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ABSTRACT
Concentrations of ambient particulate matter (PM) depend on various factors including emis-
sions of primary pollutants, meteorology and chemical transformations. New Delhi, India is the
most polluted megacity in the world and routinely experiences extreme pollution episodes. As
part of the Delhi Aerosol Supersite study, we measured online continuous PM1 (particulate
matter of size less than 1lm) concentrations and composition for over five years starting
January 2017, using an Aerosol Chemical Speciation Monitor (ACSM). Here, we describe the
development and application of machine learning models using random forest regression to
estimate the concentrations, composition, sources and dynamics of PM in Delhi. These models
estimate PM1 species concentrations based on meteorological parameters including ambient
temperature, relative humidity, planetary boundary layer height, wind speed, wind direction,
precipitation, agricultural burning fire counts, solar radiation and cloud cover. We used hour
of day, day of week and month of year as proxies for time-dependent emissions (e.g., emis-
sions from traffic during rush hours). We demonstrate the applicability of these models to cap-
ture temporal variability of the PM1 species, to understand the influence of individual factors
via sensitivity analyses, and to separate impacts of the COVID-19 lockdowns and associated
activity restrictions from impacts of other factors. Our models provide new insights into the
factors influencing ambient PM1 in New Delhi, India, demonstrating the power of machine
learning models in atmospheric science applications.
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1. Introduction

Atmospheric aerosols, or particulate matter (PM), are
small solid or liquid like particles suspended in the
atmosphere, which if inhaled can lead to adverse
health effects and increase the risk of mortality
(Schraufnagel et al. 2019). PM is known to increase
the risk of various diseases including lung cancer, pul-
monary infections, heart attacks, stroke, cataract, cen-
tral nervous system disorders, chronic inflammatory
diseases, age related disorders and cancer (Brook et al.
2010; Cohen et al. 2017; Kampa and Castanas 2008;
Morakinyo et al. 2016). Air pollution (especially PM)
leads to approximately 7 million human deaths every
year (Campbell-Lendrum and Pr€uss-Ust€un 2019;
Health Effects Institute (HEI)) 2020; World Health
Organization (WHO)) 2016). After high blood pres-
sure, diet and tobacco smoking, ambient PM is the
fourth leading factor contributing to global deaths
annually (Campbell-Lendrum and Pr€uss-Ust€un 2019).
In addition to affecting human health, PM also affects
climate (Rosenfeld et al. 2008; Samset et al. 2018).
Aerosols have a direct radiative forcing because they
scatter and absorb solar and infrared radiation in the
atmosphere. They also cause an indirect radiative forc-
ing by changing the formation and precipitation effi-
ciency of clouds. Thus, reductions in PM, motivated
by positive impacts on human health, will also have
impacts on radiative forcing and therefore climate
(Masson-Delmotte et al. 2022).

The US Environmental Protection Agency recog-
nizes PM2.5 (particles of size less than 2.5 micron) as
a criteria pollutant and has set national ambient air
quality standards (24-h standard set at 35 lg/m3) to
regulate its concentrations in the atmosphere (United
States Environmental Protection 2022). Similarly, the
World Health Organization has established guidelines
for ambient air pollution levels to help policymakers
across the world set standards for air quality manage-
ment. The guidelines released in 2021 include several
interim targets, designed to help countries with high
pollution levels, with the final air quality guideline set
at 15lg/m3 for 24-h average concentrations (World
Health Organization (WHO)) 2021). Despite environ-
mental regulations in high income countries and
growing awareness in low and middle-income coun-
tries, reducing ambient PM remains a challenge. This
is especially the case in low and middle-income coun-
tries, where approximately 90% of air pollution-related
deaths occur (World Health Organization (WHO))
2016). Megacities in developing nations are some of
the biggest hotspots of air pollution exposure because
of high population density and rapid urbanization and

associated increases in industrial and road emissions
(Molina 2021). Delhi, India is a rapidly growing urban
center and is the second most populated city in the
world, with a population of around 28 million (UN
2018). According to a recent estimate, Delhi is the
world’s most polluted megacity, on track to also
become the world’s most populated megacity by 2028
(United Nations: World urbanization prospects 2018;
World Health Organization (WHO)) 2016). However,
our understanding of the factors influencing air qual-
ity in Delhi is a work in progress (Baig et al. 2020;
Bhandari et al. 2020; Gani et al. 2019; Gani et al.
2020; Guttikunda and Calori 2013; Guttikunda and
Gurjar 2012; Jaiprakash et al. 2017; Pant et al. 2015;
Pant, Guttikunda, and Peltier 2016; Pant and Harrison
2012; Patel et al. 2021a; Patel et al. 2021b).

