural Language Inference (NLI) involves de-
termining if a given hypothesis agrees with a given
premise (entailment, denoted as E) or not (non-
entailment, denoted as NE). Prior work (Stowe
et al., 2022) shows that the presence of IEs de-
grades NLI performance. Thus, our first objective
is to examine whether IEKG injection benefits NLI
in the presence of IEs. Specifically, we use the 1d-
iomatic and Metaphoric Paired Language Inference
(IMPLI) (Stowe et al., 2022) dataset. For training,
we use IMPLI’s silver split, where samples are
taken from MAGPIE, PIE, and SemEval, with la-
bels created automatically, to harness their relative
abundance compared to the test set (see below).
We randomly select an equal number of entailment
and non-entailment samples to balance the classes.
For testing, we use IMPLI’s gold split; these are
manually generated samples and are hence more
reflective of true model performance.

As a second objective, we study the individual
effects and interactions of task-specific knowledge
injection and task-specific fine-tuning of PTLMs.
This process quantifies how much of the perfor-
mance gain, if any, can be explained by only task-
specific knowledge injection, and how much can be
attributed to our IEKG injection. Specifically, some
baselines may also be fine-tuned on the MNLI
dataset (Williams et al., 2018), with balanced en-
tailment and non-entailment samples. Overall, we
consider 5 possible settings: vanilla PTLM (BART-
large), PTLM fine-tuned on MNLI, PTLM with
IEKG injection, PTLM fine-tuned on MNLI fol-
lowed by IEKG injection, and PTLM with IEKG

%We also found IEKG-trained KMs are useful for down-
stream IE comprehension tasks. See Appendix H.

injection followed by fine-tuning on MNLL
Context continuation involves selecting the con-
tinuation sentence that makes the most sense
with the provided context with an IE. Prior
work (Chakrabarty et al., 2021a) illustrated this
task’s difficulty even for very large models, e.g.,
GPT-3. We aim to determine whether IEKG injec-
tion helps identify correct continuations. Specifi-
cally, we use the Figurative Narrative Benchmark
(FNB) dataset (Chakrabarty et al., 2021a), where
continuation selection requires correct IE interpre-
tation. Each instance consists of a given context
with an IE, followed by one correct and one in-
correct continuation. We transformed this dataset
into a binary classification task by generating two
examples (an incorrect and correct continuation)
from each instance in the dataset, formulated as
<context, continuation>. The model must then
classify whether the example is correct. We ana-
lyze the performance of the idiomatic samples’ test
split, where the labels are graciously provided by
the authors of FNB (Chakrabarty et al., 2021a).

Note that in the above tasks, we have included
the two largest and most well-defined publicly
available datasets for figurative language compre-
hension at the moment. In Appendix H, we also
describe experiments conducted on two additional
datasets for IE comprehension. In these experi-
ments, we observe results similar to those presented
in the main paper: models equipped with IEKG
knowledge injection exhibit enhanced figurative
language comprehension abilities. We did not in-
clude generic NLU datasets like SNLI, MNLI, or
SST because these datasets are not specifically de-
signed to assess NLU in the presence of idiomatic
expressions.

5.3 Experimental Setup

Fine-tuning uses a pretrained BART-large model,
with all experiments utilizing the same hyperparam-
eter settings to maintain consistency across our find-
ings. Further details can be found in Appendix E.

5.4 Application Results

Our first objective is to quantify the benefits, if any,
of IEKG injection on both the NLI and continua-
tion tasks in the presence of IEs. On the NLI task,
Table 3 illustrates that IEKG injection results in sig-
nificant gains in performance. BART-IEKG outper-
forms the pretrained BART by 2.33%, while BART-
IEKG-MNLI achieves significant gains of 18.01%.
Most importantly, combining IEKG injection with



task-specific fine-tuning, which is used to help the
model understand the NLI task itself, results in
state-of-the-art performance. BART-MNLI-IEKG
scores 83.75% on the IMPLI gold samples, which
represents a 23.68% increase in accuracy compared
to a pretrained BART mode and is still 5.79% bet-
ter than BART-MNLI. These performance gains
may be partly explained if the MNLI dataset is
similar to the IMPLI gold samples, which are out-
of-distribution (OOD) to the silver samples (as the
vanilla BART-large model performs poorly during
testing). Fine-tuning on external datasets similar to
the OOD dataset has been shown to increase model
robustness (Liu et al., 2022). However, MNLI
alone cannot fully explain our overall performance,
as IEKG injection brings additional improvements.
As the IEKG step utilizes the mask-infilling objec-
tive, it cannot be the case that this step is similar
to how we perform inference on the IMPLI gold
samples (the IEKG step is a generation, not clas-
sification). Thus, we conclude that task-specific
fine-tuning by itself is inadequate while additional
IE knowledge introduced by IEKG injection is nec-
essary to achieve the best performance.

Notably, our best-performing model, BART-
MNLI-IEKG, achieves a non-entailment accuracy
of 68.11%, which is almost double the previous
SOTA (34.80%) published with IMPLI (Stowe
et al., 2022), outperforming both BART (+15.35%)
and BART-MNLI (+33.07%) in accuracy.

Non-entailment performance is a crucial barom-
eter of true comprehension, as entailment is often
easily classified for all models (this may be ex-
plained by high token overlap or predicting entail-
ment as the majority class). That is why baseline
models perform well on entailment samples but
struggle greatly on the non-entailment and antonym
non-entailment samples (see Appendix F for exam-
ples). While poor non-entailment performance was
identified as a major challenge by the authors of
the IMPLI dataset (Stowe et al., 2022), our results
demonstrate that IEKG can significantly mitigate
this challenge. BART-MNLI-IEKG exhibits strong
performance across the board, and its high non-
entailment performance implies that our model is
truly comprehending the samples instead of apply-
ing rudimentary heuristics such as token overlap.

On the FNB test split, Table 4 shows that IEKG
injection results in a gain of 25.16% in overall
performance compared to the baseline. Note that
while state-of-the-art is around 83%, its method is

much more involved, as it includes both genera-
tion and classification, and is followed by what is
essentially a 12 inference ensemble for each sam-
ple (Chakrabarty et al., 2021a). Our results still
demonstrate IEKG utility, as BART-IEKG can per-
form quite well without making unnecessary ar-
chitecture adjustments or creating large ensembles.
Additionally, across both datasets, IEKG injection
has shown to be widely applicable to any tasks with
IEs, and only requires a single fine-tuning step to
imbue models with this knowledge.

Interestingly, IEKG injection provides a per-
formance gain across IEs covered and not cov-
ered by IEKG. There are marginal gains in the
performance of IEKG-covered samples on IM-
PLI (84.65% v. 82.39%) and comparable perfor-
mance in accuracy on the FNB dataset (77.77%
v. 77.81%). The performance on the uncovered
idioms was particularly impressive compared to
models without IEKG injection. Examining this
phenomenon more closely, we had BART-IEKG
generate definitions for a large set of uncovered
IEs to understand how well the model could com-
prehend unseen IEs. Additionally, we wanted to
see if the unseen IEs were very similar to the IEs
present in IEKG. Similarity for these unseen id-
ioms was computed in token-wise and semantic-
wise similarity with idioms from IEKG. We found
little correlation, if any, between the definition qual-
ity (as evaluated using the BERTScore) and either
token-wise or semantic-wise similarity. Uncovered
idioms similar to covered idioms exhibited higher
quality definitions, but the converse was not neces-
sarily true. See Appendix G for a detailed analysis.

