
This article was downloaded by: [128.62.179.204] On: 25 March 2024, At: 07:58
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Static Pricing for Multi-unit Prophet Inequalities
Shuchi Chawla, Nikhil Devanur, Thodoris Lykouris

To cite this article:
Shuchi Chawla, Nikhil Devanur, Thodoris Lykouris (2023) Static Pricing for Multi-unit Prophet Inequalities. Operations Research

Published online in Articles in Advance 01 Nov 2023

. https://doi.org/10.1287/opre.2023.0031

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2023, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2023.0031
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


Crosscutting Areas

Static Pricing for Multi-unit Prophet Inequalities
Shuchi Chawla,a Nikhil Devanur,b Thodoris Lykourisc,* 
a Deparment of Computer Science, The University of Texas at Austin, Austin, Texas 78712; b Amazon, Seattle, Washington 98109; c Sloan 
School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 
*Corresponding author 
Contact: shuchi@cs.texas.edu, https://orcid.org/0000-0001-5583-2320 (SC); iam@nikhildevanur.com, 

https://orcid.org/0009-0005-4406-5935 (ND); lykouris@mit.edu, https://orcid.org/0000-0002-3375-5579 (TL) 

Received: January 18, 2023 
Revised: June 20, 2023 
Accepted: August 28, 2023 
Published Online in Articles in Advance: 
November 1, 2023 

Area of Review: Market Analytics and 
Revenue Management 

https://doi.org/10.1287/opre.2023.0031 

Copyright: © 2023 INFORMS

Abstract. We study a pricing problem where a seller has k identical copies of a product, 
buyers arrive sequentially, and the seller prices the items aiming to maximize social welfare. 
When kà 1, this is the so-called prophet inequality problem for which there is a simple pricing 
scheme achieving a competitive ratio of 1/2. On the other end of the spectrum, as k goes to 
infinity, the asymptotic performance of both static and adaptive pricing is well understood. 
We provide a static pricing scheme for the small-supply regime: where k is small but larger 
than one. Prior to our work, the best competitive ratio known for this setting was the 1/2 that 
follows from the single-unit prophet inequality. Our pricing scheme is easy to describe as 
well as practical; it is anonymous, nonadaptive, and order oblivious. We pick a single price 
that equalizes the expected fraction of items sold and the probability that the supply does not 
sell out before all customers are served; this price is then offered to each customer while 
supply lasts. This extends an approach introduced by Samuel-Cahn for the case of kà 1. This 
pricing scheme achieves a competitive ratio that increases gradually with the supply. Sub-
sequent work shows that our pricing scheme is the optimal static pricing for every value of k.

Funding: This work was supported by the National Science Foundation [Grants CCF-2008006 and SHF- 
1704117]. T. Lykouris would like to acknowledge funding from Google Research. 

Keywords: static threshold policies • optimal pricing • social welfare maximization

1. Introduction
The prophet inequality problem of Krengel and Suches-
ton (1977) constitutes one of the cornerstones of online 
decision making. A designer knows a set of n distri-
butions F 1, : : : ,Fn from which random variables Xt ~ 
F t are sequentially realized in an arbitrary order. Once 
a random variable is realized, the designer decides 
whether to accept it or not; at most one realized random 
variable can be accepted. The objective is to maximize the 
value of the variable accepted, and the performance 
of the algorithm is evaluated against the ex post maxi-
mum realized. In a beautiful result, Samuel-Cahn (1984) 
showed that a simple static threshold policy achieves the 
optimal competitive ratio for this problem. The algorithm 
of Samuel-Cahn (1984) determines a threshold p such that 
the probability that there exists a realization exceeding 
the threshold is exactly 1=2 and then, accepts the first ran-
dom variable that exceeds the threshold. This algorithm 
achieves a competitive ratio of 1=2 against the ex post 
optimum; no online algorithm, even one with adaptive 
thresholds, can obtain better performance.

Over the last few years, many extensions of the basic 
prophet inequality to more general feasibility constraints 

have been studied, and tight bounds on the competitive 
ratio have been established. However, one simple natu-
ral extension has largely been overlooked: where the 
designer is allowed to accept k> 1 random variables for 
some small value of k. This is called the multiunit 
prophet inequality. When k is relatively large, then it is 
known that static threshold policies can achieve a com-
petitive ratio of 1�O

⌘ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
log(k)=k

p ✓
(Hajiaghayi et al. 

2007), which goes to one as k!1. However, (for exam-
ple) for kà2 or 3, prior to our work, the best known 
competitive ratio of static thresholds remained 1=2. 
Our work addresses this gap by posing and answering 
the following questions.

Can a static threshold policy achieve a better competitive 
ratio than 1=2 for small k à 2, 3, : : :?

How should it be computed as a function of k? How does 
its performance scale with k?

A primary motivation for our work is its connection 
to welfare maximization in mechanism design. In this 
application, a seller has one or more units of an item to 
sell. The distributions correspond to known priors on 
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the valuations of different customers (possibly hetero-
geneous), and the realizations correspond to the actual 
valuation of an incoming customer. The seller’s goal is 
to maximize the social welfare or the sum of values of 
the customers that obtain the item. Any online strategy 
for the prophet inequality problem corresponds to 
selecting prices for customers; customers buy if any 
units of the item are still available and their valuation is 
higher than the price. Static threshold policies corre-
spond to static pricings, where the seller simply places 
a fixed price on the item and customers can purchase 
the item at that price while supply lasts. Static pricings 
have many nice properties that make them practical 
and suitable for real-world contexts. They are non- 
adaptive (the price does not depend on which customers 
have already arrived) and order oblivious (the price does 
not depend on the order of customers). This makes 
their implementation simpler and removes the incen-
tive on customers to strategize on the arrival order to 
obtain a better price, enhancing the customer experi-
ence. We note that, although the order of customers 
does not affect the price assuming that the supply is not 
depleted, it does affect the probability that the supply is 
depleted; this probability is zero for the first customer 
and increases as customers arrive. Finally, static pricing 
is anonymous (it does not discriminate based on which 
customer arrives), which is typically regarded as a 
more fair pricing scheme. We, therefore, focus on static 
pricings in this work.

1.1. Our Results
We answer the questions by developing an algorithm 
for finding a static threshold policy for the multiunit 
prophet inequality that is sensitive to the supply k. 
Our algorithm is very simple and practical. For any 
fixed price p, it estimates two statistics based on the 
given prior: (1) the fraction of items expected to be 
sold at that price, µk(p), illustrated in Figure 1, and (2) 

the probability that not all units will sell out before all 
the customers have been served, δk(p), illustrated in 
Figure 2. We then pick the static price p? at which these 
two quantities are equal: µk(p?) à δk(p?).

