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Abstract. We study a pricing problem where a seller has k identical copies of a product,
buyers arrive sequentially, and the seller prices the items aiming to maximize social welfare.
When k=1, this is the so-called prophet inequality problem for which there is a simple pricing
scheme achieving a competitive ratio of 1/2. On the other end of the spectrum, as k goes to
infinity, the asymptotic performance of both static and adaptive pricing is well understood.
We provide a static pricing scheme for the small-supply regime: where k is small but larger
than one. Prior to our work, the best competitive ratio known for this setting was the 1/2 that
follows from the single-unit prophet inequality. Our pricing scheme is easy to describe as
well as practical; it is anonymous, nonadaptive, and order oblivious. We pick a single price
that equalizes the expected fraction of items sold and the probability that the supply does not
sell out before all customers are served; this price is then offered to each customer while
supply lasts. This extends an approach introduced by Samuel-Cahn for the case of k=1. This
pricing scheme achieves a competitive ratio that increases gradually with the supply. Sub-
sequent work shows that our pricing scheme is the optimal static pricing for every value of k.

Funding: This work was supported by the National Science Foundation [Grants CCF-2008006 and SHEF-

1704117]. T. Lykouris would like to acknowledge funding from Google Research.
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1. Introduction
The prophet inequality problem of Krengel and Suches-
ton (1977) constitutes one of the cornerstones of online
decision making. A designer knows a set of n distri-
butions F7y,...,F, from which random variables X; ~
F are sequentially realized in an arbitrary order. Once
a random variable is realized, the designer decides
whether to accept it or not; at most one realized random
variable can be accepted. The objective is to maximize the
value of the variable accepted, and the performance
of the algorithm is evaluated against the ex post maxi-
mum realized. In a beautiful result, Samuel-Cahn (1984)
showed that a simple static threshold policy achieves the
optimal competitive ratio for this problem. The algorithm
of Samuel-Cahn (1984) determines a threshold p such that
the probability that there exists a realization exceeding
the threshold is exactly 1/2 and then, accepts the first ran-
dom variable that exceeds the threshold. This algorithm
achieves a competitive ratio of 1/2 against the ex post
optimum; no online algorithm, even one with adaptive
thresholds, can obtain better performance.

Over the last few years, many extensions of the basic
prophet inequality to more general feasibility constraints

have been studied, and tight bounds on the competitive
ratio have been established. However, one simple natu-
ral extension has largely been overlooked: where the
designer is allowed to accept k> 1 random variables for
some small value of k. This is called the multiunit
prophet inequality. When k is relatively large, then it is
known that static threshold policies can achieve a com-

petitive ratio of 1— O(«/log(k) /k) (Hajiaghayi et al.
2007), which goes to one as k — co. However, (for exam-
ple) for k=2 or 3, prior to our work, the best known
competitive ratio of static thresholds remained 1/2.
Our work addresses this gap by posing and answering
the following questions.

Can a static threshold policy achieve a better competitive
ratio than 1/2 for small k=2,3,...7

How should it be computed as a function of k? How does
its performance scale with k?

A primary motivation for our work is its connection
to welfare maximization in mechanism design. In this
application, a seller has one or more units of an item to
sell. The distributions correspond to known priors on
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the valuations of different customers (possibly hetero-
geneous), and the realizations correspond to the actual
valuation of an incoming customer. The seller’s goal is
to maximize the social welfare or the sum of values of
the customers that obtain the item. Any online strategy
for the prophet inequality problem corresponds to
selecting prices for customers; customers buy if any
units of the item are still available and their valuation is
higher than the price. Static threshold policies corre-
spond to static pricings, where the seller simply places
a fixed price on the item and customers can purchase
the item at that price while supply lasts. Static pricings
have many nice properties that make them practical
and suitable for real-world contexts. They are non-
adaptive (the price does not depend on which customers
have already arrived) and order oblivious (the price does
not depend on the order of customers). This makes
their implementation simpler and removes the incen-
tive on customers to strategize on the arrival order to
obtain a better price, enhancing the customer experi-
ence. We note that, although the order of customers
does not affect the price assuming that the supply is not
depleted, it does affect the probability that the supply is
depleted; this probability is zero for the first customer
and increases as customers arrive. Finally, static pricing
is anonymous (it does not discriminate based on which
customer arrives), which is typically regarded as a
more fair pricing scheme. We, therefore, focus on static
pricings in this work.

1.1. Our Results

We answer the questions by developing an algorithm
for finding a static threshold policy for the multiunit
prophet inequality that is sensitive to the supply k.
Our algorithm is very simple and practical. For any
fixed price p, it estimates two statistics based on the
given prior: (1) the fraction of items expected to be
sold at that price, u,(p), illustrated in Figure 1, and (2)

Figure 1. (Color online) For a Price p*, We Cannot Hope for
More Revenue Than Selling All Units at p* (i.e., the Red
Dashed Area: Ry(p*) = kp*)

Note. However, a price p* thins the demand and results in an
expected number of sales that is equal to k-, (p*) and thereby, an
expected revenue equal to the area below the blue dotted region:

) - Re(p).

Figure 2. (Color online) For a Price p*, We Cannot Hope for
More Consumer Surplus (Utility) Than the One of All Custo-
mers with Value Higher Than p*: U(p*) := _,max(0,v; — p*)

Price p

Notes. However, we do not receive utility from customer ¢ if there is
no unit when she arrives; a lower bound on the probability of having
a unit available is the probability 6x(p*) that not all units are depleted
anyway. This lower bounds the welfare we collect from consumer
surplus by 6x(p*) - U(p*).

the probability that not all units will sell out before all
the customers have been served, o(p), illustrated in
Figure 2. We then pick the static price p* at which these
two quantities are equal: y,(p*) = 6x(p”).

The competitive ratio of this static pricing increases
gracefully as the supply increases and approaches one

at the rate of 1 — O(«/log(k)/k) as k — oo, as we will

explain next. The precise competitive ratio at any par-
ticular value of k can be determined as the solution to a
particular equation; let X be a Poisson random variable
with a rate defined such that the following equation
holds:

%E[min(X, k)] =P[X<k-1]. (1)
The worst-case competitive ratio of our algorithm is
then given by the value of either side of the equation,
say P[X < k — 1]. Note that this quantity is well defined
because on the one hand, the truncated expectation
%E[min(X, k)] increases with the rate of the Poisson var-
iable X; it is zero for rate equal to zero and one for rate
equal to infinity. On the other hand, the probability
P[X < k — 1] decreases with the rate; it is one when the
rate is zero and zero when the rate is infinity. In effect,
our analysis shows that the worst case for our static
pricing occurs when the number of customers with
value exceeding the price is given precisely by the Pois-
son variable X. As k — oo, the competitive ratio for this

instance tendsto 1 — O (\ /log(k)/ k) .

