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Abstract

Additive manufacturing is advantageous for producing lightweight components while addressing complex
design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation
of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct
lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell
topologies may cause stress concentrations, making the boundary between unit cell types a primary failure
point. Thus, these regions require careful design to ensure the overall functionality of the part. Although
computational design approaches have been proposed, smooth transition regions are still difficult to achieve,
especially between lattices of drastically different topologies. This work demonstrates and assesses a method for
using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that
contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of
transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the
number of transition intervals was not a sole predictor.

Keywords: lattice design, design for additive manufacturing (DfAM), machine learning, variational autoencoders

Introduction

Additive manufacturing (AM) is known for its ability to
produce lightweight components while addressing complex
design requirements. This ability has been bolstered by the
introduction of unit lattice cells, which enable designers to
significantly reduce the weight of a part while maintaining
necessary stiffness and required geometry.1,2 Proposed appli-
cations of lattices are often centered around lightweighting3,4

or improving the stiffness-to-weight ratios of a component.1

Lattices are also useful in impact reduction applications,5 such
as the crumple zones in vehicles1 or surgical implants that
experience variable loading.6,7 Graded lattices8–12 vary the
thickness of individual strut-based unit cells to accommodate
areas of high or low stress, introducing further design freedom
and outperforming the stiffness of uniform lattice structures of
comparable weight.9,10,12 Given the progressive deformation

properties of graded lattices,11 it is believed that they would be
more beneficial than uniform lattices in impact reduction ap-
plications.13 The introduction of multi-lattice structures, which
are structures composed of multiple types of unit cell topolo-
gies, introduces even more design freedom.6,14–17

Similar to graded lattice structures, multi-lattice structures
have higher strength and stiffness than uniform lattice
structures of comparable density.13,16 However, the transition
regions between lattice types in multi-lattice structures must
be carefully designed to avoid stress concentrations between
different unit cell topologies, since such concentrations are
detrimental to overall part strength.16 Unfortunately, de-
signing such complicated mechanical transition regions is
challenging for human designers.

To address this challenge, recent work has utilized machine
learning to rapidly design transition regions between unit
cells.18–20 However, there has been little quantitative
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assessment of the geometric smoothness of the resulting
transitions. In this work, we create a variational autoencoder
(VAE) system that can design transitions between different
unit lattice cells by interpolating in the latent space. Through
interpolation, transition regions can be produced with any
number of intervals between two end topologies, due to the
generative nature of a VAE latent space. Much like prior work,
this system can provide users with a new design opportunity
that could serve to expand the design methods available in
AM.21 To determine the effectiveness of VAEs for producing
transition regions, and in contrast to prior work, our primary
research questions address the unknowns about the effects of
dimensionality reduction with respect to lattice topologies:

(1) How does distance in the latent space effect the
smoothness of interpolations?

(2) How does the number of transition intervals affect the
smoothness of interpolations?

In response to the first research question, we hypothesize
that the smoothness of interpolations will decrease as dis-
tance in the latent space increases. This hypothesis is based
on the premise that the images should be less similar to one
another the farther apart they exist in the latent space, leading
to a greater disparity between images and a more challenging
interpolation. Our second hypothesis is that the smoothness
of interpolations will increase as the number of transition
intervals increases. This is based on the intuition that in-
creasing the number of transition intervals decreases the
distance between each step in the transition.

Background

Unit cells for design

This work examines periodic lattice structures, which are
created by repeating a unit cell. A uniform lattice structure
consists of one type of unit cell, where all the cells in the
structure have the same density and size.12 The properties of
each type of unit lattice are unique,1,4,5 making it important to
select the correct type of lattice for a design. A graded lattice
structure consists of one type of unit cell, but the cells in the
structure can vary in volume fraction.10 It has been proven that
functionally graded lattice structures can achieve higher
stiffness than uniform lattices,9,10,12 taking advantage of a
higher degree of design freedom.11,12 Researchers have sug-
gested that such properties would be beneficial in applications
where there are dynamic loads, such as surgical implants6 or
impact protection equipment.13 Although these structures
seem relatively simple to create, they can still be challenging to
comprehend and design. The difficulty of designing these
structures can be mostly attributed to the complexity of the
variable lattice shapes, and the lack of robust DfAM software.
Li et al. used relative density mapping from topology opti-
mization and assigned densities based on stress requirements.8

However, the key restriction in graded lattice structures is
their property dependence on the type of unit cell. It was found
that surface-based unit cells outperformed strut-based cells due
to their connectivity,12 as well as the degree of gradation greatly
affecting the cumulative energy absorption for body-centered
cubic lattices, but not Schwarz-P lattices.2 These restrictions
have encouraged researchers to explore other alternatives to
graded lattice topologies, such as multi-lattice topologies.