The competitive ratio of this static pricing increases 
gracefully as the supply increases and approaches one 
at the rate of 1�O

⌘ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
log(k)=k

p ✓
as k!1, as we will 

explain next. The precise competitive ratio at any par-
ticular value of k can be determined as the solution to a 
particular equation; let X be a Poisson random variable 
with a rate defined such that the following equation 
holds:

1
k E[min(X, k)] à P[X  k� 1]: (1) 

The worst-case competitive ratio of our algorithm is 
then given by the value of either side of the equation, 
say P[X  k� 1]. Note that this quantity is well defined 
because on the one hand, the truncated expectation 
1
k E[min(X, k)] increases with the rate of the Poisson var-
iable X; it is zero for rate equal to zero and one for rate 
equal to infinity. On the other hand, the probability 
P[X  k� 1] decreases with the rate; it is one when the 
rate is zero and zero when the rate is infinity. In effect, 
our analysis shows that the worst case for our static 
pricing occurs when the number of customers with 
value exceeding the price is given precisely by the Pois-
son variable X. As k!1, the competitive ratio for this 
instance tends to 1�O

⌘ ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
log(k)=k

p ✓
.

To obtain a better sense of the exact quantities the 
equation leads to, Figure 3 depicts the ratio as a func-
tion of k, and Table 1 instantiates it for small values of k.

1.2. Our Techniques
1.2.1. The Approach of Samuel-Cahn (1984): Balancing 
Revenue and Utility Contribution to Welfare. Our meth-
odology is inspired by the approach of Samuel-Cahn 
(1984) for the single-unit prophet inequality (kà 1). First, 

Figure 1. (Color online) For a Price p?, We Cannot Hope for 
More Revenue Than Selling All Units at p? (i.e., the Red 
Dashed Area: Rk(p?) à kp?) 

Note. However, a price p? thins the demand and results in an 
expected number of sales that is equal to k ·µk(p?) and thereby, an 
expected revenue equal to the area below the blue dotted region: 
µk(p?) · Rk(p?).

Figure 2. (Color online) For a Price p?, We Cannot Hope for 
More Consumer Surplus (Utility) Than the One of All Custo-
mers with Value Higher Than p?: U(p?) :àPtmax(0, vt� p?)

Notes. However, we do not receive utility from customer t if there is 
no unit when she arrives; a lower bound on the probability of having 
a unit available is the probability δk(p?) that not all units are depleted 
anyway. This lower bounds the welfare we collect from consumer 
surplus by δk(p?) · U(p?).
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the social welfare obtained by any static price p can be 
expressed in two parts: (1) the expected revenue the 
seller obtains from selling any units of the item and (2) 
the expected utility the buyers obtain from purchasing 
any units of the item. What is the most revenue and util-
ity that we can expect at a particular price p? The most 
revenue the seller can obtain is simply the price p, 
R(p) :à p. On the other hand, the most total utility the 
buyers can obtain at a price of p is U(p) :àPtmax(0, vt�
p) or the total excess value of the buyers above price p 
assuming that everyone who wants the item gets it. (In the 
pricing application, customers are assumed to have qua-
silinear utilities (i.e., they buy when their value is above 
the price and there is an available item and obtain payoff 
equal to their value minus the price).) It turns out that no 
matter what p is, R(p) + U(p) is an upper bound on the 
optimal-in-hindsight social welfare. Samuel-Cahn (1984) 
observed that when kà1, with the right choice of p both 
the seller and the buyers can in expectation each obtain 
at least a half of these revenue and utility upper bounds, 
respectively. One way to choose such a price p is to 
ensure that the probability of selling the item is exactly 
1/2. At that price, on the one hand, the buyer sells 1/2 
units in expectation, and on the other hand, each buyer 
has a probability at least 1/2 of being offered the item 
and contributing to the total utility, resulting in the com-
petitive ratio of 1/2. Figure 4 illustrates the idea behind 
the approach of Samuel-Cahn (1984).

1.2.2. Our Extension to Multiple Units. Extending this 
approach beyond a single unit, we similarly define 
Rk(p) :à pk to be the revenue obtained if all k units of the 
item get sold at price p and U(p) :àPtmax(0, vt� p) to 
be the total excess value of the buyers above price p 
assuming that everyone who wants the item at price p 
gets it. Then, Rk(p) + U(p) is an upper bound on the opti-
mal in hindsight social welfare. Letting µk(p) denote the 
expected fraction of the supply sold at the price p, the 
seller’s expected revenue is µk(p)Rk(p). On the other 
hand, the probability that a buyer is offered an unsold 
unit is at least as large as the probability that not all units 
are sold out at the end of the process; we call this proba-
bility δk(p). Then, the total utility contributed by the 
buyers is at least δk(p)U(p). The static pricing p, there-
fore, obtains at least a φk :àmin{µk(p),δk(p)} fraction 
of the upper bound Rk(p) + U(p). Our pricing scheme 
selects the price that maximizes this quantity φk. Because 
µk(p) is a decreasing function of p and δk(p) is an increas-
ing function, their minimum is maximized when the 
two are equal. Note that φk only depends on the buyers’ 
value distributions and is independent of their order as 
both µk(p) and δk(p) are also order-oblivious quantities.

1.2.3. Crux of Our Analysis: Characterizing Worst- 
Case Performance of Our Scheme. The description 
quantifies the competitive ratio of our scheme for any 
known distribution. To characterize its worst-case per-
formance, we need to also identify worst-case distribu-
tions (i.e., those resulting to the lowest φk). The crux of 
our analysis is a series of reductions eventually show-
ing that Poisson distributions are these worst-case dis-
tributions. As a result, the competitive ratio of our 
scheme is φk for Poisson distributions, and this leads to 
the competitive ratio we illustrated in (1).

1.3. Related Work
As already discussed, prophet inequalities were intro-
duced by Krengel and Sucheston (1977); Samuel-Cahn 

Figure 3. (Color online) Competitive Ratio of Our Static Pric-
ing as a Function of the Number of Supply Units k 

Table 1. Competitive Ratio of Our Static Pricing for the 
Small Number of Supply Units k

Number of units Competitive ratio

k à 1 0.5
k à 2 0.585
k à 3 0.630
k à 4 0.660
k à 5 0.682
k à 6 0.698

Figure 4. (Color online) This Figure Is Similar to Figure 1 as, 
for k à 1, µ1(p) à E[min(Pn

tà1 1{Xt � p}, k)] and the Comple-
ment of Figure 2 as δ1(p) à P[

Pn
ià1 1{Xt � p}  k� 1]

Notes. For k à 1, µ1(p) à 1� δ1(p) for all prices and selecting p? such 
that µ1(p?) à δ1(p?) leads to competitive ratio of 1/2. The root behind 
our algorithm is to extend this revenue-utility decomposition to k > 1 
where it no longer holds that µk(p) à 1� δk(p) for all prices p.

Chawla, Devanur, and Lykouris: Static Pricing for Multi-unit Prophet Inequalities 
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(1984) provided a very clean analysis that our work 
builds upon. In the last decade, there has been a tremen-
dous amount of work on extending prophet inequalities 
to different feasibility constraints over buyers (Klein-
berg and Weinberg 2012, Dütting and Kleinberg 2015, 
Rubinstein and Singla 2017) as well as to pricing with 
heterogeneous items where buyers have more complex 
valuations (Feldman et al. 2014; Chawla et al. 2017, 
2019; Dütting et al. 2020). The reader is referred to 
Lucier (2017) for a general survey.