To obtain a better sense of the exact quantities the
equation leads to, Figure 3 depicts the ratio as a func-
tion of k, and Table 1 instantiates it for small values of k.

1.2. Our Techniques

1.2.1. The Approach of Samuel-Cahn (1984): Balancing
Revenue and Utility Contribution to Welfare. Our meth-
odology is inspired by the approach of Samuel-Cahn
(1984) for the single-unit prophet inequality (k= 1). First,
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Figure 3. (Color online) Competitive Ratio of Our Static Pric-
ing as a Function of the Number of Supply Units k

Competitive ratio (CR) vs Supply size (k)
1.0000

0.7500

0.5000

CR

0.2500

0.0000

the social welfare obtained by any static price p can be
expressed in two parts: (1) the expected revenue the
seller obtains from selling any units of the item and (2)
the expected utility the buyers obtain from purchasing
any units of the item. What is the most revenue and util-
ity that we can expect at a particular price p? The most
revenue the seller can obtain is simply the price p,
R(p) := p. On the other hand, the most total utility the
buyers can obtain at a price of pis U(p) := Y, max(0,v; —
p) or the total excess value of the buyers above price p
assuming that everyone who wants the item gets it. (In the
pricing application, customers are assumed to have qua-
silinear utilities (i.e., they buy when their value is above
the price and there is an available item and obtain payoff
equal to their value minus the price).) It turns out that no
matter what p is, R(p) + U(p) is an upper bound on the
optimal-in-hindsight social welfare. Samuel-Cahn (1984)
observed that when k=1, with the right choice of p both
the seller and the buyers can in expectation each obtain
at least a half of these revenue and utility upper bounds,
respectively. One way to choose such a price p is to
ensure that the probability of selling the item is exactly
1/2. At that price, on the one hand, the buyer sells 1/2
units in expectation, and on the other hand, each buyer
has a probability at least 1/2 of being offered the item
and contributing to the total utility, resulting in the com-
petitive ratio of 1/2. Figure 4 illustrates the idea behind
the approach of Samuel-Cahn (1984).

Table 1. Competitive Ratio of Our Static Pricing for the
Small Number of Supply Units k

Number of units Competitive ratio

k=1 0.5

k=2 0.585
k=3 0.630
k=4 0.660
k=5 0.682
k=6 0.698

Figure 4. (Color online) This Figure Is Similar to Figure 1 as,
for k =1, y,(p) = E[min(}>";_; 1{X; > p},k)] and the Comple-
ment of Figure 2 as 61(p) = P[>, {X; > p} <k —1]

=P [maXX(, 21)}}

Price p

() =8, (p") = - i
7

Notes. For k =1, u,(p) =1 — 61(p) for all prices and selecting p* such
that 1, (p*) = 61(p*) leads to competitive ratio of 1/2. The root behind
our algorithm is to extend this revenue-utility decomposition to k > 1
where it no longer holds that 1, (p) = 1 — 6x(p) for all prices p.

1.2.2. Our Extension to Multiple Units. Extending this
approach beyond a single unit, we similarly define
Ri(p) := pk to be the revenue obtained if all k units of the
item get sold at price p and U(p) := >_,max(0,v; — p) to
be the total excess value of the buyers above price p
assuming that everyone who wants the item at price p
gets it. Then, Ri(p) + U(p) is an upper bound on the opti-
mal in hindsight social welfare. Letting 1, (p) denote the
expected fraction of the supply sold at the price p, the
seller’s expected revenue is 1, (p)Ri(p). On the other
hand, the probability that a buyer is offered an unsold
unit is at least as large as the probability that not all units
are sold out at the end of the process; we call this proba-
bility 6x(p). Then, the total utility contributed by the
buyers is at least ox(p)U(p). The static pricing p, there-
fore, obtains at least a ¢, := min{y,(p), 6x(p)} fraction
of the upper bound Ry (p) + U(p). Our pricing scheme
selects the price that maximizes this quantity ¢,. Because
t(p) is a decreasing function of p and 6x(p) is an increas-
ing function, their minimum is maximized when the
two are equal. Note that ¢, only depends on the buyers’
value distributions and is independent of their order as
both w1, (p) and 0x(p) are also order-oblivious quantities.

1.2.3. Crux of Our Analysis: Characterizing Worst-
Case Performance of Our Scheme. The description
quantifies the competitive ratio of our scheme for any
known distribution. To characterize its worst-case per-
formance, we need to also identify worst-case distribu-
tions (i.e., those resulting to the lowest ¢, ). The crux of
our analysis is a series of reductions eventually show-
ing that Poisson distributions are these worst-case dis-
tributions. As a result, the competitive ratio of our
scheme is ¢, for Poisson distributions, and this leads to
the competitive ratio we illustrated in (1).

1.3. Related Work
As already discussed, prophet inequalities were intro-
duced by Krengel and Sucheston (1977); Samuel-Cahn
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(1984) provided a very clean analysis that our work
builds upon. In the last decade, there has been a tremen-
dous amount of work on extending prophet inequalities
to different feasibility constraints over buyers (Klein-
berg and Weinberg 2012, Diitting and Kleinberg 2015,
Rubinstein and Singla 2017) as well as to pricing with
heterogeneous items where buyers have more complex
valuations (Feldman et al. 2014; Chawla et al. 2017,
2019; Diitting et al. 2020). The reader is referred to
Lucier (2017) for a general survey.

1.3.1. Balanced Prices. The dominant approach for
establishing prophet inequalities in combinatorial set-
tings is by constructing so-called balanced prices, a tech-
nique introduced by Kleinberg and Weinberg (2012) and
further developed in Feldman et al. (2014) and Diitting
et al. (2020). This approach also has its roots in the work
of Samuel-Cahn (1984). Recall that the optimal social
welfare is bounded by Ry(p) + U(p) and that the pricing
p obtains a y, (p) fraction of the first term and a 6;(p) frac-
tion of the second. Feldman et al. (2014) choose a price
p1/2 that balances the revenue and utility upper bounds:
Ri(p1/2) = U(p1/2). They accordingly obtain a competi-
tive ratio of %(Mk(}?l/z) + 0(p1/2)). Noting that . (p) +
Ok(p) > 1 at any price p, this competitive ratio is always
at least 1/5, but in general, it is no better even when k is
large. In contrast, our approach picks a price where
and 0 are simultaneously larger than 1/2 (Figure 5).

