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ABSTRACT
High-fidelity, data-driven models that can quickly simulate

thermal behavior during additive manufacturing (AM) are cru-
cial for improving the performance of AM technologies in multi-
ple areas, such as part design, process planning, monitoring, and
control. However, the complexities of part geometries make it
challenging for current models to maintain high accuracy across
a wide range of geometries. Additionally, many models report
a low mean square error (MSE) across the entire domain (part).
However, in each time step, most areas of the domain do not ex-
perience significant changes in temperature, except for the heat-
affected zones near recent depositions. Therefore, the MSE-
based fidelity measurement of the models may be overestimated.

This paper presents a data-driven model that uses Fourier

⇤Address all correspondence to this author.

Neural Operator to capture the local temperature evolution dur-
ing the additive manufacturing process. In addition, the authors
propose to evaluate the model using the R

2 metric, which pro-
vides a relative measure of the model’s performance compared to
using mean temperature as a prediction. The model was tested on
numerical simulations based on the Discontinuous Galerkin Fi-
nite Element Method for the Direct Energy Deposition process,
and the results demonstrate that the model achieves high fidelity
as measured by R

2 and maintains generalizability to geometries
that were not included in the training process.

1 Introduction
Additive manufacturing (AM) has become more than a niche

laboratory technology and is becoming increasing vital across
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FIGURE 1. The overview of the framework proposed in this work, which trains a data-driven geometry-agnostic model to capture the local temper-
ature evolution during AM process. An autoregressive generative model, SkexGen [1], takes disentangled codebooks to construct CAD models in the
variations of encoded topological, geometric, and extrusion features. The hexahedron mesh and the toolpath are generated automatically by a code we
developed. A physics-based simulation model based on Discontinuous Galerkin Finite Element Method is employed to generate the ground truths of
temperature evolutions. Then, a machine learning model based on Fourier Neural Network is trained to predict the local temperature evolution in the
windows around concerned regions.

various industries. This is largely due to its enormous potential in
fabricating complex parts at a lower cost compared to traditional
methods like machining or casting. Among the various AM tech-
nologies, Directed Energy Deposition (DED) processes have gar-
nered considerable attention because they can build large-scale
metal parts up to several meters in size at high deposition rates
[2]. This paper therefore focuses on DED processes.

However, the adoption of AM is hindered by concerns re-
garding product quality and process efficiency [3]. For instance,
Glerum et al. [4] identified inconsistencies in the AM process
where the same process parameters can lead to varying mate-
rial properties. Thus, establishing process-structure-property re-
lationships for AM has become a critical research area in AM
technologies [5, 6, 7, 8, 9, 10]. The temperature history result-
ing from the process parameters is a key determinant in several
aspects, including melt pool characteristics [11], formation of
defects such as lack of fusion and hot cracking [12, 13], metal
grain structure [14], and residual stresses caused by high ther-
mal gradients [15]. However, obtaining experimental data on
temperature history is expensive and also challenging to cap-
ture at every point of a part. Therefore, numerical simulation
is an attractive, less-expensive alternative for obtaining compre-
hensive temperature history data at scale. While many high-
fidelity, physics-based simulation models have been developed,
such as the method based on Discontinuous Galerkin Finite Ele-
ment Method (DGFEM) [16], their time cost is still too high for
many crucial applications. For example, iterative optimizations
such as design for AM [17] and process parameter planning [18]
require a massive number of thermal simulations. Additionally,
real-time simulation is needed for in-situ process monitoring and
control [19, 20].

Therefore, data-driven models have gained attention as a
means to quickly simulate thermal behavior during AM. Mozaf-
far et al. [21] developed a data-driven machine learning (ML)
model based on recurrent neural networks (RNN) to predict the
thermal histories of arbitrary points in a part built by the DED
process. For real-time temperature prediction, Paul et al. [22]
proposed a framework based on extremely randomized trees
(ERT), which is an ensemble of bagged decision trees that use
temperatures of prior voxels and laser information as inputs to
predict temperatures of subsequent voxels. Stathatos et al. [23]
proposed an artificial neural network (ANN) that predicts in real-
time the evolution of temperature and density for arbitrary long
tracks. Roy et al. [24] observed that the AM process exhibits a
high level of redundancy and periodicity and introduced a geom-
etry representation that extracts features directly from the GCode
for a ML model, such as local distances from heat sources and
cooling surfaces. However, these models can only achieve good
accuracy in predicting the thermal evolution of samples with ge-
ometries similar to those in the training dataset and may not per-
form well on more complex geometries unseen in the training
process.