1.3.1. Balanced Prices. The dominant approach for 
establishing prophet inequalities in combinatorial set-
tings is by constructing so-called balanced prices, a tech-
nique introduced by Kleinberg and Weinberg (2012) and 
further developed in Feldman et al. (2014) and Dütting 
et al. (2020). This approach also has its roots in the work 
of Samuel-Cahn (1984). Recall that the optimal social 
welfare is bounded by Rk(p) + U(p) and that the pricing 
p obtains a µk(p) fraction of the first term and a δk(p) frac-
tion of the second. Feldman et al. (2014) choose a price 
p1=2 that balances the revenue and utility upper bounds: 
Rk(p1=2) àU(p1=2). They accordingly obtain a competi-
tive ratio of 1

2 (µk(p1=2) + δk(p1=2)). Noting that µk(p) +
δk(p) � 1 at any price p, this competitive ratio is always 
at least 1=2, but in general, it is no better even when k is 
large. In contrast, our approach picks a price where µ
and δ�are simultaneously larger than 1/2 (Figure 5).

1.3.2. Adaptive Pricing and the Magician’s Prob-
lem. Multiunit prophet inequalities were also previ-
ously studied by Alaei (2014) in the context of revenue 
optimal mechanism design. Alaei (2014) provided a 
competitive ratio of αk :à 1�

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
1=(k + 3)

p
for a more 

general problem called the magician’s problem, which 
also applies to the multiunit prophet inequality. The 
pricing scheme of Alaei (2014) is not static in the sense 
of a price that you “set it and forget it.” It uses a single 
price for all buyers but probabilistically skips some 
buyers in order to maintain a certain probability of not 

running out of items. This is equivalent to offering a 
price of 1 to some users. As such, it is more powerful 
than the class of static pricing policies that we con-
sider, and it does not satisfy two of the three properties 
mentioned: nonadaptivity and order obliviousness. 
The static pricing we develop provides a strictly better 
competitive ratio than that of Alaei (2014) for k 2 [2, 20]. 
Subsequent to our work, Jiang et al. (2022) improved 
upon the bound of Alaei (2014) to obtain tight competi-
tive ratios for the magician’s problem at all values of k. 
This bound is again achieved by a dynamic pricing and 
therefore, strictly exceeds the bound achieved by our 
static pricing.

1.3.3. Tightness of Our Pricing Scheme. Subsequently 
to our work, Jiang et al. (2023) established that our static 
pricing policy is worst-case optimal across all static 
threshold policies. In particular, Jiang et al. (2023) pro-
vide an instance where the gap between any static pol-
icy and the ex post optimal is exactly φk. We note that, 
for specific instances, one can obtain improved static 
prices. As a result, our policy is not instance optimal. 
For example, consider the policy that selects the price p 
that directly maximizes µk(p)Rk(p) + δk(p)U(p); such a 
policy would also enjoy the competitive ratio guaran-
tees that we provide while obtaining improved perfor-
mance on some distributions. However, this policy 
requires the evaluation of U(p) for all prices p, which 
makes it less simple (especially when one needs to esti-
mate these quantities from data). In contrast, our policy 
only requires learning the price that equates µk(p) and 
δk(p), which can be done via binary search on the prices 
(as both can be evaluated with only samples from price 
p). Finally, although we present our results as compar-
ing against the ex post optimum, the same guarantees 
also hold against the corresponding ex ante relaxation 
(see Remark 2).

1.3.4. Other Subsequent Work. In another subsequent 
work, Arnosti and Ma (2022) build on our techniques 
to study the performance of static threshold policies in 
the prophet-secretary setting with k units, where custo-
mers arrive in uniformly random order (rather than in 
a worst-case order as what we consider). For this spe-
cial case, Arnosti and Ma (2022) provide tight competi-
tive ratio guarantees; in doing so, they heavily rely on 
the structure of our analysis and use the random order 
property to establish a better competitive ratio guaran-
tee for the final step of our analysis. The performance of 
the worst-case distribution is the Poisson distribution, 
which is similar to our result.

1.3.5. Pricing with Limited Supply Beyond Prophet 
Inequalities. Our work lies in the general theme of 
providing supply-dependent guarantees for pricing with 

Figure 5. (Color online) The Price p1=2 Is Chosen Such That 
the Shaded Red Area Is Half of the Area Under the Solid 
Blue Curve 

Note. This price is in general smaller than the price p? our approach 
chooses, and its worst-case competitive ratio is 1/2 for any k.

Chawla, Devanur, and Lykouris: Static Pricing for Multi-unit Prophet Inequalities 
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known priors and limited supply. Beyond prophet inequal-
ities, such guarantees have also been provided in ride-
sharing settings (Balseiro et al. 2021, Banerjee et al. 2022). 
The latter works typically make a stronger assumption 
that the system is in steady state but has more complex 
state externalities. In multiunit prophet inequalities, the 
supply just decreases when items are sold; in rideshar-
ing, it is reallocated across the network. To the best of 
our knowledge, these are the only two pricing settings 
where such supply-dependent guarantees with known 
priors and limited supply are provided; most prior work 
focuses on asymptotic optimality guarantees when the 
supply is large.

When the priors are not known in advance, a few 
other lines of work attempt to address these settings 
with the additional complication of learning informa-
tion about the distributions. For example, dynamic pric-
ing with limited supply has been studied in the context 
of prior-independent mechanisms (i.e., those that do 
not have distributional knowledge (Babaioff et al. 2015)); 
this work has been then extended in more general ban-
dit settings under knapsack constraints (Badanidiyuru 
et al. 2018, Agrawal and Devanur 2019). On the positive 
side, these approaches do not assume knowledge of the 
distributions; on the negative side, the guarantees they 
provide become meaningful only when the supply is 
large (e.g., 

ÇÇÇ
n

p
, where n is the number of buyers).

2. Model
An instance of the prophet inequality problem consists 
of a set of n distributions supported on nonnegative 
real numbers F à {F t : t 2 [n]}. To ease of presenta-
tion, we denote by F t the tth arriving distribution; this 
order is not known to the seller. In multiunit prophet 
inequalities, there is also a supply k that determines 
the number of units available for purchase at the 
beginning of time.

A static price is defined by a single number p 2 R. 
The pricing works as follows. Buyers arrive one by one 
and are offered a copy of the item at price p as long as 
there is available supply. Buyer t has a value vt drawn 
independently from the distribution F t. The buyer pur-
chases a unit of the item if and only if her value is above 
the price and there is an available item. In this case, the 
available supply decreases by one; otherwise, the buyer 
leaves the system without an item, and the available 
supply remains unaltered.

A static pricing scheme ! maps the supply k and the 
distributions F to a static price π(k,F ) 2 R.

The welfare of a static price p 2 R on a particular real-
ization of buyer values is the total value of the buyers 
who purchase a unit of the item. We denote its expected 
welfare by WELFARE(p, k,F ), where the expectation is 
over the randomness in buyer values drawn from F . 

The benchmark we compare with is the expected opti-
mal welfare in hindsight and is denoted by OPT(k,F )
(i.e., OPT(k,F ) is the expected sum of the k-highest real-
ized values drawn from the set of distributions F ). The 
competitive ratio for a static pricing scheme ! on supply 
k is the worst-case welfare-to-optimum ratio across all 
the possible set of distributions F : that is,

COMPRATIO(!, k) à inf
F

WELFARE π(k,F ), k,F( )
OPT(k,F ) :

Our goal is to identify a static pricing scheme ! that 
maximizes this worst-case competitive ratio. In the 
remainder of the presentation, we omit the arguments 
of π(k,F ) when clear from the context.

