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ABSTRACT 
Intelligent systems to support collaborative learning rely on real-
time behavioral data, including language, audio, and video. How-
ever, noisy data, such as word errors in speech recognition, audio 
static or background noise, and facial mistracking in video, often 
limit the utility of multimodal data. It is an open question of how 
we can build reliable multimodal models in the face of substantial 
data noise. In this paper, we investigate the impact of data noise on 
the recognition of confusion and confict moments during collab-
orative programming sessions by 25 dyads of elementary school 
learners. We measure language errors with word error rate (� ��), 
audio noise with speech-to-noise ratio (�� �), and video errors with 
frame-by-frame facial tracking accuracy. The results showed that 
the model’s accuracy for detecting confusion and confict in the 
language modality decreased drastically from 0.84 to 0.73 when the 
� �� exceeded 20%. Similarly, in the audio modality, the model’s ac-
curacy decreased sharply from 0.79 to 0.61 when the �� � dropped 
below 5 dB. Conversely, the model’s accuracy remained relatively 
constant in the video modality at a comparable level (> 0.70) so long 
as at least one learner’s face was successfully tracked. Moreover, 
we trained several multimodal models and found that integrat-
ing multimodal data could efectively ofset the negative efect of 
noise in unimodal data, ultimately leading to improved accuracy in 
recognizing confusion and confict. These fndings have practical 
implications for the future deployment of intelligent systems that 
support collaborative learning in actual classroom settings. 

CCS CONCEPTS 
• Human-centered computing → Collaborative and social 
computing. 
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1 INTRODUCTION 
Collaborative learning refers to two or more learners working to-
gether to solve a problem, complete a task, or create a shared prod-
uct [23]. During collaborative activities, learners face cognitive and 
social challenges and require timely support [33]. One solution for 
providing such support is to develop intelligent systems for collabo-
rative learning, which can scafold productive learning and support 
efective collaboration among learners [27]. These systems rely 
on accurate modeling of learners’ collaborative interactions using 
their behavioral data from multiple modalities, such as language, 
audio, and video [5]. Each modality provides unique insights into 
the collaborative learning process, and combining them may lead 
to improved accuracy in modeling collaborative learning [32]. 

In a traditional classroom setting, learners engage in conver-
sation via verbal communication (e.g., verbal afrmations) and 
through para-verbal cues (e.g., change in speech prosody, facial 
expressions) [20]. However, noise that often accompanies these 
behavioral data poses a great challenge for intelligent systems to 
analyze and understand learners’ dialogues [22, 36]. For example, it 
is difcult to separate learners’ speech from background audio noise 
given the presence of ambient sound or chatter in the surroundings 
[26]. Furthermore, even when learners’ speech can be successfully 
separated from background audio noise, language errors can still 
arise because of the imperfect speech recognition from dropped 
audio, misunderstanding of words due to slang, dialect, as well as 
young learners’ distinct vocal characteristics [4, 46]. In addition, 
learners’ faces may be mistracked when they are not directly facing 
the camera or in the case of occlusion [14, 48]. When intelligent 
systems integrate these noisy data, they may not accurately model 
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the complex dynamics of learners’ collaboration processes. By un-
derstanding the extent to which these data noise afect modeling 
accuracy, we can obtain valuable insights for implementing intelli-
gent systems that model collaborative behavior in actual classroom 
settings. 

This paper takes a frst step toward addressing the challenge of 
modeling collaborative learning behavior from error-prone data 
streams by investigating the impact of language error, audio noise, 
and facial mistracking on detecting two important moments during 
collaborative learning: confusion and confict. We chose to model 
confusion and confict because they represent critical moments 
when learners face cognitive and social challenges during collabo-
rative learning. Confusion is an important cognitive-afective state 
that may emerge when learners face cognitive challenges during 
collaborative learning [38]; confict is another which captures a 
state of disagreement or opposition between two or more learners 
[1]. By automatically detecting confict and confusion during col-
laboration, intelligent systems can ofer timely assistance to help 
learners work through the confusion and confict and improve their 
learning experience. 

Our dataset includes the audio and video recordings of 25 paired 
elementary school learners working on a series of coding tasks. 
Specifcally, we investigate two research questions (RQs): 

• RQ 1: To what extent do language errors, audio noise, and fa-
cial mistracking impact the accuracy of modeling confusion and 
confict during collaborative learning? 

• RQ 2: To what extent does integrating language, audio, and facial 
behaviors compensate for the negative impact of unimodal data 
noise? 

