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Distributed Secret Sharing Over a Public Channel
From Correlated Random Variables

Rémi A. Chou

Abstract— We consider a secret-sharing model where a dealer
distributes the shares of a secret among a set of participants with
the constraint that only predetermined subsets of participants
must be able to reconstruct the secret by pooling their shares.
Our study generalizes Shamir’s secret-sharing model in three
directions. First, we allow a joint design of the protocols for
the creation of the shares and the distribution of the shares,
instead of constraining the model to independent designs. Second,
instead of assuming that the participants and the dealer have
access to information-theoretically secure channels at no cost,
we assume that they have access to a public channel and
correlated randomness. Third, motivated by a wireless network
setting where the correlated randomness is obtained from channel
gain measurements, we explore a distributed setting where the
dealer is an entity made of multiple sub-dealers. Our main results
are inner and outer regions for the achievable secret rates that
the dealer and the participants can obtain in this model. To this
end, we develop two new achievability techniques, a first one
to successively handle reliability and security constraints in a
distributed setting, and a second one to reduce a multi-dealer
setting to multiple single-user dealer settings. Our results yield
the capacity region for threshold access structures when the cor-
related randomness corresponds to pairwise secret keys shared
between each sub-dealer and each participant, and the capacity
for the all-or-nothing access structure in the presence of a single
dealer and arbitrarily correlated randomness.

Index Terms— Secret sharing, distributed secret-key genera-
tion, multiterminal source, privacy amplification.

I. INTRODUCTION

C
ONSIDER a dealer who distributes to L participants the

shares of a secret S with the requirements that any t
participants are able to reconstruct S by pooling their shares,

and any subsets of participants with cardinality strictly smaller

than t must be unable to learn anything about the secret,

in an information-theoretic sense. More specifically, the dealer

forms L shares (M1, . . . ,ML) from the secret S, and transmits

each share Sl to Participant l ∈ {1, . . . , L} via an individual

and information-theoretically secure channel. The setting is

depicted in Figure 1 for the case (L, t) = (3, 2).
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Fig. 1. Traditional secret sharing with L = 3 participants and t = 2.

This secret-sharing problem was first introduced by Shamir

in [2] and, independently, by Blakley in [3]. Subsequently,

numerous variants have been extensively studied in the

computer science literature, see, for instance, [4], [5] and

references therein. In these studies of information-theoretically

secure secret sharing, it is assumed that the dealer can dis-

tribute to the participants the shares of the secret through

information-theoretically secure channels that are available

at no cost, as in the setting depicted in Figure 1a. Recently,

to avoid this assumption, an information-theoretic treatment of

secret sharing over noisy channels has been proposed in [6] by

leveraging information-theoretic security results at the phys-

ical layer. Specifically, in [6], the information-theoretically

secure channels of traditional secret-sharing models are

replaced by a noisy broadcast channel from the dealer to the

participants so that secret sharing reduces to physical-layer

security for a coumpound wiretap channel [7].

In this paper, as illustrated in Figure 2, we formulate a

secret-sharing model that generalizes Shamir’s secret-sharing

model in three directions. First, our model allows a joint

design of the creation of the shares by the dealer and the

distribution of the shares by the dealer to the participants.

This contrasts with Shamir’s model which considers these two

phases independently, since information-theoretically secure

channels are available between the dealer and each participant

for the distribution phase. Second, while Shamir’s model

assumes that the participants and the dealer have access to

information-theoretically secure channels for the distribution

of shares, we, instead, only rely on a public channel and corre-
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Fig. 2. Proposed secret sharing model with two sub-dealers, three partici-
pants, and a reconstruction threshold t = 2.

lated randomness in the form of realizations of independently

and identically distributed random variables.1 Third, motivated

by a wireless network setting discussed next, we further

explore the problem of secret sharing in a distributed setting

where the dealer is an entity made of multiple sub-dealers.

Our setting is formally described in Section III and can

be explained at a high level as follows. Assume that the

participants and the dealer, made of multiple sub-dealers

distributed in space, observe independently and identically

distributed realizations of correlated random variables, that

have, for instance, been obtained in a wireless communication

network from channel gain measurements after appropriate

manipulations [8], [9], [10], [11]. The dealer wishes to share

a secret with the participants with the requirement that only

predefined subsets of participants are able to reconstruct the

secret, while any other subsets of participants that pool all their

knowledge must remain ignorant, in an information-theoretic

sense, of the secret. We are interested in characterizing the

set of all achievable secret rates that the dealer can obtain

via its sub-dealers when those are allowed to communicate

with the participants over a public channel. Note that a

potential limitation in the presence of a single dealer is that

the correlated random variables available at the dealer and

the participants could be such that no positive secret rates are

achievable. It is precisely to mitigate this eventuality that we

consider a dealer that can deploy in space sub-dealers using,

for instance, mobile stations or drones whose positions are

adjusted to change the statistics of the channel gains and avoid

sterile spatial configurations.

We summarize the main features of our work as follows:
(i) We study a secret-sharing model that extends Shamir’s

secret-sharing model in three directions by considering

(1) a joint, instead of independent, design of the share

creation and distribution phases, (2) a public channel and

correlated randomness, instead of secure channels, and

(3) a dealer made of distributed sub-dealers, instead of

1Note that the latter resources are more general than the former resources
since they can be used to implement information-theoretically secure channels
via a one-time pad when the correlated randomness corresponds to secret keys
shared between the dealer and the participants.

a single dealer. Specifically, we derive inner and outer

regions for the achievable secret rates that the dealer

and the participants can obtain in this model. We obtain

capacity results in the case of threshold access structures

when the correlated randomness corresponds to pairwise

secret keys shared between each sub-dealer and each

participant, and in the case of a single-dealer setting

for the all-or-nothing access structure and arbitrarily

correlated randomness.

(ii) In all our achievabilitiy results, the length of each

share always scales linearly with the size of the secret

for any access structures. This comes from the fact

that the size of the secret is linear with the number

of source observations n, and a share corresponds to

the public communication plus n source observations,

whose lengths are both linear with n. Indeed, the public

communication corresponds to a compressed version of

the n source observations of all the sub-dealers. The

length of the public communication does not depend

on the number of participants but does depend on the

access structure, in particular, the public communication

must allow the secret reconstruction for the group of

authorized participants that has the least amount of infor-

mation in their source observations about the secret. This

contrasts with Shamir’s secret-sharing model, for which

the best known coding schemes require the share size to

depend exponentially on the number of participants for

some access structures [5].

(iii) As a by-product of independent interest, for distributed

settings, we develop two novel achievability techniques

to simultaneously satisfy reliability and security con-

straints. The first one consists in successively handling

the reliability and security constraints. This is done

by deriving a new variant of the distributed leftover

hash lemma and developing a new coding scheme for

distributed reconciliation that can be combined with it.

The second one consists in reducing a distributed setting

to multiple single-user settings.

A. Related Work

Our work is related to secret-key generation from corre-

lated random variables and public communication [12], [13],

as correlated randomness and public communication are also

the main resources considered in our setting. However, the

analysis of our proposed secret-sharing model does not follow

from known results for the secret-key generation models

in [12] and [13], as these models only consider a key exchange

between two parties, whereas our setting considers a secret

exchange between multipe dealers and multiple participants.

The analysis of our proposed secret-sharing model does not

follow either from subsequent multiuser secret-key generation

models, e.g., [14], [15], [16], and [17], that either do not

consider multiple reliability and security constraints simulta-

neously (and are thus unable to support access structures as

in our secret-sharing model) or do not consider distributed

settings (and are thus unable to support our distributed dealer

setting). The main technical difficulties in our study precisely
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come from having to simultaneously deal with (i) a distributed

setting due to the presence of multiple sub-dealers, and

(ii) information-theoretic security constraints able to support

an access structure, i.e., able to ensure that all the unauthorized

subsets of participants cannot learn information about the

secret. More specifically, for the all-or-nothing access struc-

ture, i.e., when all the participants are needed to reconstruct

the secret, we develop a new achievability technique that

successively handles the reliability and security constraints

in the presence of distributed sub-dealers. Perhaps surpris-

ingly, we show that this achievability technique is superior

to a random binning strategy that simultaneously handles

the reliability and security constraints, in the sense that no

elimination of auxiliary rates in the obtained achievability

region is necessary. To this end, we derive a new variant of

the distributed leftover hash lemma [18], [19], [20]. While the

standard leftover hash lemma [21] has been extensively used

for secret key generation, e.g., [22], [23], and [24], known

proofs techniques to study the distributed leftover hash lemma

in our problem do not seem optimal. Specifically, at least two

new technical challenges arise in our study: (i) while in a

non-distributed setting only one min-entropy appears in the

leftover hash lemma, the presence of multiple min-entropies

(defined from the marginals of the same joint probability

distribution) for a distributed setting complexifies the task of

finding good approximations of theses min-entropies, further,

(ii) usual techniques for non-distributed settings, e.g., [24,

Lemma 10], to study the impact of public communication

on the leaked information to an eavesdropper do not lead

to tight results in a distributed setting. Additionally, we also

develop for the all-or-nothing access structure another new

achievability technique to reduce the task of coding for a

distributed-dealer setting to the task of coding for multiple

separate single-dealer settings.

As alluded to earlier, [6] considers a channel model version

of the model studied in this paper but in the presence of

a single dealer. Note that subsequently to the preliminary

version [1] of this paper, Reference [25] investigated a similar

model to the one in this study, but only in the presence of a

single-dealer, when the participants and the dealer observe

realizations of correlated Gaussian variables. Note also

that [26] investigated another secret-sharing problem from cor-

related random variables and public discussion in the absence

of a designated dealer and for special kinds of access structures

that are not monotone. By contrast, in this work, we consider

arbitrary monotone access structures, as defined in [27].

Finally, note that distributed secret sharing has also been

studied from a different perspective in [28] and [29]. In these

references, a dealer stores information in multiple storage

nodes such that each participant who has access to prede-

fined storage nodes can reconstruct a secret but cannot learn

information about the secrets of the other participants. The

main difference, in terms of assumptions, between [28] and

[29] and our setting is that it is assumed in [28] and [29]

that the dealer can store information in multiple nodes and

thus that there exist information-theoretically secure channels

between the dealer and each node, similar to the standard

assumption in Shamir’s secret sharing. By contrast, we do

not make this assumption in our setting and instead only

rely on a public channel and correlated randomness. For this

reason, in [28] and [29] the nature of the problem studied is

different, specifically, in [28] and [29], the minimization of

communication rates is sought out, whereas in our setting, for

given source statistics, the maximization of the secret length

is sought out.

B. Paper Organization

The remainder of the paper is organized as follows. We

formally define the problem in Section III and state our main

results in Section IV. We present our achievability proofs

and converse proofs in Sections V and VI, respectively. We

prove the optimality of our results in some special cases in

Section VII. We propose an extension of all our results to the

case of chosen (instead of random) secrets in Section VIII.

Finally, we provide concluding remarks in Section IX.

II. NOTATION

For any a ∈ R∗, define J1, aK ≜ [1, +a,] ∩N. The indicator

function is denoted by 1{É}, which is equal to 1 if the

predicate É is true and 0 otherwise. Let V(·, ·) denote the

variational distance. For a given set S, let 2S denote the power

set of S, and |S| denotes the cardinality of S. Finally, let×
denote the Cartesian product.

III. PROBLEM STATEMENT

For L, D ∈ N∗, define the sets L ≜ J1, LK and D ≜
J1, DK. Consider L finite alphabets (Xl)l∈L, D finite alpha-

bets (Yd)d∈D, and define XL ≜ ×l∈L
Xl and YD ≜

×d∈D
Yd. Then, consider a discrete memoryless source (XL×

YD, pXLYD
), where XL ≜ (Xl)l∈L and YD ≜ (Yd)d∈D.

n ∈ N independent and identically distributed realizations of

the source are denoted by (Xn
L, Y n

D ), where Xn
L ≜ (Xn

l )l∈L

and Y n
D ≜ (Y n

d )d∈D. In the following, for any subset T ¦ L,

we use the notation Xn
T ≜ (Xn

l )l∈T .

As formalized next, we consider D sub-dealers and L
participants, who each observes one component of the discrete

memoryless source. Through public communication from the

sub-dealers to the participants, their objective is to generate

D random secrets such that authorized subsets of participants

can reconstruct the secrets, whereas unauthorized subsets of

participants cannot learn any information about the secrets.

We highlight that in the following definitions the secrets are

random, however, in Section VIII, we explain how to address

the same setting when the values of the secrets are chosen by

the sub-dealers.

Definition 1 (Monotone Access Structure [27]): A set A of

subsets of L is a monotone access structure when for any

T ¦ L, if T contains a set that belongs to A, then T
also belongs to A. We write the complement of A in 2L

as U ≜ 2L\A.

Definition 2: For d ∈ D, define the alphabet Sd ≜
J1, 2nRdK and SD ≜×d∈D

Sd. A ((2nRd)d∈D, A, U, n) secret-

sharing strategy consists of:
• A monotone access structure A.