Without loss of generality, we assume that each dis-
tribution has P[vt > 0] > 0 (otherwise, we can ignore it) 
and further assume that n> k (otherwise, setting a price 
of zero is optimal).

To ease the presentation of our scheme, we assume 
that the distributions are atomless. Remark 1 shows 
how our results extend to general distributions.

3. Our Pricing Scheme and Its 
Performance Guarantee

3.1. Decomposing to Revenue and Utility 
Contributions

For any fixed price p 2 R and distributions F , let Xp 
denote the number of buyers who have value higher 
than the price. This is a random variable because the 
buyers’ values are drawn from the distributions F ; in 
particular, it is equal to

Xp :à | {t : vt � p} | :
As in the approach of Samuel-Cahn (1984), we decom-
pose the welfare into two components: the total utility 
obtained by the buyers and the total revenue obtained 
by the seller. We now define some quantities of interest 
that determine these components. The first quantity is 
the probability that the seller runs out of units to sell or 
in other words, that Xp is at least k. We use δk(Xp) to 
denote one minus this probability:

δk(X) :à P[X  k� 1]: (2) 

The second quantity is the expected fraction of units 
sold and is directly related to the revenue obtained by 
the seller. We use µk(Xp) to denote this truncated expec-
tation:

µk(X) :à 1
k E[min{X, k}]: (3) 

The first important lemma that drives the design of 
our pricing scheme is that, for any distributions F , the 
welfare-to-optimum ratio is at least the minimum of 
these two quantities.
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Lemma 1. For any supply k, set of distributions F , and 
any price p 2 R,

WELFARE(p, k,F )
OPT(k,F ) �min δk(Xp),µk(Xp)

� ⇥
:

This lemma is the main structural contribution of our 
work to the prophet inequality literature. Its proof is 
deferred to Section 4.

3.2. Our Pricing Scheme
For a given set of distributions F and supply k, our pric-
ing scheme ! outputs a static price π(k,F ) à π�that 
ensures that the two quantities in Lemma 1 are equalized:

δk(Xπ) à µk(Xπ): (4) 

The atomless assumption ensures that such a price 
always exists (see Remark 1 on how the results extend 
beyond the atomless assumption). Observe that δk(Xp)
is monotone nondecreasing in p and µ(Xp) is monotone 
nonincreasing in p. Moreover, µk(Xp) goes from one to 
zero as the price goes from zero to 1 (because n> k). 
The atomless assumption ensures that both δk(Xp) and 
µk(Xp) are continuous. The intermediate value theorem 
then guarantees the existence of π.

We now define the competitive ratio of our pricing 
scheme for any distributions F and supply k as

φk(!,F ) :à δk(Xπ(k,F )) à µ Xπ(k,F )
� ⇥

and the worst-case competitive ratio of p as
φk(!) :à inf

F
φk(!,F ): (5) 

The second important lemma that enables our competi-
tive ratio guarantee is that, for any fixed supply k, the 
minimum of δk(Xπ(k,F )) and µk(Xπ(k,F )) attains its low-
est value when F consists of infinitely many Bernoulli 
random variables, all with equal bias; in this case, Xp is 
a Poisson distribution. This is formalized in the follow-
ing lemma.
Lemma 2. For any supply k and any set of distributions 
F , φk(!,F ) attains its lowest value φk(p) when F is a col-
lection of infinitely many Bernoulli distributions with equal 
bias (i.e., Xπ(k,F ) is a Poisson distribution).

The proof of this lemma stems from a series of reduc-
tions and is the main technical contribution of our anal-
ysis. Its proof is deferred to Section 5.

3.3. Competitive Ratio of Our Pricing Scheme
The two lemmas seamlessly establish the competitive 
ratio of our pricing scheme as demonstrated in the fol-
lowing theorem, which is the main result of our work. 
The competitive ratio φk as a function of k is illustrated 
in Figure 3.

Theorem 1. Let Xλ�be a Poisson random variable with rate 
λ�and set λk such that δk(Xλk) à µk(Xλk). The competitive 
ratio of our pricing scheme ! is at least φk :à δk(Xλk) à
µk(Xλk).
Proof. The proof of the theorem comes directly by 
combining Lemmas 1 and 2. w

Remark 1. If there are point masses in the distribu-
tions at price π(k,F ), we still obtain the same results 
provided we can break ties at random. A buyer with 
value π(k,F ) is allocated the item with a probability 
such that Equality (4) holds. The definition of Xπ(k,F ) is 
adjusted accordingly; if vt à π(k,F ), then t is counted 
only with some probability. The same effect can be 
achieved by randomly perturbing the price by an infini-
tesimal amount (although not static, this is still anony-
mous, nonadaptive, and order oblivious).

4. Welfare-to-Optimum Lower Bound for 
Any Price (Lemma 1)

This section proves Lemma 1. For any supply k, set of 
distributions F , and any price p 2 R, we have

WELFARE(p, k,F )
OPT(k,F ) �min(δk(Xp),µk(Xp)), 

where δk(X) :à P[X  k� 1] and µk(X) :à E[min{X, k}=k]
as introduced in Equations (2) and (3).
Proof of Lemma 1. The proof follows the approach of 
Samuel-Cahn (1984) for the single-unit prophet inequal-
ity. We first bound the hindsight optimal welfare from 
above in terms of the price p by bounding both the 
maximum possible revenue generated for the seller 
and the maximum possible utility generated for the 
buyers when posting price p. Let Zp denote the (ran-
dom) set of buyers whose value exceeds the price p. 
Then, we have

OPT(k, F ) à E max
S✓[n]; |S |k

X

t2S
vt

" #

 E max
S✓[n]; |S |k

X

t2S
(p + max(0, vt � p))

" #

 kp + E
X

t2Zp

(vt � p)

2

4

3

5

 kp +
X

t2[n]
P[t 2 Zp] E[vt � p |t 2 Zp]: (6) 

We note that the first summand in the last term corre-
sponds to what we referred to in Section 1 as Rk(p) à kp, 
whereas the second summand corresponds to the ex-
pected value of what we referred in Section 1 as U(p) àP

tE[max(0, vt� p)].
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We now decompose the expected welfare generated 
by price p to a revenue and a utility component. The 
expected revenue of the seller upon setting price p is

REVENUE(p, k, F ) à E[min( |Zp | , k)] p à µk(Xp)kp: (7) 

On the other hand, a buyer t receives utility of vt� p 
if and only if (1) vt is at least p (that is, t 2 Zp) and (2) 
the item is still available when the buyer t arrives. 
Regardless of the order in which buyers arrive, the 
latter event happens with probability at least as large 
as the probability that the item is not sold out at the 
end of the process. Recall that this latter probability is 
δ(Xp) à P[Xp  k� 1]. We, therefore, get the following 
lower bound on the utility generated by the pricing p:

UTILITY(p, k,F ) �
X

t2[n]
δk(Xp) ·P[t 2 Zp]E[vt� p | t 2 Zp]:

(8) 

The proof of the lemma is completed by putting Equa-
tions (6), (7), and (8) together, which yields

WELFARE(p, k, F ) à REVENUE(p, k, F ) + UTILITY(p, k, F )

� µk(Xp)kp + δk(Xp)
X

t2[n]
P[t 2 Zp]

E[vt � p | t 2 Zp]

� min(µk(Xp), δk(Xp))OPT(k, F ): w 

Remark 2. Although the result on Lemma 1 bounds 
the expected welfare of any static price p to the 
expected value of OPT(k,F ), we note that its proof also 
implies that the same guarantee holds against the ex 
ante relaxation.