The trends described in this section also hold for
the BART-base models (See Appendix F).

6 Conclusion

We propose IEKG, a knowledge graph that de-
scribes the commonsensical, figurative interpreta-
tion of IEs. We show various PTLMs can be con-
verted into KMs via the tuple completion task by
training on IEKG and IEKG imparts useful utility
for tasks that require IE comprehension.

Future work should extend IEKG to disam-
biguate between literal and figurative IE interpreta-
tions, and investigate factors that affect the models’
generalizability to IEs not covered by IEKG.



[ Model [ Overall Acc. [ EAcc. [ NEAcc. | ANT Acc. |
BART 60.07% 95.83% | 52.76% 14.67%
BART-IEKG 62.40% 96.97% | 48.82% 22.93%
BART-MNLI 77.96% 96.21% | 35.04% 81.33%
BART-MNLI-IEKG 83.75% 96.02% | 68.11% 77.07%
BART-IEKG-MNLI 78.08% 97.53% | 32.81% 81.28%

Table 3: A comparison of different BART-large models on the IMPLI dataset. E denotes entailment, NE denotes
non-entailment, and ANT denotes antonym non-entailment samples. The best performing scores are bolded.

[ Model [ Acc. [ CCAcc. [ ICAcc. |
BART 52.63% | 52.40% | 52.92%
BART-IEKG | 77.79% 78.47% 77.11%

Table 4: A comparison of the effect of IEKG injec-
tion with a BART-large model on the FigurativeNarra-
tiveBenchmark test dataset. Performances for correct
(CC) and incorrect (IC) classes are shown. The best
performing scores are bolded.

Limitations

The main limitation of the current IEKG is that
it only provides figurative interpretations of IEs.
However, IEs are often contextually ambiguous,
i.e., certain IEs can be interpreted literally in spe-
cific contexts. Hence, one future direction would
be to find ways to include literal IE interpretations
and distinguishing them from the figurative seman-
tics. Second, this work focuses on enabling smaller
frame PTLMs (with only millions of parameters)
targeting the specific ability of IE comprehension
using a data-efficient method. We are aware of
and have experimented with larger PTLMs, e.g.,
GPT-3.5 and GPT-4, and noted their IE compre-
hension ability. For example, given appropriate
prompts, GPT-3.5 can retrieve the definition for
a given idiomatic event and generate reasonable,
commonsense knowledge for a given relation type.
However, given the extensive data and computing
resources required by models like GPT-3.5, we be-
lieve that studying the ability of larger PTLMs is
beyond the scope of the present work. Instead,
GPT-3.5 could be used to collect and annotate ef-
ficiently IEKG-like knowledge graphs for more
IEs, reducing the workload and the requirement of
human annotators. Due to its unavailability during
the time of data annotation for IEKG, we did not
use GPT-3.5 to produce an even larger KG.
Additionally, our paper used the NLI and contin-
uation classification tasks to understand the effect
of IEKG injection on IE comprehension. It may
be relevant for future endeavors to explore other

tasks such as natural language generation. It would
also be interesting to know whether larger models
could also exhibit performance gains on OOD id-
ioms, as we saw in our experiments. Specifically, it
would be useful to examine if larger models could
better explain this increased robustness that occurs
with IEKG injection. However, due to their inher-
ent complexity and costs, we did not make use of
these larger models for testing IEKG injection in
our experiments.

Finally, hyperparameter testing was not opti-
mized for each individual step in a model. It is
our belief that while optimizing hyperparameters
should yield higher performance, the trends be-
tween different pipelines should remain the same
(i.e., IEKG injection should still be beneficial).
Nonetheless, it may also be possible in any ex-
perimental setting to achieve better performance
with better-tuned hyperparameters.

Ethics Statement

In this work, we proposed and constructed a knowl-
edge graph dataset, IEKG. During data collection
(Section 3, trustworthy undergraduate annotators
interested in participating in a research experience
in the field of NLP, were fully aware of the mo-
tivation and intent of the dataset and volunteered
their time in creating the dataset while also learning
about SOTA NLP models and their challenges. As
the annotators are the sole creators of the dataset,
there is no concern about infringing existing intel-
lectual property or violating privacy rights. The
annotators were instructed not to create explicit
or toxic data. During our evaluation of the an-
notation and case studies, we found no data in-
stances that contain toxic language. To further
ensure data integrity, we combine annotations for
the same event and relation type into single sen-
tences and used a hate speech detector (Vidgen
et al., 2021) that covers various types of hate to
evaluate the toxicity. As a result, only 0.066% (103
out of 15,684 combined annotation sentences) of



the annotations contain potential hate speech. Man-
ual inspection reveals that these samples contain
annotations for idioms that describe PersonX nega-
tively in nature, such as being “ignorant" and “fool-
ish,” and no actual targeted hate speech or toxic
expressions were found. Hence, we believe that
our dataset is safe for release. Additionally, the an-
notators are native speakers of standard American
English and would not have accounted for differ-
ences in background/common knowledge of idiom-
related attributes from other English-speaking cul-
tures (Acharya et al., 2021).

For our applications in IE comprehension tasks,
the intended use case is for the semantic anal-
ysis in the presence of IEs, which traditionally
would cause misunderstanding for smaller-frame
language models. In our experiments, only peer-
reviewed and publicly available datasets are used,
and no data contains sensitive personal/private in-
formation that could potentially breach privacy
rights. We did not study biases in our experiments,
but we do not anticipate there to be additional bi-
ases outside of those that pervasively exist in all
facets of the English language (our experiments
only focused on English datasets). The failure of
our model would cause misinterpretation of IE’s
figurative semantics and thus may result in incor-
rect classifications in IE-related natural language
understanding tasks. We do not anticipate these
models to be deployed in high-risk environments
(e.g., financial, medical and culturally-sensitive set-
tings) as yet, but if they are, users should beware
that model failure could cause semantic misinter-
pretation which could be detrimental depending
on the actual use case. Finally, we ran moderately
sized models that are orders of magnitude smaller
than models such as GPT-3.5 or GPT-4. Thus, our
environmental impact throughout the process is
minimal, and run times were not overly excessive.

Acknowledgements

We acknowledge and thank the assistance of Razi
Ahmed Khan, Andrew Zhang, and Zachary Kuo in
creating and curating the knowledge graph. This
research was supported in part by the National Sci-
ence Foundation under Grant No. IIS 2230817
and by a U.S. National Science Foundation and
Institute of Education Sciences grant (2229612).

References

Anurag Acharya, Kartik Talamadupula, and Mark A Fin-
layson. 2021. An atlas of cultural commonsense for
machine reasoning. In AAAI Conference on Artificial
Intelligence.

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554-3565, Online. As-
sociation for Computational Linguistics.

Alexandra Balahur, Ralf Steinberger, Mijail Kabadjov,
Vanni Zavarella, Erik van der Goot, Matina Halkia,
Bruno Pouliquen, and Jenya Belyaeva. 2010. Sen-
timent analysis in the news. In Proceedings of the
Seventh International Conference on Language Re-
sources and Evaluation (LREC’10), Valletta, Malta.
European Language Resources Association (ELRA).

Timothy Baldwin and Su Nam Kim. 2010. Multiword
expressions. In Nitin Indurkhya and Fred J. Dam-
erau, editors, Handbook of Natural Language Pro-
cessing, Second Edition, pages 267-292. Chapman
and Hall/CRC.

Prajjwal Bhargava and Vincent Ng. 2022. Common-
sense knowledge reasoning and generation with
pre-trained language models: A survey. CoRR,
abs/2201.12438.