A multi-lattice structure is being referred to as a structure
that contains multiple types of unit cells. Many studies that
explore multi-lattice structures have utilized unit cells with
matching boundaries to avoid developing a method to connect
nodes.6,13,16,17 One method for creating the structures is using
relative density mapping from topology optimization to assign
2.5-dimensional unit cells based on stresses in the system,
where the cells assigned were of various topologies.13,16,17 As a
result, these articles were able to prove that structures utilizing
2.5-dimensional multi-lattice structures often outperform uni-
form lattice structures regarding stiffness and strength.13,16,17

Another study conducted by Gok showed that using a multi-
lattice hip implant reduced the maximum stress and weight
compared with conventional hip implants.6 Although the work
does not provide comparison between other types of mesos-
tructured patterning, it does demonstrate a strong use case for
multi-lattice structures. It should be noted that the study was
also restricted to unit cells that had overlapping boundaries, so
the transition regions were inherently smooth.

Although multi-lattice structures have demonstrated utility
in certain situations, there are also potential drawbacks. Kang
et al. concluded that the boundaries between unit cell types
caused stress concentrations if not carefully designed, de-
creasing overall part strength.16 This indicates that there is a
need for smooth transitions between unit cells to appropri-
ately distribute stress through structures. A numerical solu-
tion was executed by Sanders et al., who created transition
regions by using signed distance functions with respect to the
boundaries of each strut.14 This technique can be applied to
‘‘unit cells composed of noncylindrical bars or plates,’’ the
interpolations between each pair of unit cells must be com-
puted individually. Although this method can produce
smooth transition regions in multi-lattice structures, for those
looking to optimize both the macrostructure and the mesos-
tructure, this method is extremely repetitive and tedious.
Wang et al. have also regarded the creation of transition re-
gions as ‘‘a challenging problem involving complex inverse
design at the microscale, costly nested optimization at the
macroscale, and boundary matching between neighboring
microstructures.’’18

These works underscore the criticality of being able to
create smooth transitions between unit cells using machine
learning methods.14

Machine learning methods

Recent approaches to creating continuous transitions in
multi-lattice structures have utilized machine learning. Al-
though a wide variety of potential approaches exist, this work
focuses on two methods that have been used predominantly in
the literature for creating multi-lattice structures. Specifi-
cally, this section explores: generative adversarial networks
(GANs) and VAEs.

Generative adversarial networks. GANs utilize two
models that work in parallel to ultimately create a single
model for generating data.22 These two models are known as
the generator and discriminator, and they are adversarial in
nature. Specifically, the generator learns to produce fake data
based on a training set of real data, while the discriminator
learns to distinguish between the fake and real data. As
training progresses, each model progressively becomes better
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at its purpose until the discriminator is unable to distinguish
between real and fake data produced by the generator. This
can be used to generate a wide variety of outputs, including
images,22 voxels for topology optimization,19 and meshes for
computational fluid dynamic simulations.23

Wang et al. used an Inverse Homogenization GAN to
generate a multi-lattice structure that reduced stress con-
centrations by nearly 80%.19 This serves as a contributing
motivation for the current work, as it proves there is a benefit
to creating multi-lattice structures. However, the primary
drawback to this method was that it was only intended to
organize the types of unit cells, but only based on perfor-
mance rather than shape. Therefore, interfaces between the
cells were not perfect, and a second interpolation had to be
performed to create smooth transition regions. Again, this
highlights the difficulties involved in designing effective
transition regions.