5. Establishing Poisson as Worst-Case 
Distribution (Lemma 2)

This section proves Lemma 2. Recall that for any sup-
ply k and any set of distributions F , π(k,F ) is the price 
that satisfies δk(Xπ(k,F )) à µ(Xπ(k,F )). We show that the 
corresponding competitive ratio φk(!) attains its lowest 
value when F is a collection of infinitely many Ber-
noulli distributions with equal bias (i.e., Xπ(k,F ) is a 
Poisson distribution).
Proof Sketch. To prove the lemma, we progressively 
refine our understanding of the worst-case distribu-
tions, as outlined in the following three steps. 

1. We reduce the problem of finding the worst distri-
bution to a finite-dimensional problem searching only 
over Bernoulli distributions (Section 5.1). Intuitively, 
our analysis is only affected by the probability that 
vt � π(k,F ) corresponding to the bias of a Bernoulli 
distribution.

2. We show that all the Bernoulli biases are equal 
unless they are either zero or one (Section 5.2).

3. We show that the Bernoullis, in fact, must all have 
the same bias (Section 5.3).
The lemma then follows by considering n Bernoullis 
with the same bias and letting n tend to infinity. The 
complete proof is provided at the end of the section. w

5.1. Reducing to Bernoulli Distributions
5.1.1. Reducing Worst-Case Distributions to Bernoulli 
Distributions. A Bernoulli random variable with bias b 
takes on the value of one with probability b and zero 
otherwise. We reduce the problem of finding the worst- 
case distribution to the following finite-dimensional 
problem:

φ?k :à min
b1, b2, : : : , bn,φ

φ s:t:

(GENBERN : minφ s:t: δ à µ à φ)
X is the sum of n Bernoullis with bias

b1, b2, : : : , bn

δk(X) à µk(X) à φ:

Lemma 3. For any supply k> 0 and number n> k of custo-
mers, the worst-case competitive ratio φk(!) of our pricing 
scheme is equal to the optimal value of (GENBERN : minφ�s.t. 
δ à µ à φ), φ?k .

Proof. The worst-case competitive ration φk(!) opti-
mizes the objective of the problem (GENBERN : minφ�
s.t. δ à µ à φ) across any set of prior distributions, 
whereas the optimization problem (GENBERN : minφ�
s.t. δ à µ à φ) optimizes only over Bernoulli distribu-
tions. We show that for every set of prior distribu-
tions, there exists a corresponding set of Bernoulli 
distributions that are feasible for (GENBERN : minφ�s.t. 
δ à µ à φ) and obtain the same objective function 
value.

The reduction is relatively simple. For any set of dis-
tributions F (not necessarily Bernoulli), we first com-
pute the price π(k,F ) of our pricing scheme (i.e., the 
one that makes δk(Xπ(k,F )) à µk(Xπ(k,F ))). Subsequently, 
for each distribution F t, we compute an equivalent Ber-
noulli bias bt à P[vt � π(k,F )]. The probability that any 
Bernoulli random variable is one is, therefore, equal to 
the probability that its original counterpart is higher 
than the price π(k,F ). As a result, both δk(·) and µk(·)
are the same for the resulting sum as in the original 
problem, which proves the lemma. w

5.1.2. A Simpler Equivalent Way to Express the 
Resulting Optimization Problem. We now define a 
slightly different form of the objective function, which 
makes analyzing the optimal setting of the biases easier. 
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Here, φ?k is the optimal value of problem (GENBERN :
minφ�s.t. δ à µ à φ):

minµk(X) s:t: (GENBERN : minµ s:t: δ à φ)

δk(X) à φ?k
X is the sum of Bernoulli r:v:s:

Lemma 4. The optimal values of the optimization problems 
(GENBERN : minφ�s.t. δ à µ à φ) and (GENBERN : minµ
s.t. δ à φ) are equal.
Proof. The optimal solution φ?k for the optimization 
problem (GENBERN : minφ�s.t. δ à µ à φ) is feasible for 
(GENBERN : minµ s.t. δ à φ) as the latter program needs 
to satisfy a subset of the former program’s constraints; 
thus, the optimum of (GENBERN : minµ s.t. δ à φ) is no 
larger than the one of (GENBERN : minφ�s.t. δ à µ à φ).

For the opposite direction, assume that the optimum 
of (GENBERN : minµ s.t. δ à φ) is strictly smaller than the 
one of (GENBERN : minφ�s.t. δ à µ à φ). Because δk(X)
and µk(X) are both continuous and they are monotone 
decreasing and increasing, respectively, by increasing 
any of the biases, starting from the optimal solution of 
(GENBERN : minµ s.t. δ à φ), we arrive to a new solution 
X0, with δk(X0) à µk(X0) < δk(X) à φ?k . This contradicts 
the fact that φ?k was the optimum for (GENBERN : minφ�
s.t. δ à µ à φ) and establishes that its optimal value is no 
larger than the one of (GENBERN : minµ s.t. δ à φ). w

5.2. Reducing to Bernoulli Distributions with 
Equal Bias Unless Degenerate

We now show that the optimum of the problem 
(GENBERN : minµ s.t. δ à φ) is attained when all the Ber-
noulli distributions either have equal bias or are degen-
erate (with bias 0 or 1).
Lemma 5. The optimization problem (GENBERN : minµ
s.t. δ à φ) is minimized when all nondegenerate Bernoulli 
distributions (that do not have bias 0 or 1) have equal bias.

We note that Hoeffding (1956) provides a similar 
result but without the constraint on δk(X). A generaliza-
tion of Lemma 5 was obtained via a similar case analy-
sis by subsequent work of Arnosti and Ma (2022) for 
the case where the objective and the constraint involve 
the expectation of an arbitrary nonnegative integer- 
valued function of X; in our setting, those functions are 
µk(X) and δk(X), respectively. Readers familiar with 
these results can safely skip this section and move to 
Section 5.3.

5.2.1. High-Level Structure of the Reduction. The key 
idea of the proof is to fix all but two of the biases and 
consider the problem of minimizing µk(X) subject to 
δk(X) being fixed as a function of these two biases. This 

is a problem in two dimensions, and we can character-
ize the optimal solutions to this problem. We then set 
aside these two distributions and assume by the princi-
ple of deferred decisions that they are instantiated in 
the end. The eventual goal is to establish that µk(X) is 
minimized when these two biases are equal or degener-
ate (either zero or one). By working inductively on the 
number of biases that are not equal and are nondegene-
rate, we eventually establish that all biases should be 
equal or degenerate.