• D sub-dealers indexed by the set D.
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• L participants indexed by the set L.

• D encoding functions (fd)d∈D, where fd : Yn
d → Md,

d ∈ D, with Md an arbitrary finite alphabet.

• D encoding functions (gd)d∈D, where gd : Yn
d → Sd,

d ∈ D.

• |A|×D decoding functions (hA,d)A∈A,d∈D, where hA,d :
Xn

A ×MD → Sd, A ∈ A, with Xn
A ≜×a∈A

Xn
a and

MD ≜×d∈D
Md.

and operates as follows:

• Sub-dealer d ∈ D observes Y n
d .

• Participant l ∈ L observes Xn
l .

• Sub-dealer d ∈ D sends over a noiseless public authen-

ticated channel the public communication Md ≜ fd(Y
n
d )

to the participants. We write the global communication

of all the sub-dealers as MD ≜ (Md)d∈D.

• Sub-dealer d ∈ D computes Sd ≜ gd(Y
n
d ).

• Any subset of participants A ∈ A can compute for d ∈
D, Ŝd(A) ≜ hA,d(X

n
A, MD), and thus form ŜD(A) ≜

(Ŝd(A))d∈D, an estimate of SD ≜ (Sd)d∈D.

Definition 3: A secret rate-tuple (Rd)d∈D is achievable if

there exists a sequence of ((2nRd)d∈D,A, U, n) secret-sharing

strategies such that

lim
n→∞

max
A∈A

P
[
ŜD(A) ̸= SD

]
= 0 (Reliability), (1)

lim
n→∞

max
U∈U

I (SD;MD, Xn
U ) = 0 (Strong Security), (2)

lim
n→∞

log |SD| −H(SD) = 0 (Secret Uniformity). (3)

Let C(A) denote the set of all achievable secret rate-tuples.

When D = 1, C(A) denotes the supremum of all achievable

secret rates and is called the secret capacity.

(1) means that any subset of participants in A is able

to recover the secret, while (2) means that any subset of

participants in U cannot learn any information about the

secret even if they pool their observations and the public

communication sent by all the sub-dealers. (3) means that

the secret is nearly uniform, i.e., the entropy of the secret

is nearly equal to its length. In other words, (3) means that

we seek secret-sharing strategies that maximize the entropy of

the secret.

Example 1: Suppose that there are L = 3 participants

who observe (Xn
1 , Xn

2 , Xn
3 ) and D = 2 sub-dealers who

observe (Y n
1 , Y n

2 ) as depicted in Figure 3a. In a first phase,

depicted in Figure 3a, Sub-dealer i ∈ {1, 2} computes Si ≜
gi(Y

n
i ) and Mi ≜ fi(Y

n
i ), and publicly shares Mi with all

the participants. In this example, suppose that M1, M2, S1,

S2 are created such that any two participants must be able

to recover (S1, S2), i.e., the access structure is defined as

A ≜ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, but a single participant

must not learn information about (S1, S2) as described by

Equation (2) with U ≜ 2L\A = {{1}, {2}, {3}}. Hence,

in a second phase, depicted in Figure 3b, any two participants

i ∈ {1, 2, 3} and j ∈ {1, 2, 3}\{i} who pool their information,

i.e., (M1, M2, X
n
i , Xn

j ), can estimate (S1, S2) as (Ŝ1, Ŝ2) ≜

(hA,1(X
n
A, MD), hA,2(X

n
A, MD)), where A ≜ {i, j} ∈ A and

MD ≜ (M1, M2).

Fig. 3. Secret sharing with D = 2 sub-dealers, L = 3 users, and the access
structure A ≜ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

IV. RESULTS

In the following, for a rate-tuple (Rd)d∈D ∈ RD
+ and

S ¦ D, we use the notation RS ≜
∑

i∈S Ri.

A. General Access Structures

1) Results for an Arbitrary Number D of Sub-Dealers:

The achievability scheme to derive Theorem 1 relies on ran-

dom binning designed to simultaneously satisfy the reliability

condition (1) and the security condition (2).

Theorem 1 (Inner Bound): We have R(in)(A) ¦ C(A),
where

R(in)(A)

≜ Proj(Rd)d∈D

{
(Rd, R

′
d)d∈D :

R′
S ⩾ max

A∈A
H(YS |YScXA),∀S ¦ D

R′
S + RS ⩽ min

U∈U
H(YS |XU ),∀S ¦ D

}
,

where Proj(Rd)d∈D
denotes the projection on the space defined

by the rates (Rd)d∈D.

Proof: See Section V-A.

Theorem 2 (Outer Bound): We have C(A) ¦ R(out)(A),
where

R(out)(A) ≜
{

(Rd)d∈D : RS ⩽ min
A∈A

min
U∈U

I(YS ;XAYSc |XU ),∀S ¦ D

}
.

Proof: See Section VI-A.

Note that it is challenging to simplify the inner

bound R(in)(A) in Theorem 1 because the set functions

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 25,2024 at 18:24:35 UTC from IEEE Xplore.  Restrictions apply. 



CHOU: DISTRIBUTED SECRET SHARING OVER A PUBLIC CHANNEL FROM CORRELATED RANDOM VARIABLES 2855

S 7→ max
A∈A

H(YS |YScXA) and S 7→ min
U∈U

H(YS |XU ) are not

necessarily submodular or supermodular and, consequently,

Fourier-Motzkin elimination is not easily applicable for a large

number of sub-dealers D. As described next, one can, however,

obtain simplified bounds when D = 1 and D = 2, and a

capacity result for threshold access structures when the source

of randomness corresponds to pairwise secret keys.

2) Results for a Two-Sub-Dealer Setting, i.e., D = 2:

Corollary 1 (Inner Bound): Assume that D = 2. We have

R(in)(A) ¦ C(A), where R(in)(A) is defined in (4), shown at

the bottom of the page.

Corollary 2 (Outer Bound): Assume that D = 2. We have

R(out)(A) § C(A), where

R(out)(A)

≜





(R1, R2) :

R1 ⩽ min
A∈A

min
U∈U

I(Y1;XAY2|XU )

R2 ⩽ min
A∈A

min
U∈U

I(Y2;XAY1|XU )

R1 + R2 ⩽ min
A∈A

min
U∈U

I(YD;XA|XU )





.

Corollary 1 is obtained from Theorem 1 by using Fourier-

Motzkin elimination. Corollary 2 is a consequence of

Theorem 2.

3) Results for a Single-Dealer Setting, i.e., D = 1:

Corollary 3: Assume that D = 1. We have the following

lower and upper bounds for the secret capacity C(A)

min
A∈A

min
U∈U

(I(Y1;XA)− I (Y1;XU ))

⩽ C(A)

⩽ min
A∈A

min
U∈U

I(Y1;XA|XU ).

Corollary 3 is a consequence of Theorem 1 and Theorem 2.

B. All-or-Nothing Access Structure

In this section, we consider the all-or-nothing access struc-

ture denoted by A⋆ ≜ {L}. This setting corresponds to the

case where all the participants are needed to reconstruct the

secret.

1) Results for an Arbitrary Number D of Sub-Dealers:

The achievability proof technique for Theorem 3 is different

than the proof technique for a general access structure in

Theorem 1. Specifically, we successively, instead of simul-

taneously, handle the reliability constraint (1) and the security

constraint (2). This strategy is, for instance, used for secret-key

generation [22], [23], [24]. However, in our distributed setting,

the application of this strategy is not straightforward and we

discuss in the proof the main technical challenges that needs

to be overcome to obtain this extension. The first step of our

coding strategy, to handle the reliability constraint, involves

a careful design of an exponential number (with respect

to D) of nested binnings. The second step of our coding

strategy, to handle the security constraints, involves a new

variant of the distributed leftover hash lemma (Lemma 3 in

Appendix V-B.2). Note that the proof technique used to prove

Theorem 3 has at least two advantages compared to a joint

random binning approach as in Theorem 1. First, no auxiliary

rate appears in the achievability region of Theorem 3, second,

it provides insight for the design of explicit secret-sharing

schemes by showing that a two-layer design approach that

separates the reliability constraint from the security constraints

can be used.

Theorem 3 (Inner Bound): We have R
(in)
1 ¦ C(A⋆), with

R
(in)
1 ≜

{
(Rd)d∈D : RS ⩽ min

T ªL
I(YS ;XL|XT ),∀S ¦ D

}
.

Proof: See Section V-B.

Theorem 4 (Outer Bound): We have R(out)(A⋆) § C(A⋆),
where

R(out)(A⋆)

≜

{
(Rd)d∈D : RS ⩽ min

T ªL
I(YS ;XLYSc |XT ),∀S ¦ D

}
.

Proof: See Section VI-B.

2) Results for a Two-Sub-Dealer Setting, i.e., D = 2:

The achievability proof strategy of Theorem 5 is different

than the achievability proof strategy of Theorem 3. Note

that in the proof of Theorem 3, we deal with the security

constraint (2) by jointly considering all the sub-dealers.

By contrast, our achievability proof strategy in Theorem 5

considers the sub-dealers individually when ensuring (2).

Specifically, when D = 2, one can first realize a secret-sharing

scheme between Sub-dealer 1 and the participants with

the requirement limn→∞ maxU∈U I (S1;M1, X
n
U ) = 0,

and then realize a secret-sharing scheme between Sub-

dealer 2 and the participants with the requirement

limn→∞ maxU∈U I (S2;M2, X
n
U , Y n

1 ) = 0, as illustrated

in Figure 4. As described next, one can show that such an

approach is sufficient to ensure the security constraint (2).

However, the proof is not trivial as we need to modify

the reconciliation protocol of Theorem 3 described in

Section V-B, and as an initialization phase is also required,

during which Sub-dealer 2 shares a secret with negligible rate

with all the participants. Note also that one could exchange

the role of the two sub-dealers in the protocol to potentially

enlarge the achievablity region via this method. This idea

leads to Theorem 5.

R(in)(A) ≜






(R1, R2) :

R1 ⩽ min
A∈A

min
U∈U

(I(Y1;Y2XA)− I(Y1;XU ))

R2 ⩽ min
A∈A

min
U∈U

(I(Y2;Y1XA)− I(Y2;XU ))

R1 + R2 ⩽ min





min
A∈A

I(YD;XA)−max
U∈U

I(YD;XU ),

min
A∈A

I(Y1;Y2XA) + min
A∈A

I(Y2;XA|Y1)−max
U∈U

I(YD;XU ),

min
A∈A

I(YD;XA)−max
U∈U

I(Y1;XU )−max
U∈U

I(Y2;XU ) + I(Y1;Y2)










(4)
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Fig. 4. A joint security design strategy for (S1, S2) is used in Theo-
rem 3, whereas a successive security design strategy for (S1, S2) is used
in Theorem 5.

Theorem 5 (Inner Bound): Assume that D = 2. If

min
d∈{1,2}

min
T ªL

I(Yd;XL|XT ) > 0, then R
(in)
1 ¦ R

(in)
2 ¦ C(A⋆),

with

R
(in)
2 ≜ [R({1})×R({2}|{1})]

∪ [R({1}|{2})×R({2})] ∪R({1, 2}),

where we have defined for any S,V ¦ D,

R(S|V)

≜

{
(Rd)d∈S :RB ⩽ min

T ªL
I(YB;XL|YVXT ),∀B ¦ S

}
,

and R(S) ≜ R(S|∅).
Proof: See Section V-C.

From Theorem 5, we deduce the following sum-rate achiev-

ability result.

Corollary 4 (Sum-Rate Achievability): Assume that D = 2
and min

d∈{1,2}
min
T ªL

I(Yd;XL|XT ) > 0. Define for any S,V ¦ D,

R(S|V) ≜ min
T ªL

I(YS ;XL|YVXT ).

For convenience, we also define for S ¦ D, R(S) ≜ R(S|∅).
Theorem 3 shows the achievability of the secret sum-rate Rsum

1 ,

while Theorem 5 shows the achievability of the secret sum-rate

max(Rsum
1 , Rsum

2 , Rsum
3 ), where

Rsum
1 ≜ min (R({1, 2});R({1}) + R({2})) ,

Rsum
2 ≜ [R({1}) + R({2}|{1})],

Rsum
3 ≜ [R({2}) + R({1}|{2})].

From Theorem 4, we will also have the following outer bound.

Corollary 5 (Outer Bound): Assume that D = 2. We have

R(out)(A⋆) § C(A⋆), where

R(out)(A⋆)

≜





(R1, R2) :

R1 ⩽ min
T ªL

I(Y1;XLY2|XT )

R2 ⩽ min
T ªL

I(Y2;XLY1|XT )

R1 + R2 ⩽ min
T ªL

I(YD;XL|XT )





.

Next, we provide a sufficient condition for having found the

optimal secret sum-rate in Corollary 4.