1.3.2. Adaptive Pricing and the Magician’s Prob-
lem. Multiunit prophet inequalities were also previ-
ously studied by Alaei (2014) in the context of revenue
optimal mechanism design. Alaei (2014) provided a

competitive ratio of ay:=1—/1/(k+3) for a more
general problem called the magician’s problem, which
also applies to the multiunit prophet inequality. The
pricing scheme of Alaei (2014) is not static in the sense
of a price that you “set it and forget it.” It uses a single
price for all buyers but probabilistically skips some
buyers in order to maintain a certain probability of not

Figure 5. (Color online) The Price p;, Is Chosen Such That
the Shaded Red Area Is Half of the Area Under the Solid
Blue Curve

S(p) =P [>_ 1{X, >p} <k—1]

1(p) = B [min (1, 10X, > p).k) |

b2 p* Price p

Note. This price is in general smaller than the price p* our approach
chooses, and its worst-case competitive ratio is 1/2 for any k.

running out of items. This is equivalent to offering a
price of co to some users. As such, it is more powerful
than the class of static pricing policies that we con-
sider, and it does not satisfy two of the three properties
mentioned: nonadaptivity and order obliviousness.
The static pricing we develop provides a strictly better
competitive ratio than that of Alaei (2014) for k € [2,20].
Subsequent to our work, Jiang et al. (2022) improved
upon the bound of Alaei (2014) to obtain tight competi-
tive ratios for the magician’s problem at all values of k.
This bound is again achieved by a dynamic pricing and
therefore, strictly exceeds the bound achieved by our
static pricing.

1.3.3. Tightness of Our Pricing Scheme. Subsequently
to our work, Jiang et al. (2023) established that our static
pricing policy is worst-case optimal across all static
threshold policies. In particular, Jiang et al. (2023) pro-
vide an instance where the gap between any static pol-
icy and the ex post optimal is exactly ¢,. We note that,
for specific instances, one can obtain improved static
prices. As a result, our policy is not instance optimal.
For example, consider the policy that selects the price p
that directly maximizes ,(p)Ri(p) + ok(p)U(p); such a
policy would also enjoy the competitive ratio guaran-
tees that we provide while obtaining improved perfor-
mance on some distributions. However, this policy
requires the evaluation of U(p) for all prices p, which
makes it less simple (especially when one needs to esti-
mate these quantities from data). In contrast, our policy
only requires learning the price that equates 1, (p) and
Ok(p), which can be done via binary search on the prices
(as both can be evaluated with only samples from price
p). Finally, although we present our results as compar-
ing against the ex post optimum, the same guarantees
also hold against the corresponding ex ante relaxation
(see Remark 2).

1.3.4. Other Subsequent Work. In another subsequent
work, Arnosti and Ma (2022) build on our techniques
to study the performance of static threshold policies in
the prophet-secretary setting with k units, where custo-
mers arrive in uniformly random order (rather than in
a worst-case order as what we consider). For this spe-
cial case, Arnosti and Ma (2022) provide tight competi-
tive ratio guarantees; in doing so, they heavily rely on
the structure of our analysis and use the random order
property to establish a better competitive ratio guaran-
tee for the final step of our analysis. The performance of
the worst-case distribution is the Poisson distribution,
which is similar to our result.

1.3.5. Pricing with Limited Supply Beyond Prophet
Inequalities. Our work lies in the general theme of
providing supply-dependent guarantees for pricing with
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known priors and limited supply. Beyond prophet inequal-
ities, such guarantees have also been provided in ride-
sharing settings (Balseiro et al. 2021, Banerjee et al. 2022).
The latter works typically make a stronger assumption
that the system is in steady state but has more complex
state externalities. In multiunit prophet inequalities, the
supply just decreases when items are sold; in rideshar-
ing, it is reallocated across the network. To the best of
our knowledge, these are the only two pricing settings
where such supply-dependent guarantees with known
priors and limited supply are provided; most prior work
focuses on asymptotic optimality guarantees when the
supply is large.

When the priors are not known in advance, a few
other lines of work attempt to address these settings
with the additional complication of learning informa-
tion about the distributions. For example, dynamic pric-
ing with limited supply has been studied in the context
of prior-independent mechanisms (i.e., those that do
not have distributional knowledge (Babaioff et al. 2015));
this work has been then extended in more general ban-
dit settings under knapsack constraints (Badanidiyuru
etal. 2018, Agrawal and Devanur 2019). On the positive
side, these approaches do not assume knowledge of the
distributions; on the negative side, the guarantees they
provide become meaningful only when the supply is
large (e.g., v/, where n is the number of buyers).

2. Model

An instance of the prophet inequality problem consists
of a set of n distributions supported on nonnegative
real numbers F = {F;:t€[n]}. To ease of presenta-
tion, we denote by F; the tth arriving distribution; this
order is not known to the seller. In multiunit prophet
inequalities, there is also a supply k that determines
the number of units available for purchase at the
beginning of time.

A static price is defined by a single number p € R.
The pricing works as follows. Buyers arrive one by one
and are offered a copy of the item at price p as long as
there is available supply. Buyer ¢ has a value v; drawn
independently from the distribution 7. The buyer pur-
chases a unit of the item if and only if her value is above
the price and there is an available item. In this case, the
available supply decreases by one; otherwise, the buyer
leaves the system without an item, and the available
supply remains unaltered.

A static pricing scheme 7 maps the supply k and the
distributions F to a static price nt(k, F) € R.

The welfare of a static price p € R on a particular real-
ization of buyer values is the total value of the buyers
who purchase a unit of the item. We denote its expected
welfare by WELFARE(p, k, F), where the expectation is
over the randomness in buyer values drawn from F.

The benchmark we compare with is the expected opti-
mal welfare in hindsight and is denoted by Orr(k, )
(i-e., Ort(k, F) is the expected sum of the k-highest real-
ized values drawn from the set of distributions F). The
competitive ratio for a static pricing scheme 7 on supply
k is the worst-case welfare-to-optimum ratio across all
the possible set of distributions F: that is,

WELFARE(7t(k, F), k, F)
Orr(k, F) ’

CowmrRATIO(77, k) = igf

Our goal is to identify a static pricing scheme 7 that
maximizes this worst-case competitive ratio. In the
remainder of the presentation, we omit the arguments
of nt(k, F) when clear from the context.

Without loss of generality, we assume that each dis-
tribution has P[v; > 0] > 0 (otherwise, we can ignore it)
and further assume that 1 > k (otherwise, setting a price
of zero is optimal).

To ease the presentation of our scheme, we assume
that the distributions are atomless. Remark 1 shows
how our results extend to general distributions.

3. Our Pricing Scheme and lIts
Performance Guarantee

3.1. Decomposing to Revenue and Utility

Contributions

For any fixed price p € R and distributions F, let X,

denote the number of buyers who have value higher

than the price. This is a random variable because the

buyers’ values are drawn from the distributions F; in

particular, it is equal to

Xy = |{t v > p}|.