In order to improve the generalizability of ML models for
thermal history prediction in complex geometries, Ness et al.
[25] developed an ERT model that utilizes engineered features
based on the underlying physics of the thermal process. Ad-
ditionally, Mozaffar (2021) [3] proposed a geometry-agnostic
data-driven model using (Graph Neural Network) GNNs to cap-
ture spatiotemporal dependencies of thermal responses in AM
processes. However, current ML models are typically mesh-
dependent, which can hinder their adoption in applications with
finer meshes than those used for training. For example, mod-
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els trained on low resolution meshes usually cannot be used
to predict temperatures in the high-resolution meshes necessary
for in-situ process control. Furthermore, although these models
achieve low normalized mean squared error (MSE) over the built
part, they may fail to accurately capture the dramatic temperature
changes in the heat-affected zones (HAZ) of recent depositions.
For instance, experiments in [3] have shown that the difference
between the predicted temperature and ground truth in HAZ can
be as large as 300�C. Given the close relationship between HAZ
temperature and melt-pool dimensions, defect formation, and mi-
crostructure formation, accurate HAZ temperature prediction is
critical. However, commonly used metrics, such as MSE, may
not accurately reflect a model’s performance in predicting tem-
peratures in these critical areas, as areas far from the heat source
often have stable low temperatures without significant changes.
Therefore, even if an ML model predicts low accuracy at the
HAZ of recent depositions, it may still score well in MSE-based
fidelity measurements.

This paper proposes a data-driven model that utilizes a
Fourier Neural Operator to capture the local temperature evolu-
tion during AM process. In addition to the current temperature,
the model incorporates the heat source locations and local dis-
tances to the cooling surfaces to predict the temperature in the
next time step. The contributions of this paper are summarized
as follows:

1. A mesh-independent ML framework is established for tem-
perature prediction in the AM process.

2. The ML model prioritizes capturing the temperature evolu-
tions in the Heat Affected Zone (HAZ) near the recent de-
position.

3. An automatic pipeline is built to generate a dataset of ge-
ometric models using an autoregressive generative model
with customized and existing tools, which are then meshed
and have toolpaths generated using code developed by the
authors.

A high-fidelity thermal simulation model based on Discon-
tinuous Galerkin Finite Element Method is then applied to ob-
tain temperature histories for use in ML training and testing.
The physical coefficients and parameters used in the numerical
method have been calibrated with experimental data, as demon-
strated in [16]. In addition, an R-squared (R2) metric is proposed
to measure the performance of ML models for temperature pre-
diction in the AM process, as it provides a relative measure of
the model’s performance compared to using the mean tempera-
ture as a prediction. Results from numerical experiments demon-
strate that the proposed model achieves high fidelity as measured
by R

2 and maintains generalizability to geometries that were not
included in the training process. The model and relevant dataset
generation methods developed in this paper have the potential to
be implemented in the creation of practical thermal simulation
software for industrial applications.

Figure 1 provides an overview of the proposed framework.
The remainder of the paper is organized as follows. Section 2
briefly introduces the concept of Fourier Neural Operator (FNO)
and its application in approximating the solution of partial differ-
ential equations (PDEs). In Section 3, we detail the architecture
of our ML model, the loss function and evaluation metrics, and
provide a description of the heat-affected windows. Section 4 ex-
plains the data generation and preprocessing process for training
the ML model and outlines the experiment settings. We present
and discuss the experimental results in Section 5, and conclude
in Section 6.

2 The Background of Fourier Neural Operator
A nonlinear operator is defined to be a mapping from a space

of functions into another space of functions. Similar to the well-
known universal approximation theorem that states neural net-
works can approximate any continuous function to arbitrary ac-
curacy if no constraint is placed on the width and depth of the
hidden layers [26], there is another approximation theorem states
that neural networks can accurately approximate any nonlinear
operator [27]. Such neural networks are called neural operators.

In the meantime, partial differential equations (PDEs) that
describe physical phenomena can be viewed as nonlinear oper-
ators that map initial conditions (functions defined in Euclidean
spaces) to solutions (functions in Euclidean space, with or with-
out time). As a result, a line of research has emerged that utilizes
neural operators to approximate the solutions of an entire family
of PDEs [28, 29, 30]. In the context of predicting temperatures
during an AM process, simulation and experimental data may be
available in different resolutions. Unlike methods based on Con-
volutional Neural Networks (CNNs) that approximate PDE solu-
tions in discretized Euclidean spaces, which are dependent on the
mesh, neural operators can learn solutions with super-resolution.
Neural operators trained on a low-resolution mesh can therefore
be used to evaluate on a high-resolution mesh. They can thus
readily be used to overcome discrepancies between the resolu-
tion of simulation and experimental data. Neural operators are
therefore a suitable tool to model and predict the AM process.