Rhys Biddle, Aditya Joshi, Shaowu Liu, Cecile Paris,
and Guandong Xu. 2020. Leveraging sentiment dis-
tributions to distinguish figurative from literal health
reports on Twitter. In Proceedings of The Web Con-
ference 2020, pages 1217-1227.

BNC Consortium. 2007. British national corpus, XML
edition. Oxford Text Archive.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762—4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Tuhin Chakrabarty, Yejin Choi, and Vered Shwartz.
2021a. It’s not rocket science: Interpreting fig-
urative language in narratives. arXiv preprint
arXiv:2109.00087.

Tuhin Chakrabarty, Yejin Choi, and Vered Shwartz.
2022a. It’s not Rocket Science: Interpreting Fig-
urative Language in Narratives. Transactions of the
Association for Computational Linguistics, 10:589—

606.

Tuhin Chakrabarty, Arkadiy Saakyan, Debanjan Ghosh,
and Smaranda Muresan. 2022b. FLUTE: Figurative


https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
http://www.lrec-conf.org/proceedings/lrec2010/pdf/909_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/909_Paper.pdf
http://www.crcnetbase.com/doi/abs/10.1201/9781420085938-c12
http://www.crcnetbase.com/doi/abs/10.1201/9781420085938-c12
http://arxiv.org/abs/2201.12438
http://arxiv.org/abs/2201.12438
http://arxiv.org/abs/2201.12438
http://hdl.handle.net/20.500.12024/2554
http://hdl.handle.net/20.500.12024/2554
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.1162/tacl_a_00478
https://doi.org/10.1162/tacl_a_00478
https://aclanthology.org/2022.emnlp-main.481

language understanding through textual explanations.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7139-7159. Association for Computational
Linguistics.

Tuhin Chakrabarty, Xurui Zhang, Smaranda Muresan,
and Nanyun Peng. 2021b. MERMAID: Metaphor
generation with symbolism and discriminative de-
coding. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4250-4261, Online. Association for
Computational Linguistics.

Ting-Yun Chang, Yang Liu, Karthik Gopalakrishnan,
Behnam Hedayatnia, Pei Zhou, and Dilek Hakkani-
Tur. 2020. Incorporating commonsense knowledge
graph in pretrained models for social commonsense
tasks. In Proceedings of Deep Learning Inside Out
(DeeLlO): The First Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 74-79, Online. Association for Computational
Linguistics.

Ting-Yun Chang and Chi-Jen Lu. 2021. Rethinking
why intermediate-task fine-tuning works. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 706—713, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Paul Cook, Afsaneh Fazly, and Suzanne Stevenson.
2008. The VNC-tokens dataset. In Proceedings
of the LREC Workshop Towards a Shared Task for
Multiword Expressions (MWE 2008), pages 19-22.

Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wen-
zhong Guo. 2020. A survey on knowledge graph em-
bedding: Approaches, applications and benchmarks.
Electronics, 9(5).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Matt Errey. 2018. Common English Idioms: ebook by
Matt Errey. EnglishClub.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz.
2018. Examining the tip of the iceberg: A data set for
idiom translation. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Anna Feldman and Jing Peng. 2013. Automatic detec-
tion of idiomatic clauses. In International Confer-
ence on Intelligent Text Processing and Computa-
tional Linguistics, pages 435-446. Springer.

Hessel Haagsma, Johan Bos, and Malvina Nissim. 2020.
MAGPIE: A large corpus of potentially idiomatic
expressions. In Proceedings of The 12th Language
Resources and Evaluation Conference, pages 279—

287.

Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Ligiang
Nie, and Juanzi Li. 2022. A survey of knowledge-
enhanced pre-trained language models. ArXiv,
abs/2212.13428.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. Comet-atomic 2020: On sym-
bolic and neural commonsense knowledge graphs. In
AAAL

Filip Ilievski, Pedro Szekely, and Bin Zhang. 2021.
Cskg: The commonsense knowledge graph. Ex-
tended Semantic Web Conference (ESWC).

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Tay-
lor Berg-Kirkpatrick. 2021. Investigating robustness
of dialog models to popular figurative language con-
structs. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 74767485, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S Yu. 2022. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning
systems, 33(2):494—514.

JToannis Korkontzelos, Torsten Zesch, Fabio Massimo
Zanzotto, and Chris Biemann. 2013. Semeval-2013
task 5: Evaluating phrasal semantics. In Second Joint
Conference on Lexical and Computational Semantics
(* SEM), Volume 2: Proceedings of the Seventh Inter-
national Workshop on Semantic Evaluation (SemEval
2013), pages 39—47.

Alon Lavie and Michael J. Denkowski. 2009. The me-
teor metric for automatic evaluation of machine trans-
lation. Machine Translation, 23(2-3):105-115.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Changsheng Liu. 2019. Toward Robust and Efficient
Interpretations of Idiomatic Expressions in Context.
Ph.D. thesis, University of Pittsburgh.


https://aclanthology.org/2022.emnlp-main.481
https://doi.org/10.18653/v1/2021.naacl-main.336
https://doi.org/10.18653/v1/2021.naacl-main.336
https://doi.org/10.18653/v1/2021.naacl-main.336
https://doi.org/10.18653/v1/2020.deelio-1.9
https://doi.org/10.18653/v1/2020.deelio-1.9
https://doi.org/10.18653/v1/2020.deelio-1.9
https://doi.org/10.18653/v1/2021.findings-emnlp.61
https://doi.org/10.18653/v1/2021.findings-emnlp.61
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.englishclub.com/store/product/common-english-idioms/
https://www.englishclub.com/store/product/common-english-idioms/
https://aclanthology.org/L18-1148
https://aclanthology.org/L18-1148
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.1109/tnnls.2021.3070843
https://doi.org/10.1109/tnnls.2021.3070843
https://doi.org/10.1007/s10590-009-9059-4
https://doi.org/10.1007/s10590-009-9059-4
https://doi.org/10.1007/s10590-009-9059-4
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013

Changsheng Liu and Rebecca Hwa. 2017. Represen-
tations of context in recognizing the figurative and
literal usages of idioms. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31.

Changsheng Liu and Rebecca Hwa. 2019. A general-
ized idiom usage recognition model based on seman-
tic compatibility. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6738-6745.

Nelson F. Liu, Ananya Kumar, Percy Liang, and Robin
Jia. 2022. Are sample-efficient nlp models more
robust?

Rosamund Moon et al. 1998. Fixed Expressions and Id-
ioms in English: A Corpus-Based Approach. Oxford
University Press.

Jing Peng and Anna Feldman. 2016. Automatic id-
iom recognition with word embeddings. In Infor-
mation Management and Big Data - Second Annual
International Symposium, SIMBig 2015, Cusco, Peru,
September 2-4, 2015, and Third Annual International
Symposium, SIMBig 2016, Cusco, Peru, September
1-3, 2016, Revised Selected Papers, volume 656 of
Communications in Computer and Information Sci-
ence, pages 17-29. Springer.

Jing Peng, Anna Feldman, and Ekaterina Vylomova.
2014. Classifying idiomatic and literal expressions
using topic models and intensity of emotions. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2019-2027. Association for Computational
Linguistics.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21(140):1-67.

Nazneen Fatema Rajani, Edaena Salinas, and Raymond
Mooney. 2014. Using abstract context to detect figu-
rative language.

Gholamreza Rohani, Saeed Ketabi, and Mansoor
Tavakoli. 2012. The effect of context on the efl learn-
ers’ idiom processing strategies. English Language
Teaching (Toronto, Canada), 5(9):104 — 114.

