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Distributed Secret Sharing Over a Public Channel
From Correlated Random Variables

Rémi A. Chou

Abstract— We consider a secret-sharing model where a dealer
distributes the shares of a secret among a set of participants with
the constraint that only predetermined subsets of participants
must be able to reconstruct the secret by pooling their shares.
Our study generalizes Shamir’s secret-sharing model in three
directions. First, we allow a joint design of the protocols for
the creation of the shares and the distribution of the shares,
instead of constraining the model to independent designs. Second,
instead of assuming that the participants and the dealer have
access to information-theoretically secure channels at no cost,
we assume that they have access to a public channel and
correlated randomness. Third, motivated by a wireless network
setting where the correlated randomness is obtained from channel
gain measurements, we explore a distributed setting where the
dealer is an entity made of multiple sub-dealers. Our main results
are inner and outer regions for the achievable secret rates that
the dealer and the participants can obtain in this model. To this
end, we develop two new achievability techniques, a first one
to successively handle reliability and security constraints in a
distributed setting, and a second one to reduce a multi-dealer
setting to multiple single-user dealer settings. Our results yield
the capacity region for threshold access structures when the cor-
related randomness corresponds to pairwise secret keys shared
between each sub-dealer and each participant, and the capacity
for the all-or-nothing access structure in the presence of a single
dealer and arbitrarily correlated randomness.

Index Terms— Secret sharing, distributed secret-key genera-
tion, multiterminal source, privacy amplification.

I. INTRODUCTION

ONSIDER a dealer who distributes to L participants the

shares of a secret S with the requirements that any ¢
participants are able to reconstruct .S by pooling their shares,
and any subsets of participants with cardinality strictly smaller
than ¢ must be unable to learn anything about the secret,
in an information-theoretic sense. More specifically, the dealer
forms L shares (M7, ..., M) from the secret S, and transmits
each share S; to Participant [ € {1,..., L} via an individual
and information-theoretically secure channel. The setting is
depicted in Figure 1 for the case (L,t) = (3,2).
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Fig. 1. Traditional secret sharing with L = 3 participants and ¢t = 2.

This secret-sharing problem was first introduced by Shamir
in [2] and, independently, by Blakley in [3]. Subsequently,
numerous variants have been extensively studied in the
computer science literature, see, for instance, [4], [5] and
references therein. In these studies of information-theoretically
secure secret sharing, it is assumed that the dealer can dis-
tribute to the participants the shares of the secret through
information-theoretically secure channels that are available
at no cost, as in the setting depicted in Figure la. Recently,
to avoid this assumption, an information-theoretic treatment of
secret sharing over noisy channels has been proposed in [6] by
leveraging information-theoretic security results at the phys-
ical layer. Specifically, in [6], the information-theoretically
secure channels of traditional secret-sharing models are
replaced by a noisy broadcast channel from the dealer to the
participants so that secret sharing reduces to physical-layer
security for a coumpound wiretap channel [7].

In this paper, as illustrated in Figure 2, we formulate a
secret-sharing model that generalizes Shamir’s secret-sharing
model in three directions. First, our model allows a joint
design of the creation of the shares by the dealer and the
distribution of the shares by the dealer to the participants.
This contrasts with Shamir’s model which considers these two
phases independently, since information-theoretically secure
channels are available between the dealer and each participant
for the distribution phase. Second, while Shamir’s model
assumes that the participants and the dealer have access to
information-theoretically secure channels for the distribution
of shares, we, instead, only rely on a public channel and corre-
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Fig. 2. Proposed secret sharing model with two sub-dealers, three partici-
pants, and a reconstruction threshold ¢t = 2.