As in the approach of Samuel-Cahn (1984), we decom-
pose the welfare into two components: the total utility
obtained by the buyers and the total revenue obtained
by the seller. We now define some quantities of interest
that determine these components. The first quantity is
the probability that the seller runs out of units to sell or
in other words, that X, is at least k. We use 0(X,) to
denote one minus this probability:

ou(X) :=P[X <k —1]. @)

The second quantity is the expected fraction of units
sold and is directly related to the revenue obtained by
the seller. We use y,(X,) to denote this truncated expec-
tation:

p(X) := %E[min{X, k}]. (3)

The first important lemma that drives the design of
our pricing scheme is that, for any distributions F, the
welfare-to-optimum ratio is at least the minimum of
these two quantities.
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Lemma 1. For any supply k, set of distributions F, and
any price p € R,

WELFARE(p, k, F)

ok, F) - min (6¢(X,), 1(X;))-

This lemma is the main structural contribution of our
work to the prophet inequality literature. Its proof is
deferred to Section 4.

3.2. Our Pricing Scheme

For a given set of distributions F and supply k, our pric-
ing scheme 7 outputs a static price 7t(k, F) = that
ensures that the two quantities in Lemma 1 are equalized:

k(X)) = Pk(Xn)~ 4)

The atomless assumption ensures that such a price
always exists (see Remark 1 on how the results extend
beyond the atomless assumption). Observe that 6;(X,)
is monotone nondecreasing in p and u(X}) is monotone
nonincreasing in p. Moreover, 11,(X,) goes from one to
zero as the price goes from zero to oo (because n>k).
The atomless assumption ensures that both 6;(X},) and
U (X,) are continuous. The intermediate value theorem
then guarantees the existence of .

We now define the competitive ratio of our pricing
scheme for any distributions F and supply k as

(7, F) = 0K, 7)) = 1 (X, 7))

and the worst-case competitive ratio of p as
O (m) = ir}f(pk(w,]-"). (5)

The second important lemma that enables our competi-
tive ratio guarantee is that, for any fixed supply k, the
minimum of 6x(Xr, 7)) and , (Xyx ) attains its low-
est value when F consists of infinitely many Bernoulli
random variables, all with equal bias; in this case, X,, is
a Poisson distribution. This is formalized in the follow-
ing lemma.

Lemma 2. For any supply k and any set of distributions
F, ¢ (m, F) attains its lowest value ¢, (p) when F is a col-
lection of infinitely many Bernoulli distributions with equal
bias (i.e., Xy, ) is a Poisson distribution).

The proof of this lemma stems from a series of reduc-
tions and is the main technical contribution of our anal-
ysis. Its proof is deferred to Section 5.

3.3. Competitive Ratio of Our Pricing Scheme
The two lemmas seamlessly establish the competitive
ratio of our pricing scheme as demonstrated in the fol-
lowing theorem, which is the main result of our work.
The competitive ratio ¢, as a function of k is illustrated
in Figure 3.

Theorem 1. Let X" be a Poisson random variable with rate
A and set Ay such that 6p(X™) = p (X*). The competitive
ratio of our pricing scheme v is at least ¢ := S (X™) =
Hi (X,

Proof. The proof of the theorem comes directly by
combining Lemmas 1 and 2. O

Remark 1. If there are point masses in the distribu-
tions at price 7t(k, F), we still obtain the same results
provided we can break ties at random. A buyer with
value n(k, F) is allocated the item with a probability
such that Equality (4) holds. The definition of X r) is
adjusted accordingly; if v; = nt(k, F), then t is counted
only with some probability. The same effect can be
achieved by randomly perturbing the price by an infini-
tesimal amount (although not static, this is still anony-
mous, nonadaptive, and order oblivious).

4. Welfare-to-Optimum Lower Bound for

Any Price (Lemma 1)
This section proves Lemma 1. For any supply k, set of
distributions 7, and any price p € R, we have

WELFARE(p, k, F)

Ok, ) 2 i), (X)),

where 0x(X) := P[X <k — 1] and p,(X) := E[min{X, k} /k]
as introduced in Equations (2) and (3).

Proof of Lemma 1. The proof follows the approach of
Samuel-Cahn (1984) for the single-unit prophet inequal-
ity. We first bound the hindsight optimal welfare from
above in terms of the price p by bounding both the
maximum possible revenue generated for the seller
and the maximum possible utility generated for the
buyers when posting price p. Let Z, denote the (ran-
dom) set of buyers whose value exceeds the price p.
Then, we have

orr(k, F) = E
P1(k, F) Lg[rnn];allg(| =k ; vt]

<E + 0,v; —
[sg[r,ﬂ;?sﬁsktg;(p max(0, v; p))]

<kp+E [Z(Uf — p)]

teZ,

<kp+> PlteZ, Elo,—plteZ,). (6)

te[n]

We note that the first summand in the last term corre-
sponds to what we referred to in Section 1 as Ri(p) = kp,
whereas the second summand corresponds to the ex-
pected value of what we referred in Section 1 as U(p) =

> E[max(0,v; — p)].
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We now decompose the expected welfare generated
by price p to a revenue and a utility component. The
expected revenue of the seller upon setting price p is

ReVENUE(p, k, ) = E[min(|Z,|, k)] p = 1 (Xp)kp.  (7)

On the other hand, a buyer t receives utility of v; —p
if and only if (1) v; is at least p (that is, t € Z,) and (2)
the item is still available when the buyer t arrives.
Regardless of the order in which buyers arrive, the
latter event happens with probability at least as large
as the probability that the item is not sold out at the
end of the process. Recall that this latter probability is
0(Xp) = P[X, <k —1]. We, therefore, get the following
lower bound on the utility generated by the pricing p:

UTiLiry(p, k, F) > Z Ok(Xp) - P[t € Z,|E[vy —plt € Z,].

te[n]
®)

The proof of the lemma is completed by putting Equa-
tions (6), (7), and (8) together, which yields

WELFARE(p, k, F) = REVENUE(p, k, F) + UTILITY(p, k, F)

> 1 (Xp)kp + 0x(X,) > Pt € Z,]

te[n]
E[v; —plt € Z,]
> min(y,(X,), 0k(X,))Or1(k, ). O

Remark 2. Although the result on Lemma 1 bounds
the expected welfare of any static price p to the
expected value of Opt(k, F), we note that its proof also
implies that the same guarantee holds against the ex
ante relaxation.

