
Buy-Many Mechanisms for Many
Unit-Demand Buyers

Shuchi Chawla1 , Rojin Rezvan1(B) , Yifeng Teng2 ,
and Christos Tzamos3

1 University of Texas at Austin, Austin, TX 78712, USA
rojinrezvan@gmail.com

2 Google Research, New York, NY, USA
3 University of Athens, Athens, Greece

Abstract. A recent line of research has established a novel desider-
atum for designing approximately-revenue-optimal multi-item mecha-
nisms, namely the buy-many constraint. Under this constraint, prices for
different allocations made by the mechanism must be subadditive, imply-
ing that the price of a bundle cannot exceed the sum of prices of indi-
vidual items it contains. This natural constraint has enabled several pos-
itive results in multi-item mechanism design bypassing well-established
impossibility results. Our work addresses the main open question from
this literature of extending the buy-many constraint to multiple buyer
settings and developing an approximation.

We propose a new revenue benchmark for multi-buyer mechanisms via
an ex-ante relaxation that captures several different ways of extending the
buy-many constraint to the multi-buyer setting. Our main result is that a
simple sequential item pricing mechanism with buyer-specific prices can
achieve an O(logm) approximation to this revenue benchmark when all
buyers have unit-demand or additive preferences over m items. This is the
best possible as it directlymatches the previous results for the single-buyer
setting where no simple mechanism can obtain a better approximation.

From a technical viewpoint we make two novel contributions. First,
we develop a supply-constrained version of buy-many approximation for
a single buyer. Second, we develop a multi-dimensional online contention
resolution scheme for unit-demand buyers that may be of independent
interest in mechanism design.

Keywords: Buy-many Mechanisms · Sequential Item Pricing ·
Multi-item Mechanism Design

1 Introduction

Revenuemaximization in multi-parameter settings is notoriously challenging. It is
known, for example, that in the absence of strong assumptions on the buyer’s value
distribution, the optimal revenue cannot be approximated within any finite factor
by anymechanismwith finite description complexity even for the simplest possible
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setting of two items and a single unit-demand buyer [4,17]. These impossibility
results motivate the search for a different benchmark that captures salient features
of the problem space while also permitting non-trivial approximation.

For single-agent settings one such benchmark was proposed by Briest et al. [4]
and Chawla et al. [10]. These works showed that the infinite gap between the rev-
enue of the optimal mechanism and any simple mechanism arises precisely when
the mechanism offers “super-additive” options that charge for some bundles of
items more than the sum of prices of their individual components. The so-called
“buy-many” constraint disallows such exploitative behavior: when interpreted
as a pricing over all possible allocations, the mechanism should be subadditive
(defined appropriately over randomized allocations, as described in Sect. 2). An
alternate motivation for this constraint arises as a consequence of buyer behavior
in scenarios where the buyer can interact with the mechanism multiple times,
purchasing an option from the menu each time. The buyer can then construct
an allocation by purchasing a multiset of options from the menu in the cheapest
possible manner. The buy-many constraint restricts the kinds of mechanisms the
seller can use to extract revenue from the buyer. The corresponding benchmark
is the optimal revenue that can be obtained from any mechanism satisfying the
constraint. [4] and [10] showed that imposing such a constraint enables positive
results even without requiring any assumptions on the buyer’s valuation function
or the value distribution: for settings with a single buyer and m items, the opti-
mal revenue obtained from any mechanism satisfying the buy-many constraint
is no more than O(logm) times the revenue obtained from an item pricing.

Our work addresses the primary direction left open by these works and their
followups, namely extending the buy-many constraint and revenue benchmark
to settings with multiple buyers. Obtaining such an extension is challenging,
however, as it depends on the particular implementation of the mechanism, dif-
ferences in these details can lead to very different benchmarks. Indeed while the
two approaches described above for formalizing the buy-many constraint – as
a restriction on the pricing function and as a consequence of buyer behavior –
lead to equivalent definitions in the single-buyer setting, they turn out to be
very different in the multi-buyer setting. In fact, the latter approach of allowing
buyers to interact with the mechanism multiple times provides no meaningful
restriction on mechanisms at all and once again allows for unbounded revenue
gaps between simple and optimal mechanisms.1 We instead define the buy-many

1 Consider, for example, multiple interactions of a buyer with the mechanism inter-
leaved by purchases made by other buyers. As the item supply changes, the mecha-
nism can update the prices on its menu, and no longer necessarily needs to satisfy
a subadditivity constraint on the final pricing observed by the buyer. In fact, by
exploiting this supply-based pricing approach, a multi-buyer buy-many mechanism
can simulate any single-agent non-buy-many mechanism, inheriting the unbounded
simple-versus-optimal revenue gaps of the latter setting. Sybil-proofness or false-
name-proofness is even easier to achieve in principle, unless some symmetry-type
restrictions are placed on the mechanism (as in [18,25], for example), as the mech-
anism can simply refuse to make any allocations unless the number of agents is
exactly n.
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constraint as a restriction on the effective pricing faced by any individual buyer
participating in the mechanism. We view the buy-many constraint as a stan-
dalone desideratum for the design of mechanisms that disallows exploitative
behavior on part of the seller. This approach leads to a non-trivial restriction,
while continuing to permit a range of different designs. We show that it becomes
possible to recover upper bounds on the revenue gap between simple and optimal
mechanisms without assumptions about buyers’ value distributions, just as in
the single-buyer setting.