lated randomness in the form of realizations of independently
and identically distributed random variables.' Third, motivated
by a wireless network setting discussed next, we further
explore the problem of secret sharing in a distributed setting
where the dealer is an entity made of multiple sub-dealers.
Our setting is formally described in Section III and can
be explained at a high level as follows. Assume that the
participants and the dealer, made of multiple sub-dealers
distributed in space, observe independently and identically
distributed realizations of correlated random variables, that
have, for instance, been obtained in a wireless communication
network from channel gain measurements after appropriate
manipulations [8], [9], [10], [11]. The dealer wishes to share
a secret with the participants with the requirement that only
predefined subsets of participants are able to reconstruct the
secret, while any other subsets of participants that pool all their
knowledge must remain ignorant, in an information-theoretic
sense, of the secret. We are interested in characterizing the
set of all achievable secret rates that the dealer can obtain
via its sub-dealers when those are allowed to communicate
with the participants over a public channel. Note that a
potential limitation in the presence of a single dealer is that
the correlated random variables available at the dealer and
the participants could be such that no positive secret rates are
achievable. It is precisely to mitigate this eventuality that we
consider a dealer that can deploy in space sub-dealers using,
for instance, mobile stations or drones whose positions are
adjusted to change the statistics of the channel gains and avoid
sterile spatial configurations.
We summarize the main features of our work as follows:
(i) We study a secret-sharing model that extends Shamir’s
secret-sharing model in three directions by considering
(1) a joint, instead of independent, design of the share
creation and distribution phases, (2) a public channel and
correlated randomness, instead of secure channels, and
(3) a dealer made of distributed sub-dealers, instead of

'Note that the latter resources are more general than the former resources
since they can be used to implement information-theoretically secure channels
via a one-time pad when the correlated randomness corresponds to secret keys
shared between the dealer and the participants.
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a single dealer. Specifically, we derive inner and outer
regions for the achievable secret rates that the dealer
and the participants can obtain in this model. We obtain
capacity results in the case of threshold access structures
when the correlated randomness corresponds to pairwise
secret keys shared between each sub-dealer and each
participant, and in the case of a single-dealer setting
for the all-or-nothing access structure and arbitrarily
correlated randomness.

In all our achievabilitiy results, the length of each
share always scales linearly with the size of the secret
for any access structures. This comes from the fact
that the size of the secret is linear with the number
of source observations n, and a share corresponds to
the public communication plus n source observations,
whose lengths are both linear with n. Indeed, the public
communication corresponds to a compressed version of
the n source observations of all the sub-dealers. The
length of the public communication does not depend
on the number of participants but does depend on the
access structure, in particular, the public communication
must allow the secret reconstruction for the group of
authorized participants that has the least amount of infor-
mation in their source observations about the secret. This
contrasts with Shamir’s secret-sharing model, for which
the best known coding schemes require the share size to
depend exponentially on the number of participants for
some access structures [5].

As a by-product of independent interest, for distributed
settings, we develop two novel achievability techniques
to simultaneously satisfy reliability and security con-
straints. The first one consists in successively handling
the reliability and security constraints. This is done
by deriving a new variant of the distributed leftover
hash lemma and developing a new coding scheme for
distributed reconciliation that can be combined with it.
The second one consists in reducing a distributed setting
to multiple single-user settings.

(ii)

(iii)