5. Establishing Poisson as Worst-Case

Distribution (Lemma 2)

This section proves Lemma 2. Recall that for any sup-
ply k and any set of distributions F, rt(k, F) is the price
that satisfies Ox (X 7)) = U(Xr(, 7). We show that the
corresponding competitive ratio ¢, () attains its lowest
value when F is a collection of infinitely many Ber-
noulli distributions with equal bias (i.e., X 7 is a
Poisson distribution).

Proof Sketch. To prove the lemma, we progressively
refine our understanding of the worst-case distribu-
tions, as outlined in the following three steps.

1. We reduce the problem of finding the worst distri-
bution to a finite-dimensional problem searching only
over Bernoulli distributions (Section 5.1). Intuitively,
our analysis is only affected by the probability that
vy > 1i(k, F) corresponding to the bias of a Bernoulli
distribution.

2. We show that all the Bernoulli biases are equal
unless they are either zero or one (Section 5.2).

3. We show that the Bernoullis, in fact, must all have
the same bias (Section 5.3).
The lemma then follows by considering n Bernoullis
with the same bias and letting n tend to infinity. The
complete proof is provided at the end of the section. O

5.1. Reducing to Bernoulli Distributions

5.1.1. Reducing Worst-Case Distributions to Bernoulli
Distributions. A Bernoulli random variable with bias b
takes on the value of one with probability b and zero
otherwise. We reduce the problem of finding the worst-
case distribution to the following finite-dimensional
problem:

¢y = min s.t.
hl/hZI e -/bn/qb

(GENBERN : ming s.t. 6=y = ¢)
X is the sum of n Bernoullis with bias
bi,by,...,0,
oK(X) = 1 (X) = .

Lemma 3. For any supply k> 0 and number n > k of custo-
mers, the worst-case competitive ratio ¢, () of our pricing
scheme is equal to the optimal value of (GENBERN : ming s.t.

6=‘Ll:(¢)),¢;é~

Proof. The worst-case competitive ration ¢, () opti-
mizes the objective of the problem (GENBERN :ming
s.t. 6=u=¢) across any set of prior distributions,
whereas the optimization problem (GENBERN:ming
s.t. 6 = u = @) optimizes only over Bernoulli distribu-
tions. We show that for every set of prior distribu-
tions, there exists a corresponding set of Bernoulli
distributions that are feasible for (GENBERN : ming s.t.
0=pu=¢) and obtain the same objective function
value.

The reduction is relatively simple. For any set of dis-
tributions F (not necessarily Bernoulli), we first com-
pute the price 7t(k, F) of our pricing scheme (ie., the
one that makes 0x(Xx 7)) = t(Xn@, 7)) Subsequently,
for each distribution F;, we compute an equivalent Ber-
noulli bias b; = P[v; > n(k, F)]. The probability that any
Bernoulli random variable is one is, therefore, equal to
the probability that its original counterpart is higher
than the price 7t(k, 7). As a result, both 6;(-) and p,(-)
are the same for the resulting sum as in the original
problem, which proves the lemma. O

5.1.2. A Simpler Equivalent Way to Express the
Resulting Optimization Problem. We now define a
slightly different form of the objective function, which
makes analyzing the optimal setting of the biases easier.
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Here, ¢ is the optimal value of problem (GENBERN :
ming s.t. 6 =y = ¢):

ming, (X) s.t.
ok(X) = ¢

X is the sum of Bernoulli r.v.s.

(GENBERN : miny s.t. 6 =¢)

Lemma 4. The optimal values of the optimization problems
(GENBERN : min¢ s.t. 0 =p =¢) and (GENBERN: minpu
s.t. 6 = ¢) are equal.

Proof. The optimal solution ¢; for the optimization
problem (GENBERN : ming s.t. 0 = y = @) is feasible for
(GENBERN : miny s.t. 6 = ¢) as the latter program needs
to satisfy a subset of the former program’s constraints;
thus, the optimum of (GENBERN : miny s.t. § = ¢) is no
larger than the one of (GENBERN : ming s.t. 6 =y = ¢).
For the opposite direction, assume that the optimum
of (GENBERN : miny s.t. 6 = ¢) is strictly smaller than the
one of (GENBERN:ming s.t. 6 =y =¢). Because 6;(X)
and 1,(X) are both continuous and they are monotone
decreasing and increasing, respectively, by increasing
any of the biases, starting from the optimal solution of
(GENBERN : miny s.t. 6 = ¢), we arrive to a new solution
X', with 0x(X") = 1, (X') < 6x(X) = ¢;. This contradicts
the fact that ¢; was the optimum for (GENBERN : min¢
s.t. 6 = u = ¢) and establishes that its optimal value is no
larger than the one of (GENBERN : miny s.t. 6 = ¢). O

5.2. Reducing to Bernoulli Distributions with
Equal Bias Unless Degenerate

We now show that the optimum of the problem

(GENBERN : miny s.t. 6 = ¢) is attained when all the Ber-

noulli distributions either have equal bias or are degen-

erate (with bias 0 or 1).

Lemma 5. The optimization problem (GENBERN : minu
s.t. 0 = ¢) is minimized when all nondegenerate Bernoulli
distributions (that do not have bias 0 or 1) have equal bias.

We note that Hoeffding (1956) provides a similar
result but without the constraint on 6(X). A generaliza-
tion of Lemma 5 was obtained via a similar case analy-
sis by subsequent work of Arnosti and Ma (2022) for
the case where the objective and the constraint involve
the expectation of an arbitrary nonnegative integer-
valued function of X; in our setting, those functions are
w(X) and 0x(X), respectively. Readers familiar with
these results can safely skip this section and move to
Section 5.3.

5.2.1. High-Level Structure of the Reduction. The key
idea of the proof is to fix all but two of the biases and
consider the problem of minimizing ,(X) subject to
0k(X) being fixed as a function of these two biases. This

is a problem in two dimensions, and we can character-
ize the optimal solutions to this problem. We then set
aside these two distributions and assume by the princi-
ple of deferred decisions that they are instantiated in
the end. The eventual goal is to establish that y,(X) is
minimized when these two biases are equal or degener-
ate (either zero or one). By working inductively on the
number of biases that are not equal and are nondegene-
rate, we eventually establish that all biases should be
equal or degenerate.

Formally, assume that we have n Bernoulli distribu-
tions and fix all but two biases; let b; and b, be these
two biases, and refer to ry =1—b; and =110, as
the rates of the respective random variables. Denote
by X the sum of random variables drawn from the
remaining n — 2 distributions. Let Q; be the probabil-
ity that X = k — 1 (equivalently, exactly one unit is left
available for the last two distributions), Q, be the
probability that X =k — 2 (i.e., two units are left avail-
able), and Q3 be the probability that X <k—3 (i.e.,
more than two units are left available). Finally, recall
that X is the sum of random variables drawn from all
distributions.

