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A B S T R A C T

This work addresses the challenges of acquiring additive manufacturing data, given the complexities and design
possibilities of such structures. Researchers in additive manufacturing struggle with scarcity and unsuitability of
2D datasets which pose further difficulties. To overcome these concerns, this research presents an application,
AddLat2D, for generating 2D lattice structure datasets tailored to user specifications. Building upon a previous
version of the application (Baldwin et al., 2023, 2022), this work highlights our development and usage of
AddLat2D to generate datasets that have custom image size and pixel intensity values.
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1. Introduction

Data collection for additive manufacturing applications is often dif-
ficult to achieve due to the inherent complexity and size of the possible
structures [1]. Additive manufacturing provides extreme manufactur-
ing flexibility, which enables countless possibilities for creating struc-
tures that can be classified as lattices [2,3]. Concurrently, to develop
effective machine learning algorithms, it is often important to have a
carefully curated and large dataset, especially when applying them to
additive manufacturing tasks [4]. Therefore, it is appealing to generate
synthetic data to mimic the lattice structures used when developing
machine learning solutions for additive manufacturing applications.

Recent research has explored various tools specifically designed to
develop diverse shape and property spaces of unit cells for additive
manufacturing [5,6]. However, broader machine learning applications
require datasets to have a specific data size and labeled data points [4].

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
< Corresponding author.
E-mail address: ccm@cmu.edu (C. McComb).

To address these concerns, we have developed dataset generation soft-
ware specifically tailored to create a strut-based 2D unit lattice cell
dataset, allowing customization of data size and pixel intensity. This
software builds upon previous works that necessitated data gener-
ation [7,8]. The software, referred to as AddLat2D [9,10], enables
the generation of a CSV file containing a dataset of 2D shapes, with
options to modify the data format according to user preferences. The
primary objective of this software is to provide users with access to
customizable data that aligns with their specific needs. Moreover, the
resulting datasets encompass labels for all the data points, fostering
their utilization in machine learning applications.

2. Software description

The purpose of AddLat2D [9,10] is to create a dataset of 2D lattice
cells based on a specified image size and list of density values. Where
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Fig. 1. Main strut types.

Fig. 2. Hugging Face: Image size selection slider.

Fig. 3. Hugging Face: Density values selection slider.

the image size defines the pixel width and height of each image, and
the density values define the pixel intensity of each activated pixel
in the unit cell. The final output is a CSV file with columns contain-
ing the arrays of the images, the ‘Density’ value, and the respective
‘Thickness’ values that define the shape, and a visualization of the
data distribution. This section will outline the possible methods for
accomplishing this data generation, using a Python script or a Hugging
Face application.

2.1. Python script

This section outlines the main functions that exist within the back-
end Python script for this software [9]. The Python script is comprised
of two key components for data generation: the data generation func-
tion and the piecewise functions that define the main shapes present
in the dataset (see Fig. 1). These piecewise functions consist of the
mathematical representations of individual line components seen in
Fig. 1, which constitute the building blocks of the dataset. Finally, the
data generation function is created by systematically combining the
piecewise functions.

During the data generation process, the data generation function
operates by cycling through each of the piecewise functions. For each
piecewise function, the ‘Thickness’ and ‘Density’ parameters are ap-
plied, allowing customization of the strut’s thickness and density at-
tributes. This iterative process creates a factorial dataset, as it contains
all combinations of shapes. This approach provides flexibility in defin-
ing the characteristics of the dataset, enabling users to tailor the
generated data to suit their specific research needs. To begin the data
generation process, the user must provide the image size and a list of
density values to the function. The function will then output the CSV
file as described previously.

One notable advantage of the script’s design is its flexibility in
incorporating additional shapes. Users can easily define new shapes
they wish to include by adding them to the set of piecewise functions.
Subsequently, the data generation function must be modified to incor-
porate the newly defined shape. This intentional design choice enables
users to expand the applicability of the software when developing

datasets, granting them the freedom to include a diverse range of
custom shapes according to their research requirements.

Once the dataset has been generated, the user can choose to apply
a t-distributed neighbor embedding function on the dataset to create a
visualization of the distribution of the dataset. An example of how to
execute this is incorporated in the code, but it is not a feature this work
focused on exclusively.

The Python script implementation facilitates the development of
datasets encompassing various strut-based shapes, while also allowing
users to extend its functionality by incorporating their own shapes. This
feature broadens the script’s potential for application among different
users, enabling them to create datasets that suit their specific research
needs and contribute to the advancement of their respective fields.

2.2. Hugging Face application

To enhance accessibility for users who may not be familiar with
Python, a user-friendly graphical user interface has been developed
using Hugging Face, expanding the software’s availability to a broader
audience of researchers and practitioners1 [10]. This section outlines
how to utilize this software for future research. To begin the data
generation process, the user should select the image size using the slider
bar (see Fig. 2). The image size defines the height and width of the
data points generated and has a maximum value of 16 to prevent the
application from exceeding its computational restrictions on Hugging
Face.