A. Related Work

Our work is related to secret-key generation from corre-
lated random variables and public communication [12], [13],
as correlated randomness and public communication are also
the main resources considered in our setting. However, the
analysis of our proposed secret-sharing model does not follow
from known results for the secret-key generation models
in [12] and [13], as these models only consider a key exchange
between two parties, whereas our setting considers a secret
exchange between multipe dealers and multiple participants.
The analysis of our proposed secret-sharing model does not
follow either from subsequent multiuser secret-key generation
models, e.g., [14], [15], [16], and [17], that either do not
consider multiple reliability and security constraints simulta-
neously (and are thus unable to support access structures as
in our secret-sharing model) or do not consider distributed
settings (and are thus unable to support our distributed dealer
setting). The main technical difficulties in our study precisely
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come from having to simultaneously deal with (i) a distributed
setting due to the presence of multiple sub-dealers, and
(i1) information-theoretic security constraints able to support
an access structure, i.e., able to ensure that all the unauthorized
subsets of participants cannot learn information about the
secret. More specifically, for the all-or-nothing access struc-
ture, i.e., when all the participants are needed to reconstruct
the secret, we develop a new achievability technique that
successively handles the reliability and security constraints
in the presence of distributed sub-dealers. Perhaps surpris-
ingly, we show that this achievability technique is superior
to a random binning strategy that simultaneously handles
the reliability and security constraints, in the sense that no
elimination of auxiliary rates in the obtained achievability
region is necessary. To this end, we derive a new variant of
the distributed leftover hash lemma [18], [19], [20]. While the
standard leftover hash lemma [21] has been extensively used
for secret key generation, e.g., [22], [23], and [24], known
proofs techniques to study the distributed leftover hash lemma
in our problem do not seem optimal. Specifically, at least two
new technical challenges arise in our study: (i) while in a
non-distributed setting only one min-entropy appears in the
leftover hash lemma, the presence of multiple min-entropies
(defined from the marginals of the same joint probability
distribution) for a distributed setting complexifies the task of
finding good approximations of theses min-entropies, further,
(ii) usual techniques for non-distributed settings, e.g., [24,
Lemma 10], to study the impact of public communication
on the leaked information to an eavesdropper do not lead
to tight results in a distributed setting. Additionally, we also
develop for the all-or-nothing access structure another new
achievability technique to reduce the task of coding for a
distributed-dealer setting to the task of coding for multiple
separate single-dealer settings.

As alluded to earlier, [6] considers a channel model version
of the model studied in this paper but in the presence of
a single dealer. Note that subsequently to the preliminary
version [1] of this paper, Reference [25] investigated a similar
model to the one in this study, but only in the presence of a
single-dealer, when the participants and the dealer observe
realizations of correlated Gaussian variables. Note also
that [26] investigated another secret-sharing problem from cor-
related random variables and public discussion in the absence
of a designated dealer and for special kinds of access structures
that are not monotone. By contrast, in this work, we consider
arbitrary monotone access structures, as defined in [27].

Finally, note that distributed secret sharing has also been
studied from a different perspective in [28] and [29]. In these
references, a dealer stores information in multiple storage
nodes such that each participant who has access to prede-
fined storage nodes can reconstruct a secret but cannot learn
information about the secrets of the other participants. The
main difference, in terms of assumptions, between [28] and
[29] and our setting is that it is assumed in [28] and [29]
that the dealer can store information in multiple nodes and
thus that there exist information-theoretically secure channels
between the dealer and each node, similar to the standard
assumption in Shamir’s secret sharing. By contrast, we do
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not make this assumption in our setting and instead only
rely on a public channel and correlated randomness. For this
reason, in [28] and [29] the nature of the problem studied is
different, specifically, in [28] and [29], the minimization of
communication rates is sought out, whereas in our setting, for
given source statistics, the maximization of the secret length
is sought out.

B. Paper Organization

The remainder of the paper is organized as follows. We
formally define the problem in Section III and state our main
results in Section IV. We present our achievability proofs
and converse proofs in Sections V and VI, respectively. We
prove the optimality of our results in some special cases in
Section VII. We propose an extension of all our results to the
case of chosen (instead of random) secrets in Section VIII.
Finally, we provide concluding remarks in Section IX.

II. NOTATION

For any a € R*, define [1,a] = [1, [a]] N N. The indicator
function is denoted by 1{w}, which is equal to 1 if the
predicate w is true and O otherwise. Let V(-,-) denote the
variational distance. For a given set S, let 2° denote the power
set of S, and |S| denotes the cardinality of S. Finally, let X
denote the Cartesian product.