Corollary 6: We use the same notation as in Corollary 5. If

R({1, 2}) ⩽ R({1}) + R({2}), then the secret sum-rate Rsum
1

in Corollary 4 is optimal by Corollary 5.

3) Result for a Single-Dealer Setting, i.e., D = 1: In the

presence of a single dealer, i.e., when D = 1, we have the

following capacity result.

Theorem 6: Assume that D = 1. The secret capacity

C(A⋆) is given by

C(A⋆) = min
T ªL

I(YD;XL|XT ).

Proof: See Section VII-A.

Theorem 6 can be seen as a counterpart to the result for a

channel model in [6].

Example 2: Suppose that D = 1 and L = 2. Then,

by Theorem 6, we have

C(A⋆) = min[I(YD;X1|X2), I(YD;X2|X1)].

Example 3: Suppose that D = 1 and consider L identical

and independent channels Cl = (Y, pX|Y ,X ) with X and Y
two finite alphabets. Suppose that, for any l ∈ L, Xl = X ,

and Xl is the output of the channel Cl when YD, distributed

according to pY , is the input. Then, by Theorem 6, we have

C(A⋆) = I(YD;X1|XJ2,LK).

C. Threshold Access Structures When the Source of

Randomness Corresponds to Pairwise Secret Keys

We define threshold access structures as follows. Let t ∈
J1, LK and z ∈ J1, t− 1K. Define the access structure

At ≜ {S ¦ L : |S| ⩾ t},
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Fig. 5. Secret capacity for threshold access structures when D = 1 and
L = 10.

and the set of non-authorized participants as

Uz ≜ {S ¦ L : |S| ⩽ z},

and consider Definition 3 with the substitution A ← At and

U← Ut. We denote the capacity region by C(At, Uz) instead

of C(A), and the secret capacity by C(t, z) instead of C(A)
when D = 1. This setting means that any set of participants

of size larger than or equal to t must be able to recover the

secrets, and any set of participants of size smaller than or equal

to z must be unable to learn any information about the secrets.

Clearly, for arbitrarily correlated source of randomness, the

results of Section IV-A apply for any t ∈ J1, LK and z ∈
J1, t − 1K, and the results of Section IV-B apply for (t, z) =
(L, L− 1). We then have the following capacity result when

the source of randomness corresponds to pairwise secret keys.

Theorem 7 (Capacity Region): Suppose that Participant l ∈
L and Sub-dealer d ∈ D share a secret key Kn

l,d uniformly

distributed over {0, 1}n, and that all the keys are jointly

independent. With the notation of Section III, we thus have

Xn
l = (Kn

l,d)d∈D for User l ∈ L and Y n
d = (Kn

l,d)l∈L for

Sub-dealer d ∈ D. Let t ∈ J1, LK and z ∈ J1, t − 1K. Then,

we have

C(At, Uz) = {(Rd)d∈D : RS ⩽ |S|(t− z),∀S ¦ D}

= {(Rd)d∈D : Rd ⩽ t− z,∀d ∈ D} ,

moreover, the rate-tuple (R⋆
d)d∈D is achievable with R⋆

d ≜
t− z.

Proof: See Section VII-B.

Note that Theorem 7 is consistent with known results for

Shamir’s secret sharing model. Indeed, suppose that D = 1
and z = t − 1 in Theorem 7. Using Shamir’s secret sharing,

the dealer can first form L shares of n bits for a secret S with

entropy H(S) = n, and then secretly transmit each share to

a participants via a one-time pad over the public channel by

using the secret keys of length n. The dealer has thus shared

a secret with rate n
n = 1. Now, since C(t, z) = t − z =

1 by Theorem 7, we also conclude in this example that there

is no loss of optimality in independently handling the share

generation phase and the secure share distribution phase.

Example 4: Suppose that D = 1 and L = 10. Then,

C(t, z) = t− z is depicted in Figure 5.

V. ACHIEVABILITY PROOFS

Sections V-A, V-B, V-C contain the achievability proofs

of Theorems 1, 3, and 5, respectively. In the following,

we will use the following notation. For a pair of discrete

random variables (X,Y ) distributed according to pXY over

a finite alphabet X × Y , let T n
ϵ (X) ≜ {xn ∈ Xn :

|
∑n

i=1
1{xi=x}
n − pX(x)| ⩽ ϵpX(x),∀x ∈ X} denote the

ϵ-letter-typical set associated with pX for sequences of length

n, e.g., [30], and define µX ≜ minx∈X s.t.pX(x)>0 pX(x).

Let also T n
ϵ (XY |xn) ≜ {yn ∈ Yn : (xn, yn) ∈ T n

ϵ (XY )} be

the conditional ϵ-letter-typical set associated with pXY with

respect to xn ∈ Xn.

A. Proof of Theorem 1

Theorem 1 relies on random binning. The coding scheme

and its analysis are described in Sections V-A.1 and V-A.2,

respectively.

1) Coding Scheme: Binnings: Fix i ∈ D. Define the

functions gi : Yn
i → J1, 2nR′

iK and hi : Yn
i → J1, 2nRiK,

where, for yn
i ∈ Y

n
i , gi(y

n
i ) is drawn uniformly at random in

the set J1, 2nR′
iK, and hi(y

n
i ) is drawn uniformly at random in

the set J1, 2nRiK.

Then, the encoding at the sub-dealers and the decoding at

the participants are as follows:

Encoding at Sub-dealer i ∈ D: Given yn
i , Sub-dealer i ∈ D

computes mi ≜ gi(y
n
i ) and si ≜ hi(y

n
i ).

Decoding for a set of participants A ∈ A: Given mD ≜
(md)d∈D and xn

A, the set of participants A returns ŷn
D(A) =

(ŷn
i )i∈D if it is the unique sequence such that (ŷn

D(A), xn
A) ∈

T n
ϵ (YDXA) and (gi(ŷ

n
i ))i∈D = mD, otherwise it returns an

error.

Next, we determine how to choose Ri and R′
i, i ∈ D,

to ensure the reliability, security, and uniformity conditions

as described in Definition 3.

2) Coding Scheme Analysis:

a) Reliability analysis: Fix A ∈ A. Define for any

S ¦ D, S ≠ ∅,

E0 ≜ {(Xn
A, Y n

D ) /∈ T n
ϵ (XAYD)},

ES ≜ {∀i ∈ S,∃ŷn
i ̸= Y n

i , gi(ŷ
n
i ) = gi(Y

n
i )

and (Xn
A, ŷn

S , Y n
D\S) ∈ T n

ϵ (XAYD)
}

,

so that by the union bound,

E[P[Ŷ n
D (A) ̸= Y n

D ]] ⩽ P[E0] +
∑

S¦D,S̸=∅

P[ES ], (5)

where the expectation is over the random choice of the

binnings.

Lemma 1: For any S ¦ D, S ≠ ∅, we have

P[ES ] ⩽ 2n(1+ϵ) maxA∈A H(YS |YSc XA)−nR′
S , (6)

P[E0] ⩽ 2|XL||YD|e
−nϵ2µXLYD . (7)

Proof: See Appendix A.

Hence, by (5), (6), and (7), we have

E

[
max
A∈A

P[Ŷ n
D (A) ̸= Y n

D ]

]
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⩽ E

[
∑

A∈A

P[Ŷ n
D (A) ̸= Y n

D ]

]

=
∑

A∈A

E
[
P[Ŷ n

D (A) ̸= Y n
D ]

]

⩽ 2|A||XL||YD|e
−nϵ2µXLYD

+ |A|
∑

S¦D,S̸=∅

2n(1+ϵ) maxA∈A H(YS |YSc XA)−nR′
S . (8)

b) Security and uniformity analysis: Fix U ∈ U. For all

mD, sD, xn
U , we have

pMDSDXn
U
(mD, sD, xn

U )

=
∑

yn
D

p(yn
D, xn

U )
∏

i∈D

1{gi(y
n
i ) = mi}1{hi(y

n
i ) = si}.

Hence, on average over the random choice of the binnings,

for all mD, sD, xn
U , we have

E
[
pMDSDXn

U
(mD, sD, xn

U )
]

= p(xn
U )2−n(RD+R′

D),

which allows us to write

E[V(pMDSDXn
U
, p(unif)

MDSD
pXn

U
)]

= E
[∑

mD,sD,xn
U

∣∣pMDSDXn
U
(mD, sD, xn

U )

−E
[
pMDSDXn

U
(mD, sD, xn

U )
]∣∣]

⩽

2∑

k=1

E
[∑

mD,sD,xn
U

∣∣∣p(k)
MDSDXn

U
(mD, sD, xn

U )

−E
[
p
(k)
MDSDXn

U
(mD, sD, xn

U )
]∣∣∣

]
,

(9)

where p(unif)
MDSD

is the uniform distribution over the sample

space of pMDSD
, and ∀mD,∀sD,∀xn

U ,

p
(1)
MDSDXn

U
(mD, sD, xn

U )

=
∑

yn
D∈T n

ϵ (YDXU |xn
U )

p(yn
D, xn

U )
∏

i∈D

1{gi(y
n
i ) = mi}

× 1{hi(y
n
i ) = si},

p
(2)
MDSDXn

U
(mD, sD, xn

U )

=
∑

yn
D /∈T n

ϵ (YDXU |xn
U )

p(yn
D, xn

U )
∏

i∈D

1{gi(y
n
i ) = mi}

× 1{hi(y
n
i ) = si}.

Lemma 2: We have

E
[∑

mD,sD,xn
U

∣∣∣p(2)
MDSDXn

U
(mD, sD, xn

U )

−E
[
p
(2)
MDSDXn

U
(mD, sD, xn

U )
]∣∣∣

]

⩽ 2|YD||XL|e
−nϵ2µYDXL , (10)

and

E
[∑

mD,sD,xn
U

∣∣∣p(1)
MDSDXn

U
(mD, sD, xn

U )

−E
[
p
(1)
MDSDXn

U
(mD, sD, xn

U )
]∣∣∣

]

⩽
∑

S¦D,S̸=∅

2−
n
2 (1−ϵ) minU∈U H(YS |XU )2

n
2 (RS+R′

S). (11)

Proof: See Appendix B.

Finally, by (9), (10), and (11), we obtain

E

[
max
U∈U

V(pMDSDXn
U
, p(unif)

MDSD
pXn

U
)

]

⩽ E

[
∑

U∈U

V(pMDSDXn
U
, p(unif)

MDSD
pXn

U
)

]

=
∑

U∈U

E
[
V(pMDSDXn

U
, p(unif)

MDSD
pXn

U
)]

]

⩽ 2|U||YD||XL|e
−nϵ2µYDXL

+ |U|
∑

S¦D,S̸=∅

2
n
2 [RS+R′

S−(1−ϵ) minU∈U H(YS |XU )]. (12)

3) Rate Choices: By Markov’s inequality, (8), and (12),

there exists a random binning choice and a constant

a > 0 such that maxA∈A P[Ŷ n
D (A) ̸= Y n

D ] +
maxU∈U V(pMDSDXn

U
, p(unif)

MDSD
pXn

U
) = o(e−na) provided that

for any S ¦ D, (1 + ϵ) maxA∈A H(YS |YScXA) < R′
S and

RS + R′
S < (1 − ϵ) minU∈U H(YS |XU ). Finally, we remark

that V(pMDSDXn
U
, p(unif)

MDSD
pXn

U
) = o(e−na) implies (2) and (3)

by [31, Lemma 2.7].

B. Proof of Theorem 3

Our coding scheme operates in two steps to successively

deal with reliability and secrecy by means of reconciliation

and privacy amplification. The main difficulty compared to the

case D = 1 is the analysis of privacy amplification because

of the distributed setting induced by the multiple sub-dealers.

Additionally, our analysis of the privacy amplification step

requires a modified reconciliation protocol with additional

properties compared to the case D = 1. We describe our

coding scheme in Section V-B.1 and provide its analysis in

Section V-B.2. We use the same notation as in Appendix V-A.

1) Coding Scheme:

a) Reconciliation: We define the encoding and decoding

procedures for reconciliation through 2D + 1 nested random

binnings as follows.

Binnings: Fix i ∈ D. For yn
i ∈ Y

n
i , for j ∈ J1, 2D+1K, draw

uniformly at random an index in the set J1, 2nRi,j K and let this

index assignment define the function bi,j : Yn
i → J1, 2nRi,j K.

The value of Ri,j will be chosen later. For any subset S ¦
J1, 2D + 1K, we define Ri,S ≜

∑
j∈S Ri,j .

Encoding at Sub-dealer i ∈ D: Given yn
i , Sub-dealer i ∈ D

computes (mi,j)j∈J1,2D+1K ≜ (bi,j(y
n
i ))j∈J1,2D+1K.

Decoding at the participants: For i ∈ D, given mi ≜
(mi,j)j∈J1,2D+1K, yn

1:i−1 ≜ (yn
j )j∈J1,i−1K, and xn

L, output

ŷn
i if it is the unique sequence such that (ŷn

i , yn
1:i−1, x

n
L) ∈

T n
ϵ (Y1:iXL) and (bi,j(ŷ

n
i ))j∈J1,2D+1K = (mi,j)j∈J1,2D+1K,

otherwise output 1.