Variational autoencoders. A VAE is a machine learning
model that learns how to perform data-driven dimensionality
reduction.24 Reducing the dimensionality of data can make it
more computationally efficient to perform inferences, such as
interpolations. What makes VAEs unique from other tech-
niques is that they perform a nonlinear dimensionality re-
duction, which is advantageous for reducing complex data
types.25 The reduced data are combined to establish the re-
duced dimensionality latent space, which can be used to
represent complex mechanical parts26 and performance
characteristics of engineered systems.27 Due to the dimen-

sionality reduction techniques of VAEs, the latent spaces
they produce will be non-Euclidean.28

A VAE consists of two models, an encoder and a decoder,
which work in series. The encoder performs a dimensionality
reduction operation to create a latent representation of the
data.22,25 The decoder uses the information from the latent
space to reconstruct the data. Finally, the VAE is trained by
minimizing the error between the reconstructed output from
the decoder model and the original data provided. VAEs are
appealing for the current application since they have appeared
in similar work. For instance, Wang et al. constructed a VAE to
perform multi-lattice interpolations between two-dimensional
(2D) lattices.18 We extend that work by critically interrogating
the relationships that exist within the VAE latent space.

Methodology

To simplify the data needs and reduce the training time of
the VAE model, this work primarily addresses the design of
2D lattices. The methodological approach is shown in Fig-
ure 1, with each block aligning with part of this section.
Synthetic Data Generation section will describe how artificial
data were generated to meet testing needs. Training the
VAE’s section outlines the hyperparameters and key char-
acteristics of the VAE used for training. Creating Interpola-
tions section shows the process for creating interpolations in
the latent space. Experimental Evaluation section will outline
the experimental process to measure the performance of
transition regions.

FIG. 1. Illustration of overall methodologies.

FIG. 2. Synthetic shape types.
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Synthetic data generation

Synthetic data were generated based on a series of 12
shapes (Fig. 2) that mimicked strut-based lattices found in the
AM literature.13,17 To add variation to the data, the thickness
of the struts and the density of pixels were varied (Fig. 3). The
density represents the value of each pixel between 0 (black,
representing material absence) and 1 (white, representing
material presence). This representation of density aligns with
that used in the topology optimization literature and is useful
here for developing a denser latent space. Once all the shapes
were generated, there were a total of 415 datapoints.

Training the VAEs

The architecture of the VAE used in this work is designed
to mimic an architecture used in prior work (Fig. 4).29 Per-
haps the most important hyperparameter of a VAE is the
dimensionality of the latent space. A qualitative study of
latent space dimensionality revealed that a dimensionality of
four provided a desirable balance between training time and
reconstruction accuracy.

The VAE was trained using a batch size of 32 and the
Adam optimizer.30 Eighty-five percent of the dataset was
used to train the VAE and 15% was reserved to validate it.
Training was terminated early if the loss failed to improve
after 10 epochs and the VAEs was also designed to save the
weights from the iteration with the best validation loss.

Creating interpolations

Once trained, the VAE has established a latent space in
which interpolations can be performed (Fig. 5a). The encoder
can be used to map lattices into the latent space, while the
decoder can be used to map from the latent space back to a
lattice. The unit cells at the end of the desired transition region
are first provided to the encoder, which calculates the latent

points of the two cells (see step 1 in Fig. 5b). The transition
intervals are then interpolated between the encoded endpoints in
the latent space (see step 2 in Fig. 5b). Finally, the decoder
generates the cells that correspond to those latent points (see step
3 in Fig. 5b). It should be noted that the decoder is generating
new lattice cells based on the latent points provided. For this
work, we chose to use linear interpolations to generate a simple
proof of concept. As such, it should be noted that the distance in
some latent spaces should not be measured linearly.28,31 How-
ever, the results from this work indicate that this method of
interpolation was sufficient, see notes in the discussion section.

Figure 6 shows a visualization of the latent space and a
sample interpolation, where each thumbnail represents a unit
cell. This visual depicts the results from the steps outlined in
Figure 5b. Figure 6a demonstrates the feasibility of using
VAEs for creating transition regions, as it demonstrates a
clear example of how a transition region could be developed
over a greater number of transition intervals. By defining the
scope of the transition region, the potential for a 2D multi-
lattice structure is established.