III. PROBLEM STATEMENT

For L,D € N*, define the sets £ = [1,L] and D =
[1, D]. Consider L finite alphabets (X;);cc, D finite alpha-
bets (Vg)aep, and define X, 2 Xiep X and Vp S
X gep Ya- Then, consider a discrete memoryless source (X %
Vp,px,vp)s Where Xp £ (X))ier and Yp £ (Ya)aep.
n € N independent and identically distributed realizations of
the source are denoted by (X2,Y}), where X2 £ (X[')ie
and Y3 £ (Y1) 4ep. In the following, for any subset 7 C L,
we use the notation X2 = (X7)je7.

As formalized next, we consider D sub-dealers and L
participants, who each observes one component of the discrete
memoryless source. Through public communication from the
sub-dealers to the participants, their objective is to generate
D random secrets such that authorized subsets of participants
can reconstruct the secrets, whereas unauthorized subsets of
participants cannot learn any information about the secrets.
We highlight that in the following definitions the secrets are
random, however, in Section VIII, we explain how to address
the same setting when the values of the secrets are chosen by
the sub-dealers.

Definition 1 (Monotone Access Structure [27]): A set A of
subsets of £ is a monotone access structure when for any
T C L, if 7 contains a set that belongs to A, then 7
also belongs to A. We write the complement of A in 2°
as U = 26\A.

Definition 2: For d € D, define the alphabet S; =
[1,2"f4] and Sp = Xaep Sa- A ((2"Fa)gep, A, U, n) secret-
sharing strategy consists of:

« A monotone access structure A.

¢ D sub-dealers indexed by the set D.
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o L participants indexed by the set L.

o D encoding functions (fj)aep, Where fq : Y — My,
d € D, with M, an arbitrary finite alphabet.

o D encoding functions (gq)aep, Where gq : Y — Sq,
deD.

e |A|x D decoding functions (h.,q) aca,dep, Where hg g :
X x Mp — Sq, A € A, with X} £ Xea Xa and
Mp = Xaep Ma-

and operates as follows:

e Sub-dealer d € D observes Y.

o Participant [ € £ observes X'

o Sub-dealer d € D sends over a noiseless public authen-
ticated channel the public communication My £ f4 (Y1)
to the participants. We write the global communication
of all the sub-dealers as Mp 2 (My)gep.

« Sub-dealer d € D computes Sq = ga(Y").

« Any subset of participants A € A can compute for d €
D, Sy(A) £ haa(X%, Mp), and thus form Sp(A) £
(54(A))aep, an estimate of Sp 2 (S4)aep.

Definition 3: A secret rate-tuple (R4)qep is achievable if

there exists a sequence of ((2"%),cp,A, U, n) secret-sharing
strategies such that

lim_max P Sp(A) # Sp| = 0 (Reliability), (1)
n—oo A€
lim max I (Sp; Mp, Xj;) = 0 (Strong Security), 2)

n—oo UelU

lim log|Sp| — H(Sp) = 0 (Secret Uniformity). (3)

Let C(A) denote the set of all achievable secret rate-tuples.
When D =1, C(A) denotes the supremum of all achievable
secret rates and is called the secret capacity.

(1) means that any subset of participants in A is able
to recover the secret, while (2) means that any subset of
participants in U cannot learn any information about the
secret even if they pool their observations and the public
communication sent by all the sub-dealers. (3) means that
the secret is nearly uniform, i.e., the entropy of the secret
is nearly equal to its length. In other words, (3) means that
we seek secret-sharing strategies that maximize the entropy of
the secret.