PM can either be directly released into the atmos-
phere as primary emissions (referred to as primary
aerosol) or formed through chemical reactions in the
atmosphere and subsequent particle formation by par-
titioning to the aerosol phase (referred to as secondary
aerosol). The eventual atmospheric fate of ambient
aerosol depends on several factors including emis-
sions, meteorology, atmospheric chemistry as well as
sinks (condensation, coagulation, deposition, etc.). For
example, ambient temperature affects thermodynamics
and gas-particle partitioning of PM, wind speed and
planetary boundary layer height affect ventilation.
Further, winters in Delhi are often associated with
temperature inversions (where temperature close to
earth’s surface is lower than the layer above), which
traps the pollutants close to earth’s surface, leading to
high surface concentrations and haze-like conditions.
Traditionally, deterministic models such as atmos-
pheric chemical transport models have been used to
understand the influence of changing source emissions
and meteorology on ambient pollutant concentrations.
However, they require prior knowledge of emission
profiles and reaction pathways (for secondary forma-
tion) which are not yet satisfactorily established for
Delhi.

Recently, some studies have shown the capability of
statistical models such as predictive machine learning
(ML) models to capture the temporal variability of
ambient air pollutants, given sufficient data is avail-
able to train these models (Christopoulos et al. 2018;
Feng et al. 2019; Grange et al. 2021; Lovri�c et al. 2021;
Nair et al. 2021; Pande et al. 2022; Qin et al. 2022;
Rubal and Kumar 2018; Stirnberg et al. 2021; Wang
et al. 2020; Yang et al. 2021; Wang et al. 2022; Yu
et al. 2016; Zhang et al. 2022). The ML models offer
several advantages – they have higher computational
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efficiency and offer the flexibility of leveraging and
capturing measured data. Furthermore, recent advan-
ces in technology (especially aerosol mass spectrom-
etry) have made it possible to measure aerosol
composition and concentrations at a high mass and
temporal resolution (Baltensperger et al. 2010; Pratt
and Prather 2012; Zhang et al. 2007). As part of the
Delhi Aerosol Supersite (DAS) study, we collected
long-term PM1 concentrations and composition in
Delhi at high temporal resolution (Arub et al. 2020;
Bhandari et al. 2020; Gani et al. 2019; Gani et al.
2020; Patel et al. 2021a; Patel et al. 2021b). The
objective of the DAS study was to understand the fac-
tors influencing ambient PM1 in Delhi.

For the analysis presented in this paper we utilized
over three years of data collected as part of the DAS
study to build machine learning models using random
forest regression. The objective of this study was to
investigate the influence of meteorology and emission
proxies on the PM1 variability in Delhi by using ran-
dom forest regression. We used several meteorological
parameters and emission proxies as predictor variables
in these models (see Section 2 for details), which can
capture the non-linear response of PM1 to changing
emissions, meteorology and atmospheric oxidizing
capacity as discussed in Section 3. We also performed
sensitivity analysis, where we varied one feature at a
time by keeping the other parameters to a constant
value to understand the influence of each of these
parameters in the variability of PM1 and its
constituents.

2. Materials and methods

Data: Non-refractory PM1 (NR-PM1; particulate mat-
ter of size less than 1 micron that flash vaporizes at
the vaporizer temperature of 600 �C) composition and
concentration was measured at the Delhi Aerosol
Supersite (DAS) by using a Quadrupole Aerosol
Chemical Speciation Monitor (Q-ACSM, Aerodyne
Research, Billerica, MA, USA) (Ng et al. 2011). DAS

is located at the Indian Institute of Technology, Delhi
campus in New Delhi. Details on the instrument set
up, operation, calibration and data processing are pre-
sented in our previous publications (Bhandari et al.
2020; Gani et al. 2019; Gani et al. 2020; Patel et al.
2021a; Patel et al. 2021b). Data was collected every
�1-min and was post-averaged to 1 h for the analysis
presented here. Data from Jan 2017 to Feb 2020 was
used to develop the models.

Table 1 summarizes the predictor (input) variables
used in the models. They include meteorological parame-
ters – ambient temperature (T, measured 10m from the
ground), relative humidity (RH), planetary boundary layer
height (H), wind speed (WS), wind direction (WD), pre-
cipitation (P), solar radiation (SR), cloud cover (CC).
Agricultural burning fire counts in the northwest states
are used as proxy for burning emissions and were
obtained from the NASA fire information for resource
management system, FIRMS, which uses the moderate
resolution imaging spectroradiometer, MODIS, collection
6 (Fire Information for Resource Management System
(FIRMS)) 2022; Giglio, Schroeder, and Justice 2016;
Justice et al. 1998) dataset. Furthermore, hour of day
(HOD), day of week (DOW) and month of year (MOY)
were used as categorical variables to account for emis-
sions specific to certain times (e.g., vehicular emissions
during peak traffic hours, the differences in vehicular
emissions on weekday versus weekend due to different
traffic conditions, and biomass burning during the winter
months). Hourly T, H, WS, WD data were obtained
from NASA’s Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2)
(Bosilovich, Lucchesi, and Suarez 2016; Durre, Vose, and
Wuertz 2006; Gelaro et al. 2017; Mccarty et al. 2016;
MERRA-2 website 2022). We found wind direction to be
a reasonable proxy for wind trajectory at this location
(see Section S2 in the online supplementary information
(SI) for details). Solar radiation and precipitation data
were obtained from the European Center for Medium-
Range Weather Forecasts (ECMWF) Reanalysis 5th
Generation (ERA5) (Mu~noz-Sabater et al. 2021). RH and
cloud cover were obtained from the Indira Gandhi
International Airport (IGIA; 8 km from our site), with
the data retrieved from the Iowa Environmental Mesonet
(IEM) archive. Cloud cover data were obtained in the
METAR code format (Automated Surface Observing
System (ASOS)) 1998). We compared these cloud cover
data to those obtained from MODIS aboard the Aqua
and Terra satellites (using the algorithm from
Christiansen, Carlton, and Henderson 2020) as part of
our quality check and found that they compared rela-
tively well (the data matched well �80% of the times; see