Design properties of the reconciliation protocol: Fix

i ∈ D. We first introduce additional definitions. Let ¶ > 0.

Define for S ¦ D, R̄i,S ≜ H(Yi|Y1:i−1YSXL) − ¶ if

H(Yi|Y1:i−1YSXL) ̸= 0 and R̄i,S ≜ 0 otherwise. We sort

the sequence (R̄i,S)S¦D in increasing order and denote the
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result by (R̄i,j)j∈J1,2DK. For notation convenience, we denote

by Sj , j ∈ J1, 2DK, the subset of D such that R̄i,j =
H(Yi|Y1:i−1YSj

XL)− ¶. Observe that R̄i,1 = 0 and R̄i,2D =
H(Yi|Y1:i−1XL)− ¶.

(i) We will design the reconciliation such that, for any

i ∈ D, the participants in L can form an approximation

Ŷ n
i of Y n

i , from (Mi,j)j∈J1,2D+1K and (Y n
1:i−1, X

n
L),

such that P
[
Ŷ n

i ̸= Y n
i

]
n→∞
−−−−→ 0.

(ii) For j ∈ J1, 2DK such that H(Yi|Y1:i−1YSj
XL) ̸= 0,

we will design the reconciliation such that almost

independence holds between Mi,1:j ≜ (Mi,k)k∈J1,jK

and (Y n
J1,i−1K∪Sj

, Xn
L), in the sense that

nV(pMi,1:jY n
J1,i−1K∪Sj

Xn
L
, p(unif)

Mi,1:j
pY n

J1,i−1K∪Sj
Xn

L
)

n→∞
−−−−→

0, where p(unif)
Mi,1:j

is the uniform distribution over the

sample space of pMi,1:j
.

Note that the second property is crucial in our analysis of

privacy amplification, and is not necessary in the treatment of

the case D = 1.

b) Privacy amplification: We rely on two-universal hash

functions as defined next.

Definition 4 ( [32]): A family F of two-universal hash

functions F = {f : {0, 1}n → {0, 1}r} is such that ∀x, x′ ∈
{0, 1}n, x ̸= x′ =⇒ P[F (x) = F (x′)] ⩽ 2−r, where F is a

function uniformly chosen in F .

Suppose that the reconciliation step in Section V-B.1 is

independently repeated B times. Let Ŷ nB
d , d ∈ D, be the

estimate of Y nB
d . For d ∈ D, let Fd : {0, 1}nB → {0, 1}rd ,

be uniformly chosen in a family Fd of two-universal hash

functions. We leave the quantities (rd)d∈D unspecified in this

section, and will specify them in Section V-B.2. The privacy

amplification step operates as follows. Sub-dealer d ∈ D
computes Sd ≜ Fd(Y

nB
d ), while the participants in L compute

for d ∈ D, Ŝd ≜ Fd(Ŷ
nB
d ), where Ŷ nB

d has been obtained in

the reconciliation step.

2) Coding Scheme Analysis: We now show that any rate-

tuple (Rd)d∈D in R
(in)
1 , defined in Theorem 3, is achievable.

a) Analysis of reconciliation: We first prove that Prop-

erty (i) of Section V-B.1.a holds. The probability of error aver-

aged over the random choice of the binnings (bi,j)j∈J1,2D+1K

is upper bounded as

E
[
P

[
Ŷ n

i ̸= Y n
i

]]
⩽ P [Ei,1] + P [Ei,2] ,

where

Ei,1 ≜ {(Y n
1:i, X

n
L) /∈ T n

ϵ (Y1:iXL)} ,

Ei,2 ≜{∃ŷn
i ̸= Y n

i ,

(bi,j(ŷ
n
i ))j∈J1,2D+1K =(bi,j(Y

n
i ))j∈J1,2D+1K

and (ŷn
i , Y n

1:i−1, X
n
L) ∈ T n

ϵ (Y1:iXL)
}
.

Similar to the proof of (6) and (7), one can show that

E
[
P

[
Ŷ n

i ̸= Y n
i

]]
⩽ 2|Y1:i||XL|e

−nϵ2µY1:iXL

+ 2−n(R
i,J1,2D+1K−H(Yi|Y1:i−1XL)(1+ϵ)). (13)

We next prove that Property (ii) of Section V-B.1.a holds.

Let i ∈ D and j ∈ J1, 2DK such that H(Yi|Y1:i−1YSj
XL) ̸= 0.

In the following, for notation convenience, we define Zi,j ≜
(YJ1,i−1K∪Sj

, XL). We have

pMi,1:jZn
i,j

(mi,1:j , z
n
i,j)

=
∑

yn
i

p(yn
i , zn

i,j)1{bi,1:j(y
n
i ) = mi,1:j},∀mi,1:j ,∀z

n
i,j ,

where bi,1:j(y
n
i ) ≜ (bi,k(yn

i ))k∈J1,jK, hence, on average over

(bi,k)k∈J1,jK,

E
[
pMi,1:jZn

i,j
(mi,1:j , z

n
i,j)

]

= p(zn
i,j)2

−nRi,J1,jK ,∀mi,1:j ,∀z
n
i,j .

Then, similar to the proof of (10) and (11), one can show that

E[V(pMi,1:jZn
i,j

, p(unif)
Mi,1:j

pZn
i,j

)]

⩽ 2|Yi||Zi,j |e
−nϵ2µYiZi,j

+ 2−
n
2 [(1−3ϵ)H(Yi|Y1:i−1YSj

XL)−Ri,J1,jK]. (14)

Finally, we choose the rates as follows. Let i ∈ D. We

define for j ∈ J2, 2DK, Ri,j ≜ R̄i,j − R̄i,j−1, and Ri,1 ≜
R̄i,1. We thus have for any j ∈ J1, 2DK, Ri,J1,jK = R̄i,j .

We then choose ¶ ≜ 3ϵH(Yi|Y1:i−1XL) + ϵ and Ri,2D+1 ≜
¶ + ϵH(Yi|Y1:i−1XL) + ϵ.

Hence, we have Ri,J1,2D+1K = R̄i,2D + Ri,2D+1 =
(1+ϵ)H(Yi|Y1:i−1XL)+ϵ and (1−3ϵ)H(Yi|Y1:i−1YSj

XL)−
Ri,J1,jK = (1 − 3ϵ)H(Yi|Y1:i−1YSj

XL) − H(Yi|Y1:i−1

YSj
XL) + ¶ ⩾ ϵ, which ensures, by (13) and

(14), that E[
∑

i∈D

∑
j∈J1,2DK V(pMi,1:jZn

i,j
, p(unif)

Mi,1:j
pZn

i,j
)+

∑
i∈D P[Ŷ n

i ̸= Y n
i ]]

n→∞
−−−−→ 0. Then, by Markov’s Lemma,

there exist binnings (bi,j)i∈D,j∈J1,2D+1K such that for

any i ∈ D, P
[
Ŷ n

i ̸= Y n
i

]
n→∞
−−−−→ 0 and for any i ∈ D,

j ∈ J1, 2DK, V(pMi,1:jZn
i,j

, p(unif)
Mi,1:j

pZn
i,j

)
n→∞
−−−−→ 0.

b) Analysis of privacy amplification: We use the follow-

ing version of the leftover hash lemma [21], [33] to analyze

the privacy amplification step. The lemma is of independent

interest as related versions of this lemma [18], [19], [20], [34]

had found a wide variety of applications including oblivious

transfer [18], [19], [35], commitment [36], secret generation

[20], [37], multiple-access channel resolvability [38], and

private classical communication over quantum multiple-access

channels [34].

Lemma 3 (Distributed Leftover Hash Lemma): Consider a

sub-normalized non-negative function pXLZ defined over

×l∈L
Xl × Z , where XL ≜ (Xl)l∈L and, Z , Xl, l ∈ L, are

finite alphabets. For l ∈ L, let Fl : {0, 1}nl −→ {0, 1}rl ,

be uniformly chosen in a family Fl of two-universal hash

functions. Define sL ≜
∏

l∈L sl, where sl ≜ |Fl|, l ∈ L,

and for any S ¦ L, define rS ≜
∑

i∈S ri. Define also

FL ≜ (Fl)l∈L and FL(XL) ≜ (Fl(Xl))l∈L. Then, for any

qZ defined over Z such that supp(qZ) ¦ supp(pZ), we have

V(pFL(XL)FLZ , pUK
pUF

pZ) ⩽

√ ∑

S¦L,S̸=∅

2rS−H∞(pXSZ |qZ),

(15)
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where pUK
and pUF

are the uniform distributions over J1, 2rLK
and J1, sLK, respectively, and the min-entropies are defined as

in [39], i.e., for any S ¦ L,S ≠ ∅,

H∞(pXSZ |qZ) ≜ − log max
xS∈XS

z∈supp(qZ)

pXSZ(xS , z)

qZ(z)
.

Proof: See Appendix C.

A challenge with using Lemma 3 is the evaluation of the

min-entropies in (15). A possible solution is to use the method

in [24] to lower bound a min-entropy in terms of a Shannon

entropy. However, one drawback of this method is that an

extra round of reconciliation is needed, as in [40], which

complexifies the coding scheme. Another solution could be to

rely on the notion of smooth min-entropy, as in [39]. However,

this technique is challenging to apply here because one would

need to simultaneously smooth all the min-entropies in (15).

Instead, we propose to lower bound the min-entropies in (15)

by relying on the following lemma.

Lemma 4: Let (Yd)d∈D be D finite alphabets and define

for S ¦ D, YS ≜×d∈S
Yd. Consider the random variables

Y n
D ≜ (Y n

d )d∈D and Zn defined over Yn
D×Z

n with probability

distribution qY n
DZn ≜

∏n
i=1 qYDZ . For any ϵ > 0, there exists

a subnormalized non-negative function wY n
DZn defined over

Yn
D ×Z

n such that V(qY n
DZn , wY n

DZn) ⩽ ϵ and

∀S ¦ D, H∞(wY n
S Zn |qZn) ⩾ nH(YS |Z)− n¶S(n),

where ¶S(n) ≜ (log(|YS |+ 3))
√

2
n (D + log( 1

ϵ )).

Proof: See Appendix D.

We now combine Lemma 3 and Lemma 4 as follows.

Lemma 5: For any U ∈ U, we have

V(pFD(Y nB
D )FDMB

D XnB
U

, pUD
pUF

pMB
D XnB

U
)

⩽ 2ϵ +

√√√√
∑

S¦D
S̸=∅

2rS−BH(Y n
S |MDXn

U)+B¶S(n,B), (16)

where ¶S(n, B) ≜ (log(|YS |
n + 3))

√
2
B (D + log( 1

ϵ )).

Proof: See Appendix E.

Note that in the case D = 1, a standard technique could

be used [24, Lemma 10] to lower-bound the min-entropy

appearing in the leftover hash lemma and study the effect

of the public communication on the information leaked to

unauthorized participants. However, using [24, Lemma 10] in

the case D > 1 to lower-bound the min-entropies in (39)

would result in the achievability of

{(Rd)d∈D :

RS ⩽ min
T ªL

[I(YS ;XL|XT )−H(YSc |YSXL)]
+

,∀S ¦ D

}

which is always contained in the region R
(in)
1 of Theorem 3.

For this reason, we did not study the effect of the public

communication on the information leaked to unauthorized

participants in Lemma 5. Instead, we do it by lower-bounding

the Shannon entropies that appear in (16) as follows. Note

that Property (ii) in the reconciliation protocol described in

Section V-B.1.a plays a key role in the proof of Lemma 6.

Lemma 6: For any S ¦ D, S ≠ ∅, we have

H(Y n
S |MDXn

U ) ⩾ n [I(YS ;XL|XU )− ¶(ϵ)]− ¶(n),

where ¶(n) is such that limn→∞ ¶(n) = 0 and ¶(ϵ) is such

that limϵ→0 ¶(ϵ) = 0.

Proof: See Appendix F.

We are now equipped to prove that (2) and (3) hold. For

any U ∈ U and À > 0, we have

V(pFD(Y nB
D )FDMB

D XnB
U

, pUD
pUF

pMB
D XnB

U
)

(a)

⩽ 2ϵ +

√√√√
∑

S¦D
S̸=∅

2rS−nBI(YS ;XL|XU )+nB¶(ϵ)+B¶(n)+B¶S(n,B)

(b)

⩽ 2ϵ +

√√√√
∑

S¦D
S̸=∅

2−nÀ

⩽ 2ϵ + 2D/22−nÀ/2, (17)

where (a) holds by Lemmas 5 and 6, in (b) we have chosen

rL such that for any S ¦ D,

rS ⩽ min
U∈U

nBI(YS ;XL|XU )

− nB¶(ϵ)−B¶(n)−B¶S(n, B)− nÀ.