Experimental evaluation

To answer the research questions introduced in this work,
we design an experiment to vary parameters of the transition
generation task and measure the effect on the smoothness of
transition regions. In this experiment, we measure the
smoothness of transition regions as we vary the distance in the
latent space from -3 to 3 standard deviations from the mean,
while simultaneously changing the number of transition inter-
vals from 5, 10, to 15 points. By measuring distance in terms of
standard deviations, we could ensure the entire span of the
latent space was being tested with six different distances be-
tween transitions. The number of transition intervals were se-
lected to give a range of different transition regions to analyze.

To accurately gauge the quality of an interpolation, a metric
was designed to measure the smoothness of the transition region
developed. Here, smoothness should (1) measure how the tran-
sition region changes both within images and across images, (2)
penalize pixels disconnected from the main structure, as we did
not want to encourage the generation of floating pixels, and (3)
account for pixel intensity, as interpolations will often produce
nonbinary images. Related metrics have been published in lit-
erature19,20,31–34 but each of these metrics fails to satisfy at least
one of these criteria. We create a new metric that emphasizes
change along the edges of the unit cells using a three-
dimensional (3D) Sobel filter.35,36 This makes it possible to re-
solve both within image changes (here the x and y directions) and
between-image changes (here the z direction) using a single
operation.34 Specifically, we used a formulation of 3D Sobel
filters defined by Amin et al, Sx, Sy, and Sz, which are the Sobel
filter components in the x, y, and z directions, respectively.37

From an additive perspective, the goal of this metric is to en-
courage smooth geometry for manufacturability.

FIG. 3. Original shape with possible density and pixel
intensity variations.

Gx, i¼ Sx : , : , " 1ð Þconv Iið Þþ Sx : , : , 0ð Þconv Iiþ 1ð Þþ Sx : , : , 1ð Þconv Iiþ 2ð Þ
Gy, i¼ Sy : , : , " 1ð Þconv Iið Þþ Sy : , : , 0ð Þconv Iiþ 1ð Þþ Sy : , : , 1ð Þconv Iiþ 2ð Þ
Gz, i¼ Sz : , : , " 1ð Þconv Iið Þþ Sz : , : , 0ð Þconv Iiþ 1ð Þþ Sz : , : , 1ð Þconv Iiþ 2ð Þ

(1)
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where Gx, Gy, and Gz are the gradient array components in
the x, y, and z directions, respectively, I is the image, and i is the
index between each gradient array and their respective images.

To directly compare the gradients, the x, y, and z compo-
nents of the arrays were flattened. Then the root mean squared

error (RMSE) between the consecutive gradients was mea-
sured, as that would be the indicator of ‘‘smoothness’’ be-
tween each dimension (Eq. 3).

RMSEx, i¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

j¼ 1 Gx, iþ 1, j"Gx, i, j

" #2

N

s

RMSEy, i¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

j¼ 1 Gy, iþ 1, j"Gy, i, j

" #2

N

s

RMSEz, i¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

j¼ 1 Gz, iþ 1, j"Gz, i, j

" #2

N

s

(2)

where RMSEx, RMSEy, and RMSEz are the RMSEs of a
pair of gradients in the x, y, and z directions, respectively, j is
the index that identifies the specific term in the gradient array,
and N is the number of terms in a single gradient array.

Once the RMSE was calculated for the x, y, and z com-
ponents, the average RMSE was calculated and normalized to
create a final ‘‘smoothness value.’’

RMSEi¼
RMSEx, iþ RMSEy, iþRMSEz, i

3 & RMSEmax
(3)

where RMSEmax is the maximum possible RMSEi, which is
calculated based on the filter used. The normalization of the
RMSE allowed for the smoothness value to be represented as
a percentage.

smoothness¼ 1" avg RMSEið Þð Þ & 100 (4)

More details on the implementation of this smoothness
evaluation are available in prior work by the authors.37

Results

Overall, the purpose of this experiment is to investigate the
properties related to smoothness of VAE-generated multi-
lattice transition regions. To test the research questions and
hypotheses introduced previously, a variety of different in-
terpolations were defined and assessed. Following the ex-
perimental design outlined previously, we produced
transition regions to test our hypotheses. A sample of inter-
polations with increasing distance in the latent space can be
seen in Table 1.