We measure language errors with word error rate (� ��) [6], audio 
noise with posterior speech-to-noise ratio (���) [47], and video 
errors with the number of mistracked faces. To answer RQ1, we 
compared the performance of text language, audio, and facial be-
haviors with the error metrics described above. We found a � �� 
threshold of around 20% in text language, where the model accuracy 
for detecting confusion and confict started to decrease drastically 
(overall accuracy from 0.84 to 0.73), with F-1 scores dropping from 
0.55 to 0.40 for confusion and dropping from 0.53 to 0.37 for confict. 
For audio, the model’s accuracy decreased sharply from 0.79 to 0.61 
when the signal-to-noise ratio (�� �) dropped below 5 dB, with F-1 
scores dropping from 0.55 to 0.40 for confusion and dropping from 
0.53 to 0.37 for confict. For facial behaviors, compared to when 
both learners’ faces were tracked, where the accuracy was 0.79, the 
model’s accuracy slightly decreased to 0.71 when only the listener’s 
face was tracked, with F-1 scores of 0.51 to 0.44 for confusion and 
0.41 to 0.33 for confict. To answer RQ2, we compared the perfor-
mance of several multimodal models trained with model-agnostic 
and model-based fusion methods, and we found that combining 
multimodal data from language, audio, and facial features can efec-
tively compensate for the negative impact of unimodal data noise, 
ultimately leading to improved accuracy in recognizing confusion 
and confict. 

To the best of our knowledge, this work is the frst to investigate 
the impact of data noise on the multimodal modeling of collabora-
tive dialogues. The contributions of this paper are twofold: First, we 
provide extensive experimental results demonstrating the impact 

of language errors, audio noise, and facial mistracking errors on 
modeling collaborative dialogues. Second, we provide empirical evi-
dence for the combination of multimodal data as an efective means 
of compensating for the negative impact of data noise present in a 
single modality. These fndings provide valuable insights for the 
future implementation of these models in actual classroom settings. 

2 RELATED WORK 
2.1 Data Noise 
Noisy data may occur due to dynamic environmental conditions, 
faulty detectors, or other unavoidable quality degradation in the 
measurements [13]. The impact of data noise has been studied in 
various domains, such as audio-visual speech recognition [36], risk 
prediction [15], object tracking [16], and medical diagnosis [59]. 
For example, in the domain of audio-visual speech recognition, 
Papandreou et al. [36] studied the impact of data noise under chal-
lenging conditions, such as when the visual front-end momentarily 
mistracks the speaker’s face or in noisy acoustic environments. In 
the feld of risk prediction, Heo et al. [15] investigated the efects 
of data noise on the clinical risk prediction of electronic health 
records, which frequently sufer from varying degrees of noise and 
missing entry problems. Medical diagnosis is yet another domain 
that is prone to data noise, as highlighted by Reyes-Garcia et al. 
[40], who evaluated the impact of missing values of vital biomet-
rics, such as arterial blood pressure and heart rate, on the early 
prediction of patients’ physiological deterioration. The results of 
these studies suggest that data noise can negatively impact data 
analysis and lead to incorrect conclusions, unreliable predictions, 
or fawed decision-making, and it is important to develop efective 
methods to handle data noise to ensure the accuracy and reliability 
of the results obtained. 

2.2 Multimodal Modeling of Collaborative 
Learning 

Prior research on multimodal modeling of collaborative learning 
has analyzed learners’ interactions across multiple modalities, with 
the combination of speech, facial expressions, body gestures, and 
physiological data [25, 51, 58]. Analyzing collaborative learning 
processes by combining multiple modalities of data has shown 
great promise in building more accurate models. Olsen et al. [34] 
combined learners’ audio, eye gaze, and tutor logs to predict collabo-
rative learning outcomes. Vrzakova et al. [51] analyzed multimodal 
data, including screen capture, speech, and body movements as 
triads engaged in a collaborative programming task. Moulder et al. 
[30] modeled how students’ multimodal dynamics (e.g., emotional, 
verbal communication, physiological) were infuenced by each other 
while engaged in collaborative problem-solving. Eloy et al. [9] used 
speech rate, body movement, and galvanic skin response to model 
triads’ emotional valence and task performance while collaborating 
on solving physics games. Although the above-mentioned literature 
has highlighted the improved accuracy of multimodal modeling 
over unimodal modeling, the impact of noise and missing values in 
diferent modalities, and their collective impact when multimodal 
data is integrated, has not been investigated in research on model-
ing collaborative learning, and our study aims to fll this gap. 
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3 DATASET 
3.1 Participants and Collaborative Learning 

Tasks 
Our dataset consists of audio and video data from 25 pairs in 
fourth-grade classrooms in an elementary school in the southeast-
ern United States. The dataset was collected in the spring of 2022. 
These learners had an average age of 10, with 21 of them report-
ing their gender as girls, 12 as boys, and fve preferring not to 
answer. Learners collaborated on a series of coding activities in 
which they learned fundamental CS concepts such as variables, 
conditionals, and loops using a block-based learning environment 
built upon Snap! [45]. The learners followed the pair programming 
paradigm, in which each pair (or dyad) shared one computer and 
switched roles between “driver" and “navigator" during the science-
simulation coding activity. The driver is responsible for writing 
the code and implementing the solution, while the navigator pro-
vides support by catching mistakes and providing feedback on the 
in-progress solution [7] (See Fig. 1-Top). 