Even as a restriction on the mechanism’s pricing, the buy-many constraint
can take many different forms depending on the information available to buy-
ers at different stages in the mechanism. To obtain a comprehensive theory of
multi-buyer buy-many mechanisms without going into the intricacies of specific
applications, we avoid choosing any particular such extension, and instead define
an ex-ante relaxation of the optimal buy-many revenue that simultaneously cap-
tures a broad range of settings. In Sect. 2, we describe the different forms of the
buy-many constraint encompassed by this relaxation.

An Ex-Ante Relaxation of Buy-Many Revenue

We view multi-buyer settings as a collection of single-buyer instances via an ex-
ante relaxation that allows the mechanism to allocate each item multiple times
as long as the expected number of buyers each item is allocated to is at most 1. To
be specific, let xi be an m-dimensional allocation vector, with xij ∈ [0, 1] denot-
ing the probability of allocation of item j to a particular buyer i. We consider
single-buyer mechanisms satisfying two restrictions. First, over the randomness
in the buyer’s valuation function, we require that the probability of allocation
of each item j to the buyer is at most xij . We say that the mechanism satis-
fies the ex-ante constraint xi. Second, we require that the mechanism satisfies
the single-buyer buy-many constraint. We then consider the maximum revenue
that can be obtained from any mechanism for buyer i that satisfies both of
the aforementioned constraints. Note that the buy-many constraint is not closed
over convex combinations, so distributions over buy-many menus can potentially
obtain higher revenue than buy-many menus themselves. We accordingly con-
sider the maximum revenue obtainable from individual buy-many mechanisms or
distributions over buy-many mechanisms that satisfy the ex-ante constraint xi.
Let BuyManyRevi(xi) denote this upper bound. The following program then
gives an upper bound on the revenue of multi-buyer buy-many mechanisms:

ExAnte-BuyManyRev := max
x1,...,xn≥0

∑

i

BuyManyRevi(xi) s.t.
∑

i

xi ≼ 1.

Here “≼” means pointwise dominance: for any two vectors x, y ∈ Rm, y ≼ x
means yj ≤ xj for every j ∈ [m]. Our goal in this work is to design simple
multi-buyer mechanisms that are clearly buy-many but at the same time are
competitive with this new benchmark.
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Approximating the Buy-Many Revenue by Item Pricings

Although buy-many mechanisms can, in general, be quite complicated, we show
that when all buyers are unit-demand or additive, the optimal buy-many revenue
(as well as the ex-ante upper-bound) can be approximated via a simple class of
mechanisms, namely sequential item pricings. We obtain an O(logm) approxi-
mation where m is the number of items, matching within constant factors the
approximation achieved by Chawla et al. [10] and Briest et al. [4] for single buyer
settings.

Theorem 1. For n independent buyers that are unit-demand or additive over
m items with value distribution D,

ExAnte-BuyManyRev(D) ≤ O(logm)SRev(D).

Here SRev denotes the optimal revenue achievable through sequential item
pricings. A sequential item pricing mechanism interacts with buyers sequentially
in a particular order. It offers to each buyer the set of remaining items at pre-
determined item prices and allows the buyer to purchase any item of her choice.
Notably, our approximation result holds for a worst-case order of arrival of the
buyers. Furthermore, the item prices offered to each buyer are non-adaptive in
that prices are computed once at the beginning of the mechanism before buyer
values are instantiated, and do not change based on instantiated values and
purchasing decisions of buyers that arrive earlier in the ordering. Interestingly,
sequential item pricing was previously shown in [7] to obtain a constant-factor
approximation to the overall (non-buy-many) optimal revenue for unit-demand
buyers when buyers’ values are independent across items.

Our Techniques

Our main approximation result consists of two parts, each of which is of inde-
pendent interest. First, we define an ex-ante supply-constrained relaxation of
(distributions over) item pricings, similar to the ex-ante relaxation of general
buy-many mechanisms discussed above. We show that the ex-ante item pricing
revenue provides a logarithmic approximation to the ex-ante buy-many revenue
for buyers with any combinatorial valuation function.

Focusing on ex-ante relaxations allows us to revert back to the single-agent
setting. We extend the logarithmic upper bound on the gap between buy-many
and item pricing revenues proved by [10] to the single buyer setting with a supply
constraint. However, extending [10]’s argument is not straightforward because
it does not provide any control on how the expected allocation of the item
pricing relates to that of the optimal buy-many mechanism. We instead consider
a Lagrangian version of the limited supply setting: in this setting, we are given
a production cost for each item and our goal is to maximize the mechanism’s
profit, namely its revenue minus the expected cost it has to pay to produce the
items it sells. Unfortunately, it turns out that for some cost vectors, the expected
profit of a buy-many mechanism can be an Ω(m) factor larger than the expected
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profit of any item pricing. We show instead that the optimal item pricing profit
approximates the profit of an optimal buy-many mechanism that faces slightly
higher (in multiplicative terms) production costs. This allows us to obtain a
logarithmic bound on the gap between the two ex-ante relaxations.

Theorem 2. For any joint value distribution D over n buyers and m items,

ExAnte-BuyManyRev(D) ≤ O(logm)ExAnte-SRev(D).