We conclude that (2) and (3) hold by (17) and [31,

Lemma 2.7].

C. Proof of Theorem 5

By successively, rather than jointly (as in Theorem 3),

considering the security constraints for the two sub-dealers,

we prove Theorem 5. The coding scheme and its analysis

are described in Sections V-C.1 and V-C.2, respectively. Note

that R({1, 2}) = R
(in)
1 , where the achievability of R

(in)
1

follows from Theorem 3 with D = 2. Note also that if

one can show the achievability of [R({1})×R({2}|{1})],
then one has the achievability of [R({2})×R({1}|{2})] by

exchanging the roles of the two dealers. Hence, it is sufficient

to prove the achievability of [R({1})×R({2}|{1})].
1) Coding Scheme: In this section, we use the notation ¶(n)

to denote a generic function of n that vanishes to 0 as n goes

to infinity. Our achievability scheme operates in two phases

as follows.

a) Initialization phase: By using n′
2 source observations,

Sub-dealer 2 shares a secret K2 with non-zero rate with

the requirement limn′
2
→∞ max

T ªL
I

(
K2;M2,init, X

n′
2

T

)
= ¶(n′

2),

where M2,init corresponds to the public communication sends

by Sub-dealer 2. This is possible by Theorem 6 because we

assumed that mind∈{1,2} minT ªL I(Yd;XL|XT ) > 0. Define

for U ª L, I2(U) ≜ (M2,init, X
n′

2

U ).
b) Successive secret distribution phase: This phase

requires n source observations. Sub-dealer 1 performs the

coding scheme in the proof of Theorem 3 for the case D = 1
with the requirement

lim
n→∞

max
T ªL

I (S1;M1, X
n
T ) = 0. (18)
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Sub-dealer 2 performs the coding scheme in the proof of

Theorem 3 assuming that all the participants have access to

Y n
1 with the requirement

lim
n→∞

max
T ªL

I (S2;M2, X
n
T , Y n

1 ) = 0, (19)

for the case D = 1 with the following modification: Using

the same notation as in the proof of Theorem 3, instead of

defining M2 ≜ M2,1:3, define M2 as M2 ≜ (M ′
2, M

′′
2 ) with

M ′
2 ≜ K2 ·M2,3 and M ′′

2 ≜ M2,1:2. By Property (ii) in the

reconciliation step of the proof of Theorem 3, we have

I(M ′′
2 ;Y n

1 Xn
L) = ¶(n). (20)

Then, the proof of Theorem 3 is still valid because K2 is

known by the participants (by the initialization phase provided

that n′
2 is such that |K2| = |M2,3|), and the secrecy rates

R1 = R({1}) and R2 = R({2}|{1}) are achievable for

Requirements (18) and (19). Note that |K2| = |M2,3| is

negligible compared to n. More specifically, by inspecting

the proof of Theorem 3, one can choose |M2,3|, on the

order of n1/2−À, À > 0, similar to [41] and [42]. Hence,

it only remains to show that Requirements (18) and (19) imply

Requirements (2) and (3).

2) Coding Scheme Analysis: We first prove that (3) holds.

We have

log(|S1||S2|)−H(S1, S2)

= log(|S1||S2|)−H(S1)−H(S2) + I(S2;S1)

⩽ log(|S1||S2|)−H(S1)−H(S2) + I(S2;Y
n
1 )

n→∞
−−−−→ 0,

where the limit holds by almost uniformity of S1 and S2, and

by (19).

We now prove that (2) holds. We first ignore the

initialization phase and upper bound the quantity max
T ªL

I

(S1, S2;M1, M2, X
n
T ).

Lemma 7: For any T ª L, we have

I(S1, S2;M1, M2, X
n
T ) ⩽ ¶(n) + ¶(n′

2). (21)

Proof: See Appendix G.

Next, we jointly consider the initialization phase and the

successive secret distribution phase.

Lemma 8: We have for any U , T ª L,

I(S1, S2; I2(U), M1, M2, X
n
T ) ⩽ ¶(n) + ¶(n′

2).

Proof: See Appendix H.

VI. CONVERSE PROOFS

A. Proof of Theorem 2

Consider a secret-sharing strategy, as in Definition 2, that

satisfies the constraints (1), (2), and (3). For any T ¦ D,

A ∈ A, U ∈ U, we have

nRT = log |ST |

(a)

⩽ H(ST ) + o(n)

(b)

⩽ H(ST |MDXn
U ) + o(n)

(c)

⩽ I(ST ; ŜD(A)|MDXn
U ) + o(n)

(d)

⩽ I(Y n
T ;Xn

AMD|MDXn
U ) + o(n)

= I(Y n
T ;Xn

A|MDXn
U ) + o(n)

⩽ I(Y n
T MT ;Xn

AMT c |Xn
U ) + o(n)

(e)

⩽ I(Y n
T ;Xn

AY n
T c |Xn

U ) + o(n)

= nI(YT ;XAYT c |XU ) + o(n), (22)

where (a) holds by (3), (b) holds by (2), (c) holds by Fano’s

inequality and (1), (d) holds because ŜD(A) is a function of

(Xn
A, MD) and ST is a function of Y n

T , (e) holds because MS

is a function of Y n
S for any S ¦ D.

Then, since (22) is valid for any A ∈ A, U ∈ U,

an upper-bound on the sum-rate RS =
∑

d∈S Rd, S ¦ D,

is min
A∈A

min
U∈U

I(YS ;XAYSc |XU ) + o(1).

B. Proof of Theorem 4

The proof of Theorem 4 follows from the proof of Theo-

rem 2, since for the all-or-nothing access structure we have

for any S ¦ D

min
A∈A

min
U∈U

I(YS ;XAYSc |XU ) = min
U∈U

I(YS ;XLYSc |XU )

= min
UªL

I(YS ;XLYSc |XU ).

VII. PROOF OF CAPACITY RESULTS IN

SOME SPECIAL CASES

A. Proof of Theorem 6

The result holds by Corollary 3 using the facts that for any

T ª L, the Markov chain YD −XL −XT holds, and that U

is the set of strict subsets of L for the all-or-nothing access

structure.

B. Proof of Theorem 7

In the following, for any S ¦ L, T ¦ D, we use the

notation KS,T ≜ (Kl,d)d∈S,d∈T .

We first prove the achievability part. Let t ∈ J1, LK and

S ¦ D. We have

max
A∈At

H(YS |YScXA)
(a)
= max

A∈At

H(KL,S |KL,ScKA,D)

= max
A∈At

H(KL,S |KL,ScKA,SKA,Sc)

(b)
= max

A∈At

H(KL,S |KA,S)

(c)
= max

A∈At

H(KAc,S)

(d)
= |S|(L− t), (23)

where (a) holds by definition of Y n
S , Y n

Sc , and Xn
A, (b) holds

by independence between (KA,Sc , KL,Sc) and (KL,S , KA,S),
(c) holds by independence between KAc,S and KA,S ,

(d) holds by independence and uniformity of the keys. Next,

let z ∈ J1, t− 1K and S ¦ D. We have

min
U∈Uz

H(YS |XU )
(a)
= min

U∈Uz

H(KL,S |KU,D)
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= min
U∈Uz

H(KL,S |KU,SKU,Sc)

(b)
= min

U∈Uz

H(KL,S |KU,S)

(c)
= min

U∈Uz

H(KUc,S)

(d)
= |S|(L− z), (24)

where (a) holds by definition of Y n
S and Xn

U , (b) holds by

independence between KU,Sc and (KL,S , KU,S), (c) holds

by independence between KUc,S and KU,S , (d) holds by

independence and uniformity of the keys. Next, we have

R(in)(At, Uz)

(a)
= Proj(Rd)d∈D

{
(Rd, R

′
d)d∈D :

R′
S ⩾ max

A∈At

H(YS |YScXA),∀S ¦ D

R′
S + RS ⩽ min

U∈Uz

H(YS |XU ),∀S ¦ D






(b)
= Proj(Rd)d∈D

{
(Rd, R

′
d)d∈D :

R′
S ⩾ |S|(L− t),∀S ¦ D

R′
S + RS ⩽ |S|(L− z),∀S ¦ D

}

(c)
=

{
(Rd)d∈D : RS ⩽ |S|(t− z),∀S ¦ D

}
,

where (a) holds by Theorem 1, (b) holds by (23) and (24),

(c) holds as follows. First, consider the system
(

R′
S ⩾ |S|(L− t),∀S ¦ D

R′
S + RS ⩽ |S|(L− z),∀S ¦ D

)
, (25)

and remark that the set functions f : 2D → R,S 7→ |S|
(L − z) − RS and g : 2D → R,S 7→ −|S|(L − t) are

submodular, i.e., ∀S, T ¦ D, g(S) + g(T ) ⩾ g(S ∪ T ) +
g(S ∩ T ) and f(S) + f(T ) ⩾ f(S ∪ T ) + f(S ∩ T ). Hence,

by Lemma 9 below, we have that the system (25) has a solution

if and only if

|S|(L− t) ⩽ |S|(L− z)−RS ,∀S ¦ D,

which we rewrite as

RS ⩽ |S|(t− z),∀S ¦ D.

Lemma 9 ( [16, Lemma 2]): Consider two submodular

functions f : 2D → R and g : 2D → R. Then, the following

system of equations for (xd)d∈D ∈ RD
+

−g(S) ⩽
∑

s∈S

xs ⩽ f(S),∀S ¦ D,

has a solution if and only if −g(S) ⩽ f(S),∀S ¦ D.

We now prove the converse. Let t ∈ J1, LK, z ∈ J1, t− 1K,

and S ¦ D. We have

min
A∈At

min
U∈Uz

I(YS ;XAYSc |XU )

(a)
= min

A∈At

min
U∈Uz

I(KL,S ;KA,DKL,Sc |KU,D)

= min
A∈At

min
U∈Uz

[I(KL,S ;KA,D|KU,D)

+ I(KL,S ;KL,Sc |KU,DKA,D)]

(b)

⩽ min
A∈At

min
U∈Uz

[I(KL,S ;KA,D|KU,D)

+ I(KL,SKU,SKA,S ;KL,ScKU,ScKA,Sc)]

(c)
= min

A∈At

min
U∈Uz

I(KL,S ;KA,D|KU,D)

(d)

⩽ min
A∈At

min
U∈Uz

I(KL,S ;KA,DKU,Sc |KU,S)

= min
A∈At

min
U∈Uz

[I(KL,S ;KA,S |KU,S)

+ I(KL,S ;KA,ScKU,Sc |KA,SKU,S)]

(e)

⩽ min
A∈At

min
U∈Uz

[I(KL,S ;KA,S |KU,S)

+ I(KL,SKA,SKU,S ;KA,ScKU,Sc)]

(f)
= min

A∈At

min
U∈Uz

I(KL,S ;KA,S |KU,S)

(g)
= min

A∈At

min
U∈Uz

H(KA,S |KU,S)

= min
A∈At

min
U∈Uz

H(KA\U,S)

(h)
= |S|(t− z), (26)

where (a) holds by definition of Y n
S , Y n

Sc , Xn
A, and Xn

U , (b)
holds by the chain rule, (c) holds by independence between

(KL,S , KU,S , KA,S) and (KL,Sc , KU,Sc , KA,Sc), (d) and (e)
hold by the chain rule, (f) holds by independence between

(KL,S , KA,S , KU,S) and (KA,Sc , KU,Sc), (g) holds because

KL,S contains KA,S , (h) holds because the minimum is

achieved for a choice of A and U that minimizes the car-

dinality of A\U , which happens when U ¦ A, |A| is as small

as possible, i.e., |A| = t, and |U| is as large as possible,

i.e., |U| = z. Hence, (26) and Theorem 2 proves the converse

of Theorem 7.

VIII. EXTENSION TO CHOSEN SECRETS

Note that, similar to a secret-key generation problem, the

secrets in the problem statement in Section III are random. In

this section, we prove that if, instead the secrets are chosen

by the sub-dealers, then our results remain unchanged. We

first formalize the problem statement for chosen secrets in

Section VIII-A. Then, in Section VIII-B, we show how the

results of Section IV for random secrets extend to the setting

of Section VIII-A.

A. Problem Statement

We modify Definitions 2 and 3 of Section III as follows.

Additionally, Figure 3a of Section III now becomes Figure 6.

Definition 5: For d ∈ D, define the alphabet Sd ≜
J1, 2nRdK and SD ≜×d∈D

Sd. A ((2nRd)d∈D, A, U, n) secret-

sharing strategy consists of:
• A monotone access structure A.

• D sub-dealers indexed by the set D.

• D independent secrets (Sd)d∈D ∈ SD, where Sd, d ∈ D,

is uniformly distributed over Sd and only known at Sub-

dealer d ∈ D. Moreover, the secrets are assumed to be

independent from the source observations.

• L participants indexed by the set L.