Table 1. Predictor (input) variables used in the models.
S.No Predictor variable Shortform

1 Ambient Temperature T
2 Relative Humidity RH
3 Planetary Boundary Layer Height H
4 Wind Speed WS
5 Wind Direction WD
6 Precipitation Precip.
7 Solar Radiation SR
8 Cloud Cover CC
9 Fire Counts Fire
10 Hour of the Day HOD
11 Day of the Week DOW
12 Month of the year MOY
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Section S1 in the SI for details on cloud data compari-
son). We used the airport cloud data instead of the
MODIS cloud data for our analysis because (1) airport
data are available at a higher (�1h) resolution while
MODIS overpasses occur once a day and (2) airport data
are in “oktas” (Oktas 2022), so they include details on
the extent of cloud cover while MODIS data are extracted
as “clear” or “cloudy” day flags.

The factors were selected to account for the variability
induced due to meteorology as well as certain emission
sources (as proxies). The models do not directly account
for secondary formation, although parameters such as
solar radiation serve as proxies for photochemistry which
leads to the formation of secondary pollutants. While
deterministic models such as chemical transport modeling
can account for the formation of secondary pollutants,
they are parameter rich and computationally intensive.
Machine learning models provide the simplicity of fewer
parameters and better computational efficiency relative to
such models (see Section 1). Despite fewer parameters,
they can be a powerful means to understand and estimate
air quality if trained with enough data (Yang et al. 2021).

Model: Random-forest regression was used to pre-
dict NR-PM1 (hereafter referred to as PM1) and its
constituents by using the predictor variables described
above. The python package, scikit-learn (Pedregosa
et al. 2011) was used for the analysis. Random forest
regression is a decision tree-based modeling approach
where multiple decision trees are generated in parallel
by using boot-strapped training data and splits in
each decision tree are made along the ‘best’ of a sub-
set of randomly chosen parameters (Breiman 2001).
The splits are performed one at a time and they div-
ide the predictor feature space into multiple regions.
The predicted value of the estimator variable (PM1

and its constituents in our case) in a region is its
average value in that region. The ‘best’ split is the one
that minimizes the residual sum of squares (RSS,
Equation (1))

RSS ¼
Xn

j¼1

X
i:xieRj

ðyi � ŷRj
Þ2 (1)

Here yi is the true value of the estimator variable for
predictor variables (xiÞ belonging to region j and ŷRj

is
its average value in region j. The final prediction is the
average of all predictions made by the multiple decision
trees.

The advantages of random forest regression include
that it generates de-correlated trees (Breiman 2001)
since the subset features for splitting are chosen at
random. Further, the use of multiple trees ensures
that it can handle a high number of predictor

variables without the risk of overfitting. This is also
one of the reasons that it is often referred to as a
“parameter rich” model, although technically it is
non-parametric (i.e., makes no assumptions about the
type of mapping function). Furthermore, unlike other
parameter rich machine learning models (such as arti-
ficial neural networks and deep learning), it offers the
opportunity to measure feature importance and rank-
ing (Breiman 2001; Rosina et al. 2020). We used
recursive feature elimination (RFE) and 5-fold cross
validation to determine feature ranking by using R2

scores. As the name suggests, the goal of RFE is to
select features (or factors) by recursively considering
smaller sets of features. The importance of each fea-
ture is determined by the variance explained by them.
The least important features are “pruned” from the
current set of features until the desired number of fea-
tures are reached (Pedregosa et al. 2011). Further,
since bootstrapped training data are used in the mod-
els, the unused/unseen data can be used to simultan-
eously test the models. These unseen data are called
the out-of-bag (OOB) data, the scores associated with
them are called the OOB scores and the predictions
associated with them are called the OOB predictions.
We used the OOB scores to test the models and to
tune the hyper parameters, namely the depth of trees
and the number of trees. The ‘depth’ of a node is the
number of edges from that node to the tree’s root
node. The depth of the tree is the depth of its deepest
leaf node. The number of trees correspond to the trees
used for estimating the averaged prediction.
Increasing the number of trees may increase the vari-
ance explained but it also increases the computational
cost, and after a certain number of trees the increase
in variance is negligible. Increasing the depth of trees
also increases model variance but the increase is insig-
nificant beyond a certain point. We tuned the number
and depth of trees such that further increase in any of
these parameters yielded negligible further increase in
the OOB score (see Figures S6–11 in the SI).