The FNO [31] is a recently developed type of neural operator
that utilizes the fast Fourier transform (FFT) to achieve nlog(n)
time complexity, in contrast to the quadratic complexity of other
neural operators, like the neural operator proposed in [32]. In
addition, FNO also features a noise-filtering mechanism brought
by spectral analysis. While a brief introduction is provided here,
readers are referred to [31] for a more detailed review.

Let D be a bounded open subset of Rd , where d is the
dimension of the Euclidean space. Let A = A (D;Rda) and
U = U (D;Rdu) be separable Banach spaces of functions that
take values in Rda and Rdu , respectively. Typically, A represents
the space of input functions (such as initial conditions), while U
represents the space of output functions (i.e., solutions to PDEs).
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Consider a non-linear operator G
† : A ! U that maps in-

put functions to output functions. Suppose we have a set of N

input-output function pairs {a j,u j}N

j=1 observed from A and U ,
respectively, where the set of a is selected as an independent and
identically distributed sequence from the probability measure µ ,
and u = G

†(a). The goal is to approximate G
† by constructing a

parametric non-linear operator Gq : A ! U , where q 2 Q de-
notes the set of parameters. To this end, we define a cost function
C : U ⇥U !R and seek to minimize the expected value of this
cost function over the input function space, i.e.,

min
q2Q

Ea⇠µ [C(Gq (a),u)]. (1)

It is important to note that in practical applications, we often
only have access to the point-wise evaluations of the functions
a and u obtained from simulations or experiments. To simplify
notation, in the following discussion, we will use a and u to refer
to these numerical observations, where a 2Rn⇥da and u 2Rn⇥du ,
with n being the number of sample points used to discretize the
domain D. As a non-linear operator, Gq is mesh-independent
or super-resolution, which means that it can be used to evaluate
functions at positions that are not in the sample points.

Directly parameterizing the non-linear operator G
† can be

challenging. A potential solution is to use the idea of contracting
neural networks, which approximate any continuous functions by
breaking down the calculation into multiple layers and combin-
ing a linear transformation with a non-linear activation function
in each layer. Similarly, a non-linear operator can be approxi-
mated using a series of iterative updates, where each update con-
sists of a global linear operator and a local non-linear activation
function.

The computational efficiency of neural operators is of great
importance for their practical applications, as the complexities
of global linear operators often lead to significant challenges in
achieving efficient computation [31]. In recent years, the Fourier
neural operator has emerged as a promising approach to address
this issue. By implementing convolution as the global linear op-
erator and leveraging the fast Fourier transform (FFT), this neural
operator achieves nlog(n) time complexity.

Convolution between two function g : D !Rdv and f : D !
Rdv results in a new function g⇤ f : D !Rdv , which is defined as

g⇤ f =
Z

D

g(x� y) f (y)dy.

This mathematical operation can be interpreted as a linear oper-
ator that transforms a function f by performing a global integral
with another function g.

We can parameterize convolution by using a family of para-
metric kernel functions kf , where f belongs to a given set of pa-
rameters Q. With this parameterization, we can define a global

linear operator as follows:

kf ⇤ f (x) :=
Z

D

kf (x� y) f (y)dy, (2)

where f and kf are functions defined over a domain D. This
operator transforms a function f using a global integral with the
kernel function kf .

The FNO calculation process can be summarized as fol-
lows. First, the input a 2 A is lifted to a higher dimension
using a local linear transformation P : Rda ! Rdv , such that
v0(x) = P(a(x)). Next, a series of iterative updates is applied,
generating v0 7! v1... 7! vT , where each vh takes value in Rdv .
Finally, the output u(x) = Q(vT (x)) is projected back by a lo-
cal linear transformation Q : Rdv ! Rdu . The iterative update is
defined as

vt+1(x) := s(Wvt(x)+ kf ⇤ vt(x)),8x 2 D, (3)

where W : Rdv ! Rdv is a linear transformation, s : R! R is a
local non-linear activation function.