Ronit Saban-Bezalel and Nira Mashal. 2019. Different
factors predict idiom comprehension in children and
adolescents with ASD and typical development. J
Autism Dev Disord, 49(12):4740-4750.

Sahand Sabour, Chujie Zheng, and Minlie Huang. 2021.
Cem: Commonsense-aware empathetic response gen-
eration. In AAAI Conference on Artificial Intelli-
gence.

Ivan A Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for NLP. In Interna-
tional conference on intelligent text processing and
computational linguistics, pages 1-15. Springer.

Giancarlo Salton, Robert Ross, and John Kelleher. 2016.
Idiom token classification using sentential distributed
semantics. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 194-204.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A. Smith, and Yejin Choi. 2019.
ATOMIC: an atlas of machine commonsense for
if-then reasoning. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 3027-3035.
AAAI Press.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAT’ 17,
page 4444-4451. AAAI Press.

Kevin Stowe, Prasetya Utama, and Iryna Gurevych.
2022. IMPLI: Investigating NLI models’ perfor-
mance on figurative language. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5375-5388, Dublin, Ireland. Association for Compu-
tational Linguistics.

Shiva Taslimipoor, Omid Rohanian, Ruslan Mitkov, and
Afsaneh Fazly. 2018. Identification of multiword
expressions: A fresh look at modelling and evalua-
tion. In Multiword expressions at length and in depth:
Extended papers from the MWE 2017 workshop, vol-
ume 2, page 299. Language Science Press.

Harish Tayyar Madabushi, Edward Gow-Smith, Car-
olina Scarton, and Aline Villavicencio. 2021.
AStitchInLanguageModels: Dataset and methods for
the exploration of idiomaticity in pre-trained lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
3464-3477, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics


http://arxiv.org/abs/2210.06456
http://arxiv.org/abs/2210.06456
https://doi.org/10.1007/978-3-319-55209-5_2
https://doi.org/10.1007/978-3-319-55209-5_2
"https://aclanthology.org/D14-1216
"https://aclanthology.org/D14-1216
http://arxiv.org/abs/1811.01088
http://arxiv.org/abs/1811.01088
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=mzh&AN=2013651928&site=eds-live&scope=site
http://www.library.illinois.edu.proxy2.library.illinois.edu/proxy/go.php?url=https://search-ebscohost-com.proxy2.library.illinois.edu/login.aspx?direct=true&db=mzh&AN=2013651928&site=eds-live&scope=site
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.18653/v1/2022.acl-long.369
https://doi.org/10.18653/v1/2022.acl-long.369
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132

and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1667—1682, Online. Association for Computa-
tional Linguistics.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724—
2743.

Rui Wang, Shijing Si, Guoyin Wang, Lei Zhang,
Lawrence Carin, and Ricardo Henao. 2020. Inte-
grating task specific information into pretrained lan-
guage models for low resource fine tuning. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 3181-3186, Online. Association
for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112—-1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Ziheng Zeng and Suma Bhat. 2021. Idiomatic ex-
pression identification using semantic compatibility.

Transactions of the Association for Computational
Linguistics, 9:1546-1562.

Ziheng Zeng and Suma Bhat. 2022. Getting BART to
Ride the Idiomatic Train: Learning to Represent Id-
iomatic Expressions. Transactions of the Association
for Computational Linguistics, 10:1120-1137.

Hongming Zhang, Daniel Khashabi, Yanggiu Song, and
Dan Roth. 2020a. Transomcs: From linguistic graphs
to commonsense knowledge. In Proceedings of the
Twenty-Ninth International Joint Conference on Arti-
ficial Intelligence, IJCAI-20, pages 4004-4010. Inter-
national Joint Conferences on Artificial Intelligence
Organization. Main track.

Hongming Zhang, Xin Liu, Haojie Pan, Haowen Ke,
Jiefu Ou, Tianqging Fang, and Yangqiu Song. 2022.
Aser: Towards large-scale commonsense knowledge
acquisition via higher-order selectional preference
over eventualities. Artif. Intell., 309(C).

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Jianing Zhou, Ziheng Zeng, Hongyu Gong, and Suma
Bhat. 2021. Idiomatic expression paraphrasing with-
out strong supervision.

Xiaohan Zou. 2020. A survey on application of knowl-
edge graph. Journal of Physics: Conference Series,
1487(1):012016.

Tadej Skvorc, Polona Gantar, and Marko Robnik-
Sikonja. 2022. Mice: Mining idioms with con-
textual embeddings. Knowledge-Based Systems,
235:107606.


https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.18653/v1/2020.findings-emnlp.285
https://doi.org/10.18653/v1/2020.findings-emnlp.285
https://doi.org/10.18653/v1/2020.findings-emnlp.285
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00442
https://doi.org/10.1162/tacl_a_00442
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.24963/ijcai.2020/554
https://doi.org/10.24963/ijcai.2020/554
https://doi.org/10.1016/j.artint.2022.103740
https://doi.org/10.1016/j.artint.2022.103740
https://doi.org/10.1016/j.artint.2022.103740
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
http://arxiv.org/abs/2112.08592
http://arxiv.org/abs/2112.08592
https://doi.org/10.1088/1742-6596/1487/1/012016
https://doi.org/10.1088/1742-6596/1487/1/012016
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107606
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107606

Relation Type Meaning
Causes causes
HinderedBy Can be hindered by
oEffect As aresult, Y or others will
oReact As aresult, Y or others feels
oWant As aresult, Y or others want
XAttr X is seen as
xEffect As a result, PersonX will
xIntent Because PersonX wanted
xNeed But before, PersonX needed
xReact As a result, PersonX feels
xWant As a result, PersonX wants

Table 5: Relation types in IEKG and meanings.

A Relation Types in IEKG

IEKG is constructed to align with the ATOMIC3)
such that the relation types in IEKG is a subset of
that in ATOMIC39. Please refer to Table 5 for the
11 relation types in IEKG and their meanings.

B Knowledge Model Experiment Details

In this section, we provide details on the base-
line knowledge models and experiment settings
discussed in Section 4.

BART-Comet is the pre-trained BART-large lan-
guage model with 12 Transformer encoder-decoder
layers trained on the ATOMIC3) KG. BART’s
encoder-decoder structure and denoising pre-
training objective make it suitable for language
generation tasks and has been shown to achieve the
best performance among the KG-adapted PTLMs.
We use the trained checkpoint released by Hwang
et al. (2021). This model serves as a baseline for
idiomatic knowledge inference.

BART-IEKG is a pre-trained BART-large lan-
guage model that is fine-tuned on IEKG using the
knowledge tuple completion.

GPT2-IEKG is an auto-regressive language model
with 12 Transformer decoder layers, fine-tuned into
a KM using IEKG with knowledge tuple comple-
tion task.

TS-IEKG is another 12-layer encoder-decoder
transformer-based LM that is pre-trained with mul-
tiple NLP tasks; we fine-tuned the T5 model similar
to BART-IEKG.

Experiment Setup. For all the PTLMs in our ex-
periments, we use the HuggingFace implementa-
tions (Wolf et al., 2020). We train the models (ex-
cept for BART-Comet, which is already fine-tuned)
on IEKG for 50 epochs with a batch size of 16

for models with BART as the backbone and 64 for
other models. For all training, we used the AdamW
optimizer with a learning rate of 1e-5. All the other
hyper-parameters are set to their default values. We
record the checkpoints with the best Rouge-L score
on the test set during training.