Formally, assume that we have n Bernoulli distribu-
tions and fix all but two biases; let b1 and b2 be these 
two biases, and refer to r1 à 1� b1 and r2 à 1� b2 as 
the rates of the respective random variables. Denote 
by X the sum of random variables drawn from the 
remaining n�2 distributions. Let Q1 be the probabil-
ity that X à k� 1 (equivalently, exactly one unit is left 
available for the last two distributions), Q2 be the 
probability that X à k� 2 (i.e., two units are left avail-
able), and Q�3 be the probability that X  k� 3 (i.e., 
more than two units are left available). Finally, recall 
that X is the sum of random variables drawn from all 
distributions.

The following two claims enable the proof of Lemma 5.

Claim 1. The problem of minimizing µk(X) as a function of 
r1 and r2 subject to δk(X) à φ?k for a constant value φ?k is 
captured by the following program:

Maximize (Q2 + Q�3) · (r1 + r2) + Q1r1r2 (Min-Revenue) 

subject to r1, r2 2 [0, 1]2 and r1r2 · (Q1�Q2)
+ (r1 + r2) · Q2 à φ?k �Q�3: (9) 

Claim 2. There always exists an optimal solution for the 
(Min-Revenue) program that satisfies r1à r2, r1 2 {0, 1}, or 
r2 2 {0, 1}. Moreover, when (Q2)2�Q�3(Q1�Q2) > 0, the 
unique optimal solution satisfies r1à r2.

Using the two claims, we can directly provide the 
proof of the lemma.
Proof of Lemma 5. Among all the optimal solutions 
for problem (GENBERN : minµ s.t. δ à φ), consider the 
one that satisfies the following conditions. First, it has 
the fewest Bernoulli variables that are nondegenerate. 
Second, among those, it has the smallest difference 
between the largest nondegenerate bias and the smal-
lest nondegenerate bias; call these biases h and s 
accordingly. Third, among those, it has the smallest 
number of variables with bias that is equal to either h 
or s. We show, by contradiction, that hà s, establishing 
that all nondegenerate biases are equal.

Among all the optimal solutions, we select the one 
satisfying these criteria, and we select two distribu-
tions with bias b1 à h and b2 à s, respectively. We apply 
Claim 1 with these two and express (GENBERN : minµ
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s.t. δ à φ) as a function of r1 à 1� b1, r2 à 1� b2, and 
quantities Q1, Q2, Q�3 that are independent of r1 and 
r2. Claim 2 establishes that there exists another optimal 
solution with all the other biases the same, and the 
biases b01 and b02 corresponding to the two distribu-
tions either satisfy b01 à b02 or have one them degener-
ate. The latter is a contradiction as we assumed that 
the solution has the smallest number of nondegenerate 
Bernoulli distributions. This means that b01 à b02. How-
ever, in order for the new solution to induce the same 
δk(·) and µk(·), it means that b2  b01 à b02  b1. Unless 
b1àb2, we have, therefore, identified a new optimal 
solution with a smaller number of variables with bias 
equal to h or s , which again would induce contradic-
tion. As a result, b1àb2, and because b1 à h and b2 à s, 
this means that hà s and that all nondegenerate biases 
are equal. w

5.2.2. Expressing (GENBERN : min" s.t. # $ %) as a 
Function of Two Biases (Claim 1). 

Proof of Claim 1. We first write the utility component 
δk(X) (i.e., the probability that not all k items are sold 
in terms of the probabilities Q1, Q2, and Q�3 and the 
biases r1 and r2:

δk(X) àQ�3 + Q2(r1 + r2� r1r2) + Q1r1r2:

Applying this equation in the constraint of optimiza-
tion problem (GENBERN : minµ s.t. δ à φ) leads to Con-
straint (9) of the (Min-Revenue) optimization problem.

Our goal is now to minimize the objective of 
(GENBERN : minµ s.t. δ à φ), which corresponds to the 
revenue component µk(X) (i.e., the expected fraction 
of items sold). Because all but biases b1 and b2 are 
kept constant, this is equivalent to minimizing the 
number of items sold to the remaining two buyers. 
Our objective is, therefore, to minimize the following 
expression:

(r1(1� r2) + r2(1� r1)) · (Q1 + Q2 + Q�3)
+ (1� r1) · (1� r2) · (Q1 + 2Q2 + 2Q�3):

The first term corresponds to the contribution of the 
two remaining buyers when only one of the two real-
ized random variables is nonzero; then, µk(X) is in-
creased if there exists at least one item that is left 
available from the other buyers. The second term corre-
sponds to the event that both buyers have nonzero real-
ized random variables; in this case, µk(X) is increased 
by one if exactly one available item is left from the other 
buyers and two if at least two available items are left. 
Simplifying the expression leads to the following mini-
mization objective:

(Q1 + 2Q2 + 2Q�3)� (Q2 + Q�3) · (r1 + r2)�Q1r1r2:

Eliminating constant terms and negating the objective 
offer the maximization objective of the claim. w

5.2.3. Auxiliary Geometric Interpretation of the Con-
straint Intersection with [0, 1]2. We now provide a geo-
metric fact about hyperbolas of a particular form that is 
useful in characterizing the optimal solutions of the 
Min-Revenue program.

Claim 3. Let a, b 2 R, and consider the hyperbola in the x, y 
plane given by xy + a(x + y) à b. Expressing it as y à g(x)
and considering the segment(s) of g that intersects the 
region [0, 1]2, the following holds. 

• When a, b > 0, and 2a + 1� b > 0, the segment of g 
intersecting [0, 1]2 is convex and decreasing.

• When a, b < 0, and 2a + 1� b < 0, the segment of g 
intersecting [0, 1]2 is concave and decreasing.

Proof. In both cases considered, a2 + b > 0. In the first 
case, this is straightforward as a, b > 0. In the second 
case, 2a + 1 < b, and adding a2, we obtain a2 + 2a + 1 <
a2 + b, implying a2 + b > 0. If x à�a, then it means that 
axàb and hence, �a2 à b; this contradicts the fact -
that a2 + b > 0.

As a result, x ≠�a, and the hyperbola can be ex-
pressed as y à b�ax

x+a . The first derivative of this function is 
dy
dx à

�a(x+a)�(b�ax)
(x+a)2 à (�b�a2)

(x+a)2 . This is negative as a2 + b > 0, 
which establishes that y is decreasing in x. The second 
derivative of this function is d

2y
dx2 à�2 (�b�a2)

(x+a)3 à 2 a2+b
(x+a)3. The 

convexity or concavity is determined by the sign of this 
derivative, which is determined by the sign of x+ a. 
Hence, the resulting hyperbola has two segments: one 
convex for x >�a and one concave for x <�a. 

• In the first case, because both x � 0 and a>0, this 
sign is positive, and the segment is convex.

• In the second case, because of the symmetry, if the 
convex segment intersects [0, 1]2, it should also intersect 
it at xày. Hence, the point of this intersection is given 
by the equation x2 + ax à b whose roots are x à�a 6 ÇÇÇÇÇÇÇÇÇÇÇÇ

a2 + b
p

. The negative root is �a�
ÇÇÇÇÇÇÇÇÇÇÇÇ
a2� b

p
< 0, and the 

positive root is �a +
ÇÇÇÇÇÇÇÇÇÇÇÇ
a2� b

p
>�a +

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
a2 + 2a + 1

p
> 1 (be-

cause 2a + 1 < b). As a result, the convex segment does 
not intersect with [0, 1]2, and if the hyperbola does inter-
sect, this happens with its concave segment. w

5.2.4. Characterizing the Optimal Solutions of the Min- 
Revenue Program (Claim 2). 

Proof of Claim 2. We first start from two corner cases. 
Ia. We start from the simplest case where Q2 à 0. 