Figure 1: Top: Block-based coding tasks. Bottom: A dyad of 
learners collaborating together 

3.2 Data Collection and Transcription 
Each collaborative coding activity took around 40 minutes. Dyads 
were video-recorded by the front-facing camera of their laptop and 
audio-recorded with each learner wearing a headset without any 
additive noise cancellation equipment (See Fig. 1-Bottom). After 
the data collection, we used an online transcription service [39] 
to manually generate the textual transcript for each dyad. The 
transcripts included three pieces of information for each spoken 
utterance: (1) Starting Time, in the form of hour :min:sec; (2) Speaker, 
in the form of S1 or S2; and (3) Transcribed Text. In total, the corpus 
included 22 hours and 18 minutes of audio and video recordings, 
with 9,943 transcribed utterances. We used the timestamp from 
each spoken utterance to segment the audio and video recordings, 
generating an audio and corresponding video clip of each spoken 
utterance. 

3.3 Manual Annotation of Confusion and 
Confict Dialogues 

In line with prior work on analyzing confusion and confict dia-
logues during collaborative learning [42, 50], the process of anno-
tating confusion and confict was based on textual transcripts with 
video used in rare cases of unresolvable ambiguity within the tran-
scripts. The dialogue act taxonomy draws upon a closely related 
dialogue act taxonomy by Zakaria et al. [57] that was designed for 
elementary school learners’ classroom dialogues. Table 1 shows 
example excerpts and descriptions for confusion and confict. 

To establish the reliability of the dialogue act labeling, two anno-
tators frst engaged in a training phase where they collaboratively 
applied the dialogue act taxonomy and discussed any disagree-
ments. Once training was complete, they independently tagged an 
overlapping 20% of the data, reaching a Cohen’s kappa score of 
0.816, indicating a strong agreement. They then proceeded to divide 
and tag the remaining data independently. Among a total of 9,943 
transcribed utterances, 467 (4.7%) were labeled as confusion, 924 
(9.3%) as confict, and 8,552 (86.0%) other. 

4 DATA NOISE MEASUREMENT 
4.1 Errors in Text Language 
We measured noise in language by word error rate (� ��)[43]. 
WER is given by � �� = (� + � + � )/� , where � is the number 

Table 1: Annotation examples of confusion and confict dialogues 

Category Example Transcripts Description Count (Percentage) 

Confusion 
I have no idea what to do. 
I don’t know why it’s doing that. 
I’m confused and I don’t understand. 

Learner is directly or indirectly seeking help from a partner. 467 (4.7%) 

Confict 
You are being ridiculous. 
Well, I don’t think so, and that is wrong. 
No, because that won’t make it move in a square. 

Actions or interactions that cause tension. 
Disagreement on any opinions/code editings. 
Learner disagrees but then explains why. 

924 (9.3%) 

Other 

What does that block do? 
That looks good. 
How about doubling that? 
Thanks, we know we are great. 
Give me the keyboard. 

Learner asks questions. 
Agreement on any opinions/code editings. 
Suggestions directly talking to a partner. 
Social dialogues. 
Directive, telling partners to do something. 

8,552 (86.0%) 
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of substitutions, � is the number of deletions, � is the number of 
insertions, and � is the number of words in the human transcript. 
For each human-transcribed utterance, additive noise was manually 
generated by randomly substituting, deleting, or inserting words, 
to create fve diferent noisy transcripts with a � �� of 0.1, 0.2, 0.3, 
0.4, and 0.5. In this study, we initially tested several transcription 
engines in an efort to obtain WERs low enough for our study. 
We experimented with both commercial engines and open-source 
engines (e.g., Google Speech-to-Text [49] and OpenAI Whisper 
[55]), and these models all generated overall high WERs (above 
0.70). Consequently, in order to investigate data with lower WER, 
we decided to manually introduce a controlled amount of textual 
noise. The manual perturbation steps for each utterance are: (1) 
randomly select an action (i.e., substitution, deletion, or insertion), 
(2) randomly select a word within the given utterance, (3) if the 
action is deletion, delete the word selected from the last step; if the 
action is substitution, randomly select another word in the given 
utterance, then substitute the word with the word selected from 
the last step; if the action is insertion, randomly select a position 
in the given utterance, then insert the word selected from the last 
step to the selected position. 