The following two claims enable the proof of Lemma 5.

Claim 1. The problem of minimizing u,(X) as a function of
11 and 1, subject to 6x(X) = ¢; for a constant value ¢ is
captured by the following program:

Maximize (Q2 + Qs3) - (r1 +12) + Q11172 (Min-Revenue)

subject to 11,1, € [0,1* and 711y -(Q1 — Q2)
+(r+12)- Qo= p — Qsa. )

Claim 2. There always exists an optimal solution for the
(Min-Revenue) program that satisfies r1 =1, 11 €{0,1}, or
1> €{0,1}. Moreover, when (Q5)* — Qs3(Q1 — Q2) > 0, the
unique optimal solution satisfies r1=r-.

Using the two claims, we can directly provide the
proof of the lemma.

Proof of Lemma 5. Among all the optimal solutions
for problem (GENBERN : miny s.t. 6 = ¢), consider the
one that satisfies the following conditions. First, it has
the fewest Bernoulli variables that are nondegenerate.
Second, among those, it has the smallest difference
between the largest nondegenerate bias and the smal-
lest nondegenerate bias; call these biases h and s
accordingly. Third, among those, it has the smallest
number of variables with bias that is equal to either
or s. We show, by contradiction, that & =s, establishing
that all nondegenerate biases are equal.

Among all the optimal solutions, we select the one
satisfying these criteria, and we select two distribu-
tions with bias by = h and b, = s, respectively. We apply
Claim 1 with these two and express (GENBERN : minp
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s.t. 0=¢) as a function of ry =1—by, 1, =1—b, and
quantities Q;, Q», Q3 that are independent of 7, and
7. Claim 2 establishes that there exists another optimal
solution with all the other biases the same, and the
biases b’y and b’; corresponding to the two distribu-
tions either satisfy b’y = b’, or have one them degener-
ate. The latter is a contradiction as we assumed that
the solution has the smallest number of nondegenerate
Bernoulli distributions. This means that b’y = b’,. How-
ever, in order for the new solution to induce the same
Ok(+) and w,(+), it means that by < b’y =b’, <by. Unless
by =0b,, we have, therefore, identified a new optimal
solution with a smaller number of variables with bias
equal to /1 or s , which again would induce contradic-
tion. As a result, b; =b,, and because by =h and b, =s,
this means that /=5 and that all nondegenerate biases
are equal. O

5.2.2. Expressing (GENBERN: minpn s.t. 6=¢) as a
Function of Two Biases (Claim 1).

Proof of Claim 1. We first write the utility component
Ok(X) (i.e., the probability that not all k items are sold
in terms of the probabilities Q;, Q», and Qs3 and the
biases r and r,:

Ok(X) = Qs3 + Qa(ry + 12 —1r112) + Q112

Applying this equation in the constraint of optimiza-
tion problem (GENBERN : miny s.t. 0 = ¢) leads to Con-
straint (9) of the (Min-Revenue) optimization problem.

Our goal is now to minimize the objective of
(GENBERN : miny s.t. 6 = ¢), which corresponds to the
revenue component 1, (X) (i.e., the expected fraction
of items sold). Because all but biases b; and b, are
kept constant, this is equivalent to minimizing the
number of items sold to the remaining two buyers.
Our objective is, therefore, to minimize the following
expression:

(M1 —=r) +7r2(1 —71)) - (Q1 + Q2 + Qx3)
+ (1 —=r1)-(1—=r2)-(Q1+2Q2+2Q53).

The first term corresponds to the contribution of the
two remaining buyers when only one of the two real-
ized random variables is nonzero; then, y,(X) is in-
creased if there exists at least one item that is left
available from the other buyers. The second term corre-
sponds to the event that both buyers have nonzero real-
ized random variables; in this case, 1, (X) is increased
by one if exactly one available item is left from the other
buyers and two if at least two available items are left.
Simplifying the expression leads to the following mini-
mization objective:

(Q1+2Q2 +2Q53) — (Q2 + Qx3) - (11 +12) — Qir17a.

Eliminating constant terms and negating the objective
offer the maximization objective of the claim. O

5.2.3. Auxiliary Geometric Interpretation of the Con-
straint Intersection with [0,1]%. We now provide a geo-
metric fact about hyperbolas of a particular form that is
useful in characterizing the optimal solutions of the
Min-Revenue program.

Claim 3. Let a,b € R, and consider the hyperbola in the x, y
plane given by xy +a(x +y) = b. Expressing it as y = g(x)
and considering the segment(s) of g that intersects the
region [0,1]?, the following holds.

o When a,b>0, and 2a+1—0b >0, the segment of g
intersecting [0,1]* is convex and decreasing.

o When a,b<0, and 2a+1—0b<0, the segment of g
intersecting [0, 1]? is concave and decreasing.

Proof. In both cases considered, a2 +b > 0. In the first
case, this is straightforward as a4,b > 0. In the second
case, 2a+1 < b, and adding a?, we obtain a? +2a+1 <
a*+b, implying a® + b > 0. If x = —a, then it means that
ax=b and hence, —a? =b; this contradicts the fact -
that a®> +b > 0.

As a result, x # —a, and the hyperbola can be ex-
pressed as y = =% The first derivative of this function is
dy _ —a(x+a)—(b—ax) _ (=b—d?)
dx — (x+a)? T (x+a)?
which establishes that y is decreasing in x. The second

2
derivative of this function is 2 = b)) 5 b The
(x+a) (x+a)

convexity or concavity is determined by the sign of this
derivative, which is determined by the sign of x+a.
Hence, the resulting hyperbola has two segments: one
convex for x > —a and one concave for x < —a.

e In the first case, because both x >0 and 4> 0, this
sign is positive, and the segment is convex.

e In the second case, because of the symmetry, if the

. This is negative as a? +b >0,

convex segment intersects [0, 1]2, it should also intersect
it at x=y. Hence, the point of this intersection is given
by the equation x*> +ax =b whose roots are x = —a =
Va? +b. The negative root is —a — Va2 —b <0, and the
positive rootis —a + Va2 —b> —a+ Va> +2a+1> 1 (be-
cause 22+ 1 <b). As a result, the convex segment does
not intersect with [0,1]%, and if the hyperbola does inter-
sect, this happens with its concave segment. 0

5.2.4. Characterizing the Optimal Solutions of the Min-
Revenue Program (Claim 2).

Proof of Claim 2. We first start from two corner cases.
Ia. We start from the simplest case where Q, =0.
This transforms the Min-Revenue program to

maximize Qs3(r1 +712)+ Q11172
subject to Q17172 = ¢; — Q3.
In this case, depending on the sign of ¢; — Qs3, the

optimal solution satisfies 1 =15, 11 € {0,1}, or r, € {0, 1}
(if Q1 # 0) or is independent of 4, 1, (otherwise).
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Ib. We then consider the case where Q; =Q, >0
(where it also holds that (Q2)2 —Q3(Q1 — Q) > 0);
then, Constraint (9) is a linear constraint symmetric in
r1 and r,, whereas the objective becomes equivalent to
maximizing r17;. The optimum is, therefore, uniquely
achieved atry=1».