C Examples of Generated tuples from
BART-Comet and BART-IEKG

In this section, we show a sample of generated
knowledge tuples from BART-Comet and BART-
IEKG for the relation-type split (Table 6) and IE-
type split (Table 7). As shown in Table 6, observing
example outputs from the relation-type test split,
we find that BART-Comet often considers IEs liter-
ally when the figurative meaning is not understood
while BART-IEKG generates correct figurative in-
terpretations for the idiomatic events. Moreover,
BART-IEKG can generalize to certain IEs unseen
during training, as shown by the first three rows in
Table 7; though when the BART-IEKG fails to un-
derstand the IE semantic, it tends to also produce
literal interpretations as shown by the last three
rows in Table 7.

D IE Grouping with IEKG

Grouping semantically related expressions is fre-
quently encountered in NLP and naturally ap-
plicable to IEs, but remains under-explored ow-
ing to the challenges in processing their non-
compositionality. Recently, Zeng and Bhat (2022)
have used IE definition embeddings to group IEs
based on their semantic relatedness. We propose an
alternative harnessing the IE dimensions conveyed
by the relations in IEKG, useful for downstream
applications such as paraphrasing, e.g., by finding
IEs with similar intents (the xIntent relation).

Grouping methods. We use Definition Grouping
as a baseline, which computes the definition em-
bedding for each IE using a sentence embedding
model’. Then, for each IE, we find the closest
related IEs from the lexicon by computing the pair-
wise cosine similarity of all IE definition embed-
ding pairs and identifying the IEs with the highest
cosine similarities. For IEKG Grouping, we iden-
tify related IEs by each relation type. First, we
generate embeddings for all knowledge tuples in
IEKG. To better utilize the sentence embedding
model, we convert a given knowledge tuple into a

"We use the same sentence encoder from our diversity
analysis.



Idiomatic Event Relation BART-Comet BART-IEKG

PersonX tells tales out of Causes PersonX is not allowed to tell tales at  others to dislike them
school school.

PersonX gets down to brass  HinderedBy PersonX doesn’t have the time to get distractions

tacks down to brass tacks.

PersonX turns a blind eye oReact angry at personx for ignoring them. grateful

PersonX is out of the running ~ xNeed to not want to be in the running to be in a competition
PersonX picks holes HinderedBy PersonX doesn’t know how to pick holes.  having a strong work ethic
PersonX gets their feet wet xIntent to play in the water to get better at something
PersonX is treading water xNeed to get in the water a lack of interest
PersonX sails close to the oReact like they have a good friend to sail with.  scared

wind

PersonX rolls with the xIntent to be a good person to prove themselves
punches

PersonX is on the level xIntent to be on the same level as everyone else to be fair

Table 6: Knowledge tuples completed by BART-Comet and BART-IEKG on relation-type split.

* Gogreat guns
* Grasp the nettle
* Get Cracking

* incahoots
* joined at the hip

Defn

* Kiss and made up
* On the same page

| .
xEffect
Talk to PersonY more

Hand in glove
* Right up your street
* Thick as thieves

/

Hit the ground * One the same wavelength
running A
HinderedBy:

N\
HinderedBy: / N xNeed:

Lack of motivation Desire to finish work

/ \

* Home and dry * Roll with the punches
e Strain at the leash .
* Stop at nothing .

Burn the midnight oil

Burn the candle at both ends

xNeed:

In ta ndem Be Friendly to PersonY
Lack of agreement

Defn

* Have it both ways
* Kill two birds with one stone
* Handinglove

Figure 2: IEs grouped by their definition embeddings (Defn) and relation types from IEKG. IEs from IEKG
grouping may not be semantically interchangeable but share similar attributes by relations.

Idiomatic Event Relation Output

PersonX drops the ball XAttr unreliable

PersonX reaches for the HinderedBy laziness

stars

PersonX is on thin ice xWant someone to
help them

PersonX rub shoulders xAttr strange

with PersonY

PersonX falls asleep at the =~ xReact sleepy

wheel

PersonX is tilting at wind-  xEffect consult

mills experts

Table 7: Knowledge tuples completed by BART-IEKG
on the IE-type splits. The first three rows show cases
where the KM generalizes to unseen IEs while the last
three rows show cases where the IEs are not correctly
comprehended.

natural sentence by replacing its relation type with
its corresponding text as listed in Table 5 and then
concatenate the idiomatic event, translated relation
type, and its tail into a sentence; then, we use the
sentence embedding model to generate an embed-

ding for the tuple. Next, for any two given IEs
from IEKG, I; and I5, and each relation type r,
we gather their sets of knowledge tuple embeddings
for r as }"1 and T - then, we compute the mean
pairwise cosine similarity for pairs from T} and
7}2 as the similarity measure for I; and I w.r.t.
r. In the end, for any given IE, we can find a list
of the closest related IEs for each relation type in
IEKG.
Case study. In Figure 2, we show the most closely
related IEs identified via Definition Grouping and
IEKG Grouping for various relation types. For
example, for the IE in tandem, the most similar
IEs found via Definition Grouping are have it both
ways and hand in glove, which are mostly inap-
propriate. From IEKG Grouping, however, kiss
and make up and on the same page are identified
via the relation HinderedBy because a lack of mu-
tual goals or agreements or dislike of each other
will hinder these IEs; in cahoots and joined at the
hip are identified via the relation xNeed because the



subject needs to have a fondness for the object in all
three IEs. These results show that IEKG enables
the IEs to be related to each other beyond seman-
tics from their definitions but also by the shared
attributes along each relation type, thus allowing
for a more comprehensive IE understanding.

E Settings for Application Experiments

All fine-tuning steps are conducted at 5 epochs,
with a learning rate of 2e — 5, and a weight decay
of 0.01. The batch size is 32. All experiments use
arandom seed of 42.

For the IEKG injection step, we use beam-search
with 4 beams, and a maximum new token count of
256, and a minimum new token count of 10. The
knowledge tuple templates themselves are set at a
maximum token length of 128, with padding set to
the maximum length, and truncation enabled. The
dataset consists of 26,020 templates in the fine-
tuning step. The samples are organised such that
the model sees all possible idioms in the IEKG dur-
ing training, but we withhold some of the relation
types for each idiom. For example, if a particular
idiom had 7 possible relation types, the model may
only see 2 or 3 of these relation types during the
IEKG injection step. Note that different relation
types are withheld for each idiom to ensure that
all relation types are seen across the entirety of the
fine-tuning dataset. This ensures that the model
both learns the idiom definition and how to apply
the idiom semantics towards IE comprehension.

The MNLI fine-tuning step uses 258, 514 sam-
ples to imbue the model with task-level knowl-
edge about NLI. These samples are split evenly
between 129, 257 samples each for entailment and
non-entailment, to ensure against classifier variabil-
ity due to class imbalance. The samples are set at a
maximum token length of 256, with padding set to
the maximum length, and truncation enabled.

The IMPLI step uses 13, 650 samples as the sil-
ver fine-tuning dataset. There are 6, 825 entailment
samples, and 6, 825 non-entailment plus antonym
non-entailment samples. In the IMPLI gold dataset,
there are a total of 1, 157 samples, with 528 being
entailment, 254 being non-entailment, and 375 be-
ing antonym non-entailment samples. On a quick
note regarding coverage, 697 of the gold samples
contain IEs that are present in the IEKG knowledge
base. Of these 697 samples, 317 are entailment,
147 are non-entailment, and 233 are antonym non-
entailment. The coverage of IEKG on the IMPLI

gold is thus 60.24%.