The COVID-19 pandemic led to large variations in
urban air quality in different parts of the world
(Chauhan and Singh 2020; Gautam 2020; Kumar et al.
2020; Kumar 2020; Mahato, Pal, and Ghosh 2020;
Manchanda et al. 2021; Sharma, Jain, and Lamba
2020) In Delhi, the COVID-19 lockdown restrictions
in 2020 were implemented in 4 phases, starting Mar
25th and continuing until the end of May (see Figures
S12 and 13 in the SI for details lockdown restrictions).
We used the model predictions during the lockdown
period as the expected concentrations under business-
as-usual conditions (if the lockdown did not happen)
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because they are trained to estimate concentrations
under typical conditions. Next, we used the “% differ-
ence” of observed concentrations relative to predicted
concentrations (during the lockdown period) to quan-
tify the influence of the lockdown restrictions. Finally,
we compared this to our previous methodology (Patel
et al. 2021b) of using “% difference” of observed con-
centrations relative to historical concentrations (dur-
ing the same period as the lockdown) to quantify the
influence of the lockdowns (see Section 3.4).

3. Results and discussion

3.1. Temporal trends

As shown in Figure 1, the temporal trends of the con-
centrations of PM1 and its constituents have been
consistent over the last few years – with higher con-
centrations during autumn, winter and lower

concentrations during spring, summer and monsoon.
Chloride (Chl) and sulfate (SO4) concentrations are
more variable than others, especially in Jan/Feb (win-
ter), which could partly be due to a more diverse source
mix, such as industrial emissions, trash burning, etc., at
that time of the year. Figure S14 in the SI shows the
trends of PM2.5 concentrations recorded at the nearest
monitoring station that is operated by the Delhi
Pollution Control Committee (DPCC), R.K. Puram
(3 km away). The trends in PM2.5 are comparable to
those observed in PM1 recorded at our site – there is
an increase in the concentrations during the colder
months (autumn and winter), and a decrease in con-
centrations during the warmer months. Further, there is
no consistent decrease in concentrations over the years,
similar to the PM1 trends. Figure S15 shows the trends
of select meteorological variables including temperature,
planetary boundary layer height and relative humidity
over the last few years. Their trends have also been

Figure 1. Bi-weekly moving averages of PM1 and its constituents from Jan 2017 to Feb 2020. The seasons are categorized as win-
ter (“Win.”, December to mid-February), spring (“Spr.”, mid-February to March), summer (“Sum.”, April to June), monsoon (“Mon”,
July to mid-September) and autumn (“Aut.”, mid-September to November).
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consistent across these years. Meteorology affects PM1

concentrations and composition; for example, tempera-
ture influences PM1 concentrations through gas-particle
partitioning and thermodynamics, relative humidity
affects concentrations by governing available absorbing
mass and aqueous phase chemistry, and planetary
boundary layer height affects PM1 concentrations
through vertical mixing and dilution. Thus, by using
machine learning modeling, in Section 3.2, we investi-
gate whether meteorology and select emission proxies

can explain the variability of PM1 and its constituents
at the Delhi Aerosol Supersite.

3.2. Machine learning modeling

The model performance for each of the variables is
shown in Figure 2 (scatter plot) and Figure S16 (Root
Mean Squared Error, RMSE, in the SI). Overall, the ran-
dom forest models are able to capture over 70% of the
variance in all species (R2 > 0.7) indicating that

Figure 2. Predicted (OOB) vs observed concentrations of PM1 and its constituents, colored based on density of points based on
binned data. P90 line shows the 90% percentile points based on the observed data.
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meteorology and emission proxies are sufficient to cap-
ture most of their variability. The explained variance is
highest for PM1 (0.84), organics (Org; 0.84) and nitrate
(NO3; 0.84), followed by ammonium (NH4; 0.81), chlor-
ide (Chl; 0.75) and sulfate (SO4; 0.73), suggesting that the
concentrations of chloride and sulfate are influenced by a
greater number of factors and are thus more variable
than the other species (Figure 3), consistent with their
temporal trends in Figure 1.