Visually, the unit cells are most similar when there is 1
standard deviation between the endpoints. To confirm this
intuition, we conducted the complete experiment described in
the previous section (Fig. 7).

FIG. 4. Framework of VAE. VAE, variational autoencoder.

FIG. 5. (a) Depiction of the latent space. (b) Diagram
demonstrating interpolation process in the latent space (1)
encoding of test images, (2) interpolation between the en-
coded endpoints, and (3) decoding of all points to produce
transition region. The 2D visual of the latent space was
created by performing a PCA reduction on the data, which
originally existed in a 4D latent space. 4D, four-
dimensional; PCA, principal component analysis.
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To confirm the results, an ordinary least squares (OLS)
regression was executed on the data gathered in Figure 7,
where the dependent variable was smoothness, and the in-
dependent variables were the number of transition intervals
and distance in the latent space. This regression was found to
be highly statistically significant ( p < 0.001) as well as
practically significant (R2 = 0.930) (Table 2).

It was hypothesized that greater distance in the latent space
would result in a decrease in smoothness as points become
spread further apart. This hypothesis was based on the
premise that the images should be less similar to one another
the farther apart they exist in the latent space, since it is
organized based on similarity. The p-values in Table 3 con-
firmed that as the distance between endpoints increases, the
smoothness decreases. The magnitude of the p-values also
indicates that distance in the latent space has the most sig-
nificant effect on smoothness.

It was further hypothesized that the number of transition
intervals would have a proportional relationship with the
smoothness of the transition regions. This was based on the
idea that if there are more transition intervals, then the dis-
tance between each step in the transition region would be
smaller, therefore, the unit cells should be more similar.
However, the results indicate that the number of transition
intervals alone is unlikely to influence the smoothness value,
based on the p-value of 0.469 (Table 2). Consequently, the
combination of the two variables, noted by the interaction

term in Table 2, does directly affect the smoothness. This
indicates that the number of transition intervals only affects
the smoothness when distance is also accounted for. Given
these results, the best transition regions can be produced by
reducing the distance traveled in the latent space as much as
possible.

Discussion

This work underscores the potential of VAEs to support
transition region design. However, the smoothness of the
transition region is primarily limited by the distance in the
latent space, given that the transition is linear. Therefore, our
hypothesis must be partially refuted, as the number of tran-
sition intervals did not have the expected impact on
smoothness. As stated previously, the dataset consisted of
415 datapoints. Although limited, this dataset proved suffi-
cient for the purposes of this article. The work focused on a
specific class of strut-based unit cells and had a small sample
size to avoid overfitting.20 The goal was centered around
learning about how latent spaces work using an applicable
metric. This was achieved, given that the interpolations in the
latent space generated smooth transition regions. As men-
tioned in the background, the manifold of the latent spaces
from VAEs are typically non-Euclidean.28 However, based
on the results in Figure 7, the space appears to have some
Euclidean characteristics as the smoothness temporarily

FIG. 6. Demonstration of interpolation: (a) interpolation (b) PCA reduced latent space plot with the interpolation points
superimposed in the space. The 2D visual of the latent space was created by performing a PCA reduction on the data, which
originally existed in a 4D latent space.
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decreases linearly. This would be the expected result if the
manifold was linear around the mean of the latent space.

This section further explores the effects of the qualitative
differences in unit cell shape with respect to smoothness. It is
believed that as the endpoints of an interpolation become
more ‘‘different,’’ the smoothness of the transition region
should decrease. Given the complexity of the latent space,
visual inspection may be deceptive, which is why it is im-
portant to address the unexpected. Table 3 consists of an array
of various transition regions, all of which have the same
initial interpolation point. Although the distances between
the endpoints are not the same, this series of transition regions
are ordered based on smoothness.