A Multi-dimensional Contention Resolution Scheme. The second part
of our argument relates the ex-ante item pricing revenue to the revenue of a
non-adaptive sequential item pricing for unit-demand or additive buyers. This
part employs an argument reminiscent of prophet inequalities and contention
resolutions schemes (see, e.g., Feldman et al. [12]). Specifically, let xi denote the
allocation vector for agent i in the ex-ante-optimal item pricing revenue. For
any given fixed ordering over the buyers, we construct pricings {qi} such that:
(1) every buyer i obtains an expected allocation of at least xi/2, and (2) the
revenue obtained by the item pricing qi from agent i is at least half the agent’s
contribution to the ex-ante item pricing revenue. Both of these properties are
easy to observe for additive buyers, but challenging for unit-demand buyers.
The challenge in showing (1) is that the set of items available when agent i
arrives depends upon the instantiations of previous agents’ values: as this set
changes, the buyer’s choice of what to buy also changes. (2) is challenging because
revenue is not linear in allocation probability. Our key observation is that for
unit-demand buyers, item pricing revenue exhibits concavity as a function of
allocation probabilities: given any item pricing p with allocation probabilities
x and any α < 1, we can find another item pricing that allocates items with
probabilities at most αx and obtains at least an α fraction of p’s revenue. We
leave open the question of extending this type of multi-dimensional contention
resolution scheme (and in particular, achieving the following theorem) to other
valuation functions.

Theorem 3. For any joint value distribution D over n unit-demand or additive
buyers and m items,

ExAnte-SRev(D) ≤ 2SRev(D).

Theorem 1 follows immediately from Theorems 2 and 3. We prove Theorem 2
in Sect. 3 and Theorem 3 in Sect. 4.

In Sect. 5, we mention some motivating examples regarding multi-buyer
buy-many mechanisms, and address what are the main difficulties of extending
our results to all valuation functions.

Further Related Work

The buy-many constraint was first proposed as an alternative to unconstrained
revenue maximization by Briest et al. [4] in the context of a single unit-demand
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buyer. Chawla et al. [10] extended the notion to arbitrary single buyer settings.
Chawla et al. chawla2021pricing present improved approximations for buy-many
mechanisms in single buyer settings where buyers’ values satisfy an additional
ordering property that includes, for example, the so-called FedEx setting. In a
different direction, Chawla et al. chawla2020menu study the menu size complex-
ity and revenue continuity of single buyer buy-many mechanisms. All of these
works focus on single buyer problems.

There is extensive literature on approximating the optimal non-buy-many
revenue under various constraints on the buyers’ value distributions in both
single-buyer and multi-buyer settings. Interestingly, many of these approxima-
tion results are achieved through sequential item pricing (or, in some cases, grand
bundle pricing) mechanisms. For example, Chawla et al. [7] show that for mul-
tiple settings of matroid feasibility constraints, sequential item pricings give a
constant approximation to the optimal non-buy-many revenue. In particular, for
multiple unit-demand buyers with independent values over all items, sequential
item pricing gives a 6.75-approximation to the optimal revenue, and this compet-
itive ratio was improved to 4 by Alaei et al. [1] and generalized to a setting where
each item has multiple units. For buyers with more general distribution, either a
sequential pricing mechanism with personalized item prices or a sequential item
pricing with anonymous prices and entry fee gives a constant approximation to
the optimal revenue when there are multiple fractional subadditive buyers [5]
and an O(log logm) approximation when buyers are subadditive [5,11]. Ma and
Simchi-Levi [21] consider additive-valued buyers and a seller facing production
costs, a setting that we revisit in our proof of Theorem 4, and achieve approx-
imations using two-part tariffs. Also see [3,6,8,17,19,20,22,24] for some other
previous work on using simple mechanisms to approximate the optimal non-
buy-many revenue. For sequential item pricings to be able to approximate the
revenue of the optimal non-buy-many mechanisms, an important assumption is
that each buyer should have independent item values, which we do not assume
in this work.

Finally, ex-ante relaxations, first introduced to multi-buyer mechanism design
by Alaei et al. [1] and Yan and Qiqi [23], have emerged as a powerful tool for
simplifying multi-buyer mechanism design problems by breaking them up into
their single-agent counterparts. For example, Chawla et al. [9] and Cai et al. [5]
employ this approach for designing sequential mechanisms that approximate the
optimal revenue for multiple agents with subadditive values. Such a technique is
also used for analyzing the setting where buyers have non-linear utilities [2,13,
15], and determining the revelation gap of the optimal mechanisms [14,16].

2 Definitions

We study the multidimensional mechanism design problem where the seller has
m heterogeneous items to sell to n buyers with independent value distributions,
and aims to maximize the revenue. The buyer i’s value vector over items is
specified by a distribution Di over all value functions vi : 2[m] → R≥0. Each
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of these such functions vi assigns a non-negative value to any subset of items
S ⊆ [m]. Let D = D1 × · · · × Dn denote the joint distribution over all values.
Let ∆m = [0, 1]m be the set of all possible randomized allocations.