The FNB step uses 6, 408 examples as the fine-
tuning dataset, taken from an original amount of
3,204 samples in the FNB training split. The FNB
test split consists of 3, 084 examples, taken from an
original amount of 1,542 samples in the FNB test
split. Regarding coverage, 902 of the 1, 542 test
samples contain IEs that are present in the IEKG
knowledge base. The coverage of IEKG on the
FNB test split is thus 58.50%.

F BART-Base Model for IMPLI and FNB

We observe that on the IMPLI gold dataset, the
BART model with IEKG injection preceded by
task-level MNLI fine-tuning still outperforms its
contemporaries, with a gain of 2.15% compared to
the BART model that was only fine-tuned on MNLI,
as evidenced by Table 8. There is still a significant
gain compared to models without IEKG injection
and MNLI fine-tuning, as it outperforms a vanilla
BART model by 15.12%. Notably, even in the
BART-base scenario, we still demonstrate a signifi-
cant gain on the non-entailment performance, do-
ing approximately 25% better than the original IM-
PLI state-of-the-art, and outperforms its other con-
temporaries by at least 7.48% here. This demon-
strates that despite model size difference, IEKG
injection represents a significant advancement in
model comprehension towards understanding the
non-entailment examples that hitherto state-of-the-
art models struggled on. These trends are exactly
what we saw with our results on the BART-large
models in Section 5.4.

Additionally, Table 8 shows that the vanilla pre-
trained BART-base model also struggles on the
non-entailment and antonym non-entailment sam-
ples. As mentioned previously in Section 5.4, en-
tailment samples are easy to classify, as the pre-
trained BART model sees the high token overlap
and will predominantly predict entailment. To give
one such example, consider the IMPLI entailment
sample with the premise and hypothesis as follows:
<The Book of Proverbs makes it clear that hap-
piness and discipline go hand in hand from the
beginning of our lives : "He who spares the rod
hates his son, but he who loves him is careful to dis-
cipline him.’, The Book of Proverbs makes it clear
that happiness and discipline are associated with
the beginning of our lives : 'He who spares the
rod hates his son, but he who loves him is careful
to discipline him.”>. With so many overlapping



tokens, it is easy for the pretrained BART model to
employ a rudimentary heuristic like token overlap
to predict entailment. However, this strategy fails
on the non-entailment and antonym non-entailment
samples (antonym non-entailment specifically uses
the opposite meaning of the IE as opposed to just
a random meaning), where the premise and hy-
pothesis may still have high token overlap, but cor-
rect classification is now dependent on true model
comprehension of the IE. For the non-entailment
sample: <[t was pretty interesting, like one of the
guys goes native and one of the guys doesn'’t., It
was pretty interesting, like one of the guys goes
wild and one of the guys doesn’t.>, there is still
high token overlap, but the two sentences are actu-
ally not in entailment. However, as the pretrained
BART model still predicts entailment, the model
fails at true IE comprehension. Similarly, this is
also the case for the antonym non-entailment sam-
ples, with one such sample as follows: <He prefers
acting with other countries to going it alone., He
prefers acting with other countries to doing it with
all the assistance of others.>. The model’s overall
poor performance on non-entailment and antonym
non-entailment samples, at both the BART-base
and BART-large cases, indicates that pretrained
BART models are not actually comprehending the
IE meaning in the samples, which is why our IEKG
injection step is so necessary.

Similarly to the BART-large case, we see that
for the FNB test split, the IEKG injected model
still outperforms the vanilla BART model, with a
performance gain of 1.66% as seen in Table 9. It is
interesting to note that the BART-base models here
tend to perform better than the BART-large models,
at least in the vanilla case. We hypothesize that at
this model size, the models aren’t able to truly sepa-
rate since the size constrains the model’s ability for
IE comprehension, and is why at larger sizes we see
a much more significant gap. Regardless, we see
that IEKG injected models still outperform their
counterparts across the board on the FNB test split,
which follows the trends we saw in Section 5.4.

Finally, we see that, similarly to our results on
the BART-large models, that IEKG injection seems
to benefit both samples covered and not covered by
IEKG, which adds a level of robustness and makes
the model more generaliseable. Once again, we
suspect that at such small model complexities, sep-
arability between models with and without IEKG is
more difficult, as the model size itself is a constrain-

ing factor in IE comprehension. Our results still
show a significant gap on the BART-large models
however, and still demonstrate some separability,
at least for the IMPLI results.

G Analysis of IEKG Injection Robustness

In both the BART-base and BART-large cases, Ta-
ble 11 and Table 10 indicate that performance on
uncovered idiom samples appears to be pretty good.
To examine why IEKG injection increases model
generalizability, we tested the definition generation
quality of our IEKG-injected BART-large model.
We used a dataset of 2, 166 idioms, 937 of which
are not found in the IEKG knowledge base. As
ground truth definitions are automatically pulled
from the web (Wikitionary and Google Dictionary),
they inherently carry some noise. After removing
invalid ground truth definitions (e.g., definitions of
the format "alternative spelling of"/"alternate form
of"), the result is a total of 899 valid, uncovered
idioms.

We then define two notions of similarity that
can be used to compare uncovered versus cov-
ered idioms. First, token-wise similarity computes
the idiom embeddings by passing the idiom to-
kens through a sentence embedding model (all-
mpnet-base-v2 from sentence-transformer pack-
age) model, which generates a (2166, 768) idiom
embedding matrix. We then compute the pairwise
similarity matrix, of shape (2166, 2166), using the
cosine distance as the metric of similarity. From
here, each idiom is assigned a similarity score, com-
puted as the mean of the top-3 highest values for
that idiom’s entry in the pairwise similarity ma-
trix. For token-wise similarity, we aim to test if the
model better generalizes to the unseen idioms that
share token-level similarity with the seen idioms.
Note that scores are bounded between 0 and 1, with
larger scores indicating higher similarity and vice
versa. The same procedure is followed in semantic-
wise similarity, except that the idiom embedding
is now computed from the idiom’s ground truth
definition, as opposed to the tokens. For semantic-
wise similarity, we test if the model generalizes
to unseen idioms with seen figurative semantics
better.

As we explained briefly in Section 5.4, there is
little correlation between generated definition qual-
ity and either token-wise similarity or semantic-
wise similarity. From Table 12, we see a marginal
correlation between the definition quality and



Model Overall Acc. | E Acc. | NE Acc. | ANT Acc.
BART 56.27% 89.20% | 51.97% 12.80%
BART-IEKG 56.87% 93.37% | 48.82% 10.93%
BART-MNLI 69.24% 86.91% | 30.83% 70.32%
BART-MNLI-IEKG 71.39% 92.05% | 59.45% 50.40%
BART-IEKG-MNLI 70.80% 88.61% | 33.99% 70.59%

Table 8: A comparison of different BART-base models on the IMPLI dataset. E denotes entailment, NE denotes
non-entailment, and ANT denotes antonym non-entailment samples. The best performing scores are bolded.

Model Acc. | CC Acc. | IC Acc. |
BART 62.48% | 61.87% | 63.10%
BART-IEKG | 64.14% | 65.24% | 63.10%

Table 9: A comparison of the effect of IEKG injection
on the FigurativeNarrativeBenchmark test dataset. Each
sample has been split into a corresponding correct (CC)
and incorrect sample (IC). The best performing scores
are bolded.

semantic-wise similarity, but less so with token-
wise similarity. Thus, similarity plays little role
in the generated definition quality, but similar-
meaning idioms are slightly more likely to re-
ceive better performance. This slight correlation
is also seen on the scatter plots between the gen-
eration BERTScores and semantic-wise similarity,
as shown in Figure 3. Note that correlation here
denotes the Pearson correlation coefficient.