The concentrations of all the species are underesti-
mated at higher concentrations (at values usually
greater than P90; Figure 2). Previous studies that have
reported an underestimation at higher concentrations
have noted that random forest-based models tend to
have higher biases in predicting larger values due to
fewer number of data samples available at higher con-
centrations, which is also seen through less dense data
points at higher concentrations in Figure 2 (Arlot and
Lerasle 2014; Bengio and Grandvalet 2004; Yang et al.
2021). Underprediction at higher concentrations could
also be due to emissions during the episodic events
not being fully captured by the models. For example,
festivals such as Diwali and Lohri which are usually
associated with high air pollution are not accounted
for by the model. Further, emissions from the unregu-
lated brick kiln industry can be sporadic and thus

cannot be fully accounted for by the temporal proxies
(Misra et al. 2020). Although the RMSE values are
higher for autumn and winter (Figure S16 in the SI),
the normalized RMSE values (Figure S17) are within
0.2–0.4 for most species (other than Chl) across all
seasons. The values are higher during the summer for
NH4, SO4 and NO3, indicating that the unexplained
variance is somewhat higher relative to mean concen-
trations in summer for these species. This points to
the role of factors such as increased photochemistry
and other reaction pathways (e.g., the formation of
organonitrates and organosulfates) which are not dir-
ectly accounted for by the models. The high NRMSE
values of Chl may be due to low mean concentrations
and highly variable data, consistent with the density
scatter plot (Figure 2). Nevertheless, these models are
able to capture the majority of the temporal variability
of PM1 and its species with the chosen features. In
the next section, we use the models to perform a sen-
sitivity analysis.

3.3. Influence of different parameters – sensitivity
analysis

A sensitivity analysis was performed to understand
the influence of different parameters on the variability

Figure 3. Sensitivity analysis for PM1. MOY ¼ 2, HOD ¼ 10 and DOW ¼1 for all the cases except h) Fire Counts where MOY was
set to 10 (Oct), when significant fires are experienced. Clouds in l) are labeled as NSC: No Significant clouds, FEW: FEW clouds
(<¼25% Coverage) and SCT Scattered clouds (<¼50% Coverage). See details on cloud coverage in section S1 of the SI.
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of PM1 and its constituents. This was achieved by
varying one parameter at a time while keeping the
other parameters constant, usually set as their overall
average, unless otherwise specified.

Figure 3 shows the sensitivity analysis for PM1, Figure
S18 in the SI shows the results obtained from recursive
feature elimination (described in Section 2) and Table S2
shows the feature ranking and importance for the differ-
ent models.

The top five features for PM1 (Table S2) are T, H,
fire counts, WD and MOY. These features can explain
around 80% of the variance in PM1 (Figure S18).
Recent studies in Los Angeles, U.S. (Yang et al. 2021)
and Beijing, China (Su et al. 2020) also found H, RH,
T and WD to be amongst the top factors for random
forest regression models predicting PM2.5, indicating
that meteorology is consistently important in govern-
ing PM variability across different cities around the
world. Figure 3 is generally consistent with feature
ranking shown in Table S2 (which includes features
listed in the order of their importance in the model;
details shown in Section 2). For example, there is
noticeable variability with T, H, MOY, and Fires,
which are amongst its top ranked features. However,
it does not encompass the total variability; for
example, Figure 3e shows the variability with WD but
the pattern is valid for MOY ¼ 2, HOD ¼ 10 and
DOW ¼1 only. Thus, it is essentially a 2-dimensional
visualization of a complex multi-dimensional variance
problem. Nevertheless, it provides interesting insights
– the decrease in PM1 with wind speed (Figure 3d)
indicates wind speed plays an important role in pro-
viding ventilation. While we had previously demon-
strated some effect of ventilation provided by wind
(Bhandari et al. 2020), this analysis presented here
allows us to separate out the effect of other parame-
ters. Solar radiation, which is expected to promote
formation of secondary PM, was not found to be very
important for PM1 variability (Figure 3f and Table
S2). This could in part be due to covariance with
other features such as temperature. For example,
higher radiation may be associated with higher tem-
peratures which can lead to some evaporation of PM.
In some other studies, ozone was included as a pre-
dictor variable as a proxy for secondary PM formation
in the model. For example, Yang et al. 2021 found
that including ozone increased model R2 from 0.53 to
0.65. We did not include ozone in our models because
it was not measured at our site.

Although there is some variability with HOD
(Figure 3i), HOD ranks low (11th) in feature ranking,
indicating that after accounting for the influence of

meteorological parameters varying through the day,
PM1 does not vary significantly with HOD. This could
be because PM1 includes primary (PA) and secondary
aerosol (SA) where one of these species complements
the other in the diurnal cycle – e.g., primary emis-
sions usually occur during the morning and evening
hours (traffic, biomass burning, etc.), while secondary
formation is during the daytime, when gas phase pre-
cursors are oxidized in the presence of sunlight to
form low volatility products which partition to the
particle phase. If primary emissions were more
important than secondary formation, we would see a
larger peak during traffic hours and a higher feature
importance for HOD. This suggests that the fraction
of secondary aerosol is comparable to primary aerosol
in Delhi, which is consistent with our previous analy-
ses: we have shown that even though both PA and SA
reduced during the COVID-19 lockdowns in 2020, the
ratio of PA/SA did not decrease, and SA continued to
dominate (Patel et al. 2021b). We also found that
while primary aerosol dominated during high pollu-
tion episodes, on average, secondary aerosol was the
dominant contributor to PM1 in Delhi (Bhandari
et al. 2020; Patel et al. 2021a). Thus, our current ana-
lysis provides additional evidence for the importance
of secondary as well as primary aerosol in Delhi.