Unit-Demand and Additive Buyers. In this paper, we focus on settings where
every buyer is unit-demand or where every buyer is additive valued. We say
that a buyer is unit-demand over all items, if the buyer is only interested in
purchasing one item, and her value for any set of items is solely determined by
the item that is most valuable to her. In other words, for any set of items S ⊆ [m],
vi(S) = max

j∈S
vi({j}). We say that a buyer is additive if for all S ⊆ [m], vi(S) =

∑
j∈S

vi({j}). For ease of notation, let vi({j}) = vij . We make no assumptions on

each buyer’s value distribution Di – the buyer’s values for different items can be
arbitrarily correlated.

Single-Buyer Mechanisms. By the taxation principle, any single-buyer mecha-
nism is equivalent to a menu of options, and the buyer can select an outcome
that maximizes her utility. Without loss of generality, we can assume that the
menu assigns a price to every randomized allocation, a.k.a. lottery, λ ∈ ∆m,
and can therefore simply represent the mechanism by a pricing function p. p(λ)
denotes the price of the lottery λ. For a buyer of type vi, her (expected) value
for a lottery λ is defined by vi(λ) :=

∑
j vijλj , and her utility for the lottery is

defined to be uvi,p(λ) := vi(λ)−p(λ). When p is clear from the context, we drop
the subscript and write the buyer’s utility as uvi(λ). Henceforth, we will refer
interchangeably to mechanisms as pricing functions.

Given a pricing function p, a buyer of type v chooses the utility-maximizing
lottery, denoted λv,p := argmaxλ uv,p(λ). The buyer’s utility in the mechanism
p is given by up(v) := v(λv,p) − p(λv,p); the buyer’s payment is Revp(v) :=
p(λv,p). We write the revenue of the mechanism under buyer distribution D as
Revp(D) = Ev∼DRevp(v). The mechanism is called a buy-one mechanism since
the buyer only purchases one option from the menu.

Single-Buyer Buy-Many Mechanisms. In single buyer settings, if the buyer is
allowed to purchase multiple options from a mechanism’s menu, we call the
mechanism buy-many. In particular, in a buy-many mechanism the buyer can
purchase a (random) sequence of lotteries, where each lottery in the sequence
can depend adaptively on the instantiations of previous lotteries. At the end of
the process, the buyer gets the union of all allocated items in each step and pays
the sum of the prices of all purchased lotteries.

Any buy-many mechanism can be described by a buy-one pricing function
that satisfies a buy-many constraint. Intuitively, a buy-one pricing function sat-
isfies the buy-many constraint if the buyer always prefers to purchase a single
option from the menu, even if she has the option to adaptively interact with the
mechanism multiple times.2 For example, for a pricing function p, let p̂i denote
the minimum cost of acquiring item i by repeatedly purchasing some lottery until
the item is instantiated. Then, the buy-many constraint implies that for any λ,
2 For formal definitions, see [10].
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p(λ) ≤ p̂ · λ. Pricing functions that satisfy the buy-many constraint are called
buy-many pricings, and we use BuyMany to denote the set of such functions.

Let BuyManyRev(D) := maxp∈BuyMany Revp(D) denote the revenue of the
optimal buy-many mechanism for a buyer with value distribution D.

Item Pricings and Sequential Item Pricings. In a single-buyer setting, a (deter-
ministic) item pricing mechanism sets an item price pj ∈ R+ for every item j;
a buyer with value function vi purchases the item j that maximizes vij − pj .
We use the price vector p = (p1, · · · , pm) to denote the item pricing. Denote by
SRev(D) the optimal revenue obtained by any item pricing for a buyer with
distribution D. We also define random item pricing mechanisms as distributions
over deterministic item pricings; we continue to use p to denote such pricings,
although p is now a random variable.

A sequential item pricing for a multi-buyer setting specifies a serving order σ
being a permutation over the n buyers, and n item pricings p1, · · · , pn, such that
at step i the seller posts the pricing pσ(i) to buyer σ(i), and the buyer purchases
her favorite among the items that are still available. We use SRev(D) to denote
the optimal revenue obtained by a sequential item pricing mechanism for buyers
with values drawn from the joint distribution D.

Profit Maximization Under Production Costs. For a single-buyer setting, we
study the profit-maximizing problem of the seller where each item has a produc-
tion cost. Let c = (c1, c2, · · · , cm) ∈ Rm

+ denote the vector of production costs.
Then the profit of the single-buyer mechanism given by pricing p is defined to
be the revenue minus the production costs of the items:

Profitp,c(D) = Ev∼D[p(λv,p) − λv,p · c].

We denote by SProfitc(D) = maxitem pricing p Profitp,c(D) the optimal profit
achievable by item pricings for the buyer with distribution D when there are
production costs c for all items. Similarly define

BuyManyProfitc(D) = max
buy-many p

Profitp,c(D)

to be the optimal profit achievable by buy-many mechanisms for the buyer with
distribution D for the setting with production costs c.

Ex-Ante Constrained Revenue

Ex-ante relaxations are a powerful technique for reducing multi-buyer mechanism
design problems to their single-buyer counterparts. The key idea is to relax
the ex-post supply constraint on items to an ex-ante feasibility constraint that
requires each item to be sold at most once in expectation.