4.2 Noise in Audio 
We measured noise in the audio modality by using the posterior 
signal-to-noise ratio (���) [47], which is the ratio of signal power 
to noise power, often expressed in decibels (dBs). An ��� value of 
0 dB indicates the same power of signal and noise. We calculated 

� (� )
��� by ������� (�) = ��� 

������ (� ) , where � (�) is the energy of 
noisy speech of audio frame � , and ������ (�) is the energy of noise 
of frame � . We estimated ������ (�) by averaging the ������ (�) of 
each silent audio frame (identifed by Silero [44], a pre-trained 
voice activity detection model), then used the averaged ������ (�)
to calculate ������� (�) for each speech audio segment (an ��� of 
+15 dB or above indicates good speech quality). The overall average 
��� of our dataset is +1.3 dB. Table 2 shows the number of diferent 
audio segments in the dataset that fall into diferent classes. 

Table 2: Number of audio segments of each ��� level 

�� � level (dB) Confusion Confict Other 

5 or greater 
0 to 5 
-5 to 0 

less than -5 

93 
186 
139 
49 

211 
347 
278 
88 

1,759 
2,804 
2,365 
624 

Total 467 924 8,552 

4.3 Mistracked Faces in Video 
We partitioned the face recognition data into segments and classi-
fed the segments into one of four cases: (1) Both learners’ faces 
were tracked. This is the optimal condition; at the beginning of 
each dyad’s learning session, their laptop was set in the middle of 
them to track both their faces. (2) Only the speaker’s face was 
tracked. This error may happen when learners adjusted the direc-
tion of the laptop or their body positions during the collaboration 
process. (3) Only the listener’s face was tracked. This error may 
happen due to the same reason as condition 2. (4) Neither of the 

learners’ faces was tracked. This error may happen due to both 
learners being out of the camera (e.g., disengaged and talking to 
other classmates) or the presence of occlusion. 

We used the OpenFace 2.0 facial behavior analysis toolkit [35] 
to count how many times each of the four conditions occur in 
our dataset. OpenFace supports automatic facial recognition by 
generating the number of detected face_ids as well as the location 
of the head in the horizontal axis pose_Tx for every video frame. 
For condition 1, the number of face_ids is 2; For conditions 2 and 
condition 3, the number of face_ids is 1; for condition 4, the number 
of face_ids is 0. We then used the pose_Tx to diferentiate condition 
2 and condition 3. Table 3 shows the number of video segments in 
the dataset that fall into each face-tracking condition. 

Table 3: Number of video segments of each tracking condition 

Condition Confusion Confict Other 

1: both faces tracked 271 473 4,616 
2: only speaker’s face tracked 
3: only listener’s face tracked 

4: both faces mistracked 

77 
68 
52 

183 
169 
99 

1,510 
1,643 
783 

Total 467 924 8,552 

5 FEATURE EXTRACTION 
5.1 Language Features 
To extract linguistic features, we represented each spoken utter-
ance with TF∗IDF, BERT, and RoBERTa. Given that signal words 
or phrases (e.g., “confuse”, “do not”, “not know”) appear frequently 
when learners express their confusion or confict, we generated 
Tf∗IDF embeddings. We also used BERT and RoBERTa to generate 
the semantic embedding of each utterance. RoBERTa is a variant of 
BERT trained on longer sequences. RoBERTa dynamically changes 
the masking pattern applied to the training data and has outper-
formed BERT on a series of language processing tasks, such as 
machine translation and question answering [24]. We used the 
Hugging Face bert-base-uncased [3] and xlm-roberta-based [41] 
models to generate a 768-dimensional language embedding for each 
utterance. 

5.2 Audio Features 
We used openSMILE, an open-source automatic acoustic feature 
extraction toolkit [11] for extracting acoustic-prosodic indicators 
with a 20ms frame and a window shift of 10ms. For each 20 ms of 
audio, 25 eGeMAPS [10] low-level descriptors (LLDs) were gener-
ated, including loudness (1 feature), pitch (10 features), and mel 
frequency cepstral coefcients (MFCCs) (4 features). Following an 
established downsampling strategy [37], we averaged LLDs every 
2 consecutive frames. Apart from acoustic-prosodic LLDs, we also 
experimented with Wav2Vec, a transformer-based audio embed-
ding network that has shown state-of-the-art performance on a 
series of speech-related tasks, such as speech recognition [52] and 
speech emotion recognition [37]. We used a Wav2Vec-based [54] 
model to generate a 768-dimensional audio embedding for each 
audio segment. 
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Table 4: Results for selecting best-performing unimodal features. Label distribution: Confusion (4.7%), Confict (9.3%), and 
Other (86.0%). P: Precision, R: Recall, F: F-1 Score, A: Overall Accuracy. 