From a qualitative standpoint, the rankings were expected
to order Example 1 > 2 > 4 > 5 > 3, based on the similarity of
the endpoints. However, the smoothness metric is based on
the variation along all the unit cells, not solely the endpoints.
In other words, it is a path-based measure, relying on all
intermediate frames; whereas human intuition is more point
based, relying instead predominantly on the endpoints. Ex-
ample interpolations 1 and 2 are similarly smooth, as both

require a ‘‘rotation’’ of an element within the cell. Example 3
was less smooth than Examples 1 and 2, but there was a large
number of pixels that needed to be activated. However, based
on the qualitative evaluation, Example 3 should have per-
formed the worst. Since the smoothness evaluation is highly
dependent on the amount of similarity between consecutive
unit cells, the endpoint unit cells in Example 3 would have
increased the smoothness percentage significantly. Finally,
Example 4 performed slightly better than Example 5, as the
diagonal was not removed in Example 4, meaning that fewer
changes occurred.

It should be noted that the methodology explored in this
work is not limited to interpolations along lines in the latent
space. Figure 8a shows how powerful VAEs are by demon-
strating a smooth transition region between four distinct unit
cells, effecting a gridded interpolation. Such a structure
represents how a transition region would be developed be-
tween four different lattice topologies. From a design per-
spective, this ability would allow users to select unit cells
with various desired physical properties to fill a structure,
since the transitions between all cells are defined. Multi-

Table 1. Visualization of Transition Regions Based on Number of Standard Deviations
with 10 Transition Intervals

Number
of standard
deviations
between
endpoints Resulting transition regions

1

2

3

4

5

6
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lattice designs incorporating more than two types of lattices
significantly expand design possibilities for creating transi-
tion regions. What makes this approach unique is its ability to
accommodate the needs for a variety of users. If a user would
like to use a simple graded lattice structure, then they would
only need to select endpoints of the same unit cell class with
different densities. In its current state, the model could be
directly used for creating these structures, as there is no
concern for discontinuity among those structures.

Figure 8b represents the locations of each of the predicted
points in the principal component analysis (PCA) reduced
latent space. As established previously, the closer points will
have smoother transitions based on the smoothness metric.
Figure 8c and d prove that the distance in the PCA space
directly correlates to these smoothness values, meaning that
as the endpoints move closer to one another in the latent
space, their transitions become smoother. The columns ex-
hibit much smoother transition regions, whereas the rows

Table 2. Ordinary Least Square Regression

Coefficient Standard error p

Constant 105.8102 3.777 <0.0001
Number of standard deviations (distance) -7.8790 0.970 <0.0001
Number of transition intervals -0.2605 0.350 0.469
Interaction term 0.4087 0.090 <0.0001

FIG. 7. Smoothness versus number of standard deviations in the latent space. (a) Analysis based on five interpolation
points—fewer interpolation points result in significantly rougher transitions over a longer distance in the latent space. (b)
Analysis based on 10 interpolation points. (c) Analysis based on 15 interpolation points—more interpolation points in the
latent space result in slightly poorer transitions as distance increases.
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FIG. 8. (a) Example of mesh grid interpolation. (b) PCA reduced representation of the mesh grid interpolation in the latent
space. (c) Mesh grid interpolation with labeled smoothness for each column. (d) Mesh grid interpolation with labeled
smoothness for each row. (e) Plot of smoothness versus rows and columns. The 2D visual of the latent space was created by
performing a PCA reduction on the data, which originally existed in a 4D latent space.
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exhibit much rougher transition regions, which is expected
based on their distances between endpoints. Additionally,
based on a qualitative analysis of the mesh, it is clear that the
columns contain more similarity than the rows. This is shown
quantitatively in Figure 8e, where the plot shows the
smoothness of each row and column in the mesh.

Conclusion

In cases where the loading varies throughout a part, it may
be advantageous to design a multi-lattice structure. However,
abrupt transitions between lattice types may cause stress
concentrations, making the boundary a primary failure point;
thus, transition regions between lattice cell types must be
carefully designed. This work demonstrates and assesses a
method for using VAEs to automate the creation of transi-
tions among multi-lattice structures. In comparison to other
computational approaches, this work focused on assessing
the impact of latent space characteristics on transition
smoothness.