Example 1: Suppose that there are L. = 3 participants
who observe (X7, X7 X¥) and D = 2 sub-dealers who
observe (Y7*,Y5") as depicted in Figure 3a. In a first phase,
depicted in Figure 3a, Sub-dealer i € {1,2} computes S; =
gi(Y") and M; £ f;(Y]"), and publicly shares M; with all
the participants. In this example, suppose that My, Ms, Si,
S are created such that any two participants must be able
to recover (S7,S53), i.e., the access structure is defined as
A = {{1,2},{1,3},{2,3},{1,2,3}}, but a single participant
must not learn information about (S7,S2) as described by
Equation (2) with U £ 2°\A = {{1},{2},{3}}. Hence,
in a second phase, depicted in Figure 3b, any two participants
i€{1,2,3} and j € {1,2,3}\{¢} who pool their information,
ie., (My, M2, X", X7'), can estimate (S1,S52) as (81,5,) &
(haa1(X%, Mp),ha2(X%, Mp)), where A = {i,j} € A and
Mp £ (My, My).
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Fig. 3. Secret sharing with D = 2 sub-dealers, L = 3 users, and the access
structure A £ {{1,2},{1,3},{2,3},{1,2,3}}.

IV. RESULTS

In the following, for a rate-tuple (Rg)4ep € Rf and
S C D, we use the notation Rg £ Y ies Ri-

A. General Access Structures

1) Results for an Arbitrary Number D of Sub-Dealers:
The achievability scheme to derive Theorem 1 relies on ran-
dom binning designed to simultaneously satisfy the reliability
condition (1) and the security condition (2).

Theorem 1 (Inner Bound): We have RUM(A) C C(A),
where

R(in) (A)
= Proj(Rd)dED {(Rd7 R:i)dGD :
R/S = I}ngH(Y5|Y5cXA),VS - D
R+ Rs < min H(Ys|Xy),¥S§ € D

b

where Proj( Ru)acp denotes the projection on the space defined
by the rates (Rg)qep.
Proof: See Section V-A. [ ]
Theorem 2 (Outer Bound): We have C(A) C R(W(A),
where

R(out) (A) A

{(Rd)deD : Rs < mlnzr/{m% I(Ys;XAY3c|Xu)7VS Q D} .
S

A€
Proof: See Section VI-A. [ ]
Note that it is challenging to simplify the inner

bound RUM(A) in Theorem 1 because the set functions
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S — %2XH<YS|YSCXA) and § — 51€i%H(Y3|Xu) are not
necessarily submodular or supermodular and, consequently,
Fourier-Motzkin elimination is not easily applicable for a large
number of sub-dealers D. As described next, one can, however,
obtain simplified bounds when D = 1 and D = 2, and a
capacity result for threshold access structures when the source
of randomness corresponds to pairwise secret keys.

2) Results for a Two-Sub-Dealer Setting, i.e., D = 2:

Corollary 1 (Inner Bound): Assume that D = 2. We have
R (A) C C(A), where R("(A) is defined in (4), shown at
the bottom of the page.

Corollary 2 (Outer Bound): Assume that D = 2. We have

REW(A) D C(A), where
R(out) (A)
Ry g%é&gg%[(YhXAYﬂXu)
2 (Ri,R): Ry < wminmin I(Ya; X4Y1|Xu)
Ri+Ry < ml%ﬁlnI(YD,XA|Xu)
Ae

Corollary 1 is obtained from Theorem 1 by using Fourier-
Motzkin elimination. Corollary 2 is a consequence of
Theorem 2.

3) Results for a Single-Dealer Setting, i.e., D = I:

Corollary 3: Assume that D = 1. We have the following
lower and upper bounds for the secret capacity C'(A)

inmin (£(Yy; X4)— I (Y1; X

REni (0 X 005 %0)

<C(A)
< minmin I(Y7; X 4| Xy).
Ry O XalXio)

Corollary 3 is a consequence of Theorem 1 and Theorem 2.

B. All-or-Nothing Access Structure

In this section, we consider the all-or-nothing access struc-
ture denoted by A* = {L£}. This setting corresponds to the
case where all the participants are needed to reconstruct the
secret.