Confusion Confict Other 

Modality Unimodal Features P R F P R F P R F A 

Language 
TF*IDF 
BERT 

RoBERTA 

0.34 
0.46 
0.53 

0.48 
0.61 
0.64 

0.40 
0.52 
0.57 

0.25 
0.51 
0.55 

0.37 
0.58 
0.65 

0.29 
0.55 
0.61 

0.87 
0.92 
0.93 

0.80 
0.91 
0.88 

0.83 
0.91 
0.91 

0.77 
0.87 
0.89 

Audio 

Loudness 
Pitch 
MFCCs 

Wav2Vec 

0.13 
0.18 
0.18 
0.25 

0.10 
0.10 
0.34 
0.45 

0.11 
0.13 
0.25 
0.32 

0.17 
0.10 
0.26 
0.27 

0.26 
0.17 
0.37 
0.49 

0.20 
0.14 
0.28 
0.36 

0.86 
0.81 
0.90 
0.87 

0.83 
0.93 
0.70 
0.88 

0.85 
0.86 
0.80 
0.88 

0.62 
0.63 
0.66 
0.70 

Video 
Eye Gaze 
Head Pose 
Facial AUs 

0.17 
0.19 
0.40 

0.32 
0.27 
0.54 

0.23 
0.22 
0.46 

0.33 
0.31 
0.31 

0.24 
0.21 
0.39 

0.29 
0.27 
0.35 

0.85 
0.88 
0.89 

0.82 
0.85 
0.86 

0.83 
0.86 
0.88 

0.68 
0.65 
0.75 

5.3 Video Features 
In this paper, we used OpenFace, which supports accurate facial 
landmark detection, head pose estimation, eye-gaze direction esti-
mation, and facial action unit (AU) recognition for videos containing 
a single face or multiple faces [29]. We used the multiple faces mode 
to extract three visual features generated from the video modality: 
eye gaze, head pose, and facial action units (AUs). In each detected 
face in each video frame, OpenFace generated a 120-dimensional 
eye gaze vector (112 eye landmarks, 6 eye direction vectors, 2 eye 
direction in radius), a 6-dimensional head position vector which 
represents the location of the head with respect to the camera, and 
a 35-dimensional facial AU vector, including 17 facial AU intensity 
(0 to 5) features and 18 facial AU presence (0-absence or 1-presence) 
features. 

6 EXPERIMENTS AND RESULTS 
Given that the feature space (relative to the dataset used in this 
study) is large, we frst reduced the feature space by identifying 
and removing weakly relevant or irrelevant features. To do this, 
we provided every feature extracted from language, video, and 
video modalities as the input to a multilayer-perceptron (MLP) 
classifer with an embedding size of 128 for two linear layers; two 
dropout layers with a rate of 0.5 were added to each linear layer to 
alleviate over-ftting. The Softmax activation function was used in 
the last output layer to output the classifcation results. We used 
the synthetic minority oversampling technique (SMOTE) [8] to 
mitigate the negative infuence of the imbalanced label distribution 
of confusion (4.7%) and confict (9.3%) within our dataset. SMOTE 
was only performed on the training set, and class distributions for 
the validation and testing sets were left unchanged. 

We conducted fve-fold cross-validation to train and validate 
the models. We used an Adam optimizer [21] with the learning 
rate of 1 × �−3 to train the classifcation model up to 100 epochs. 
We evaluated the trained model using an F-1 score [12] combined 
from precision and recall for each one of the three classes. Table 4 
shows the confusion and confict classifcation performance trained 
on each of the single features. From the results in the table, we 
identifed the best-performing unimodal features in each modality: 
fne-tuned RoBERTa, Wav2Vec, and facial AUs in the language, 
audio, and video modality, respectively. 

6.1 Investigating the Impact of Unimodal Data 
Noise 

We frst consider RQ1: To what extent do language errors, audio noise, 
and facial mistracking impact the accuracy of modeling confusion and 
confict during collaborative learning? For diferent data noise levels 
within each modality, we built and compared the performance of 
several supervised unimodal models trained on the best-performing 
feature identifed in Table 4; we used the same experimental setup 
and training strategies as described above. 

6.1.1 Impact of Word Error Rate. Figure 2 shows the perfor-
mance of unimodal models using language-derived features under 
diferent � �� levels. In the fgure, as � �� increased from 0 to 0.2, 
the overall accuracy, as well as the F-1 scores for both confusion 
and confict, remained relatively stable. When � �� increased from 
0.2 to 0.3, the performance sufered a drastic degradation, with the 
overall accuracy decreasing from 0.84 to 0.73, and the F-1 scores 
decreasing from 0.55 to 0.40 for confusion and from 0.53 to 0.37 for 
confict. 

0 0.1 0.2 0.3 0.4 0.5
Word	Error	Rate	(WER)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F-1	Score:	Confusion
F-1	Score:	Conflict
Overall	Accuracy

Figure 2: Unimodal models using language-derived features 

6.1.2 Impact of Audio Noise. Figure 3 shows the performance 
of unimodal models both trained and tested using audio-derived 
features under diferent ��� levels. As shown in the fgure, the per-
formance was very sensitive to noise, with performance decreasing 
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sharply as the noise level increased. From 5 < ��� to 0 < �� � < 5, 
overall accuracy decreased from 0.79 to 0.61; the F-1 scores for con-
fusion decreased from 0.39 to 0.19, and for confict decreased from 
0.48 to 0.36. The continued to decrease drastically as ��� declined. 