For the remaining cases, we assume that Q, > 0 and
Q1 # Qz. We can, therefore, rewrite the objective in
terms of r + 1, obtaining the following equivalent
formulation:

() — Q3(Q1 — Q)

Minimize (r1 +17) -

Q—Q
subject to 11,1 € [0,1]* and
Q ¢r — Q3
riro + (r +12) - = )
T2+ (1 +72) Q-0 QU-Q

The constraint can be rewritten as 717, +a(r; +1,) =b

fora= Q]ngz and b= —(g;%;-

Observe that unless r; =1, =1 is the only feasible
solution (in which case the claim is already proven),
it holds that Ql — Q2 + 2Q2 > 7’11’2(Q1 — Q2) + (1’1 + 1’2)
Q2 = ¢; — Qs3> 0. (Note that for any feasible solution,
we have ¢} = 0;(X) > Q2 + Qs3> Q3,50 ¢; — Q=3 >0.)
Hence, it holds that a, b, and 1 + 2a — b all have the same
sign, and this is the sign of Q; — Q,. By Claim 3, the
hyperbola r, = g(r1) corresponding to the constraint is
always decreasing and is (a) convex when Q;> Q>
(a>0) and (b) concave when Q1 < Q, (2<0); it is also
always symmetric in 4, 75.

Ma. If Q1 < Qp, which implies (Q2)* — Qx3(Q1 — Q2)
> 0, the multiplier of the objective is negative in this
case; therefore, our goal is to maximize 1 + r;, subject to
a concave and decreasing constraint. As a result, the
optimum is uniquely determined on the line r; =7».

Ib. If Q1> Q> and (Q2)* ~ Q:3(Q1 —Q2) >0, the
multiplier of (r1 + r2) in the objective is positive; there-
fore, our goal is to minimize (r; + r») subject to a convex
and decreasing constraint. As a result, the optimum is
uniquely determined on the line 7y =75.

lle. If Q1>Q and (Q2) —Q:5(Q1 —Q2) <0, the
multiplier of (r +r2) in the objective is negative; there-
fore, our goal is to maximize (74 + r,) subject to a convex
and decreasing constraint. As a result, the optimum lies
on the boundary of [0, 1%

The last case is that (Q2)* — Qs3(Q1 — Q) = 0. Then,
if the program is feasible, there is a feasible solution
with r;=r, or with one of rq, 7, in {0, 1} via a simi-
lar reasoning.

Finally, (Q)* = Q:3(Q1 — Q) =0>0 corresponds to
cases I(b), II(a), and II(b). In all three cases, r{ =1, is
the unique optimal solution. O

5.3. Reducing to the Poisson Distribution

Lemma 5 states that the optimal solution to (GENBERN :
miny s.t. 0 = ¢) is such that some of the biases are zero
or one, and the remainder has equal bias b; =1 —r. We
now show that, in fact, there cannot be any zero or
one biases.

Lemma 6. The optimization problem (GENBERN : miny s.t.
0 = @) is minimized when all of the Bernoulli distributions
have equal bias (and there are no degenerate distributions).

Proof. By Lemma 5, we know that there exists an opti-
mal solution that consists of Bernoulli distributions
with bias 0, 1, or 1 — r for a fixed r. Consider any such
optimal solution. We first observe that this solution
cannot have k or more Bernoullis with bias 1; other-
wise, 0x(X) =0 < ¢;. (This holds because ¢y is at least
1/2 as it is the intended competitive ratio.)

Now, we pick two specific Bernoulli variables with
unequal bias and reoptimize the objective over these,
keeping the rest fixed. If there is a Bernoulli with bias
1 and another with bias 1 —r # 1, we pick two such
variables. Otherwise, we pick one variable with bias
1 —r and another with bias 0. We define Q;, Q,, and
Q>3 as in Section 5.2. In either case, we argue that
(Qz)2 — Q>3(Q1 — Q2) > 0. Then, applying Claim 2, we
arrive at a contradiction to the claim that our initial
solution was optimal.

Among the biases left fixed, let 71; denote the number
of Bernoullis with bias 1 and 7, denote the number with
bias 1 —r. As discussed previously, we note 1y <k — 2.
Let K’ =k — ny > 2 denote the number of item units left
available once the n; Bernoullis with bias 1 have each
acquired an item. Recall that Q; is the probability that
exactly one unit is left available for the two Bernoullis
from the others. Rephrasing, O, is the probability that
of the remaining Bernoullis, exactly k— 1 take a nonzero
value. Because 7111 Bernoullis take on a nonzero value
with certainty, this means that among the 7, Bernoullis
with bias 1 —r, exactly k" —1 take on a nonzero value
where k' =k —n;. Likewise, Q, is the probability that
among the n, Bernoullis with bias 1 —r, exactly k" —2
take on a nonzero value, and Q3 is the probability that
among the 7, Bernoullis with bias 1 — 7, at most k' —3
take on a nonzero value. Let us also define Q; for i >3
as the probability that among the 7, Bernoullis with bias
1—7, exactly k' —i take on a nonzero value. Observe
that k¥’ > 2 and thus we must have Q1,Q, > 0.

We first claim that k' > 3. If not, then we have Q>3 =0,
which implies (Q2)* — Qs3(Q1 — Q») > 0 and completes
the proof. We can now compute the probabilities Q;:

n,—1 , ,
Q1= < )(1 — )k,

K -1
n—1 K'—2_n,—k +1
Q= v o (I—r) ", ete



Downloaded from informs.org by [128.62.179.204] on 25 March 2024, at 07:58 . For personal use only, all rights reserved.

Chawla, Devanur, and Lykouris: Static Pricing for Multi-unit Prophet Inequalities

Operations Research, Articles in Advance, pp. 1-12, © 2023 INFORMS

11

Let us denote by «a the ratio between Q, and Qs:

LQ_ K-1 7
O me—k+11—7

We then observe

K—-2
% = m . ﬁ <« aI‘ld likeWise,
Qi < K—i r
Q “m—k+il-—r
Here, the second inequality follows by noting that
ﬁ decreases with i.
We can, therefore, write Q>3 = Y,.3Qi < Q1(a? +a®
+ -+) = a?Q1/(1 — ). Putting these expressions together,
we obtain

<a Vi>3withQ;>0.