DOW does not impact PM1 variability (Figure 3j),
indicating that weekdays versus weekends do not sig-
nificantly impact PM1 concentrations. The variability
with MOY (Figure 3k and rank 5 in Table S2 in the
SI) suggests that even if all the other factors including
meteorology were constant across the year, there
would still be increased concentrations during the
winter months (e.g., December), pointing to increased
emissions such as domestic biomass burning during
those months. Reducing these season specific emissions
will help reduce the PM1 concentrations by � 60%
(�150lg/m3 in winter months versus �60lg/m3 in
summer months, when normalized for meteorology).
This analysis demonstrates that while meteorology plays
an important role in contributing to high concentra-
tions in Delhi during winter, increased sources also
contribute significantly to pollution events.

PM1 and cloud cover (Figure 3l) are anti-correlated
to each other. This could potentially be due to aero-
sol-cloud interactions where studies have shown that
biomass burning aerosol might have a negative influ-
ence on the cloud cover (Feingold, Jiang, and
Harrington 2005; NASA SC11 2011). This has been
hypothesized to be due to the semi-direct aerosol
effect on clouds where certain aerosols absorb sunlight
and warm the atmosphere relative to ground/surface
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temperature. This “heating” reduces the cloud fraction
by accelerating the process of evaporation of existing
clouds and by reducing the upward movement of
moisture needed to form clouds (Hansen, Sato, and
Ruedy 1997). Such suppression of clouds from bio-
mass burning aerosol has also been observed in the
biomass burning regions of Brazil (Koren et al. 2004).
Consistently high combustion and biomass burning
aerosol in Delhi (Bhandari et al. 2022; Patel et al.
2021a; Patel et al. 2021b) could partly explain this
observation. Another explanation for this observation
could be the covariance of cloud cover and tempera-
ture because we observed that certain cloudy periods
were associated with warmer temperatures (Figure S19
in the SI). This is consistent with the radiation effects
of clouds, if larger cloud cover is observed during
nighttime (International Satellite Cloud Climatology
Project (ISCCP) 2010; UIUC: The Weather World
Project 2010). Indeed, we observed that nighttime
temperatures during SCT periods (corresponding to
relatively high cloud fraction) were higher in many
seasons (Figure S20).

To our knowledge, this is the first analysis to study
the anti-correlation between cloud cover and PM1

concentrations recorded through ground-based meas-
urements in a polluted city in South Asia. Our results
are different from previous studies performed in
regions with much lower concentrations. For example,
Christopher and Gupta 2010 found that PM2.5 con-
centrations in the continental U.S. were not correlated
to cloud cover (i.e., they found no significant differen-
ces in PM2.5 concentrations on clear versus cloudy
days). More recently, Christiansen, Carlton, and
Henderson 2020 found that while the PM2.5 concen-
trations in the continental U.S. during clear sky condi-
tions were statistically higher than cloudy sky
conditions, the trends of PM2.5 constituents were dif-
ferent – nitrate concentrations were consistently
higher during cloudy periods and sulfate concentra-
tions were higher during cloudy periods in winter
months. The differences in the observations between
U.S. and a polluted region in South Asia are likely
driven by differences in PM composition, loadings,
and the underlying meteorology. We recognize that
the anti-correlation of fraction of cloud cover and
PM1 may be due to reasons other than aerosol-cloud
interactions. In this study, our analysis was limited by
PM1 data collected at a single site and cloud cover
data collected at the Indira Gandhi International
Airport (IGIA; 8 km from our site). We encourage
future studies to investigate this in detail to further

understand the impact of cloud cover on air pollution
in the region.

The sensitivity analyses for the constituents of PM1

are presented in Figures S21–25 in the SI. The top
five features of organics (T, H, WD, Fires, MOY)
explain around 80% of its variance (Figure S18 and
Table S2). Similar to PM1, Org does not vary signifi-
cantly with HOD (Figure S21), due to the reasons
mentioned above. We wanted to understand how the
variability of Org with T compared with other studies
that have looked at this effect, which is assumed to be
mainly due to the semi-volatile nature of Org. In
Figure S26, we normalized the mean predicted organic
aerosol (OA) concentrations by the highest mean con-
centration (obtained for lowest temperature, �65 lg/
m3 Figure S21) and used the curve as a proxy for
mass fraction remaining of OA as a function of tem-
perature (otherwise obtained from thermodenuder
measurements) (An et al. 2007; Faulhaber et al. 2009;
Louvaris et al. 2017). We compared this with the
results of Grieshop et al. 2009, who developed these
curves for fresh and aged biomass burning plumes
using thermodenuder measurements. The OA loadings
used in their study (40–90 lg/m3) were comparable to
those measured here. The resulting curve lies in
between the fresh and aged OA curves, consistent
with the influence of primary (proxy for fresh) and
secondary (proxy for aged) OA on OA in Delhi. This
analysis shows a proof-of-concept method which may
be used to gather insights about OA volatility where
thermodenuder measurements are not available.