This transforms the Min-Revenue program to
maximize Q�3(r1 + r2) + Q1r1r2

subject to Q1r1r2 à φ?k �Q�3:

In this case, depending on the sign of φ?k �Q�3, the 
optimal solution satisfies r1à r2, r1 2 {0, 1}, or r2 2 {0, 1}
(if Q1 ≠ 0) or is independent of r1, r2 (otherwise).
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Ib. We then consider the case where Q1 àQ2 > 0 
(where it also holds that (Q2)2�Q�3(Q1�Q2) > 0); 
then, Constraint (9) is a linear constraint symmetric in 
r1 and r2, whereas the objective becomes equivalent to 
maximizing r1r2. The optimum is, therefore, uniquely 
achieved at r1à r2.

For the remaining cases, we assume that Q2 > 0 and 
Q1 ≠ Q2. We can, therefore, rewrite the objective in 
terms of r1 + r2, obtaining the following equivalent 
formulation:

Minimize (r1 + r2) ·
(Q2)2�Q�3(Q1�Q2)

Q1�Q2 

subject to r1, r2 2 [0, 1]2 and

r1r2 + (r1 + r2) ·
Q2

Q1�Q2
à φ

?
k �Q�3

Q1�Q2
:

The constraint can be rewritten as r1r2 + a(r1 + r2) à b 
for a à Q2

Q1�Q2 
and b à φ

?
k�Q�3

Q1�Q2
.

Observe that unless r1 à r2 à 1 is the only feasible 
solution (in which case the claim is already proven), 
it holds that Q1�Q2 + 2Q2 > r1r2(Q1�Q2) + (r1 + r2)
Q2 à φ?k �Q�3 > 0. (Note that for any feasible solution, 
we have φ?k à δk(X) �Q2 + Q�3 > Q�3, so φ?k �Q�3 > 0.) 
Hence, it holds that a, b, and 1 + 2a� b all have the same 
sign, and this is the sign of Q1�Q2. By Claim 3, the 
hyperbola r2 à g(r1) corresponding to the constraint is 
always decreasing and is (a) convex when Q1 > Q2 
(a>0) and (b) concave when Q1 <Q2 (a<0); it is also 
always symmetric in r1, r2. 

IIa. If Q1 < Q2, which implies (Q2)2�Q�3(Q1�Q2)
> 0, the multiplier of the objective is negative in this 
case; therefore, our goal is to maximize r1 + r2 subject to 
a concave and decreasing constraint. As a result, the 
optimum is uniquely determined on the line r1à r2.

IIb. If Q1 > Q2 and (Q2)2�Q�3(Q1�Q2) > 0, the 
multiplier of (r1 + r2) in the objective is positive; there-
fore, our goal is to minimize (r1 + r2) subject to a convex 
and decreasing constraint. As a result, the optimum is 
uniquely determined on the line r1à r2.

IIc. If Q1 > Q2 and (Q2)2�Q�3(Q1�Q2) < 0, the 
multiplier of (r1 + r2) in the objective is negative; there-
fore, our goal is to maximize (r1 + r2) subject to a convex 
and decreasing constraint. As a result, the optimum lies 
on the boundary of [0, 1]2.

The last case is that (Q2)2�Q�3(Q1�Q2) à 0. Then, 
if the program is feasible, there is a feasible solution 
with r1à r2 or with one of r1, r2 in {0, 1} via a simi-
lar reasoning.

Finally, (Q2)2�Q�3(Q1�Q2) à 0 > 0 corresponds to 
cases I(b), II(a), and II(b). In all three cases, r1à r2 is 
the unique optimal solution. w

5.3. Reducing to the Poisson Distribution
Lemma 5 states that the optimal solution to (GENBERN :
minµ s.t. δ à φ) is such that some of the biases are zero 
or one, and the remainder has equal bias bt à 1� r. We 
now show that, in fact, there cannot be any zero or 
one biases.
Lemma 6. The optimization problem (GENBERN : minµ s.t. 
δ à φ) is minimized when all of the Bernoulli distributions 
have equal bias (and there are no degenerate distributions).
Proof. By Lemma 5, we know that there exists an opti-
mal solution that consists of Bernoulli distributions 
with bias 0, 1, or 1� r for a fixed r. Consider any such 
optimal solution. We first observe that this solution 
cannot have k or more Bernoullis with bias 1; other-
wise, δk(X) à 0 < φ?k . (This holds because φ?k is at least 
1=2 as it is the intended competitive ratio.)

Now, we pick two specific Bernoulli variables with 
unequal bias and reoptimize the objective over these, 
keeping the rest fixed. If there is a Bernoulli with bias 
1 and another with bias 1� r ≠ 1, we pick two such 
variables. Otherwise, we pick one variable with bias 
1� r and another with bias 0. We define Q1, Q2, and 
Q�3 as in Section 5.2. In either case, we argue that 
(Q2)2�Q�3(Q1�Q2) > 0. Then, applying Claim 2, we 
arrive at a contradiction to the claim that our initial 
solution was optimal.

Among the biases left fixed, let n1 denote the number 
of Bernoullis with bias 1 and nr denote the number with 
bias 1� r. As discussed previously, we note n1  k� 2. 
Let k0 à k� n1 � 2 denote the number of item units left 
available once the n1 Bernoullis with bias 1 have each 
acquired an item. Recall that Q1 is the probability that 
exactly one unit is left available for the two Bernoullis 
from the others. Rephrasing, Q1 is the probability that 
of the remaining Bernoullis, exactly k�1 take a nonzero 
value. Because n1 Bernoullis take on a nonzero value 
with certainty, this means that among the nr Bernoullis 
with bias 1� r, exactly k0� 1 take on a nonzero value 
where k0 à k� n1. Likewise, Q2 is the probability that 
among the nr Bernoullis with bias 1� r, exactly k0� 2 
take on a nonzero value, and Q�3 is the probability that 
among the nr Bernoullis with bias 1� r, at most k0� 3 
take on a nonzero value. Let us also define Qi for i � 3 
as the probability that among the nr Bernoullis with bias 
1� r, exactly k0� i take on a nonzero value. Observe 
that k0 � 2 and thus we must have Q1, Q2 > 0.