Next the user should determine the number of density values they
would like their dataset to include for the pixel intensity of the acti-
vated data points (see Fig. 3). These values are equally spaced from 0
(exclusive) to 1 (inclusive).

To visualize the current types of data being produced, the user can
test the ‘Generate Samples’ button (see Fig. 4). This feature should assist
users to better understand how the various settings affect their data.
For example, the values for density are displayed above the figures in
Fig. 4, which emphasizes that 0 is not included in the dataset.

1 This tool can be found at https://huggingface.co/spaces/cmudrc/
AddLat2D.
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Fig. 4. Hugging Face: Sample figures.

Fig. 5. Hugging Face: ‘Generate Dataset’ button.

If the user is satisfied with the type of data generated, then they can
begin the data generation process by selecting ‘Generate Dataset’ (see
Fig. 5).

The application will display two figures after the dataset is gen-
erated (see Figs. 6 and 9). See the section ‘Data Produced’ below for
further discussion on the resulting figures. Following the generation
of the data, the option to download the data is available (see Fig. 6),
which will automatically download a CSV file of the entire generated
dataset.

The implementation using Hugging Face will enable users with a
variety of coding experiences and backgrounds to generate data for
various needs. Additionally, using a web-based platform to support the
software ensures compatibility on a variety of devices. This application

has already eased the data generation process for prior works that
utilized similar data generation techniques [7,8].

2.3. Data produced

This section will outline how to interpret the data produced, re-
gardless of whether the user chooses to use the Python script or the
Hugging Face application. The result is a dataset with 6 labels, and a
visualization of the data using a t-distributed neighbor embedding.

As discussed, the output of the script and software is a CSV file
containing data points with 6 labels (see Figs. 6 and 7). The labels in
Fig. 7 are further explained by Table 1, but is also discussed in this
section. The ‘Array’ is a combination of all the strut types (see Fig. 1)
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Fig. 6. Hugging Face: Sample of generated data and the ‘Download Dataset’ button.

Fig. 7. Sample of raw data.

Fig. 8. Sample shape with possible thickness (top) and density (bottom) variations.

that are defined using a combination of ‘Density’ and ‘Thickness’, this is
the set of unique data ponts generated by the application. The ‘Density’
represents the value of each activated pixel in the base structure, which
the user can define as a list of values between (0,1] (see Fig. 8). The
‘Thickness’ describes the number of pixel layers in the existing base
structure (see Fig. 8). Fig. 8 displays the arrays as the ‘Thickness’ of
the forward slash strut and the basic box have equal thickness values
in each step. A ‘Thickness’ of 0 represents the lack of that strut, and 1
represents a single pixel thickness which is displayed in the set of base
images (see Fig. 1).

After generating the dataset, users can gain insights into the dis-
tribution of the data by utilizing the data plotting code. This code

enables quick visualization of the generated dataset by employing t-
distributed neighbor embedding, a dimensionality reduction technique
that projects the data into two dimensions. By visualizing the data in
this reduced dimensionality space, users can better grasp the diversity
and patterns within the dataset. The resulting plot provides a visual
representation where each image in the dataset is depicted as a point,
color-coded based on its average pixel intensity. By observing the
distribution of points and their corresponding color patterns, users can
gain valuable insights into the characteristics and variations present in
the dataset (see Fig. 9). This visual exploration aids in data analysis
and supports decision-making processes when generating subsequent
datasets or designing downstream tasks and experiments.

4
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Table 1
Description of data.
Array Density Basic box thickness Forward slash strut

thickness
Back slash strut
thickness

Vertical strut
thickness

Horizontal strut
thickness

Square arrays Positive real number

The other variables
serve to define the
parameters of the
output of this array.

The values of the
activated pixels in
the array, ranged
from (0,1].

Integer values that define the thickness of the shape, where 1 is the example value shown above.

Example: 1.0 1 0 0 0 0

Fig. 9. Example of a T-distributed Neighbor Embedding applied to data.

In summary, the software provides users with the capability to
generate a customizable dataset of 2D lattice cells. Users can define
various parameters, such as image size and density, to create a unique
dataset of strut-based shapes. Additionally, the software offers func-
tionality to analyze the distribution of the generated data through
visualization techniques, employing t-distributed neighbor embedding
for dimensionality reduction and visual representation.

3. Impact overview

This research presents a data generation software, AddLat2D, for
creating 2D lattice structure datasets tailored to user specifications. By
using our software, users can develop a multitude of related datasets
by changing only two data parameters. The datasets generated by this
software have been utilized in previous work by the authors [7,8] and
hold potential value for use by others.