Recall that xij denotes the probability of allocating item j to buyer i; xi =
(xi1, · · · , xim) denotes the vector of allocations of all items to buyer i; and x =
(x1, · · · , xn) denote the vector of all allocations.
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We say that a single-buyer pricing function pi satisfies the ex-ante constraint
xi with respect to the value distribution Di if for all j ∈ [m], the expected alloca-
tion of item j to the buyer is no more than xij : Ev∼Di [λv,pi ] ≤ xi. Note that this
definition extends to random pricing functions p in the straightforward manner:
we want the expected allocation to be bounded by xi where the expectation is
taken over both the buyer’s value and the randomness in the mechanism. That
is, Ev∼Di,p[λv,pi ] ≤ xi.

For a single buyer i and an ex-ante constraint xi, we can now define the
optimal revenue that can be obtained from the buyer subject to an ex-ante
constraint for various classes of mechanisms. In particular, let ∆IP denote the
space of all distributions over item pricings, and ∆BM denote the space of all
distributions over buy-many pricings. Then we define:

SRev(Di, xi) = max
p∈∆IP : p satisfies xi w.r.t. Di

Revp(Di), and,

BuyManyRev(Di, xi) = max
p∈∆BM : p satisfies xi w.r.t. Di

Revp(Di).

Given a combined vector x of ex-ante constraints for every buyer i ∈ [m], we can
write the collective revenue of the optimal single-buyer mechanisms that satisfy
these constraints as:

EA-SRev(D, x) =
∑

i

SRev(Di, xi), and,

EA-BuyManyRev(D, x) =
∑

i

BuyManyRev(Di, xi),

Finally, we can define the ex-ante relaxation for each class of mechanisms.

EA-SRev(D) = max
x:

∑
i xij≤1∀j∈[m]

EA-SRev(D, x), and,

EA-BuyManyRev(D) = max
x:

∑
i xij≤1∀j∈[m]

EA-BuyManyRev(D, x),

Some Settings Captured by the Ex-Ante Relaxation

Our ex-ante relaxation captures approaches that define the buy-many constraint
as a restriction on the effective pricing faced by any individual buyer participat-
ing in the mechanism. We now describe some specific such settings. We start
with one of the simplest settings, in which buyers arrive one after the other and
each buyer faces a single-buyer mechanism.

Sequential Buy-Many Mechanisms. Sequential mechanisms make offers to each
buyer sequentially in a pre-specified order. The i-th buyer in the order is asked
to choose which items to purchase among the subset of items that remain after
buyers 1 through i − 1 have made their choices. A natural definition for the
buy-many constraint for this multi-buyer setting boils down to offering a buy-
many constrained mechanism to each buyer for any subset of items remaining,
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i.e. the full-mechanism can be defined as a collection of single-buyer mechanisms
Mi,S ∈ BuyMany for any buyer i and any subset S of remaining items.

Ex-Post Buy-Many Mechanisms. A more flexible design space for multi-buyer
buy-many mechanisms is to consider direct mechanisms in which buyers truth-
fully submit their valuations and conditional on the valuations of other buyers
each buyer is faced with a single buyer buy-many mechanism. Buy-many mech-
anisms for this setting are specified as a collection of single buyer buy-many
mechanisms Mi,v⃗−i ∈ BuyMany for any buyer i and any combination of valu-
ation functions v−i for the other buyers.

Bayesian Buy-Many Mechanisms. Another potential definition of multi-buyer
buy-many mechanisms is to consider Bayesian settings in which we require the
options any single buyer faces to be buy-many in expectation over the valu-
ations of other buyers. If qi(vi, v⃗−i) and pi(vi, v⃗−i) is the allocation and price
offered to buyer i when her value is vi and the other buyers have valuations
v⃗−i, we would require that the single buyer mechanism with allocation proba-
bilities qi(vi) ! Ev⃗−iqi(vi, v⃗−i) and price pi(vi) ! Ev⃗−ipi(vi, v⃗−i) to satisfy the
buy-many constraint.

3 Relating the Ex-Ante Relaxations

In this section we bound the gap between the ex-ante optimal buy many revenue
and the ex-ante optimal item pricing revenue when the seller faces many buyers.
This is a generalization of single-buyer buy-many revenue approximations to
supply constrained settings. We emphasize that for the results in this section we
do not require any assumptions on the buyer’s valuation function, such as that
it is unit-demand or additive.

A note on notation: since we consider a single-buyer problem in this section,
we drop the subscript i from most notation and simply denote buyer i’s valu-
ation function as v; her allocation vector as x; the probability that item j is
allocated to the buyer as xj ; etc. We will write the ex-ante buy many and item
pricing revenues of this buyer simply as BuyManyRev(D, x) and SRev(D, x)
respectively.

Theorem 4. For any single buyer with value distribution D over m items and
any ex-ante supply constraint x ∈ ∆m,

EA-BuyManyRev(D, x) ≤ O(logm)EA-SRev(D, x).

Applying this theorem to each of n buyers, we obtain the following corollary.

Theorem 2. For any joint value distribution D over n buyers and m items,

EA-BuyManyRev(D) ≤ O(logm)EA-SRev(D).
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Before we present a formal proof of Theorem 4, let us describe the main
ideas. Theorem 4 is a generalization of Theorem 1.1 from [10], which shows that
the ratio of BuyManyRev and SRev is bounded by O(logm) in the absence
of an ex-ante supply constraint. The proof technique of [10] does not directly
lend itself to the ex-ante setting because it does not provide much control over
the allocation probability of the random item pricing it produces. Indeed, the
(random) item pricing it returns is independent of the buyer’s value distribution,
whereas the allocation probabilities (that are expectations over values drawn
from the distribution) necessarily depend on the value distribution. Instead of
applying the approach of [10] directly, we first consider a Lagrangian version of
the supply constrained problem.