T, WD, Fires are amongst the top features for
chloride (Figure S22 and Table S2 in the SI). The
importance of T and the drop to near zero concentra-
tions at higher temperatures is consistent with the
volatile nature of ammonium chloride (Salcedo et al.
2006). The importance of the NW wind direction
(Table S2 and Figure S22) is consistent with our pre-
vious hypothesis, based on a smaller dataset, of the
influence of industrial emissions (e.g., hydrochloric
acid released from steel pickling in the NW region)
on chloride in Delhi (Gani et al. 2019). The import-
ance of Fires is consistent with our previous hypoth-
esis of the influence of regional agricultural fires on
chloride in Delhi (Bhandari et al. 2020; Gani et al.
2019; Gani et al. 2020; Patel et al. 2021a; Patel et al.
2021b). The morning peak in the variability with
HOD (Figure S22) suggests the influence of emissions
released during that period (6–8 AM). One potential
source could be trash burning because it usually
occurs during the morning (colder) hours, especially
during the colder months (Bhandari et al. 2020).
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Similar to chloride, nitrate is also most influenced by
temperature, consistent with the volatile nature of
ammonium nitrate (Table S2 and Figure S24).
Further, MOY is ranked third in terms of feature
importance for nitrate, highest amongst all species
(Table S2). This suggests increased sources and proc-
esses during certain months of the year, such as bio-
mass burning, contributing to high nitrate
concentrations. Another reason could be that factors
such as WD are more important for chloride (because
of industrial emissions from NW as mentioned above)
and not as important for nitrate, thus pushing WD
below MOY for nitrate.

The top four features for sulfate are T, WD, RH
and WS respectively (Table S2 and Figure S23 in the
SI). The importance of wind is likely because of the
influence of power plants located outside the city
(Jain and Sharma 2020). This is consistent with the
longer atmospheric lifetime and long-range transport
of sulfate relative to the other species (Kallos et al.
2007; Seinfeld and Pandis 2006). The importance of
RH is consistent with aqueous phase chemistry influ-
encing ammonium sulfate formation at higher RH
(Bhandari et al. 2020; Jaiprakash et al. 2017; Wang
et al. 2016). Like sulfate, ammonium also has RH in
the top 5 features (Table S2 and Figure S25). The
importance of temperature for sulfate is surprising
(Table S2), because sulfuric acid (which is neutralized
by ammonia to form particulate ammonium sulfate),
has low volatility and remains in aerosol/particle
phase even at higher temperatures (Patel et al. 2020;
Seinfeld and Pandis 2006). Some explanations for the
importance of T for sulfate could be (a) correlation
between temperature and solar radiation resulting in
higher oxidizing capacity at higher temperature, which
would lead to increased oxidation of sulfur dioxide
(SO2) to sulfuric acid or (b) the increased demand
(and therefore generation) for electricity at higher
temperatures which would lead to higher SO2 emis-
sions. The latter hypothesis is supported by our obser-
vations during the COVID-19 lockdowns in 2020
where we noted reduced sulfate concentrations, which
were correlated to reduced electricity generation dur-
ing the period (see Section 3.4. and Andrew 2020;
Patel et al. 2021b).

The sensitivity analysis with RF predictions pro-
vides interesting insights into the influence of pre-
dictor variables on PM1 concentrations. However,
because the models are trained on real world data
where the input variables are codependent, this
approach cannot fully capture the impact of individual
predictor variables on the predictions. We encourage

future studies to use newly emerging techniques such
as “explainable machine learning” (Hou et al. 2022)
which may be able to better account for codependency
among variables and provide more robust insights
into the impact of individual variables on the predic-
tions for such data sets.

3.4. Inferring the influence of the COVID-19
lockdown from the model

The COVID-19 lockdowns in India were implemented
in four phases – Phase 1 (25 March to 14 April), 2
(15 April to 3 May), 3 (4–17 May), and 4 (18–31
May), with restrictions easing with time (summary of
restrictions shown in Figures S12 and S13 in the SI)
(Patel et al. 2021b). Figure 4 compares the influence
of COVID-19 lockdown on the air quality in Delhi
quantified using two approaches – (1) using the
model predictions with the input features from the
lockdown period as expected concentrations (under
business-as-usual conditions if the lockdown did not
happen) and computing the “% difference” between
observed and expected concentrations as the influence
of the lockdown restrictions and (2) using the average
historical (2017–2019) concentrations as proxy for
expected concentrations (under business-as-usual con-
ditions without the lockdown) and computing the “%
difference” between observed and historical concentra-
tions (Patel et al. 2021b). While the models may not
be able to completely capture the trends as expected
under “business-as-usual” conditions, the model pre-
dictions would still be a better estimate than using
historical trends as proxy for “business-as-usual con-
ditions.” To test our hypothesis, we trained the model
using the data from Jan 2017 – Dec 2019. Figure S27
compares the diurnal trends for (1) observed concen-
trations in Jan 2020, (2) model predictions in Jan
2020 and, (3) historical averages for Jan 2017, 2018,
and 2019. As shown in Figure S27, the model predic-
tions capture the trends better than historical
averages.