5	<	SNR 0	<	SNR	<	5 -5	<	SNR	<	0 SNR	<	-5
Signal-to-Noise	Ratio	(SNR)	/	dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F-1	Score:	Confusion
F-1	Score:	Conflict
Overall	Accuracy

Figure 3: Unimodal models using audio-derived features 

6.1.3 Impact of Facial Recognition Errors. Figure 4 shows the 
performance of unimodal models both trained and tested using 
video-derived features under diferent facial tracking conditions. 
We considered four conditions: (1) both learners’ faces were tracked; 
(2) only the speaker’s face was tracked; (3) only the listener’s face 
was tracked, and (4) neither of the learners’ faces was tracked. As 
shown in the fgure, the model yielded the highest accuracy of 0.79 
when both learners’ faces were successfully tracked (condition 1). 
Surprisingly, the model performed comparably even when only the 
listener’s face was tracked (condition 3), with a degraded accuracy 
of 0.71, and F-1 scores declined from 0.51 to 0.44 for confusion and 
0.41 to 0.33 for confict between condition 1 and condition 3. We did 
not investigate condition 4 because there were no facial features 
generated by OpenFace when both learners’ faces were missing. 
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Figure 4: Unimodal models using video-derived features 

6.2 Examining the Performance of Multimodal 
Modeling 

We next consider RQ2: To what extent does integrating language, 
audio, and facial behaviors compensate for the negative impact of 

unimodal data noise? To answer this question, we built several super-
vised multimodal models trained on the fusion of best-performing 
features in the language, audio, and video modalities. Figure 5 shows 
the overview of the multimodal model architecture. The other mul-
timodal models followed the same structure with a subset of the 
language, audio, and video modalities. 

In this study, we experimented with two types of feature fusion 
methods [2]: model-agnostic and model-based. For model-agnostic 
methods, we used early and late fusion. Early fusion concatenated 
unimodal features after applying z-score normalization. Late fusion 
trained separate models with separate unimodal features and cal-
culated the numerical average of their outputs. For model-based 
methods, we experimented with two neural-network-based fusion 
approaches: tensor fusion [56] and cross-attention fusion [31]. Ten-
sor fusion transforms multimodal features into a 3D feature tensor, 
while cross-attention fusion uses a shared transformer encoder to 
attend to diferent modalities. 

We then set noise thresholds for selecting subsets of the data 
where the accuracy of each unimodal model decreased drastically 
in association with noise. We selected audio segments with a signal-
to-noise ratio (���) of less than +5 dB, as the model’s accuracy 
drastically decreased beyond this point. Similarly, we used the 
video segments that did not track either learner’s face, as model 
accuracy was the lowest in this face-tracking condition. Then, we 
introduced extra modalities to this baseline unimodal model to 
examine if multimodal models outperform the unimodal baselines 
trained with noisy data from each single modality. 

First, we tested the impact of integrating multimodal data on com-
pensating for noisy language using a baseline model with a � �� of 
0.3. The baseline model’s accuracy was 0.73, with F-1 scores of 0.40 
for confusion and 0.37 for confict. We then constructed several 
multimodal models (as described above) with additive audio and 
video data. All except the late fusion model performed better than 
the baseline, with higher overall accuracy. Cross-attention fusion 
achieved the best performance by integrating language, audio, and 
video data together, with the highest accuracy of 0.80, an F-1 score 
of 0.46 for confusion, and an F-1 score of 0.48 for confict. Second, 
we tested the impact of integrating multimodal data toward com-
pensating for noisy audio. A baseline model with a ��� < +5 dB 
achieved an accuracy of 0.61, with F-1 scores of 0.19 for confusion 
and 0.38 for confict. We then constructed several multimodal mod-
els with additive language and video data, where all multimodal 
models performed better than the baseline, with higher overall 
accuracy. Finally, we tested the impact of integrating multimodal 
data on compensating for incomplete video by experimenting with 
a baseline model using video segments that mistracked at least one 
learner. The baseline model’s accuracy was 0.73, with F-1 scores 
of 0.46 for confusion and 0.32 for confict. We then constructed 
several multimodal models with additive language and video data, 
where all multimodal models performed better than the baseline, 
with higher overall accuracy. Table 5 shows the performance of 
multimodal models when single modalities involve data noise. 

7 DISCUSSION 
This study has investigated the impact of data noise on multimodal 
recognition of confusion and confict moments during dyads of 
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Figure 5: Architecture of multimodal modeling using language, audio, and video data. 

Table 5: F-1 scores and accuracy for multimodal models. 