To enable efficient computation of the convolution opera-
tion in Equation 3, the Fourier transform is utilized. Specifically,
the Fourier transform of a function f : D ! Rdv is denoted as
F ( f ), and its inverse is denoted as F�1( f ). By applying the
convolution theorem, the Fourier transform of a convolution of
two functions can be expressed as the component-wise product
of their Fourier transforms. Thus, we have the following expres-
sion for the convolution operation in Fourier space:

kf ⇤ vt(x) = F�1(F (kf ) ·F (vt))(x),8x 2 D,

where · denotes component-wise multiplication.
Since only finite point-wise evaluations of the function vt

are available, the modes of vt in Fourier space are finite. In order
to filter out noise in frequency, only low frequency modes are
retained for the neural operator. Let xmax denote the number of
the modes left after filtering.

Moreover, rather than constructing a family of parametric
functions for kf , a more convenient approach is to directly pa-
rameterize kf in Fourier space. Consequently, the parameterized
linear operator is given by Equation 4.

kf ⇤ vt(x) = F�1(R ·F (vt))(x),8x 2 D, (4)

where R is a complex-valued (xmax ⇥ dv ⇥ dv)�tensor whose
components are the parameters of the linear operator. When
the domain D is discretized uniformly, the FFT algorithm can
be applied to efficiently calculate Equation 4 with a complexity
of O(n logn).

3 Method
The architecture of the ML model is shown in Figure 2. Note

that the ML model does not operate on the whole domain at once,
but on the smaller regions, called heat-affected windows, intro-
duced in Section 3.1
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FIGURE 2. The architecture of the machine learning model. MLP
represents the multilayer perceptron. FFT and IFFT represent the fast
Fourier Transformation and its inverse. R represents the linear transfor-
mation in the complex space. GELU is the nonlinear activation function.

3.1 Heat-Affected Windows
Thermal simulations of additive manufacturing processes in-

volve the solution of transient heat transfer partial differential
equations (PDEs). Often elements are activated sequentially ac-
cording to a toolpath prescribed on a pre-defined mesh. For a
model meshed with equally-sized elements, the time step Dt be-
tween successive element activation is then determined by the
element size and the tool’s moving speed. When a new element
is activated, the PDEs are solved with the temperature prior to
activation and boundary conditions, such as heat influx, convec-
tion, and fixed temperature, as input. The output is the temper-
ature after Dt. We have observed that over a short time period,
the evolution of temperature is primarily confined in a small re-
gion. Thus, to predict the temperature at a specific position after
Dt, we only need the information of its local neighbor region,
not the whole domain. In heat transfer analysis, the thermal dif-
fusivity ap characterizes a material’s rate of heat transfer. For
instance, for steel, ap is approximately 12 mm

2/s. This means
that for Dt = 0.1 s, the area of the neighborhood affecting the
temperature of a given position is about 1.2 mm

2. Therefore, we
define the heat-affected neighborhood’s characteristic radius as

rc =
p

apDt. (5)

We can choose a box region around a position whose size is about
10 times rc to ensure that most of the necessary information is
included in the box to predict the temperature for the position.
These box regions are called heat-affected windows or windows
in this paper.

In this study, the ML model is designed to operate solely on
the heat-affected windows rather than the entire domain. This

FIGURE 3. Instead of learning the temperature evolution over the do-
main, the ML model proposed in this paper works on the local regions
cut from the domain, called heat-affected windows.

FIGURE 4. Two different shapes could look similar locally.

approach has two significant advantages. Firstly, by reducing the
number of parameters, the size of the ML model can be signif-
icantly reduced, thereby requiring less training data. Secondly,
this technique enhances the generalizability of the model for a
wide variety of geometries, even with a limited training dataset.
This is because two different geometries may share similar local
features despite appearing vastly different. For example, Fig-
ure 4 shows two different shapes but their heat-affected windows
around the boundary look similar as both of their boundaries con-
sist of plane surfaces.

3.2 Input Variables
In addition to the input temperature, the ML model is also

provided with other relevant information related to the heat trans-
fer process for each element.
Activation Indicator. Heat affected windows located near
the edges of the part may include void space where no material
is present. To handle this case, we introduce a variable ract that
indicates whether an element is activated. Here, a value of 1
means that there is material, while a value of 0 means that there
is a void.
Heat Influx Conditions. The vector H contains two pieces
of information relevant to the heat influx condition for an ele-
ment: the power of the input energy and the relative position
from the center of the element to the heat influx position.
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Boundary Impact Factors. The simulation considers two
types of boundary conditions: convection-radiative and fixed-
temperature conditions. The former is applied on the outer sur-
face of the built part, while the latter is applied on the substrate
bottom which the part is built on. The substrate bottom tempera-
ture is set to room temperature. To describe how each boundary
condition affects local temperature evolution, boundary impact
factors (BIF) B are defined for each element. B has two compo-
nents corresponding to the two types of boundaries. Although
there could be more complicated ways to define B, a simple
distance-based approach is used in this work; namely, the dis-
tance between the element center and each type of boundary.