To simplify the following discussion, we will hide the argument D from the
respective revenue benchmarks. Viewing SRev(x) and BuyManyRev(x) as two
multi-variate functions over x ∈ ∆m, we first observe that for any fixed ex-ante
constraint xo, there exists a cost vector co such that xo is the solution to the
optimization problem maxx(SRev(x)− co ·x). Indeed, because SRev(x) is con-
cave3, co = ∇SRev(xo) is such a function. Furthermore, co is a non-negative
vector, and so the gap between SRev(xo) and BuyManyRev(xo) is bounded
by the gap between SRev(xo)−c ·xo and BuyManyRev(xo)−c ·xo. This moti-
vates studying the Lagrangian problem of maximizing the profit of a mechanism
subject to production costs co. In particular, for any value distribution D, we
have:

max
x

EA-BuyManyRev(D, x)
EA-SRev(D, x)

≤ max
c

BuyManyProfitc(D)
SProfitc(D)

Unfortunately, the gap on the right hand side can be very large:
Theorem 5. There exists a unit-demand value distribution D over m items and
a cost vector c ∈ Rm, such that BuyManyProfitc = Ω(m)SProfitc(D).

We instead provide a bi-criteria approximation for the Lagrangian problem.
In particular, we compare the profit of the optimal item pricing for cost vector
c with the profit of the optimal buy many mechanism with production costs 2c.
This suffices to imply Theorem 4 with a slight worsening in the approximation
factor.

Theorem 6. For any single buyer with value distribution D over m-items and
production costs vector c,

BuyManyProfit2c(D) ≤ 2 ln 4mSProfitc(D).

The rest of the section is organized as follows. We first show a complete proof
of Theorem 4 based on Theorem 6. We then describe and verify the gap example
in Theorem 5. Each of these components is self-contained.
3 In fact, the function Rev(x) defined as maximum revenue from any restricted set
of mechanism with allocations at most x is concave. This is because for any two
allocations x and y and coefficient 1 ≥ α ≥ 0, one can consider mechanismsM(x) and
M(y) that define Rev(x) and Rev(y), and run the former with probability α and the
latter with probability (1−α). Then Rev(αx+(1−α)y) ≥ αRev(x)+(1−α)Rev(y).
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3.1 Proof of Theorem 4

Proof (Proof of Theorem 4).
We first note that SRev(x) is a concave function over x because it optimizes

for revenue over random pricings. Fix an ex-ante constraint xo and consider the
function g(x) := SRev(x)−x·∇SRev(xo). This function is maximized at x = xo.
Furthermore, since SRev(x) is monotone non-decreasing, ∇SRev(xo) ≥ 0, and
so c := ∇SRev(xo) can be thought of as a vector of production costs. Since g(x)
is exactly the profit of an item pricing for buyer distribution D with allocation x
and production cost vector c for all items, we know that the random item pricing
p that achieves SRev(xo) is also the optimal item pricing for a buyer with value
distribution D and item production costs c, without any allocation constraint. 4

Now consider the buy-many profit optimization problem with production
costs 2c. The optimal profit is given by BuyManyProfit2c. Restricting atten-
tion to buy many mechanisms that satisfy the ex-ante constraint xo, we let
BuyManyProfit2c(xo) denote the optimal profit obtained over that set of
mechanisms. Then, we can apply Theorem 6 to obtain:

SRev(xo) = SProfitc(xo) + c · xo

= SProfitc(D) + c · xo

≥ 1
2 ln 4mBuyManyProfit2c(D) + c · xo

≥ 1
2 ln 4mBuyManyProfit2c(xo) + c · xo

= 1
2 ln 4m (BuyManyProfit2c(xo) + 2c · xo) + c · xo

(
1 − 1

ln 4m

)

≥ 1
2 ln 4mBuyManyRev(xo),

Here the first line is true by extracting the terms of item costs; the second line is
true since x = xo is optimal for profit under item costs c; the third line is true by
Theorem 6; the fourth line is true since adding an allocation restriction cannot
increase profit; the last line is true since BuyManyProfit2c(xo) + 2c · xo ≥
BuyManyRev(xo). This finishes the proof of the theorem.

3.2 Proof of Theorem 5

Proof (Proof of Theorem 5). Let c = (0, 2m, 2m, · · · , 2m). For every j such that
2 ≤ j ≤ m, let v(j) be the following unit-demand value function: v(j)1 = 2j ;
v(j)j = 2m; v(j)k = 0 for k ̸∈ {1, j}. In other words, the buyer with value v(j) is
only interested in two items 1 and j, with the value for the first item being 2j ,
and that for item j being 2m. Consider the following value distribution D: for
every j such that 2 ≤ j ≤ m, with probability 2−j , v = v(j); for the remaining
probability, v = 0. Now we analyze SProfitc and BuyManyProfitc.
4 For any buyer i, it is possible that p has allocation y ≤ xo, with SRev(y) =
SRev(xo). However, for any item j such that yj < xo

j , since SRev(y) = SRev(xo),
the gradient ∇SRev(xo) has value cj = 0 on the jth component. Thus the profit
of item pricing p for the buyer with production costs c is still SRev(xo) − c · xo,
although the actual allocation is less than xo.
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For any item pricing p, consider its profit contribution from the first item and
the rest of the items. Since the buyer’s value for the first item forms a geometric
distribution, the profit contribution from the first item is upper bounded by the
revenue of selling only the first item, which is O(1). For the rest of the items,
since when the buyer purchases some item j > 1, the item must have a price at
most 2m = cj , this means that the profit contribution of item j is at most 0.
Thus SProfitc = O(1).