Late Fusion Early Fusion Tensor Fusion Cross-Attention Fusion 

Confusion Confict Acc Confusion Confict Acc Confusion Confict Acc Confusion Confict Acc 

Baseline: Noisy Language (WER = 0.3) Confusion 0.40, Confict 0.37, Acc 0.73 
Noisy Language + Audio 
Noisy Language + Video 

Noisy Language + Audio + Video 

0.33 
0.35 
0.38 

0.38 
0.36 
0.41 

0.71 
0.72 
0.74 

0.40 0.41 0.75 
0.43 0.37 0.74 
0.42 0.43 0.78 

0.40 0.43 
0.44 0.40 
0.43 0.45 

0.74 
0.75 
0.78 

0.42 
0.45 
0.46 

0.46 
0.40 
0.48 

0.75 
0.75 
0.80 

Baseline: Noisy Audio (SNR <5 dB) Confusion 0.19, Confict 0.38, Accuracy 0.61 
Noisy Audio + Language 
Noisy Audio + Video 

Noisy Audio + Language + Video 

0.51 
0.45 
0.55 

0.45 
0.35 
0.48 

0.65 
0.63 
0.78 

0.55 0.53 0.80 
0.48 0.38 0.71 
0.61 0.55 0.84 

0.58 0.55 
0.48 0.40 
0.61 0.57 

0.80 
0.72 
0.85 

0.60 
0.50 
0.65 

0.55 
0.41 
0.60 

0.81 
0.74 
0.88 

Baseline: Mistracked Videos (Condition 2, 3, 4) Confusion 0.46, Confict 0.32, Accuracy 0.73 
Mistracked Video + Language 
Mistracked Video + Audio 

Mistracked Video + Language + Audio 

0.53 
0.45 
0.48 

0.45 
0.40 
0.51 

0.81 
0.74 
0.78 

0.58 0.60 0.88 
0.45 0.40 0.80 
0.60 0.62 0.86 

0.58 0.62 
0.45 0.41 
0.64 0.63 

0.87 
0.80 
0.88 

0.61 
0.47 
0.65 

0.65 
0.40 
0.68 

0.91 
0.84 
0.92 

learners’ collaborative learning activities. This section discusses 
the experimental results with respect to two research questions. 

7.1 The Impact of Unimodal Data Noise 
7.1.1 Noisy Language. The experimental results showed that 
unimodal models using language-derived features trained on noisy 
transcripts up to a � �� of 0.2 could perform comparably well 
as models trained with clean transcripts manually generated by 
humans. Transcripts with a � �� of 0.3 were too noisy, and the 
model performance sufered a drastic degradation. In another study, 
Southwell et al. [46] conducted extensive experiments to compare 
three widely adopted ASR engines (Google, Rev.ai [39], and IBM 
Watson) on transcribing audio recordings of middle-school students 
engaged in small group work. The authors found that it was ex-
tremely difcult to obtain serviceable transcripts by current (2023) 
ASR engines, which generated overall high � ��� on this task (0.84 
- 0.95). These fndings highlight the main challenge of deploying 
intelligent systems to support collaboration in real-world classroom 
environments: obtaining serviceable transcriptions of student dis-
course. Indeed, on our corpus, cloud-based ASR performed similarly 

poorly, with Google Speech-to-text [49] having an average � �� of 
0.78 (SD = 0.54), and those generated by IBM Watson [53] have an 
average � �� of 0.89 (SD = 0.46). This fnding led to our decision 
to perturb manual transcripts for the purposes of experimentation. 

7.1.2 Noisy Audio. Overall, the audio recordings in our dataset 
are noisy, with an average ��� of +1.3 dB. The experimental results 
showed that the performance of unimodal models using audio-
derived features was very sensitive to noise and showed a steep 
degradation as soon as the audio ��� decreased below +5 dB, 
where the overall accuracy decreased drastically from 0.79 to 0.61, 
the F-1 score of confusion from 0.40 to 0.19, and the F-1 score of 
confict from 0.48 to 0.39. These results suggest that audio data 
with ��� of +5 dB could potentially be considered acceptable. It 
is challenging to collect audio of this quality in real classroom 
environments, where ��� usually ranges from -7 dB to +5 dB [17]. 
Quality can be improved when learners use headsets and wear 
noise-canceling microphones close to their mouths, but a tradeof 
is that the headsets detract from the fuid interplay of individual, 
small group, and whole class discourse. 
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7.1.3 Incomplete Video. The experimental results showed that 
unimodal models using video-derived features trained with video 
segments tracking at least one learner’s face in the pair could still 
perform comparably well to unimodal models trained with video 
segments tracking both learners’ faces (an accuracy of 0.71 versus 
0.79). It is not surprising that when a learner expresses confusion 
or confict, it can be detected through the speaker’s face. However, 
our results found that reasonable classifcation accuracy can also be 
achieved even when only one learner’s face is tracked. This fnding 
is consistent with a recent study by Järvenoja et al. [18] where 
the authors investigated how socially shared emotions emerged 
during collaborative learning activities. Taken together, it appears 
that tracking at least a sub-group of learners’ faces is sufcient 
for recognizing a speaker’s confusion and or confict, but a high-
resolution wide-angle camera is still recommended. 