As shown in Figure 4, there are general agreements
between the two approaches, such as greater differen-
ces during Phase 1 (P1), especially for PM1, Org, and
nitrate. During Phase 1, activities such as transporta-
tion and construction were severely restricted, and
several factories and businesses were shut down,
which explain reduction in these species. The reduc-
tion in nitrate was lower than the reduction in NOx

(which observed a “% difference” less than �100%;
see comparison with NOx in Patel et al. 2021b), sug-
gesting complex nitrate chemistry in Delhi. “%
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difference” relative to the model was lower even
before the lockdown for most species (Figure 4), sug-
gesting lower activity (and therefore emissions) than
expected before the lockdown. This is consistent with
the mobility trends observed during the period, which
showed reduced mobility even before the lockdown
(Patel et al. 2021b). The trends in sulfate were similar
during P1 and P2 for the two approaches suggesting
reduced emissions during the period. These trends are
also consistent with the reduced electricity generation
during this period (Patel et al. 2021b).

While there are similarities between the trends gen-
erated using the two methods, there are also notable
differences. For example, higher concentrations rela-
tive to historical concentrations were observed during
Phase 3 (P3) for most species (Figure 4). However,
these concentrations were explained by the model.
Thus, while these observations were “atypical” relative
to what had been observed historically (2017–2019),
they were within the expected concentrations based
on meteorology and emission proxies. This demon-
strates the advantage of quantifying the influence of
atypical events using the model predictions, mainly
because the models can account for the influence of
changing meteorology and certain emission proxies.
In this case, the increased concentrations were likely
due to NW winds and agricultural fires observed dur-
ing the period. Interestingly, the increase in nitrate
concentrations was not captured by model predictions
in P3 (Figure 4d), indicating the influence of other
factors such as additional formation pathways (e.g.,

organic nitrate) not accounted for by the model.
Nevertheless, this analysis shows that the influence of
atypical events may be quantified by random forest
model predictions, given there is enough data avail-
able to train these models.

4. Conclusions

In summary, we used over three years of PM1 data
measured as part of the Delhi Aerosol Supersite study
to build machine learning models using random forest
regression to estimate PM1 and its constituents by
using meteorological parameters and emission proxies.
Overall, parameters such as T, H, WD, RH, MOY and
fire counts can capture the majority of variability in
PM1 and its constituent concentrations, indicating the
importance of meteorology (specifically T, H, WD),
agricultural burning (fire counts) and season-specific
sources (e.g., domestic biomass burning) in governing
the temporal variability of PM1 constituent
concentrations.

We used sensitivity analysis and feature ranking to
understand the influence of individual factors and
demonstrate that emission sources in winter months
play an important role in contributing to high PM1

concentrations. We also show that cloud cover and
PM1 concentrations are anti-correlated. It may be
partly due to the semi-direct aerosol effect on clouds
and co-variance of cloudy periods with higher temper-
atures. We encourage future studies to investigate
aerosol-cloud interactions and their influence on air

Figure 4. Comparison of percentage difference of observed concentrations relative to predicted (model) concentrations versus
observed concentrations relative to historical concentrations (2017–2019) for (1) PM1, (b) Org, (c) NH4, (d) NO3, (e) SO4, and (f) Chl.
Data shown for weekly median concentrations. P1–P4 are the four phases of the lockdown. Lockdown restrictions were the strict-
est during P1 and P2.
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pollution in polluted cities. Through the variability of
PM1 with HOD and Org with T, we demonstrate the
importance of secondary aerosol in Delhi. Further,
our analysis is consistent with the influence of various
emission sources on chloride, including industrial
emissions from the NW, agricultural burning emis-
sions and trash burning. Our results are also consist-
ent with the influence of power plants and aqueous
phase chemistry on sulfate concentrations. These anal-
yses re-iterate the need for multi-sectoral and multi-
regional policies to tackle air pollution in Delhi.
Further, we utilized the predictive capability of the
models to quantify the influence of the COVID-19
lockdown in 2020 on the air quality and demonstrated
that the advantage of using this method over historical
concentrations is that it can account for changing
meteorology and certain emission sources. Overall,
our analysis provides robust and detailed insights into
the factors influencing PM1 in Delhi and shows the
applicability of machine learning methods in atmos-
pheric science applications.
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