Finally, note that in many cases, we observed
that low scores were not necessarily an indicator
of low generalizability. Given the automatic na-
ture of the ground truth idiom definitions, in many
instances, definitions were either too short, had a
much different length compared to the generated
definition, or contained synonyms with the gen-
erated definition but exhibited little to no token
overlap. Thus, many samples with a good defini-
tion may have ended up with poor BERTScores.
As an example, the idiom "in the raw", with a
ground truth definition of "in its true state", had a
generated definition of "fo be unsophisticated or
unrefined". Despite this definition, this sample’s
BERTScore (precision) was —0.2669. This was
just one of many samples we examined to have
a good definition, but poor overall score. There-
fore, we cannot claim that low similarity (either
token-wise or semantic-wise) necessarily proves
low generalization performance.

H IE Comprehension Tasks with
IEKG-trained KMs

This section demonstrates that [IEKG-trained KMs
can also improve the performances for downstream
IE comprehension tasks. We show how our KMs
enhances PTLM’s IE-related knowledge compre-
hension ability via two concrete tasks related to IEs
and figurative language, i.e., the IE comprehension
test and the figurative language inference

H.1 IE Comprehension Test

In English language learners, the ability to under-
stand and use idioms is tested using idiom compre-
hension tests, which we adapt here to test PTLMs’
idiom-related reasoning using IEKG.

H.1.1 Task and Data

Here, the comprehension ability is tested by asking
a learner to select the correct continuation of the
first half of a sentence containing an idiom. As
shown in Table 13, given the first half of a sen-
tence with an idiom, three possible continuations
are presented, and the learner is asked to select the
option that coheres with the meaning of the idiom.
Note that the wrong options misunderstand the id-
iom’s meaning in the context sentence, not neces-
sarily confusing the literal and figurative interpre-
tations. The idiom comprehension test dataset was
collected from an idiom study resource by (Errey,
2018) consisting of 587 unique idiom instances, of
which 131 (22.3%) are covered by IEKG. Hence,
even with the additional knowledge from IEKG,
models need to generalize to out-of-coverage id-
ioms to perform well in this task.

H.1.2 Models

We consider a PTLM and two trained KMs as mod-
els for performance comparison.

LM-BART the pretrained BART-large language
model in its off-the-shelf mode; we consider this



[ Base Model [ Overall Acc. [ EAcc. [ NEAcc. | ANT Acc. |
IMPLI IEKG Samples 72.60% 93.06% | 61.90% 51.50%
IMPLI Unseen Samples 69.57% 90.52% | 56.07% 48.59%
FNB IEKG Samples 62.25% 65.41% | 63.08% N/A
FNB Unseen Samples 63.98% 65.00% | 63.13% N/A

Table 10: A comparison of BART-base performance on samples with IEs covered and uncovered by IEKG. Note
that E denotes entailment, NE denotes non-entailment, and ANT denotes antonym non-entailment. For the FNB
dataset, E denotes the correct continuation samples, and NE denotes the incorrect continuation samples. The best

performing scores are bolded.

[ Large Model [ Overall Acc. [ EAcc. [ NE Acc. | ANT Acc. |
IMPLI IEKG Samples 84.65% 96.21% | 69.40% 78.54%
IMPLI Unseen Samples 82.39% 95.73% | 66.36% 74.65%
FNB IEKG Samples 77.77% 78.49% | 77.05% N/A
FNB Unseen Samples 77.81% 78.44% | 77.19% N/A

Table 11: A comparison of BART-large performance on samples with IEs covered and uncovered by IEKG. Note
that E denotes entailment, NE denotes non-entailment, and ANT denotes antonym non-entailment. For the FNB
dataset, E denotes the correct continuation samples, and NE denotes the incorrect continuation samples. The best

performing scores are bolded.

Similarity | Precision | Recall F1
™ 0.0243 | 0.0487 | 0.0380
SS 0.1324 | 0.1860 | 0.0380

Table 12: A comparison of BERTScore correlation
with both token-wise (TW) and semantic-wise similarity
(SS). The best performing scores are bolded.

Context Sentence Options

gave him a bonus (v")
told him to work harder
dismissed him

bites people (v)

loves children

wags its tail

Angelo saw it as a vote of
confidence when his boss

Tell your kids to steer
clear of that dog. It

Table 13: Examples of context sentences and their con-
tinuation options from the Idiom comprehension test
dataset (correct answers marked by V).

model to compare the ability of a language model
to that of the knowledge models.

KM-ATOMIC is the BART-large model trained
on the ATOMIC33 KG with the officially released
checkpoint after one epoch of training.

KM-Full is a pretrained BART-large model trained
on both ATOMIC3) and IEKG tuples with the tu-
ple completion task for two epochs with the same
hyper-parameter settings as the KM-ATOMIC
model. Comparing KM-Full to KM-ATOMIC al-
lows us to assess the utility of the additional IEKG
tuples.

H.1.3 Methods

Our experiments are performed to gain insights
into linguistic comprehension related to idioms and
their ability to generalize knowledge from IEKG to
idioms that are not in IEKG. In this experiment, we
perform the comprehension test in a zero-shot clas-
sification setting, where the LM or a trained KM
directly works on the comprehension task without
being fine-tuned on any IE comprehension data.
Using the following methods, we adapt LM and
KM differently to perform zero-shot classification.

LM Method. For LM-BART, we concatenate a
given context sentence and each of its three poten-
tial continuations and compute the log-loss for each
continuation. The continuation with the lowest log
loss is taken as the classification result. This zero-
shot method has been used in (Chakrabarty et al.,
2022a) for other figurative language interpretation
tasks.

KM Method. For both the KMs, we turn the tail
prediction task into a classification task to choose
the best continuation as follows. First, we observe
that most continuations in the dataset pertain to the
subject of the given context sentence. Based on
this, we select a set of six subject-related relation
types in the experiment, i.e., we select R = [xAttr,
xEffect, xIntent, xNeed, xReact, xWant]. Next,
given R, a set of k relation types, and a context sen-
tence S with each of its three options of continua-
tions O;,1 € 1,2, 3, we use the KM to consider the
likelihood (correctness) of O; to be the likelihood
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Figure 3: Scatter plots of generated definition
BERTScores (precision, recall, F1) with idiom semantic-
wise similarity.

of the knowledge tuple formed by < S,7;,0; >,
such that r; € R and j € 1, ..., k. Specifically, for
each relation type r;, we use the KM to compute
three log-losses for the three tuples < C, 7, 0; >
where ¢ € 1,2, 3 and the O; with the smallest log-
loss is taken as the classification result for the rela-
tion type r;. Following this process, we produce a
classification result for each of the £ relation types
and then take a majority vote to produce the final
classification result for the context sentence S. In
other words, for each relation type r;, we apply
the LM method on the three continuation-converted
tuples < C,r;,0; > where i € 1,2, 3, and in the
end, the classification result is the one chosen as

Table 14: Knowledge models’ performance on the com-
prehension test in accuracy (%) for IEs. The results
are broken down by IEs covered (Cov.) and uncovered
(Uncov.) by IEKG. The best performances are bold-
faced. (E1 and E2 refer to training in 1 and 2 epochs,
respectively)

Model Overall | Cov. | Uncov.
LM-BART 37.65 | 39.69 | 37.06
KM-ATOMIC 4532 | 44.27 | 45.61
KM-Full E1 50.60 | 50.38 | 50.65
KM-Full E2 50.60 | 51.15 | 50.43

the correct continuation by the most relations.