7.2 The Efect of Multimodal Modeling 
This study trained several multimodal models and found that when 
there is data noise present in a single modality, fusing information 
from other modalities can efectively compensate for the negative 
impact of unimodal data noise, ultimately leading to better accuracy 
in recognizing a speaker’s confusion and confict. Specifcally for 
noisy language, introducing additional audio and facial information 
could enhance model accuracy from 0.73 to 0.80. This improve-
ment in accuracy indicates that audio and video data can also ofer 
valuable insights into detecting confusion and confict. The addi-
tion of audio and video data can reveal non-verbal cues, such as 
tone and facial expressions, which are often absent from text-based 
data. This information can provide additional context, helping the 
model to better understand the situation and make more accurate 
predictions. Similarly, for noisy audio, fusing additional language 
and facial information could enhance model accuracy from 0.61 
to 0.88; for incomplete video, fusing additional language and audio 
information could improve model accuracy from 0.73 to 0.92. 

However, in a real data collection environment, a higher level of 
noise in the audio data will negatively impact both speech-to-text 
translation and prosody analysis. For speech-to-text translation, a 
higher level of audio noise can make it more difcult for ASR en-
gines to accurately transcribe the speech. This can lead to a higher 
� �� in the resulting transcript [19]. Similarly, a higher level of 
audio noise can make it more difcult to accurately identify the 
audio features, such as patterns of pitch [28]. Hence, the setup of in-
telligent systems in classrooms should aim to capture clean speech, 
if possible, either by using advanced microphones or separating 
learner groups to avoid ambient sound. To improve performance 
in transcribing noise speech, recent pre-trained ASR models can be 
fne-tuned. 

In our comparison of multimodal models trained with various 
fusion techniques in the presence of noise, the results showed 
that neural-network-based fusion approaches generally achieved 
higher confusion and confict recognition accuracy than traditional 
early and late fusion approaches. The main advantage of neural-
network-based fusion approaches over model-agnostic-based fu-
sion approaches lies in their ability to exploit the underlying rela-
tionships and mutual information among modalities [2, 22]. Hence, 
the experimental results suggest that in the face of the same data 

noise level, model-based fusion approaches could have more ro-
bust performance in modeling collaborative learning than model-
agnostic fusion approaches. 

7.3 Limitations and Future Work 
The current study has important limitations. First, our random per-
turbation approach to generate text errors may not fully simulate 
ASR errors, as audio transcribed with an ASR engine can have noisy 
text that is phonetically similar to the reference text. Second, the 
dataset was relatively small, consisting of recordings from just 25 
learner dyads, so the acceptable noise level identifed here may 
not be generalizable to learners in other age groups or learning 
environments, such as online learning. In addition, the noise lev-
els experimented with in this study were not fne-grained enough. 
We generated noisy language data with a � �� granularity of 0.1; 
we split noisy audio data with a ��� granularity of 5 dB. Using 
smaller granularities in future studies will provide more practical 
implications for deploying intelligent systems in actual classroom 
environments. Last, this study stopped short of attempting to im-
prove the performance of the state-of-the-art multimodel fusion 
models tested. Toward this goal, we are currently developing an 
intelligent system that adopts an adaptive fusion strategy, in which 
information from diferent modalities is dynamically integrated 
based on the estimation of their noise level so that more informa-
tive modalities are prioritized to improve multimodal modeling 
performance over time. 

8 CONCLUSION 
Intelligent systems hold great promise to support collaborative 
learning, but the noise that accompanies the data poses great chal-
lenges to analyzing and understanding learners’ dialogues. It is 
important to develop efective methods for intelligent systems to 
perform robustly in the face of substantial noise. This paper takes 
a frst step toward addressing this challenge by understanding the 
impact of noisy language, noisy audio, and incomplete video on 
modeling learners’ interactions during collaborative activities. 

The results of extensive experiments showed that in the language 
modality, the model’s accuracy for detecting confusion and confict 
decreased drastically when the � �� exceeded 20%. In the audio 
modality, the model’s accuracy decreased sharply when the ��� 
dropped below 5 dB. In the video modality, the model’s accuracy 
remained relatively constant at a comparable level as long as at least 
one learner’s face was successfully tracked. To further investigate 
the efect of integrating multimodal data, given the presence of 
unimodal data noise, we trained several multimodal models. The 
results showed that combining other modalities of data could efec-
tively compensate for the negative efect of noise in unimodal data, 
ultimately leading to improved modeling accuracy. 
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