We first claim that k0 � 3. If not, then we have Q�3 à 0, 
which implies (Q2)2�Q�3(Q1�Q2) > 0 and completes 
the proof. We can now compute the probabilities Qi:

Q1 à
nr� 1
k0� 1

◆ 
(1� r)k0�1rnr�k0 ,

Q2 à
nr� 1
k0� 2

◆ 
(1� r)k0�2rnr�k0+1, etc:
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Let us denote by α�the ratio between Q2 and Q1:

α àQ2
Q1

à k0� 1
nr� k0 + 1 · r

1� r :

We then observe
Q3
Q2

à k0� 2
nr� k0 + 2 · r

1� r < α and likewise,

Qi+1
Qi

 k0� i
nr� k0 + i ·

r
1� r < α ∀i > 3 with Qi > 0 :

Here, the second inequality follows by noting that 
k0�i

nr�k0+i decreases with i.
We can, therefore, write Q�3 à

P
i�3Qi <Q1(α2 + α3 

+ ⋯) à α2Q1=(1� α). Putting these expressions together, 
we obtain

(Q2)2�Q�3(Q1�Q2) > α2Q2
1� α2 Q1

1� α (Q1� αQ1) à 0:

This completes the proof. w

5.4. Concluding the Proof of Lemma 2
We are now ready to provide the proof of the main 
lemma of the section.

Proof of Lemma 2. By Lemma 3, φk(F ) attains its low-
est value when all the distributions are Bernoulli. By 
Lemma 5, all these Bernoulli distributions either have 
equal biases or are degenerate (have zero or one bias). 
By Lemma 6, there exists an optimal solution with no 
degenerate Bernoulli distributions. If there are finite 
Bernoulli distributions, we can always repeat the argu-
ment of Lemma 6 and obtain a solution with strictly 
higher objective and one more nonzero bias. As a result, 
there exists an optimal solution that consists of an infi-
nite collection of Bernoulli distributions with the same 
bias. This establishes that the worst-case instance is the 
limit n!1.

We now claim that the quantity Xπ(k,F ) in this limit 
is a Poisson distribution. Let Yn be the sum of n equal 
Bernoulli distributions with µn :à µn(Yn) à δn(Yn) ≕ δn. 
Note that µn and δn are both decreasing functions of n 
by the argument and bounded in [0, 1]. Therefore, they 
converge to a single limit, µ? à δ?. Let λn denote E[Yn]. 
We will show that the sequence {λn} converges. Then, 
by the Poisson limit theorem, the limit of {Yn}, namely 
Y? à Xπ(k,F ), is Poisson. This means that µn and δn, 
which are linear functions of the probability density 
function (pdf), also converge to µ(Y?) and δ(Y?), res-
pectively. Because µn and δn are identical sequences, it 
holds that µ(Y?) à δ(Y?), which completes the proof.

It remains to show that {λn} converges; this does 
not follow immediately from the convergence of {µn}
and {δn} because {λn} may not evolve monotonically. 
We will show that for any ✏ > 0, there exists an N(✏)

such that for any n1, n2 >N(✏), |λn1 �λn2 |  ✏, from 
which our claim follows.

In the remainder of this proof, we use Bin(n,λ) to 
denote the sum of n Bernoulli variables each with bias 
λ=n. We will use the following lemma that shows that 
two binomials with sufficiently different expectations 
will also have sufficiently different truncated expecta-
tions. The proof of the lemma appears at the end of 
this section.
Lemma 7. For any ✏ > 0, any λ,λ0 < k with |λ�λ0 | > ✏, 
and any n � 2k, define ✏0 :à (1� e�✏=2)=4k. Then, it holds 
that |µ(Bin(n,λ))�µ(Bin(n,λ0)) | > 2✏0. 
We now make the following observations. 

1. Observe that for any n>0, δn � 1=2, which means 
that Xn  k� 1 with probability at least 1/2, and the 
median is thus no more than k�1. The mean and the 
median of a binomial differ by at most ln(2) (Hamza 
1995), which implies that λn < k for all n.

2. For any ✏0 > 0, using the fact that {µn} converges, 
there exists N1(✏0) such that for any n1, n2 > N1(✏0), |µn1 

�µn2
|  ✏0 (i.e., |µ(Bin(n1,λn1))�µ(Bin(n2,λn2)) |  ✏0).

3. Using the fact that the pdf of the binomial distri-
bution converges in ℓ1 norm as the number of samples 
increases, whereas the bias stays the same, and that µ is 
a linear function of the pdf, we get that for any ✏0 > 0, 
there exists N2(✏0) such that for every λ < k and every 
n1, n2 >N2(✏0), |µ(Bin(n1,λ))�µ(Bin(n2,λ)) |  ✏0. (This 
is immediate for a fixed λ�by the Poisson convergence 
theorem. We can then define N2(✏0) as the supremum 
over the corresponding λ-specific values. That this is 
finite can be seen by discretizing the set of all λ’s.)

4. Putting these together, for n1, n2 �max{N1(✏0), N2 
(✏0)},

|µ(Bin(n2,λn1))�µ(Bin(n2,λn2)) |

 |µ(Bin(n1,λn1))�µ(Bin(n2,λn1)) |

+ |µ(Bin(n1,λn1))�µ(Bin(n2,λn2)) |  ✏0 + ✏0 à 2✏0 :

5. Finally, given ✏ > 0, we set ✏0 à (1� e�✏=2)=4k and 
N(✏) àmax{N1(✏0), N2(✏0), 2k}. Lemma 7 then implies 
that for all n1, n2 �N(✏), |λn1 �λn2 |  ✏, which con-
cludes the proof. w

Proof of Lemma 7. Without loss of generality, let 
λ0 > λ, and let b à λ=n and b0 à λ0=n be the bias of the 
Bernoulli variables constituting Bin(n,λ) and Bin(n,λ0), 
respectively. We will make correlated draws from the 
two distributions and use these to bound the differ-
ence between their truncated expectations. We first 
flip n coins with bias b each to produce an instantia-
tion of Bin(n,λ); call this variable X. We then consider 
each of the n coins that came up tails in the first exper-
iment and flip them again with bias (b0� b)=(1� b)
each, counting the total number of heads in the first 
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and second experiments together and denoting it X0; 
X0 is then an instantiation of Bin(n,λ0).

Now, we define µ :à µ(Bin(n,λ)) à E[min(X, k� 1)]
=k and µ0 :à µ(Bin(n,λ0)) à E[min(X0, k� 1)]=k. Clearly, 
µ0 > µ, and we can lower bound the difference between 
the two by 1=k times the probability of the event that 
X < k� 1 and X0 > X. Let us compute this probability.

First, we observe that E[X] à λ < k, so Pr[X < k] �
1=2. Then, conditioning on X< k and recalling that 
n � 2k, we have at least n=2 coins flipped in the second 
experiment. The probability that all of the coins come 
up tails is at most (1� (b0� b))n=2  (1� ✏=n)n=2  e�✏=2.

Therefore, conditioning on X< k, the event X0 > X hap-
pens with probability at least 1� e�✏=2. Putting every-
thing together, we get that µ0�µ � (1� e�✏=2)=2k. w

6. Discussion
This paper provides an understanding of the perfor-
mance of static pricing in multiunit prophet inequalities. 
We show a simple static pricing scheme that obtains a 
competitive ratio that adapts to the size of the supply. 
This is enabled by a clean revenue-utility decomposi-
tion, which allows us to move beyond the now domi-
nant balanced approach to analyze prophet inequalities. 
We hope that this decomposition can further our under-
standing of prophet inequalities for more settings. In 
particular, it has already inspired follow-up work as 
our technique is a building block for multiunit prophet 
inequality guarantees under the random-order arrival 
model (Arnosti and Ma 2022).

An interesting direction that remains open is to extend 
our approach to the setting with multiple different items. 
For its single-unit version, the existing guarantees rely 
on the balanced prices approach, which cannot yield com-
petitive ratios beyond 1/2 (see Section 1.4 for a relevant 
discussion). It is interesting to provide improved guar-
antees for multi-item multiunit prophet inequalities.
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