Specifically, we examined how distance in the latent
space and the number of transition intervals affects the
smoothness of a transition region. We created a variety of
interpolated transition regions using a VAE and then eval-
uated those transition regions using 3D Sobel filters.
Through OLS regression, it was found that the distance
between endpoints in the latent space had the most signifi-
cant impact on smoothness, whereas the number of steps
in the transition was unlikely to affect the smoothness
alone. Given these results, the best transition regions can be
produced by reducing the distance traveled in the latent
space as much as possible, and including a higher number
of transition intervals. These conclusions were consistent
as the VAE architecture was optimized, and different sets
of test and training data were used. However, these con-
clusions are based solely on the architecture outlined above
and should therefore be reevaluated when exploring fu-
ture work.

The current work focused on geometric smoothness, but
future work must address smoothness of physical properties
and manufacturability as well. This work is limited regarding
the uncertainty of mechanical behaviors for transitions pro-
duced through geometry. It is unclear whether the geometric
smoothness studied here will correlate to smoothness in
physical properties within a structure as well.18 Regarding
manufacturability, future work will need to account for
printer restrictions that are inherent to specific types of AM
processes. There are several major restrictions which warrant
future exploration to ensure printability. Another limitation
of this work is the focus on 2D unit cells, which are rarely
useful in practice.38 Although limited, this work provides a
roadmap for future 3D implementations. Future work should
strive to incorporate an exploration of nonlinear interpola-
tions to further optimize the smoothness of the transition
regions.31 As a limitation of this work is the measure of
distance using the coordinates of the latent space itself. The
distance metric in future work should incorporate a mea-
surement to address uniquely shaped latent space configu-
rations.28,31

Finally, there are many avenues for expanding this work to
address adjacent fields related to automatically generated
lattice structures. For example, applying this type of meth-

odology to conformal lattices, which are lattice structures that
conform to the boundaries of the structure, could prove
beneficial.39

Authors’ Contributions

M.B.: data curation (lead), formal analysis (equal), in-
vestigation (lead), methodology (lead), project administra-
tion (equal), software (lead), validation (lead), visualization
(lead), and writing—original draft (lead). N.A.M.: concep-
tualization (equal), supervision (supporting), and writing—
review and editing (supporting). C.M.: conceptualization
(equal), formal analysis (equal), methodology (supporting),
project administration (equal), resources (lead), supervision
(lead), and writing—review and editing (lead).

Disclaimer

Any opinions, findings, conclusions, or recommendations
expressed in this article are those of the authors and do not
necessarily reflect the views of the sponsors.

Author Disclosure Statement

No competing financial interests exist.

Funding Information

This material is based upon work supported by the National
Science Foundation through grant no. CMMI-1825535.

References

1. Hanks B, Berthel J, Frecker M, et al. Mechanical properties
of additively manufactured metal lattice structures: Data
review and design interface. Addit Manuf 2020;35; doi: 10
.1016/J.ADDMA.2020.101301

2. Plocher J, Panesar A. Effect of density and unit cell size
grading on the stiffness and energy absorption of short
fibre-reinforced functionally graded lattice structures. Addit
Manuf 2020;33:101171; doi: 10.1016/J.ADDMA.2020
.101171

3. Di S, Wyetzner T, Cavicchio S, et al. Regenerative topol-
ogy optimization of fine lattice structures. 3D Print Addit
Manuf 2022;10(2):183–196; doi: 10.1089/3dp.2021.0086

4. Lozanovski B, Downing D, Tino R, et al. Image-based
geometrical characterization of nodes in additively manu-
factured lattice structures. 3D Print Addit Manuf
2021;8:51–68; doi: 10.1089/3dp.2020.0091

5. Rossiter JD, Johnson AA, Bingham GA. Assessing the
design and compressive performance of material extruded
lattice structures. 3D Print Addit Manuf 2020;7:19–27; doi:
10.1089/3dp.2019.0030

6. Gok MG. Creation and finite-element analysis of multi-
lattice structure design in hip stem implant to reduce the
stress-shielding effect. Mater Des Appl 2021;236:429–439;
doi: 10.1177/14644207211046200

7. Agwu UO, Wang K, Singh C, et al. Assessing tetrahedral
lattice parameters for engineering applications through fi-
nite element analysis. 3D Print Addit Manuf 2021;8:238–
252; doi: 10.1089/3dp.2020.0222