3.3 Loss Function And Evaluation Metrics
We use the normalized L2 error as the loss function for train-

ing our model, denoted as NL2. Let upred be the predicted tem-
perature over a window, and u be the ground truth temperature of
the window. upredi

and ui represent the predicted and ground
truth temperature of an individual element, respectively. The
window is uniformly discretized with n elements. NL2 is defined
as

NL2 =
n

Â
i=1

q
(upredi

�ui)2

|ui|
. (6)

The mean squared error (MSE) is a commonly used metric
for evaluating machine learning models. It is defined as the av-
erage of the squared differences between the predicted and true
values, calculated as:

MSE =
1
n

n

Â
i=1

(upredi
�ui)

2. (7)

To assess the performance of ML models that make predic-
tions on varying scales, the normalized root mean squared error
(NRMSE) is often used. It is defined as:

NRMSE =

s
1
n

n

Â
i=1

✓
upredi

�ui

ui

◆2
. (8)

Here, the NRMSE takes into account the relative magnitude
of the temperature values by normalizing the squared differences
with respect to the ground truth temperature.

While MSE and NRMSE can reflect the overall accuracy of
the ML model in many cases, they might overestimate the per-
formance of ML models for temperature prediction of AM pro-
cesses. This is because most of the domain does not experience
significant temperature changes except in regions near recent de-
position in a time step. Thus, a prediction that fails to capture
temperature changes in these regions may still have a good MSE

or NRMSE score. To address this issue, we propose to use the R
2

metric to evaluate the ML models, which measures the propor-
tion of the variance in the ground truth that is explained by the
model’s predictions. It is defined as

R
2 = 1� Ân

i=1(upredi
�ui)2

Ân

i=1(umean �ui)2 , (9)

where umean is the average of u over the window. R
2 takes value

in (�•,1]. A negative R
2 value indicates that the model’s pre-

dictions have a higher mean squared error (MSE) than a simple
baseline predictor that uses the mean temperature as the predic-
tion. When R

2 is close to zero, it suggests that the model’s pre-
dictions are similar to those of the baseline predictor. Conversely,
as R

2 approaches 1, the accuracy of the model’s predictions im-
proves, indicating a better fit between the model and the observed
data.

4 Dataset Generation
We developed a dataset that consists of the geometric mod-

els created by a generative ML model, and a high-fidelity finite
element simulation is employed to get the temperature history of
all geometric points.

4.1 Geometric Model Creation
SkexGen [1] is an autoregressive generative model based on

transformers that encode topological, geometric, and extrusion
variations of CAD model construction sequences into disentan-
gled code books [33]. With SkexGen, we can randomly generate
geometric models with prescribed topological and extrusion fea-
tures in various geometric details. In practice, we can use this
CAD generative model to augment a dataset in a limited amount
of time by generating synthesized models that share specific sim-
ilarities with the existing dataset. Figure 5 shows the ten models
created by SkexGen. Each row is generated with the same ex-
trusion code but with different topologies and geometries. The
models in the first row all have carved features in their upper re-
gion, while those in the second row are either stacked structures
or contain cylindrical holes.

While it is trvial to randomly generate hundreds of geomet-
ric models, the scale of the dataset used here is bottle-necked by
the intensive computation required by the thermal simulation.

The dimensions of the geometric models are normalized into
a similar level before meshing. For all the models, the largest
dimensions is set as 40 mm.

4.2 Thermal Simulation
Consider a domain W bounded by its boundary ∂W, of which

∂WH represents the part at which heat is transferred to the sur-
roundings with constant temperature T•, and ∂WD the part at
which the temperature is fixed at TD. The temperature evolution
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FIGURE 5. Geometric models created by SkexGen. The bounding
boxes of these geometric models are in the dimensions of 40 mm times

40 mm times 40 mm.

within W is governed by the following set of PDEs:

rcpṪ = — · (kp—T ), 8x 2 ∂W
�n · kp—T = hc(T �T•), 8x 2 ∂WH

T = TD, 8x 2 ∂WD.