H.1.4 Results

As shown in Table 14, LM-BART cannot perform
the IE comprehension test under the zero-shot
setting, achieving an accuracy of 37.6%, which
is barely above the random baseline accuracy of
33.3% (choosing one of three choices at random).
LM’s poor performance in the zero-shot setting
is expected and aligns with prior results in sim-
ilar classification settings (Hwang et al., 2021;
Chakrabarty et al., 2022a), showing that a PTLM
lacks the ability for commonsense and figurative
language reasoning without further fine-tuning.
On the other hand, KMs are more competent
in this task. Despite learning from a KG with a
relatively smaller IE coverage and idiomatic anno-
tations, KM-ATOMIC can achieve a 45.32% ac-
curacy, which is a 7.67% accuracy gain over LM-
BART. After training with the knowledge tuples
from both ATOMIC and IEKG for only one epoch,
KM-Full attains an accuracy of 50.6%, with an ad-
ditional gain of 5.28% over KM-ATOMIC and an
overall gain of 12.95% over the LM-BART. Also,
we note that KM-Full’s accuracy for IEs that IEKG
does not cover is slightly above 50%, which is
similar to the accuracy for the covered IEs. This
result shows that KM-Full’s comprehension abil-
ity is not restricted only to IEs that are seen from
IEKG. Though the KM-full’s accuracy is relatively
low in number, we stress that this performance is
achieved without any supervised training, i.e., KM-
Full passes the comprehension test for half of the
IEs in the test data in a zero-shot fashion. We ex-
pect the KMs to achieve much higher performance
with a larger dataset for the comprehension test and
supervised fine-tuning. Taken together, these re-
sults demonstrate (1) KM-Full’s ability to carry out
the IE comprehension test for certain IEs without



being fine-tuned to the task and (2) the KM’s abil-
ity to generalize its comprehension to IEs unseen
during KM training.

One limitation of the current zero-shot method
is that every relation type is weighted equally; how-
ever, some relation types could be more contextu-
ally appropriate than the other relation types and
thus should be considered with a higher weight.
Observing the errors from KM-Full, we also found
that the subject-focused relation types are some-
times inappropriate since the continuation is re-
garding the actions of the object of the sentence.
We leave the exploration of potentially more capa-
ble zero-shot methods to future research as it is not
the main focus of this study.

H.2 Figurative Language Inference
H.2.1 Task and Data

We use the FLUTE dataset (Chakrabarty et al.,
2022b), with 7,534 NLI instances covering four
types of figures of speech, i.e., idiom, metaphor,
sarcasm, and simile. In particular, the data contains
479 idioms with a ~58% (278) overlap with IEKG.
Hence, to perform well, the model needs to general-
ize to idioms not covered by IEKG. Each instance
consists of a premise sentence and a hypothesis
sentence that includes a figure of speech; the task
is to predict if the premise entails or contradicts the
hypothesis. We reserve 500 random instances as
the test set.

H.2.2 Method and Models

To demonstrate the usefulness of the inferential
knowledge afforded by IEKG, we fine-tune and
compare three base version BART models to di-
rectly output ‘Entailment’ or ‘Contradiction’ to
perform this task:

(1) BART-Base: We format the input instance as
“Premise: [P] </s> Hypothesis: [H]”
where [P] and [H] are the premise and hypothesis

sentence, and </s> is a separator token;

(2) BART-ATOMIC: We test the performance
of the KM that is trained with the original
ATOMIC3). We take the ATOMIC3) KG with
the officially released checkpoint as the inference
KM. Then, we use the KM to produce two infer-
ences on each of the six relation types, including
R = [xAttr, xEffect, xIntent, xNeed, xReact,
xWant], for the hypothesis sentence in the FLUTE
instance, resulting in twelve inferences in total. We
then convert the inferences into a single sentence
using the template shown in Table 5 connecting

inferences for the same relation type with the word
‘and’; we format each instance as
“Premise: [P] </s> Hypothesis: [H] </s> Infer-
ence: [11”
where [I] isthe sentence inferred by the KM; Once
we convert all input instances into the above format,
we fine-tune a base version BART model using the
input instances with the inferences and their corre-
sponding output classes.
(3) BART-IEKG: In this method, we test the use-
fulness of the additional IE-related tuples in IEKG.
We first convert a BART-large model into KM
by training the model with the knowledge tuple
completion task on tuples from both ATOMIC%S
and IEKG; the model is trained until convergence.
Then, we use this new KM to replace the KM used
in the BART-ATOMIC method to produce infer-
ence sentences and reformat the input sentences.
Finally, we fine-tune a base version BART model
with the inputs with new inference sentences.

All three models are trained for 25 epochs with a
batch size of 32, a learning rate of 1e-5, an AdamW
optimizer, and other hyperparameters in default.

H.2.3 Results and Discussion.

Table 15 presents the results from the best-
performing checkpoints. BART-IEKG outperforms
BART-BASE by 6.20% in overall accuracy; specif-
ically, there is an accuracy gain of 5.61% for id-
ioms, 8.97% for metaphors, and 20.73% for sim-
iles. Because the official test set is not released
by Chakrabarty et al. (2022b), we report that our
results have comparable performance trends with
theirs, e.g., models perform the best on sarcasm.
Furthermore, we find that BART-IEKG performs
well for both the “contradiction” (0.93 F1 score)
and the “entailment” (0.90 F1 score) classes, gain-
ing 6% and 7% in F1 respectively over to BART-
ATOMIC. We identify that BART-IEKG correctly
classifies 9% of test instances (9.8% of idiom in-
stances) that are misclassified by BART-ATOMIC,
while BART-ATOMIC only outperforms BART-
IEKG on 2.8% of instances (4.5% of idioms in-
stances). A qualitative analysis shows that BART-
IEKG produces more accurate inferences when
it outperforms BART-ATOMIC. For example, for
the hypothesis on “cross examine the witnesses",
BART-IEKG infers the narrator is attentive and
dutiful and intended to know the truth while BART-
ATOMIC infers the narrator is assertive and in-
tended to get their point across. The improvement
in similes is also significant. We attribute this to the



Table 15: Performances for NLI task with figurative speech in terms of overall accuracy (%) and accuracy by each
figurative speech type. The best performances are bold-faced.

Model Idiom | Metaphor | Sarcasm | Simile | Overall
BART-BASE 81.31 73.08 98.28 | 70.73 86.20
BART-ATOMIC | 80.37 74.36 98.28 | 64.63 85.20
BART-IEKG 85.98 83.33 98.71 | 85.37 91.40

syntactic similarity between idioms and similes—
many idioms are conventionalized similes that fol-
low the same structure of using “like” or “as”, e.g.,
drink like a fish and drunk as a lord; 48 IEs in
IEKG follow this structure. In short, KMs trained
with the additional IEKG tuples are more capable
of comprehending and producing useful inferen-
tial knowledge on figurative language compared
to when trained on ATOMIC%). Additionally, the
ability generalizes to not only unseen idioms but
also to figures of speech beyond idioms.

Finally, we also note that our KM makes literal
interpretations and sometimes misses the figure
of speech, especially in longer sentences, where
the KM infers over other events in sentences. We
attribute this to the KM’s training on short id-
iomatic events containing single IEs. Future re-
search should explore other ways of combining
KG and PTLMs to improve on natural (non-event)
sentences.