• D encoding functions (fd)d∈D, where fd : Yn
d × Sd →

Md, d ∈ D, with Md an arbitrary finite alphabet.
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Fig. 6. Secret sharing with D = 2 sub-dealers, L = 3 users. Formation and
distribution of shares.

• |A|×D decoding functions (hA,d)A∈A,d∈D, where hA,d :
Xn

A ×MD → Sd, A ∈ A with Xn
A ≜×a∈A

Xn
a and

MD ≜×d∈D
Md.

and operates as follows:
• Sub-dealer d ∈ D observes Y n

d .

• Participant l ∈ L observes Xn
l .

• Sub-dealer d ∈ D sends over a noiseless public

authenticated channel the public communication Md ≜
fd(Y

n
d , Sd) to the participants. We write the global com-

munication of all the sub-dealers as MD ≜ (Md)d∈D.

• Any subset of participants A ∈ A can compute for d ∈
D, Ŝd(A) ≜ hA,d(X

n
A, MD), and thus form ŜD(A) ≜

(Ŝd(A))d∈D, an estimate of SD ≜ (Sd)d∈D.

Definition 6: A secret rate-tuple (Rd)d∈D is achievable if

there exists a sequence of ((2nRd)d∈D,A, U, n) secret-sharing

strategies such that

lim
n→∞

max
A∈A

P
[
ŜD(A) ̸= SD

]
= 0 (Reliability), (27)

lim
n→∞

max
U∈U

I (SD;MD, Xn
U ) = 0 (Strong Security). (28)

Let C(chosen)(A) denote the set of all achievable secret rate-

tuples. When D = 1, C (chosen)(A) denotes the supremum of

all achievable secret rates and is called the secret capacity.

B. Results

Theorem 8: Fix L, D ∈ N∗.

• For an arbitrary access structure A,

R(in)(A) ¦ C(chosen)(A) ¦ R(out)(A),

where R(in)(A) and R(out)(A) are defined in Theorems 1

and 2.

• For the all-or-nothing access structure A⋆ ≜ {L},

R
(in)
1 ¦ C(chosen)(A⋆) ¦ R(out)(A⋆),

where R
(in)
1 and R(out)(A⋆) are defined in Theorems 3

and 4. And when D = 2, if min
d∈{1,2}

min
T ªL

I(Yd;XL|XT ) >

0, then we also have

R
(in)
1 ¦ R

(in)
2 ¦ C(chosen)(A⋆) ¦ R(out)(A⋆),

where R
(in)
2 is defined in Theorem 5.

Proof: The converse proof is obtained by modifying

Equation (22) in Section VI-A as follows. For any T ¦ D,

A ∈ A, U ∈ U, we have

nRT = log |ST |

(a)
= H(ST )

(b)

⩽ H(ST |MDXn
U ) + o(n)

(c)

⩽ I(ST ; ŜD(A)|MDXn
U ) + o(n)

(d)

⩽ I(ST ;Xn
AMD|MDXn

U ) + o(n)

= I(ST ;Xn
A|MDXn

U ) + o(n)

⩽ I(ST MT ;Xn
AMT c |Xn

U ) + o(n)

(e)

⩽ I(ST Y n
T ;Xn

AST cY n
T c |Xn

U ) + o(n)

(f)
= I(Y n

T ;Xn
AST cY n

T c |Xn
U ) + o(n)

(g)
= I(Y n

T ;Xn
AY n

T c |Xn
U ) + o(n)

= nI(YT ;XAYT c |XU ) + o(n),

where (a) holds by the uniformity of the secrets, (b) holds

by (28), (c) holds by Fano’s inequality and (27), (d) holds

because ŜD(A) is a function of (Xn
A, MD), (e) holds because

MT is a function of (Y n
T , ST ) for any T ¦ D, (f) holds

by the chain rule and because I(ST ;Xn
AST cY n

T c |Xn
UY n

T ) =
0, (g) holds by the chain rule and because I(Y n

T ;ST c |
Xn

AY n
T cXn

U ) = 0.

The achievability proof consists in doing a one-time pad on

top of the achievability proofs from Section V. More specifi-

cally, suppose that one has generated the secrets (S̃d)d∈D with

rate (Rd)d∈D with the achievability schemes of Section V such

that

lim
n→∞

max
U∈U

I
(
S̃D; M̃D, Xn

U

)
= 0, (29)

lim
n→∞

log |SD| −H(S̃D) = 0. (30)

Then, Sub-dealer d ∈ D transmits over the public channel

M̆d ≜ S̃d · Sd and the security requirement is satisfied

because, for any U ∈ U and by defining M̆D ≜ (M̆d)d∈D,

we have

I(SD; M̃D, M̆D, Xn
U )

= I(SD; M̆D) + I(SD; M̃D, Xn
U |M̆D)

(a)

⩽ log |SD| −H(S̃D) + I(SD; M̃D, Xn
U |M̆D)

⩽ log |SD| −H(S̃D) + I(SDM̆D; M̃D, Xn
U )

= log |SD| −H(S̃D) + I(SD, S̃D; M̃D, Xn
U )

(b)
= log |SD| −H(S̃D) + I(S̃D; M̃D, Xn

U )
n→∞
−−−−→ 0,

where (a) holds because H(M̆D) ⩽ log |SD| and

H(M̆D|SD) = H(S̃D|SD) = H(S̃D), (b) holds because

I(SD; M̃D, Xn
U |S̃D) ⩽ I(SD; M̃D, Xn

U , S̃D) = 0, and the

limit holds by (29) and (30).
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IX. CONCLUDING REMARKS

We defined a secret-sharing model between multiple partic-

ipants and a dealer made of multiple sub-dealers, when each

party observes the realizations of correlated random variables

and each sub-dealer can communicate with the participants

over a public channel. Our model extends Shamir’s secret-

sharing model in three directions. First, it allows a joint design

of the creation of the shares and their distribution to the par-

ticipants. This contrasts with Shamir’s model which considers

the creation of the shares and their distribution independently.

Second, unlike Shamir’s model, which assumes that the partic-

ipants and the dealer have access to information-theoretically

secure channels, our model rely on more general resources,

namely, a public channel and correlated randomness in the

form of realizations of independently and identically dis-

tributed random variables. Third, motivated by a wireless

network setting, we explored the problem of secret sharing

in a distributed setting where the dealer is an entity made of

multiple sub-dealers.

We derived inner and outer regions for the achievable secret

rates that the dealer can obtain via its sub-dealers. To this end,

we developed two new achievability techniques, a first one

to successively handle reliability and security constraints in a

distributed setting, and a second one to reduce a distributed

setting to multiple single-user settings. We obtained capacity

results in the case of threshold access structures when the

correlated randomness corresponds to pairwise secret keys

shared between each sub-dealer and each participant, and in

the case of a single-dealer setting for the all-or-nothing access

structure and arbitrarily correlated randomness. We highlight

that in all our achievabilitiy results the length of each share

always scales linearly with the size of the secret for any access

structures.

Note that constructive and low-complexity coding schemes

for secret-sharing source model and channel model have been

proposed in the case of a single dealer in [43] and [44], [45],

[46], respectively. While the question of providing constructive

and low-complexity coding schemes for distributed-dealer

settings is not addressed in this paper and represents an open

challenge, we expect that our proof technique that separates the

reliability and security constraints for the all-or-nothing access

structure can lead to such a constructive and low-complexity

coding scheme for an arbitrary number of sub-dealers.

APPENDIX A

PROOF OF LEMMA 1

By [47], we have

P[E0] ⩽ 2|XA||YD|e
−nϵ2µXAYD ⩽ 2|XL||YD|e

−nϵ2µXLYD .

Then, for any S ¦ D, S ≠ ∅, we have

P[ES ] =
∑

xn
A,yn

D

p(xn
A, yn

D)P [∀i ∈ S,∃ŷn
i ̸= yn

i ,

gi(ŷ
n
i ) = gi(y

n
i ) and (xn

A, ŷn
S , yn

Sc) ∈ T n
ϵ (XAYD)]

(a)

⩽
∑

xn
A,yn

D

p(xn
A, yn

D)

×
∑

ŷn
S

∈T n
ϵ (XAYD|xn

A
yn
Sc )

ŷn
S ̸=yn

S

P [∀i ∈ S, gi(ŷ
n
i ) = gi(y

n
i )]

(b)
=

∑

xn
A,yn

D

p(xn
A, yn

D)
∑

ŷn
S

∈T n
ϵ (XAYD|xn

A
yn
Sc )

ŷn
S ̸=yn

S

2−nR′
S

⩽
∑

xn
A,yn

D

p(xn
A, yn

D)|T n
ϵ (XAYD|x

n
Ayn

Sc)|2−nR′
S

(c)

⩽
∑

xn
A,yn

D

p(xn
A, yn

D)2n(1+ϵ)H(YS |YSc XA)2−nR′
S

= 2n(1+ϵ)H(YS |YSc XA)−nR′
S

⩽ 2n(1+ϵ) maxA∈A H(YS |YSc XA)−nR′
S ,

where in (a) ŷn
S ̸= yn

S means ŷn
i ̸= yn

i ,∀i ∈ S, (b) holds

by independence of the random binning choices across the

sub-dealers, (c) holds by [47].

APPENDIX B

PROOF OF LEMMA 2

We first bound the second term in (9) as follows

E




∑

mD,sD,xn
U

∣∣∣p(2)
MDSDXn

U
(mD, sD, xn

U )

−E
[
p
(2)
MDSDXn

U
(mD, sD, xn

U )
]∣∣∣

]

(a)

⩽
∑

mD,sD,xn
U

2E
[
p
(2)
MDSDXn

U
(mD, sD, xn

U )
]

= 2
∑

mD,sD,xn
U

∑

yn
D /∈T n

ϵ (YDXU |xn
U )

p(yn
D, xn

U )2−n(RD+R′
D)

= 2P [(Y n
D , Xn

U ) /∈ T n
ϵ (YDXU )]

(b)

⩽ 2|YD||XU |e
−nϵ2µYDXU

⩽ 2|YD||XL|e
−nϵ2µYDXL ,

where (a) holds by the triangle inequality and (b) holds

by [47].

We now upper-bound the first term in (9) using Jensen’s

inequality by

∑

mD,sD,xn
U

√
Var

(
p
(1)
MDSDXn

U
(mD, sD, xn

U )
)
, (31)

and upper-bound the variance in (31) as follows

Var
(
p
(1)
MDSDXn

U
(mD, sD, xn

U )
)

= E

[(
p
(1)
MDSDXn

U
(mD, sD, xn

U )
)2

]

− E
[(

p
(1)
MDSDXn

U
(mD, sD, xn

U )
)]2

(a)

⩽
∑

SªD

∑

yn
D

∑

yn′
D

s.t.yn′
S ̸=yn

S

yn′
Sc=yn

Sc

1{yn
D ∈ T

n
ϵ (YDXU |x

n
U )}

× 1{yn′
D ∈ T

n
ϵ (YDXU |x

n
U )} × p(yn

D, xn
U )p(yn′

D , xn
U )
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×E
[∏

i∈D 1{gi(y
n
i ) = mi}1{hi(y

n
i ) = si}

×
∏

i∈D 1{gi(y
n′
i ) = mi}1{hi(y

n′
i ) = si}

]

=
∑

SªD

∑

yn
D

∑

yn′
D

s.t.yn′
S ̸=yn

S

yn′
Sc=yn

Sc

1{yn
D ∈ T

n
ϵ (YDXU |x

n
U )}

× 1{yn′
D ∈ T

n
ϵ (YDXU |x

n
U )}

× p2(xn
U )p2(yn

Sc |xn
U )p(yn

S |x
n
Uyn

Sc)p(yn′
S |x

n
Uyn

Sc)

× 2−n(2RS+2R′
S+RSc+R′

Sc )

(b)

⩽
∑

SªD

p2(xn
U )2−n(1−ϵ)H(YSc |XU )2−n(2RS+2R′

S+RSc+R′
Sc ),

(32)

where in (a) the notation yn′
S ̸= yn

S means yn′
i ̸= yn

i ,∀i ∈ S,

and (b) holds by [47]. Hence, by (31) and (32), we upper-

bound the first term in (9) by

∑

mD,sD,xn
U

√
Var

(
p
(1)
MDSDXn

U
(mD, sD, xn

U )
)

⩽
∑

SªD

2n(RD+R′
D)2−

n
2 (1−ϵ)H(YSc |XU )

× 2−
n
2 (2RS+2R′

S+RSc+R′
Sc )

=
∑

SªD

2−
n
2 (1−ϵ)H(YSc |XU )2

n
2 (RSc+R′

Sc )

=
∑

S¦D,S̸=∅

2−
n
2 (1−ϵ)H(YS |XU )2

n
2 (RS+R′

S)

⩽
∑

S¦D,S̸=∅

2−
n
2 (1−ϵ) minU∈U H(YS |XU )2

n
2 (RS+R′

S).