(10)

Here, r , cp and kp are the temperature-dependent density, spe-
cific heat capacity and conductivity of the material, respectively.
The vector n is the unit outward normal of the boundary at co-
ordinate x. In Equation 10, hc is a temperature-dependent heat
transfer coefficient that accounts for free convection with convec-
tion coefficient h• = 15W/

�
m

2
K
�

and radiation with emissivity
e = 0.35 as

hc(T ) = esb
�
T

3 +T
2
T• +T T

2
• +T

3
•
�
, (11)

where sb is the Stefan-Boltzmann constant.
We utilized the thermal simulation algorithm developed in

[16] to efficiently and accurately solve the partial differential
equations described in Equation 10 for the DED process. This
algorithm uses the discontinuous Galerkin finite element method
(DGFEM) to spatially discretize the problem and the explicit for-
ward Euler timestepping scheme to advance the solution in time.
The algorithm activates elements based on the predefined tool-
path. Newly-deposited elements are initialised at elevated tem-
perature, after which they are allowed to cool according to Equa-
tion 10. To ensure that the high process heat input is captured
correctly, newly-deposited elements are assigned an enhanced
heat capacity prior to their solidification.

Our simulations utilized S355 structural steel as the mate-
rial, with material properties as given in [16]. The activation
temperature of newly-added elements was set to 1750�C and the
enhanced specific heat capacity to 4537.9J/(kgK). The temper-
ature of the substrate’s bottom face is kept fixed at T• = 25�C.
On all other faces, convection and radiation to the surrounding
air at T• is modelled using Equation 11. We set the tool moving
speed to 5mm/s. All geometric models were discretized with a
resolution of 20⇥20⇥20, with an element size of 2mm.

4.3 Data Preprocess and Training Setting
An efficient software for data preprocessing of thermal sim-

ulation have been developed by the authors to generate hexahe-
dron meshes from geometric models created by SkexGen. It can

FIGURE 6. The mesh (with substrate) and the “zigzag” toolpath au-
tomatically generated by the algorithm.

add a coarse mesh for the substrate. Additionally, a toolpath that
specifies the locations of the deposition tool in a sequence of time
steps can be constructed based on the process parameters. The
code is publicly available on GitHub 1. An example of the mesh
and toolpath generated by the code is shown in Figure 6.

The simulation generates the temperatures of all activated
elements at each time step. Let E = e0,e1, ...,em be the set of
elements ordered by their activation sequence, where ei is the el-
ement deposited at time step ti. The temperature at time step ti

serves as the input to predict the temperature at time step ti+1,
which is calculated by the numerical simulation and serves as
the ground truth for the prediction. To focus the ML model on
the temperature evolution in the HAZ near the most recent depo-
sition, heat-affected windows with dimensions 11⇥ 11⇥ 11 are
constructed around the deposited elements. Specifically, win-
dows around the elements ei�9,ei�8, ...,ei are initially selected
to train the ML model. Subsequently, more windows can be in-
cluded to allow the ML model to predict the temperature of the
entire domain. By doing so, we can let the ML model priori-
tize on the HAZ of the recent deposition. Table 1 provides the
number of windows for each geometric model. To maximize the
use of our limited dataset, we performed a procedure similar to
k-fold cross-validation to evaluate the generalizability of the ML
model to unseen geometries during training. We conducted 10
rounds of training and validation, with each round using a differ-
ent geometry for validation and the remaining nine for training
and testing. The windows from the nine geometries were mixed
and randomly divided into two sets: 90% for training and 10%
for testing. We trained the model for 50 epochs using Adam as
optimizer with a learning rate of 1⇥ 10�3 and weight decay of
1⇥ 10�4. After training, we used the ML model to predict the
temperatures of the validation geometry.

5 Results and Discussion
Table 2 displays the training and test metrics after 50 train-

ing epochs of each cross-validation round. The MSE, NL2, and

1https://github.com/Jiangce2017/hammer chuizi.git
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Index Geometry Number of Windows

1 9819

2 9804

3 9784

4 9513

5 9707

6 9921

7 9977

8 9588

9 9825

10 9725

TABLE 1. The number of the windows selected from the thermal sim-
ulation of each geometric model.

R
2 values are the average quantities across all windows in the

training, test, or validation dataset. The high degree of consis-
tency between the training and testing metrics indicates that the
ML model is capable of accurately capturing temperature evolu-
tion without overfitting. It should be noted that the ground truth
and prediction temperatures used for evaluation are their original
values without normalization, and the temperature unit is Cel-
sius. The relatively large variance of MSE is likely due to the
variance of temperature responses in the AM process across dif-
ferent geometries.