Consider the following buy-many mechanism: for every j ≥ 2, there is a menu
entry with allocation λ(j) and price p(j) = 2j−1+2m−1, where λ(j)

1 = λ(j)
j = 0.5.

For any λ ∈ ∆m that is not some λ(j), its price is determined by the cheapest
way to adaptively purchase it with λ(2), · · · ,λ(m). For every buyer of type v(j),
she buys lottery (λ(j), p(j)) in the mechanism with utility 0.5 Since item j is only
of interest to buyer v(j), the buyer would not purchase any other set of lotteries
in the mechanism. Since profit from buyer v(j) is 2j−1, and she gets realized in D
with probability 2−j , the expected profit of the buy-many mechanism is Ω(m).

4 Approximation via Sequential Item Pricing

We will now focus on item pricings and prove Theorem 3. In particular, we show
that non-adaptive sequential item pricings can obtain half of the ex-ante optimal
item pricing revenue, regardless of the order in which buyers are served.

Theorem 3. (Restatement) For any joint distribution D = (D1,D2, · · · ,Dn)
over n unit-demand or additive buyers and any order σ on arrival of buyers,
there exists a deterministic sequential item pricing q with buyers arriving in
order σ, such that

RevD(q) ≥ 1
2
EA-SRev(D).

For additive buyers, the items impose no externalities on each other, and so
the theorem follows immediately from the single-unit prophet inequality, Hence-
forth we focus on unit-demand buyers. Our argument is based loosely around
online contention resolution schemes (OCRS) [12] and prophet inequality argu-
ments. The idea is to start with the optimal solution to the ex ante item pric-
ing revenue: x∗ := argmaxx:∑i xij≤1∀j∈[m]

∑
i SRev(Di, xi). Then, given some

ordering σ over the buyers, we try to mimic this allocation by choosing pricings
for each buyer that ensure that the buyer receives allocation comparable to x∗

i .
As in OCRS, we tradeoff assigning enough allocation to a buyer with maintaining
a good probability that items remain available for future buyers.

A key difference in our setting relative to work on OCRS is that the latter
mostly focuses on utilitarian objectives, e.g. social welfare, so that the tradeoff is
easily quantified: choosing an alternative with half the probability of the ex ante
optimum, for example, provides half its contribution to the objective. Chawla et

5 We can reduce the price of λ(j) by some small ϵ > 0 to make each buyer type’s utility
be strictly positive.
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al. [6] show how to apply this approach to revenue for unit demand buyers with
values independent across items by transforming values to Myersonian virtual
values. Unfortunately this approach does not extend to values correlated across
items because in correlated settings it is not possible to assign virtual values to
each individual value independent of other values.

We develop an alternate argument. For any single unit-demand buyer, we
consider how the item pricing revenue changes as the allocation of the buyer
is decreased from some intended allocation x∗ to a new allocation y that is
component-wise smaller. We show that if x∗ is realized by item pricing p, then
we can realize allocation y while obtaining revenue at least y · p. In particular,
uniformly scaling down allocations by some factor scales down revenue by no
more than the same factor. This allows us to carry out the OCRS-style argument.
We formalize the above claim as a lemma before providing a proof of Theorem 3.

In the following discussion, for any unit-demand buyer with value distribution
D, let xp,S(D) be the allocation vector of item pricing p over the set of available
items S ⊆ [m]. We remove the distribution D whenever it is clear from the
context. When S = [m], we use xp instead of xp,[m].

Lemma 1. For any unit-demand buyer, any deterministic item pricing p, and
any distribution over set S of available items, let x∗ = ES [xp,S ] be the expected
allocations of p conditioned on the available set of items being S. Then for any
allocation vector y ∈ ∆m such that y ≼ x∗, there exists a random item pricing q
such that

Eq,S [xq(S)] = y, and Revq,S = y · p.

Proof. We first prove the theorem when both S and p are deterministic. Then,
we extend the proof to the case where the available set S can be possibly ran-
domized.

For p = (p1, . . . , pm) ∈ Rm
+ being a deterministic item pricing, assume that

the set of available items is fixed to be some deterministic set S. For any set
T ⊆ S, define item pricing pT to be the pricing p restricted to items in T .
In other words, pT,j = pj for all j ∈ T , and pT,j = ∞ otherwise. For ease of
notation, let xT = xp,T be the allocation under available set T . Observe that for
any j ̸∈ T , x∗

j = 0 and for any j ∈ T , xT (j) ≥ x∗
j : the latter is true since under

the same pricing, when fewer items are available, buyer types that purchase an
item not in T may switch to purchase some item in T , while the other buyer
types’ incentives remain unchanged. Thus for y ≼ x∗, y is in the convex hull
of the set of 2|S| points X = {xT |T ⊆ S}. Write y =

∑
T⊆S αTxT as a convex

combination of vectors in X, here αT ∈ [0, 1] for every T , and
∑

T αT = 1.
Consider the following randomized item pricing q: with probability αT , q = pT ,
∀T ⊆ S. Then the expected allocation of q is exactly y. On the other hand, the
expected revenue is Revq,S = p · y because whenever item j is sold in q, it is
sold at a price of pj .