3.1. Impact of AddLat2D on current multi-lattice research

The software was designed as a secondary objective to prior re-
search in design for additive manufacturing. The authors used a subset
of a generated dataset to explore the potential for using variational

autoencoders for developing multi-lattice structures [7,8]. The work
ultimately proved as motivation to use variational autoencoders for de-
veloping multi-lattice transition regions. Additionally, the work proved
the presence of potential relationships that exist between geometric
smoothness and latent space properties.

3.2. Potential impact of AddLat2D

The software has significant potential to provide flexible datasets
for use in machine learning research for additive manufacturing. There
is value in being able to generate synthetic data of various sizes
and characteristics. For instance, the combination of multiple related
simple datasets can be useful for model development and debugging,
benchmarking [4], proof of concept development [11], and assessment
of overfitting. Additionally, other similar datasets have been used in
feature selection [12] and classification algorithms, which demonstrate
possibilities for future work.

Model development and debugging is one of the most time-con-
suming parts of machine learning applications. Using a simple dataset
allows researchers to decrease computation time needed to test the
architecture of their model by using scaled data. When thousands of
operations are being performed on data, it is important to ensure that
the code is optimized effectively. This was evident in our previous
work, given the small sample size to prove our model architecture
was efficient [7,8]. During the development of our model, having a
smaller dataset enabled shorter training times in order to optimize
the model architecture. Given that the dataset can be modified in size
without significant changes to the data, the datasets generated could
be extremely useful for model development.

Benchmarking is a widely accepted practice in the field of computer
science, which involves the systematic evaluation and comparison of
algorithms, models, or systems using standardized datasets and met-
rics [13]. For datasets to be effective for benchmarking, they need to
contain a subset of the global data domains [4] The dataset generated
from this software, with its simplicity and focus on 2D strut shapes
within lattice structures, offers an ideal platform for benchmarking
studies. Researchers can leverage this dataset to evaluate and compare
different algorithms, enabling objective and evidence-based decisions
on algorithm selection and improvement strategies. Other binary image
datasets have proven extremely popular for benchmarking, including
MNIST [14] and Fashion-MNIST [15].

Testing the functionality of new algorithms requires an extremely
simple dataset that the user knows extremely well, to interpret the
results from the algorithm. For instance, Berthelot et al. used a dataset
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of lines to measure the quality of interpolations from their machine
learning model [11]. Using lines meant that they could measure the
change of the angles between each image to serve as the metric for the
machine learning model. Using a similar dataset generated from this
software, we determined the scale of data necessary to produce results
in prior work [7,8].

Feature selection algorithms could be applied to the dataset to
narrow down the important data points that affect training. Feature
selection is a process used in machine learning to remove redundant
and irrelevant data [16,17]. This allows potential machine learning
models to train faster using a smaller equivalent dataset. Since the
size of the data can be easily changed, it could be used to measure
the performance of the feature selection algorithms. A similar type
of dataset was used by Wang et al. to extract critical features from
microstructures [12]. Future work could use a smaller dataset to find
the optimal feature selection technique for binary image data.

Classification algorithms play a crucial role in identifying labels or
categories within a dataset based on specific input parameters [17,18].
The dataset’s simplicity and focused nature provide a solid founda-
tion for exploring classification algorithms across various domains.
Other similar datasets used for classification applications consist of
MNIST [14] and Fashion-MNIST [15], which both utilize of binary
images with sets of labels. With a minimum of 5 labels, the datasets
generated offer versatility for multi-label prediction tasks in different
research applications. By utilizing this software, researchers can ac-
celerate their classification-related research, enhance decision-making
processes, and contribute to advancements in their respective fields.

4. Limitations

While the software offers significant benefits, there are certain
limitations that warrant consideration for further improvement. Some
major areas we have noted include data generation diversity, compu-
tational efficiency, and data duplication.

Diverse datasets are important for some applications and these
needs may not be addressed solely using this software to generate data.
The possible arrays generated were restricted to strut-based shapes for
simplicity of development. To address this, future work could involve
incorporating additional shape types and employing data augmentation
techniques to expand the diversity of the data domain. Notably, for
applications in additive manufacturing, alternative approaches have
demonstrated advantages in terms of dataset diversity [5].

Computational efficiency is an important aspect of data generation
tools to avoid wasting resources. The code for generating the dataset
was not fully optimized, therefore, it may be time consuming to gener-
ate datasets with large image sizes and many density values. This had a
significant impact on the options available through the GUI on Hugging
Face. The Hugging Face application is limited due to the computational
restrictions imposed on users. Specifically, the size of the unit cells and
density options are restricted in the Hugging Face implementation of
the software, thereby limiting larger dataset generation to users with a
Python background.

Finally, the software inherently contains duplicates within the
dataset to ensure retention of all generated labels. While this dupli-
cation facilitates indexing of every unit cell, it can lead to overfitting
if substantial duplicate data is present. Nevertheless, the presence of
duplicates becomes necessary for indexing purposes, as some unit cells
may only be indexable through specific combinations of thickness
values.
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