Figure 7 shows the histories of these metrics during the train-
ing process. MSE and NL2 decrease rapidly in all rounds, and
R

2 quickly approaches 1, indicating that the optimizer converges
successfully. MSE provides a straightforward way to describe
the average error square between the prediction and ground truth.
For example, the test MSE of No.1 round converges to about
100, indicating that the average absolute difference between pre-
diction and ground truth is approximately 10�C which is an ac-
ceptable error as the highest temperature could achieve 1500�C
in the simulation of AM process. NL2 measures a comparative

error that is divided by the value of the ground truth. This is why
the cross-validation rounds approach similar values of NL2 at the
end. However, interpreting the ML model’s performance in cap-
turing the dramatic temperature evolution from NL2 and MSE is
challenging if most windows are far from the recent deposition
and do not have significant temperature changes. R

2 reveals the
relative accuracy of the prediction compared with using the mean
of ground truth as the prediction. In other words, it measures the
proportion of the variance in the ground truth that the prediction
explains. The fact that the test R

2 in all rounds is above 0.99 sug-
gests that the model can capture the extreme local temperature
variance.

Table 3 lists the performance of the ML model on the valida-
tion geometric models, which are unseen in the training process.
The ML model shows good generalizability in 7 out of 10 ge-
ometries, but fails significantly in 3 of the 10. Figure 8 visualizes
the prediction results of the validation on geometric model 5. 10
windows are randomly selected for each row. At each row, the
ground truth, the predicted temperature, the difference between
the prediction and the temperature, and the error percent distri-
bution over voxels of the window are shown. As we can see, the
model can predict the temperature precisely for this validation
geometric model, with errors ranging within 3% for most of the
windows. The largest errors tend to appear near the recent depo-
sition, with temperatures there being slightly overestimated by
the ML model.

The ML model appears to fail completely at predicting the
temperature for geometric models 6, 7, and 8, despite perform-
ing well in learning their local temperature evolution when in-
cluded in the training process. To investigate how prediction er-
rors are distributed over the windows, we analyzed the R

2 of the
10 windows with the worst predictions (lowest R

2) in each cross-
validation round, as shown in Table 5. Among approximately
10 thousand windows, only a few poorly predicted windows can
adversely affect the average prediction.

Figure 9 depicts the predictions of 10 randomly selected
windows from the cross-validation rounds on geometric model
6, which show a similar level of accuracy as those in Figure 8.
Therefore, despite the three failed cross-validation rounds, most
of the windows have reliable predictions. These observations
align with the findings reported by [34], which suggests that most
points in the parts built by the AM process experience repetitive
and similar temperature histories.

This also suggests that the three geometries possess unique
local features that are not present in the other geometries used in
training. Thus, the current dataset may be insufficient for cov-
ering the range of common geometric models used in practice.
Additionally, the large errors in these cases indicate that the ML
model may overfit to the training geometries if certain represen-
tative geometries are not included. To overcome these limita-
tions, we suggest building a larger dataset that includes compre-
hensive geometric features of parts built by the AM process.
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FIGURE 7. The history of the training and test evaluation metrics during the 50 epochs training.

Index Geometry Train MSE Train NL2 Train R
2 Test MSE Test NL2 Test R

2

1 43.2577 0.1024 0.9993 94.3523 0.1226 0.9989

2 51.4106 0.1038 0.9993 7.8131 0.1128 0.9993

3 7.9197 0.1047 0.9993 9.9346 0.1203 0.9988

4 48.4153 0.0991 0.9996 5.4243 0.1158 0.9993

5 44.5454 0.0944 0.9995 52.5766 0.1089 0.9991

6 45.1410 0.0978 0.9995 43.6450 0.1119 0.9993

7 48.4310 0.0947 0.9996 4.0064 0.1016 0.9997

8 51.5494 0.0954 0.9993 8.2268 0.1033 0.9993

9 45.1011 0.0996 0.9996 43.8328 0.1124 0.9993

10 41.1014 0.0826 0.9998 50.6812 0.0898 0.9998

TABLE 2. The training and test metrics after 50 epochs of each cross-validation round
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FIGURE 8. The visualization of the prediction performance of the ML model trained validated on geometric model 5. There are 10 randomly selected
windows in different timesteps. From the left to the right, each column shows the ground truth of the temperature, the prediction of the temperature,
the different between the ground truth and the prediction,and the percent error, respectively. The temperature unit is Celsius.
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FIGURE 9. The visualization of the prediction performance of the ML model trained validated on geometric model 6.
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Index Geometry MSE R
2