APPENDIX C

PROOF OF LEMMA 3

For pXLX′
LFLF ′

L
= p2

XL
p2

FL
, we have

∑

mL,fL

p2
FL(XL)FL

(mL, fL)

=
∑

fL

p2
FL

(fL)
∑

mL

p2
FL(XL)FL

(mL|fL)

=
∑

fL

p2
FL

(fL)
∑

xL,x′
L

pXLX′
L
(xL, x′

L)1{fL(xL) = fL(x′
L)}

= s−1
L

∑

xL,x′
L

pXLX′
L
(xL, x′

L)P[FL(xL) = FL(x′
L)]

(a)
= s−1

L

∑

S¦L

∑

xL

∑

x′
L

s.t.x′
S ̸=xS

x′
Sc=xSc

P[FL(xL) = FL(x′
L)]

× pXL
(xL)pXL

(x′
L)

= s−1
L

∑

S¦L

∑

xL

∑

x′
L

s.t.x′
S ̸=xS

x′
Sc=xSc

∏

l∈L

P[Fl(xl) = Fl(x
′
l)]

× pXL
(xL)pXL

(x′
S , xSc)

(b)

⩽ s−1
L

∑

S¦L

∑

xL

∑

x′
L

s.t.x′
S ̸=xS

x′
Sc=xSc

2−rSpXL
(xL)pXL

(x′
S , xSc)

(c)

⩽ s−1
L

∑

S¦L

∑

xL

2−rSpXL
(xL)pXSc (xSc)

(d)

⩽ s−1
L

∑

S¦L

∑

xL

2−rSpXL
(xL)2−H∞(pXSc )

⩽ s−1
L

∑

S¦L

2−rS−H∞(pXSc ), (33)

where in (a) the notation x′
S ̸= xS means x′

i ̸= xi,∀i ∈ S,

(b) holds by the two-universality of the Fl’s, l ∈ L, (c) holds

by marginalization over X ′
S , (d) holds by definition of the

min-entropy.

Next, consider qZ defined over Z such that supp(qZ) ¦
supp(pZ). We have in (34), shown at the bottom of the next

page, where (a) holds by Cauchy-Schwarz inequality, in (b)

we have defined for z ∈ Z , X
(z)
L distributed according to

p
X

(z)
L

= pXL|Z=z , (c) holds by (33).

APPENDIX D

PROOF OF LEMMA 4

Proof: For any zn ∈ Zn such that qZn(zn) > 0, define

A(zn) ≜ {yn
D ∈ Y

n
D :

− log qY n
S |Zn(yn

S |z
n) ⩾ H(Y n

S |Z
n)−n¶S(n),∀S ¦ D

}
,

and for S ¦ D,

AS(zn) ≜ {yn
S ∈ Y

n
S :

− log qY n
S |Zn(yn

S |z
n) ⩾ H(Y n

S |Z
n)−n¶S(n)

}
.

Define for (yn
D, zn) ∈ Yn

D ×Z
n,

wY n
DZn(yn

D, zn) ≜ 1{yn
D ∈ A(zn)}qY n

DZn(yn
D, zn), (35)

and for S ¦ D,

wY n
S Zn(yn

S , zn) ≜
∑

yn
Sc∈Yn

Sc

wY n
DZn(yn

D, zn). (36)

We first show that V(pY n
DZn , wY n

DZn) ⩽ ϵ. We have

V(qY n
DZn , wY n

DZn)

=
∑

yn
D,zn

|qY n
DZn(yn

D, zn)− wY n
DZn(yn

D, zn)|

=
∑

yn
D,zn

qY n
DZn(yn

D, zn)1{yn
D /∈ A(zn)}

= P [Y n
D /∈ A(Zn)]

(a)

⩽
∑

S¦D

P [Y n
S /∈ AS(Zn)]

(b)

⩽
∑

S¦D

2
−

n¶2
S (n)

2 log(|YS|+3)2

=
∑

S¦D

2−Dϵ

⩽ ϵ,

where (a) holds by the union bound, (b) holds by [39,

Theorem 3.3.3].
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Next, for S ¦ D, we have

H∞(wY n
S Zn |qZn)

= − max
zn∈supp(qZn )

max
yn
S∈Yn

S

log
wY n

S Zn(yn
S , zn)

qZn(zn)

(a)
= −max

zn
max

yn
S

log

∑

yn
Sc

1{yn
D ∈ A(zn)}qY n

DZn(yn
D, zn)

qZn(zn)
(b)

⩾ −max
zn

max
yn
S

log
1{yn

S ∈ AS(zn)}qY n
S Zn(yn

S , zn)

qZn(zn)
(c)

⩾ H(Y n
S |Z

n)−n¶S(n),

where the first maximum in (a) and (b) is over supp(qZn), (a)
holds by (35) and (36), (b) holds because for any yn

D ∈ Y
n
D,

1{yn
S ∈ AS(zn)} ⩾ 1{yn

D ∈ A(zn)} and by marginalization

over Y n
Sc , (c) holds by definition of AS(zn).

APPENDIX E

PROOF OF LEMMA 5

Let U ∈ U. By Lemma 4, for any ϵ > 0, there exists a

subnormalized non-negative function wY nB
D MB

D XnB
U

such that

V(pY nB
D MB

D XnB
U

, wY nB
D MB

D XnB
U

) ⩽ ϵ, (37)

∀S ¦ D, H∞(wY nB
S MB

D XnB
U
|pMB

D XnB
U

)

⩾ BH(Y n
S |MDXn

U )−B¶S(n, B). (38)

V(pFL(XL),FL,Z , pUK
pUF

pZ)

=
∑

mL,fL,z

(
q
1/2
Z (z)

) (
q
−1/2
Z (z)|pFL(XL),FL,Z(mL, fL, z)− pUK

(mL)pUF
(fL)pZ(z) |

)

(a)

⩽

√√√√√




∑

mL,fL,z

q−1
Z (z)

(
pFL(XL)FL,Z(mL, fL, z)− pUK

(mL)pUF
(fL)pZ(z)

)2








∑

mL,fL,z

qZ(z)





=

√√√√sL2rL

∑

z

q−1
Z (z)

∑

mL,fL

(
pFL(XL)FL,Z(mL, fL, z)−

pZ(z)

sL2rL

)2

=

√√√√sL2rL

∑

z

q−1
Z (z)

∑

mL,fL

(
p2

FL(XL)FL,Z(mL, fL, z)−2
pZ(z)

sL2rL
pFL(XL)FL,Z(mL, fL, z)+

p2
Z(z)

s2
L22rL

)

=

√√√√√
∑

z

q−1
Z (z)



sL2rL

∑

mL,fL

p2
FL(XL)FL,Z(mL, fL, z)− p2

Z(z)





=

√√√√√
∑

z

p2
Z(z) q−1

Z (z)



sL2rL

∑

mL,fL

p2
FL(XL)FL|Z(mL, fL|z)− 1





(b)
=

√√√√√
∑

z

p2
Z(z) q−1

Z (z)



sL2rL

∑

mL,fL

p2

FL(X
(z)
L )FL

(mL, fL)− 1





(c)

⩽

√√√√√
∑

z

p2
Z(z) q−1

Z (z)



2rL

∑

S¦L

2
−rS−H∞(p

X
(z)
Sc

)
− 1





=

√√√√√
∑

z

pZ(z) 2
log

pZ (z)

qZ (z)




∑

S¦L

2
rSc−H∞(p

X
(z)
Sc

)
− 1





=

√√√√
∑

z

pZ(z)
∑

S¦L,S̸=∅

2
rS−H∞(p

X
(z)
S

)+log
pZ (z)

qZ (z)

⩽

√∑

z

pZ(z)
∑

S¦L,S̸=∅

2rS−H∞(pXSZ |qZ)

=

√ ∑

S¦L,S̸=∅

2rS−H∞(pXSZ |qZ) (34)
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Next, we have

V(pFD(Y nB
D )FDMB

D XnB
U

, pUD
pUF

pMB
D XnB

U
)

(a)

⩽ V(pFD(Y nB
D )FDMB

D XnB
U

, wFD(Y nB
D )FDMB

D XnB
U

)

+ V(wFD(Y nB
D )FDMB

D XnB
U

, pUD
pUF

wMB
D XnB

U
)

+ V(pUD
pUF

wMB
D XnB

U
, pUD

pUF
pMB

D XnB
U

)

(b)

⩽ V(pY nB
D MB

D XnB
U

, wY nB
D MB

D XnB
U

)

+ V(wFD(Y nB
D )FDMB

D XnB
U

, pUD
pUF

wMB
D XnB

U
)

+ V(wMB
D XnB

U
, pMB

D XnB
U

)

⩽ 2V(pY nB
D MB

D XnB
U

, wY nB
D MB

D XnB
U

)

+ V(wFD(Y nB
D )FDMB

D XnB
U

, pUD
pUF

wMB
D XnB

U
)

(c)

⩽ 2ϵ + V(wFD(Y nB
D )FDMDXnB

U
, pUD

pUF
wMDXnB

U
)

(d)

⩽ 2ϵ +

√√√√√
∑

S¦D
S̸=∅

2
rS−H∞

(

w
Y nB
S

MB
D

XnB
U

|p
MB

D
XnB

U

)

(39)

(e)

⩽ 2ϵ +

√√√√
∑

S¦D
S̸=∅

2rS−BH(Y n
S |MDXn

U)+B¶S(n,B),

where (a) holds by the triangle inequality, (b) holds by the

data processing inequality, (c) holds by (37), (d) holds by

Lemma 3, (e) holds by (38).

APPENDIX F

PROOF OF LEMMA 6

Let S ¦ D, S ≠ ∅. We have

H(Y n
S |MDXn

U )

= H(Y n
S MDXn

U )−H(MDXn
U )

= H(Y n
S |X

n
U ) + H(MSc |Y n

S Xn
U )−H(MD|X

n
U )

⩾ H(Y n
S |X

n
U ) + H(MSc |Y n

S Xn
U )− n

∑

i∈D

∑

j∈J1,2D+1K

Ri,j ,

(40)

where we have used in the last inequality that H(MD|X
n
U )

is upper bounded by the logarithm of the cardinality of the

alphabet of MD.

The third term in the right-hand side of (40) is evaluated as

follows.
∑

i∈D

∑

j∈J1,2D+1K

Ri,j

(a)
=

∑

i∈D

(R̄i,2D + Ri,2D+1)

(b)
=

∑

i∈D

(H(Yi|Y1:i−1XL) + ϵH(Yi|Y1:i−1XL) + ϵ)

(c)
= H(YD|XL) + ϵ(H(YD|XL) + D), (41)

where (a) and (b) holds by the definitions and rates chosen

in Section V-B.2.a, (c) holds by the chain rule.

Next, the second term in the right-hand side of (40) is lower

bounded as follows.

H(MSc |Y n
S Xn

U )

(a)

⩾ H(MSc |Y n
S Xn

L)

(b)

⩾
∑

i∈Sc

H(Mi|M1:i−1Y
n
S Xn

L)

(c)

⩾
∑

i∈Sc

H(Mi|Y
n
1:i−1Y

n
S Xn

L)

(d)

⩾
∑

i∈Sc

H(Mi,1:j |Y
n
1:i−1Y

n
S Xn

L)

=
∑

i∈Sc

H(Mi,1:j)− I(Mi,1:j ;Y
n
1:i−1Y

n
S Xn

L)

(e)

⩾
∑

i∈Sc

H(Mi,1:j)− o(1)

(f)
=

∑

i∈Sc

n(H(Yi|Y1:i−1YSXL)

− 3ϵH(Yi|Y1:i−1XL)− ϵ)− o(1)

(g)
= n [H(YSc |YSXL)− ¶(ϵ)]− o(1), (42)

where (a) and (b) holds because conditioning reduces entropy,

(c) holds because M1:i−1 is a function of Y n
1:i−1, (d) holds

because Mi contains Mi,1:j for any j ∈ J1, 2DK by the

construction in Section V-B.1.a, (e) holds by Property (ii) in

Section V-B.1.a and [48, Lemma 1], (f) holds by the rates

chosen in Section V-B.2.a and Property (ii) in Section V-B.1.a

with [31, Lemma 2.7], and in (g) we have defined

¶(ϵ) ≜ ϵ
(∑

i∈Sc(3H(Yi|Y1:i−1XL) + 1)
)
. Hence, combin-

ing (40), (41), (42), we obtain

H(Y n
S |MDXn

U )

⩾ H(Y n
S |X

n
U ) + n [H(YSc |YSXL)− ¶(ϵ)]− o(1)

− n(H(YD|XL) + ϵ(H(YD|XL) + D))

= n [H(YS |XU )−H(YS |XL)]

−n¶(ϵ)− o(1)−nϵ(H(YD|XL) + D).