8. Li D, Dai N, Tang Y, et al. Design and Optimization of
Graded Cellular Structures with Triply Periodic Level
Surface-Based Topological Shapes. Journal of Mechanical
Design 2019;141(7):071402; doi: 10.1115/1.4042617/
727182

SMOOTHING THE ROUGH EDGES 11

D
ow

nl
oa

de
d 

by
 C

ar
ne

gi
e 

M
el

lo
n 

U
ni

ve
rs

ity
 fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

25
/2

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1016/J.ADDMA.2020.101301
http://dx.doi.org/10.1016/J.ADDMA.2020.101301
http://dx.doi.org/10.1016/J.ADDMA.2020.101171
http://dx.doi.org/10.1016/J.ADDMA.2020.101171
http://dx.doi.org/10.1089/3dp.2021.0086
http://dx.doi.org/10.1089/3dp.2020.0091
http://dx.doi.org/10.1089/3dp.2019.0030
http://dx.doi.org/10.1177/14644207211046200
http://dx.doi.org/10.1089/3dp.2020.0222
http://dx.doi.org/10.1115/1.4042617/727182
http://dx.doi.org/10.1115/1.4042617/727182


9. Wang Y, Zhang L, Daynes S, et al. Design of graded lattice
structure with optimized mesostructures for additive
manufacturing. Mater Des 2018;142:114–123; doi: 10
.1016/J.MATDES.2018.01.011

10. Plocher J, Panesar A. Review on design and structural opti-
misation in additive manufacturing: Towards next-generation
lightweight structures. Mater Des 2019;183:108164; doi: 10
.1016/J.MATDES.2019.108164

11. Maskery I, Hussey A, Panesar A, et al. An investiga-
tion into reinforced and functionally graded lattice struc-
tures. J Cell Plast 2017;53(2):151–165; doi: 10.1177/
0021955X16639035

12. Panesar A, Abdi M, Hickman D, et al. Strategies for
functionally graded lattice structures derived using topol-
ogy optimisation for Additive Manufacturing. Addit Manuf
2018;19:81–94; doi: 10.1016/J.ADDMA.2017.11.008

13. Wang C, Zhu JH, Zhang WH, et al. Concurrent topology
optimization design of structures and non-uniform param-
eterized lattice microstructures. Struct Multidiscipl Optim
2018;58:35–50; doi: 10.1007/s00158-018-2009-0

14. Sanders ED, Pereira A, Paulino G. Optimal and continuous
multilattice embedding. Sci Adv 2021;7(16):4838; doi: 10
.1126/sciadv.abf4838

15. Sahariah BJ, Namdeo A, Khanikar P. Composite-inspired
multilattice metamaterial structure: An auxetic lattice de-
sign with improved strength and energy absorption. Mater
Today Commun 2022;30:103159; doi: 10.1016/J
.MTCOMM.2022.103159

16. Kang D, Park S, Son Y, et al. Multi-lattice inner structures
for high-strength and light-weight in metal selective laser
melting process. Mater Des 2019;175:107786; doi: 10
.1016/J.MATDES.2019.107786

17. Wang L, Van Beek A, Da D, et al. Data-driven multiscale
design of cellular composites with multiclass microstruc-
tures for natural frequency maximization. Compos Struct
2022;280:114949; doi: 10.48550/ARXIV.2106.06478

18. Wang L, Chan YC, Ahmed F, et al. Deep generative
modeling for mechanistic-based learning and design of
metamaterial systems. Comput Methods Appl Mech Eng
2020;372:113377; doi: 10.1016/J.CMA.2020.113377

19. Wang J, Chen W (Wayne), Da D, et al. IH-GAN: A con-
ditional generative model for implicit surface-based inverse
design of cellular structures. Comput Methods Appl Mech
Eng 2022;396:115060; doi: 10.1016/J.CMA.2022.115060

20. Chan Y-C, Ahmed F, Wang L, et al. METASET: Exploring
shape and property spaces for data-driven metamaterials
design. J Mech Des 2021;143(3):031707; doi: 10.1115/1
.4048629
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