1 7.362310 0.999586

2 0.813440 0.999953

3 131.311879 0.997899

4 2.830105 0.999730

5 1.963513 0.999787

6 4.438254⇥1011 �2.433204⇥107

7 1.027052⇥1011 �7.695437⇥106

8 8.096904⇥1010 �4.151847⇥106

9 49.322650 0.995543

10 271.619524 0.974972

TABLE 3. The MSE and R
2 of each cross validation fold. The geom-

etry shown in each row is the sample held out during training process
for validation.

6 Conclusion
This paper presented a data-driven model that uses Fourier

Neural Operator to capture the local temperature evolution dur-
ing the additive manufacturing process. To prepare the training
data, we employed an automatic pipeline that uses an autoregres-
sive generative model, SkexGen, to randomly generate a diverse
set of CAD models with variations in topological, geometric,
and extrusion features. The toolpath and hexahedral mesh for
finite element method (FEM) analysis were then generated using
a code we developed. The resulting data was used to run high-
fidelity, physics-based simulations using DGFEM. The simula-
tions produced ground truth data which was then used to train
the ML model.

Our experiments demonstrate that the proposed ML model
can accurately capture local temperature changes, irrespective of
the geometry. The R

2 metric reveals that the model can pre-
cisely predict the large variance of temperature distributions in
heat-affected zones near recent depositions. However, our exper-
iments also highlight certain limitations. Cross-validation exper-

Index Geometry MSE R
2

1 7.31 0.99

2 0.81 0.99

3 131.31 0.99

4 2.83 0.99

5 1.96 0.99

6 4.43⇥1011 �2.43⇥107

7 1.02⇥1011 �7.69⇥106

8 8.09⇥1010 �4.15⇥106

9 49.32 0.99

10 271.61 0.97

TABLE 4. The MSE and R
2 of each cross validation fold. The geom-

etry shown in each row is the sample held out during training process
for validation.

iments reveal that the model may fail on geometric models that
are significantly different from those used in the training dataset,
indicating overfitting to the training data. This may be due, in
part, to the relatively small size of the current geometric model
dataset. Future work will focus on creating a larger dataset to
mitigate this issue. Additionally, our method currently uses only
one type of toolpath and consistent tool moving speed. Inclusion
of various toolpaths, power, and tool speeds is critical to improve
model performance, and will be considered in future work. The
architecture of the ML model would need to be modified if more
external parameters are required as the dimensions of the input
change. However, the total model does not need to be re-trained
from scratch. With transfer learning methods [35], the layers that
connect with the input layer need to be replaced and be fine-tuned
with other layers on the new data. In addition, to enhance the fi-
delity of the ML model and accelerate the learning process, the
physics-informed neural networks [36, 37] and model order re-
duction methods [38, 39] could be included into our framework.
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Index 1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th

1 0.6698 0.6761 0.7180 0.8004 0.8875 0.8897 0.9064 0.9210 0.9348 0.9351

2 0.9981 0.9983 0.9987 0.9988 0.9989 0.9989 0.9989 0.9991 0.9991 0.9992

3 0.1713 0.1840 0.6392 0.6792 0.7008 0.7270 0.7440 0.7532 0.7603 0.7729

4 0.7132 0.7459 0.8119 0.9417 0.9428 0.9630 0.9722 0.9764 0.9787 0.9787

5 0.7993 0.8282 0.9115 0.9178 0.9285 0.9491 0.9501 0.9609 0.9645 0.9751

6 �8⇥1010 �8⇥1010 �8⇥1010 �5⇥1010 �4⇥1010 �2⇥1010 �9⇥109 0.3752 0.6553 0.8646

7 �4⇥1010 �3⇥1010 0.8019 0.9966 0.9968 0.9976 0.9979 0.9979 0.9982 0.9984

8 �4⇥1010 0.8593 0.8671 0.8702 0.8718 0.8725 0.8868 0.8911 0.8927 0.8930

9 0.3713 0.3943 0.4016 0.4184 0.4310 0.4460 0.4508 0.4523 0.4549 0.4567

10 0.1106 0.1170 0.1281 0.1480 0.1566 0.1949 0.2295 0.3130 0.3327 0.3871

TABLE 5. The R
2 of the 10 worst window temperature predicted in the 10 cross-validation rounds.
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