Now let S be a random variable over sets of available items. By defining
xT = ESxp,T∩S to be the expected allocation of item pricing p under available
item set T ∩ S, the above proof still goes through. This finishes the proof of the
lemma.
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With the help of the lemma above, we are now ready to prove Theorem 3.

Proof (Proof of Theorem 3). For every buyer i, let pi be the (randomized) item
pricing defining EA-SRev(D), and xi be the corresponding allocation vector. We
may assume σi = i without loss of generality. We build the desired deterministic
sequential item pricing q incrementally for every buyer. At arrival of buyer i, we
use the allocation vector xi, the distribution over currently available items (where
the randomness comes from previous buyers and item pricings) and Lemma 1
to produce a (randomized) item pricing vector qi with the property that for Si

being the random set of available items to buyer i,

Eqi,Si [xqi,Si(Di)] =
xi

2
, and, Eqi,Si [Revqi(Di, Si)] =

xi

2
· pi =

1
2
EA-SRev(Di).

(1)
Here Revqi(Di, Si) denotes the revenue of item pricing qi for buyer i conditioned
on the available item set being Si when i arrives. If such qi exists for every i,
then the random sequential item pricing q satisfies RevD(q) ≥ 1

2EA-SRev(D).
Thus there must exist a realization of q being a deterministic sequential item
pricing satisfying the requirement of the theorem.

Now it suffices to show that item pricing qi exists for (1), and the rest of
the proof is dedicated to proving this. An important observation is that if by
induction the item prices qi′ satisfying (1) exist for every i′ < i, then every item
belongs to Si with probability at least 1

2 . Such a observation is true by noticing
that by union bound, the allocation of item j in the first i − 1 steps is at most∑

i′<i
xi′j
2 ≤

∑
i′≤m

xi′j
2 ≤ 1

2 since item j has a total ex-ante allocation at most
1.

When pi is deterministic, since every element in [m] exists with probability
at least 1

2 in Si, we know that for any realized buyer type, her favorite item
still remains with probability at least 1

2 and she would not deviate to purchase
something else. Thus Epi,Si [xpi,Si ] ≽ 1

2xi. By Lemma 1, there exists a random
item pricing q, such that Eq,Si [xq,Si ] =

1
2xi, and Eq,Si [Revq,Si ] =

1
2xi · pi =

1
2EA-SRev(Di). Thus (1) is satisfied.

When pi is random, consider any instantiation of pi. The same as the
reasoning in the previous paragraph, Epi,Si [xpi,Si ] ≽ 1

2xpi still holds, and
there exists a random item pricing qpi such that Eqpi ,Si [xqpi ,Si ] =

1
2xpi , and

Eqpi ,Si [Revqpi ,Si ] =
1
2xpi · pi. Consider the following random item pricing qi:

firstly generate a realization of random item pricing pi, then generate a real-
ization of random item pricing qpi defined above. The expected allocation of qi
is

EpiEqpi ,S
[xqpi ,S

] =
1
2
xi,

while the expected revenue is

EpiEqpi ,S
[Revqpi ,S

] = Epi

[
1
2
xpi · pi

]
=

1
2
EA-SRev(Di).

Thus qi satisfies (1), which finishes the proof of the theorem.
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5 Discussion

In this section, we mention some examples that motivate definition and further
work in multi-buyer buy-many mechanisms. Moreover, we discuss why extension
of our results to any valuation function is challenging.

Motivating Examples. Consider a seller who is selling multiple items in
multiple markets, and faces a common supply constraint across these markets.
The seller is free to choose a different selling mechanism in each market, but
interacts with a buyer from each market in just one go. For example, imagine
Amazon selling rare books in multiple markets (US, Europe, India). Within each
market, Amazon will display a price schedule that does not change frequently
based on purchase decisions in other markets (but updates availability). This
price schedule could be different for different markets based on local preferences
and demand. Within each market individually, given that prices will remain
static over short periods of time, a buy-many constraint is a natural property to
satisfy. This scenario fits directly within our model.

For another similar scenario consider a travel website like hotwire.com which
offers deals on airline tickets, hotel rooms, etc., without revealing complete ven-
dor information. In effect, it sells lotteries. This is another example with supply
constraints where the mechanism may personalize prices for each potential buyer
(e.g. based on which browser the buyer is using). If the seller uses a non-buy-
many mechanism (e.g. if lotteries on multiple items are generally more expensive
than individual prices on the items they contain) it would lose customers over
time.

Difficulties of Extending the Results to All Valuations. One component
of our argument, namely approximating the ex-ante buy many revenue by the
ex-ante SRev holds for every possible value function. However, we don’t know
how to extend the second part of the argument - approximating the ex-ante SRev
using sequential item pricing - for value functions that are not unit-demand or
additive. This requires constructing a multi-dimensional prophet inequality. The
key technical challenge for non-unit-demand valuations is in keeping track of and
controlling how the probability that a particular subset of items is available to
an agent depends on decisions of other buyers.
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