APPENDIX G

PROOF OF LEMMA 7

For any T ª L, we have

I(S1, S2;M1, M2, X
n
T )

(a)
= I(S1;M1, M2, X

n
T ) + I(S2;M1, M2, X

n
T |S1)

(b)
= I(S1;M1, X

n
T ) + I(S1;M2|M1, X

n
T )

+ I(S2;M1, M2, X
n
T |S1)

(c)

⩽ I(S1;M1, X
n
T ) + I(S1;M2|M1, X

n
T )

+ I(S2;M2, X
n
T , Y n

1 )

(d)

⩽ ¶(n) + I(S1;M2|M1, X
n
T )

(e)
= ¶(n) + I(S1;M

′′
2 |M1, X

n
T ) + I(S1;M

′
2|M

′′
2 , M1, X

n
T )

(f)

⩽ ¶(n) + I(Y n
1 , Xn

L;M ′′
2 ) + I(S1, M2,3;M

′
2|M

′′
2 , M1, X

n
T )
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(g)

⩽ ¶(n) + |M ′
2| −H(K2|S1, M2,3, M

′′
2 , M1, X

n
T )

(h)
= ¶(n) + |M ′

2| −H(K2)

(i)
= ¶(n) + ¶(n′

2), (43)

where (a) and (b) hold by the chain rule, (c) holds because

(M1, S1) is a function of Y n
1 , (d) holds by (18) and (19),

(e) holds by the chain rule and the definition of M2, (f)
holds because I(S1;M

′′
2 |M1, X

n
T ) ⩽ I(M1, X

n
T , S1;M

′′
2 ) ⩽

I(Y n
1 , Xn

L;M ′′
2 ), where the first inequality holds by the chain

rule and the second inequality holds as in (c), (g) holds by (20)

and by the definition of M ′
2, (h) holds by independence of

the initialization phase and the successive secret distribution

phase, (i) holds by almost uniformity of K2 in the initializa-

tion phase.

APPENDIX H

PROOF OF LEMMA 8

We have for any U , T ª L,

I(S1, S2; I2(U), M1, M2, X
n
T )− ¶(n)− ¶(n′

2)

(a)

⩽ I(S1, S2; I2(U)|M1, M2, X
n
T )

⩽ I(S1, S2, M1, M2; I2(U)|Xn
T )

(b)
= I(M1, M2; I2(U)|S1, S2, X

n
T )

= I(M1; I2(U)|S1, S2, X
n
T ) + I(M2; I2(U)|M1, S1, S2, X

n
T )

(c)
= I(M ′

2; I2(U)|M ′′
2 , M1, S1, S2, X

n
T )

⩽ I(M ′
2;M2,3, I2(U)|M ′′

2 , M1, S1, S2, X
n
T )

(d)

⩽ |K2| −H(K2|M2,3, I2(U), M ′′
2 , M1, S1, S2, X

n
T )

(e)
= |K2| −H(K2|I2(U))

(f)
= |K2| −H(K2) + I(K2; I2(U))

(g)

⩽ ¶(n′
2),

where (a) holds by the chain rule and (43), (b) holds because

I(S1, S2; I2(U)|Xn
T ) ⩽ I(S1, S2, X

n
T ; I2(U)) = 0, where the

equality holds by independence of the initialization phase

and the successive secret distribution phase, (c) holds by

the definition of M2, the chain rule, and independence of

the initialization phase and the successive secret distribution

phase, (d) holds by the definition of M ′
2, (e) holds by the

independence of the initialization phase and the successive

secret distribution phase, (g) holds by the initialization phase.

REFERENCES

[1] R. A. Chou, “Secret sharing over a public channel from correlated ran-
dom variables,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018,
pp. 991–995.

[2] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[3] G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. AFIPS Nat.

Comput. Conf., vol. 48, 1979, pp. 313–317.

[4] D. Stinson, Cryptography: Theory and Practice. Boca Raton, FL, USA:
CRC Press, 2005.

[5] A. Beimel, “Secret-sharing schemes: A survey,” in Proc. Int. Conf.

Coding Cryptol., 2011, pp. 11–46.

[6] S. Zou, Y. Liang, L. Lai, and S. Shamai, “An information theoretic
approach to secret sharing,” IEEE Trans. Inf. Theory, vol. 61, no. 6,
pp. 3121–3136, Jun. 2015.

[7] Y. Liang, G. Kramer, H. V. Poor, and S. Shamai, “Compound wiretap
channels,” EURASIP J. Wireless Commun. Netw., vol. 2009, no. 1, p. 5,
Dec. 2009.

[8] R. Wilson, D. Tse, and R. A. Scholtz, “Channel identification: Secret
sharing using reciprocity in ultrawideband channels,” IEEE Trans. Inf.

Forensics Security, vol. 2, no. 3, pp. 364–375, Sep. 2007.

[9] J. W. Wallace and R. K. Sharma, “Automatic secret keys from reciprocal
MIMO wireless channels: Measurement and analysis,” IEEE Trans. Inf.

Forensics Security, vol. 5, no. 3, pp. 381–392, Sep. 2010.

[10] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam,
“Information-theoretically secret key generation for fading wire-
less channels,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 2,
pp. 240–254, Jun. 2010.

[11] A. J. Pierrot, R. A. Chou, and M. R. Bloch, “Experimental aspects
of secret key generation in indoor wireless environments,” in Proc.

IEEE 14th Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
Jun. 2013, pp. 669–673.

[12] U. M. Maurer, “Secret key agreement by public discussion from common
information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742,
May 1993.

[13] R. Ahlswede and I. Csiszar, “Common randomness in information theory
and cryptography—Part I: Secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1121–1132, Jul. 1993.

[14] I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,”
IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3047–3061, Dec. 2004.

[15] N. Tavangaran, H. Boche, and R. F. Schaefer, “Secret-key generation
using compound sources and one-way public communication,” IEEE

Trans. Inf. Forensics Security, vol. 12, no. 1, pp. 227–241, Jan. 2017.

[16] H. Zhang, Y. Liang, L. Lai, and S. Shamai, “Multi-key generation over
a cellular model with a helper,” IEEE Trans. Inf. Theory, vol. 63, no. 6,
pp. 3804–3822, Jun. 2017.

[17] A. A. Gohari and V. Anantharam, “Information-theoretic key agreement
of multiple terminals—Part I,” IEEE Trans. Inf. Theory, vol. 56, no. 8,
pp. 3973–3996, Aug. 2010.

[18] J. Wullschleger, “Oblivious-transfer amplification,” in Proc. Annu. Int.

Conf. Theory Appl. Cryptograph. Techn. Springer, 2007, pp. 555–572.

[19] A. C. A. Nascimento and A. Winter, “On the oblivious-transfer capac-
ity of noisy resources,” IEEE Trans. Inf. Theory, vol. 54, no. 6,
pp. 2572–2581, Jun. 2008.

[20] R. A. Chou and A. Yener, “Secret-key generation in many-to-
one networks: An integrated game-theoretic and information-theoretic
approach,” IEEE Trans. Inf. Theory, vol. 65, no. 8, pp. 5144–5159,
Aug. 2019.

[21] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom
generator from any one-way function,” SIAM J. Comput., vol. 28, no. 4,
pp. 1364–1396, Jan. 1999.

[22] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, “Gener-
alized privacy amplification,” IEEE Trans. Inf. Theory, vol. 41, no. 6,
pp. 1915–1923, Nov. 1995.

[23] C. Cachin and U. M. Maurer, “Linking information reconciliation and
privacy amplification,” J. Cryptol., vol. 10, no. 2, pp. 97–110, Mar. 1997.

[24] U. Maurer and S. Wolf, “Information-theoretic key agreement: From
weak to strong secrecy for free,” in Advances in Cryptology—

EUROCRYPT 2000 (Lecture Notes in Computer Science), vol. 1807,
2000, pp. 351–368.

[25] V. Rana, R. A. Chou, and H. M. Kwon, “Information-theoretic secret
sharing from correlated Gaussian random variables and public communi-
cation,” IEEE Trans. Inf. Theory, vol. 68, no. 1, pp. 549–559, Jan. 2022.

[26] I. Csiszár and P. Narayan, “Capacity of a shared secret key,” in Proc.

IEEE Int. Symp. Inf. Theory, Jun. 2010, pp. 2593–2596.

[27] J. C. Benaloh and J. Leichter, “Generalized secret sharing and monotone
functions,” in Proc. 8th Annu. Int. Cryptol. Conf., vol. 403. Cham,
Switzerland: Springer, 1988, pp. 27–35.

[28] M. Soleymani and H. Mahdavifar, “Distributed multi-user secret shar-
ing,” IEEE Trans. Inf. Theory, vol. 67, no. 1, pp. 164–178, Jan. 2021.

[29] A. Khalesi, M. Mirmohseni, and M. A. Maddah-Ali, “The capacity
region of distributed multi-user secret sharing,” IEEE J. Sel. Areas Inf.

Theory, vol. 2, no. 3, pp. 1057–1071, Sep. 2021.

[30] A. Orlitsky and J. Roche, “Coding for computing,” IEEE Trans. Inf.

Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

[31] I. Csiszár and J. Körner, Information Theory: Coding Theorems for

Discrete Memoryless Systems. Cambridge, U.K.: Cambridge Univ Press,
1981.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 25,2024 at 18:24:35 UTC from IEEE Xplore.  Restrictions apply. 



CHOU: DISTRIBUTED SECRET SHARING OVER A PUBLIC CHANNEL FROM CORRELATED RANDOM VARIABLES 2869

[32] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, Apr. 1979.

[33] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM J. Comput., vol. 38, no. 1, pp. 97–139, Jan. 2008.

[34] R. A. Chou, “Private classical communication over quantum multiple-
access channels,” IEEE Trans. Inf. Theory, vol. 68, no. 3, pp. 1782–1794,
Mar. 2022.

[35] R. A. Chou, “Pairwise oblivious transfer,” in Proc. IEEE Inf. Theory

Workshop (ITW), Apr. 2021, pp. 1–5.

[36] R. Chou and M. R. Bloch, “Commitment over multiple-access chan-
nels,” in Proc. 58th Annu. Allerton Conf. Commun. Control, Comput.

(Allerton), Sep. 2022, pp. 1–6.

[37] R. A. Chou, “Biometric systems with multiuser access structures,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019,
pp. 807–811.

[38] R. Sultana and R. A. Chou, “Multiple access channel resolvability codes
from source resolvability codes,” IEEE Trans. Inf. Theory, vol. 68, no. 6,
pp. 3608–3619, Jun. 2022.

[39] H. P. Yuen, “Security of quantum key distribution,” IEEE Access, vol. 4,
pp. 724–749, 2016.

[40] R. A. Chou and M. R. Bloch, “Separation of reliability and secrecy
in rate-limited secret-key generation,” IEEE Trans. Inf. Theory, vol. 60,
no. 8, pp. 4941–4957, Aug. 2014.

[41] R. A. Chou, B. N. Vellambi, M. R. Bloch, and J. Kliewer, “Coding
schemes for achieving strong secrecy at negligible cost,” IEEE Trans.

Inf. Theory, vol. 63, no. 3, pp. 1858–1873, Mar. 2017.

[42] R. A. Chou and M. R. Bloch, “Data compression with nearly uniform
output,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2013, pp. 1979–1983.

[43] R. Sultana and R. A. Chou, “Low-complexity secret sharing schemes
using correlated random variables and rate-limited public commu-
nication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 970–975.

[44] R. A. Chou, “Explicit wiretap channel codes via source coding, universal
hashing, and distribution approximation, when the channels’ statistics are
uncertain,” IEEE Trans. Inf. Forensics Security, vol. 18, pp. 117–132,
2023. [Online]. Available: https://ieeexplore.ieee.org/document/9933484

[45] R. A. Chou, “Explicit codes for the wiretap channel with uncertainty
on the eavesdropper’s channel,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), Jun. 2018, pp. 476–480.

[46] R. Sultana, V. Rana, and R. A. Chou, “Secret sharing over a Gaussian
broadcast channel: Optimal coding scheme design and deep learning
approach at short blocklength,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), Jun. 2023, pp. 1961–1966.

[47] G. Kramer, “Topics in multi-user information theory,” Found. Trends

Commun. Inf. Theory, vol. 4, nos. 4–5, pp. 265–444, 2008.

[48] I. Csiszár, “Almost independence and secrecy capacity,” Problemy

Peredachi Informatsii, vol. 32, no. 1, pp. 48–57, 1996.

Rémi A. Chou received the Engineering degree from Supélec, Gif-sur-
Yvette, France, in 2011, and the Ph.D. degree in electrical engineering
from the Georgia Institute of Technology, Atlanta, GA, USA, in 2015.
From 2015 to 2017, he was a Post-Doctoral Scholar with The Pennsylvania
State University, University Park, PA, USA. From 2017 to 2023, he was an
Assistant Professor with the Electrical Engineering and Computer Science
Department, Wichita State University, Wichita, KS, USA. He is currently an
Assistant Professor with the Computer Science and Engineering Department,
The University of Texas at Arlington, Arlington, TX, USA.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 25,2024 at 18:24:35 UTC from IEEE Xplore.  Restrictions apply. 