ZQl

11—«

(Q2)* — Qs3(Q1 — Q) > a’Q? —a (Q1—aQq)=0.

This completes the proof. O

5.4. Concluding the Proof of Lemma 2
We are now ready to provide the proof of the main
lemma of the section.

Proof of Lemma 2. By Lemma 3, ¢, (F) attains its low-
est value when all the distributions are Bernoulli. By
Lemma 5, all these Bernoulli distributions either have
equal biases or are degenerate (have zero or one bias).
By Lemma 6, there exists an optimal solution with no
degenerate Bernoulli distributions. If there are finite
Bernoulli distributions, we can always repeat the argu-
ment of Lemma 6 and obtain a solution with strictly
higher objective and one more nonzero bias. As a result,
there exists an optimal solution that consists of an infi-
nite collection of Bernoulli distributions with the same
bias. This establishes that the worst-case instance is the
limit n — oco.

We now claim that the quantity Xy r) in this limit
is a Poisson distribution. Let Y,, be the sum of n equal
Bernoulli distributions with p, := p (Y,,) = 6,(Y}) = 05
Note that p,, and 6,, are both decreasing functions of n
by the argument and bounded in [0, 1]. Therefore, they
converge to a single limit, u* = 6*. Let A,, denote E[Y,].
We will show that the sequence {A,} converges. Then,
by the Poisson limit theorem, the limit of {Y),}, namely
Y* = X, 7), is Poisson. This means that p, and 6,
which are linear functions of the probability density
function (pdf), also converge to u(Y*) and 6(Y*), res-
pectively. Because p,, and 6, are identical sequences, it
holds that u(Y*) = 6(Y*), which completes the proof.

It remains to show that {A,} converges; this does
not follow immediately from the convergence of {y, }
and {6,} because {A,} may not evolve monotonically.
We will show that for any € > 0, there exists an N(¢)

such that for any nj,1; > N(e), | Ay,
which our claim follows.

In the remainder of this proof, we use Bin(n, 1) to
denote the sum of n Bernoulli variables each with bias
A/n. We will use the following lemma that shows that
two binomials with sufficiently different expectations
will also have sufficiently different truncated expecta-
tions. The proof of the lemma appears at the end of
this section.

—Ap,| <€, from

Lemma 7. For any € >0, any A, A" <k with |[A —A"| > ¢,
and any n > 2k, define € := (1 — e~</2)/4k. Then, it holds
that |u(Bin(n, A)) — u(Bin(n, A"))| > 2¢€’.

We now make the following observations.

1. Observe that for any n>0, 0, > 1/2, which means
that X, <k —1 with probability at least 1/2, and the
median is thus no more than k —1. The mean and the
median of a binomial differ by at most In(2) (Hamza
1995), which implies that A,, < k for all n.

2. For any €’ > 0, using the fact that {¢,} converges,
there exists Ny (€”) such that for any 11,1, > Ni(€'), |,
— by, | <€ (L, [u(Bin(n, Ay)) — p(Bin(na, An,))| <€),

3. Using the fact that the pdf of the binomial distri-
bution converges in {; norm as the number of samples
increases, whereas the bias stays the same, and that . is
a linear function of the pdf, we get that for any €’ >0,
there exists Np(€’) such that for every A <k and every
2 > Na(€'), |u(Bin(m1, A)) — u(Bin(nz, A))| < ¢’. (This
is immediate for a fixed A by the Poisson convergence
theorem. We can then define Ny(¢’) as the supremum
over the corresponding A-specific values. That this is
finite can be seen by discretizing the set of all A’s.)

4. Putting these together, for 11,1, > max{Ni(¢’), N
(€)},

| #(Bin(nZ/ /\nl )) - M(Bin(nZ/ Anz)) |
< |u(Bin(n1, Ay, ) — p(Bin(nz, Ayy))|
+ | u(Bin(ny, Ay,)) — u(Bin(nz, Ay,))| <€’ +€" =2¢”.

5. Finally, given € >0, we set €’ = (1 —¢~¢/?) /4k and
N(e) = max{N;(¢’),N2(¢’),2k}. Lemma 7 then implies
that for all n1,ny > N(e), |Ay, — An,| <€, which con-
cludes the proof. O

Proof of Lemma 7. Without loss of generality, let
A"> A, and let b=A/n and b’ = A’ /n be the bias of the
Bernoulli variables constituting Bin(r, A) and Bin(n, A”),
respectively. We will make correlated draws from the
two distributions and use these to bound the differ-
ence between their truncated expectations. We first
flip n coins with bias b each to produce an instantia-
tion of Bin(n, A); call this variable X. We then consider
each of the n coins that came up tails in the first exper-
iment and flip them again with bias (b’ —b)/(1 —b)
each, counting the total number of heads in the first
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and second experiments together and denoting it X’;
X’ is then an instantiation of Bin(n, A").

Now, we define u := u(Bin(n,A)) = E[min(X, k —1)]
/kand p” := u(Bin(n,A")) = E[min(X’, k — 1)] /k. Clearly,
u’ > 1, and we can lower bound the difference between
the two by 1/k times the probability of the event that
X <k—1and X’ > X. Let us compute this probability.

First, we observe that E[X]=A <k, so Pr[X <k] >
1/2. Then, conditioning on X<k and recalling that
n > 2k, we have at least 11/2 coins flipped in the second
experiment. The probability that all of the coins come
up tails is at most (1 — (b’ — b)"? <(1—e/n)"* <ec/2.

Therefore, conditioning on X <k, the event X’ > X hap-
pens with probability at least 1 —e~¢/2. Putting every-
thing together, we get that 1 — p > (1 —e~¢/2)/2k. O

6. Discussion

This paper provides an understanding of the perfor-
mance of static pricing in multiunit prophet inequalities.
We show a simple static pricing scheme that obtains a
competitive ratio that adapts to the size of the supply.
This is enabled by a clean revenue-utility decomposi-
tion, which allows us to move beyond the now domi-
nant balanced approach to analyze prophet inequalities.
We hope that this decomposition can further our under-
standing of prophet inequalities for more settings. In
particular, it has already inspired follow-up work as
our technique is a building block for multiunit prophet
inequality guarantees under the random-order arrival
model (Arnosti and Ma 2022).

An interesting direction that remains open is to extend
our approach to the setting with multiple different items.
For its single-unit version, the existing guarantees rely
on the balanced prices approach, which cannot yield com-
petitive ratios beyond 1/2 (see Section 1.4 for a relevant
discussion). It is interesting to provide improved guar-
antees for multi-item multiunit prophet inequalities.
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