1) Results for an Arbitrary Number D of Sub-Dealers:
The achievability proof technique for Theorem 3 is different
than the proof technique for a general access structure in
Theorem 1. Specifically, we successively, instead of simul-
taneously, handle the reliability constraint (1) and the security
constraint (2). This strategy is, for instance, used for secret-key
generation [22], [23], [24]. However, in our distributed setting,
the application of this strategy is not straightforward and we
discuss in the proof the main technical challenges that needs
to be overcome to obtain this extension. The first step of our
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coding strategy, to handle the reliability constraint, involves
a careful design of an exponential number (with respect
to D) of nested binnings. The second step of our coding
strategy, to handle the security constraints, involves a new
variant of the distributed leftover hash lemma (Lemma 3 in
Appendix V-B.2). Note that the proof technique used to prove
Theorem 3 has at least two advantages compared to a joint
random binning approach as in Theorem 1. First, no auxiliary
rate appears in the achievability region of Theorem 3, second,
it provides insight for the design of explicit secret-sharing
schemes by showing that a two-layer design approach that
separates the reliability constraint from the security constraints
can be used. A
Theorem 3 (Inner Bound): We have Rgm) C C(A*), with

R(™ é{(Rd)dep + Bs < min I(Ys; Xg| X7),¥S C D} .

Proof: See Section V-B. [ |
Theorem 4 (Outer Bound): We have R (A*) D C(A*),
where

R(out) (A*)
£ {(Rd)deD : Rs < g_nclrﬁl I(Ys; X£Yse| X7),VS C D} .

Proof: See Section VI-B. [ ]

2) Results for a Two-Sub-Dealer Setting, i.e., D = 2:
The achievability proof strategy of Theorem 5 is different
than the achievability proof strategy of Theorem 3. Note
that in the proof of Theorem 3, we deal with the security
constraint (2) by jointly considering all the sub-dealers.
By contrast, our achievability proof strategy in Theorem 5
considers the sub-dealers individually when ensuring (2).
Specifically, when D = 2, one can first realize a secret-sharing
scheme between Sub-dealer 1 and the participants with
the requirement lim,_ . maxyey ! (S1;M1,X7}) = 0O,
and then realize a secret-sharing scheme between Sub-
dealer 2 and the participants with the requirement
limy, 00 maxyev I (S2; Mo, X7}, Y*) = 0, as illustrated
in Figure 4. As described next, one can show that such an
approach is sufficient to ensure the security constraint (2).
However, the proof is not trivial as we need to modify
the reconciliation protocol of Theorem 3 described in
Section V-B, and as an initialization phase is also required,
during which Sub-dealer 2 shares a secret with negligible rate
with all the participants. Note also that one could exchange
the role of the two sub-dealers in the protocol to potentially
enlarge the achievablity region via this method. This idea
leads to Theorem 5.

R, < %%mm (I(Y1;Y2X4) — I(Y1; Xu))

CAUEU
Ry < gli%{{nl%ul (I(Yo; Y1X ) — I(Ya; Xu))

cAle

R (A) 2 {(Ry,Ry) %el{AlI(YD;XA) — max I(Yp; Xu), (4)
Ry + Ry < min| min/(¥y;Y2X4) +min I(Ye; Xa|V1) — max I(Yp; Xu),
mlnI(YD, Xa)— maxI(Yl,Xu) Ig{l&q)}([(}/g;Xu) +1(11;Ys)
€
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Fig. 4. A joint security design strategy for (S1,S2) is used in Theo-

rem 3, whereas a successive security design strategy for (S1,S2) is used
in Theorem 5.

Theorem 5 (Inner Bound): Assume that D = 2. If

I(Yy: X /0| X 0, then R{™ ¢ R{M C c(A*
Ay P Y X X) > 0, then Ry (A7),

with

RV £ [R({1}) x R({2}{1})]
UTR({1I{2}) x R{2)] UR({1,2)}),

where we have defined for any S,V C D,
R(SV)
{(Rd)des Rp <min I(Y& XY X7),VB C 5}
and R(S) = R(S|0).
Proof: See Section V-C. [ |

From Theorem 5, we deduce the following sum-rate achiev-
ability result.
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Corollary 4 (Sum-Rate Achievability): Assume that D = 2

and dngm} mm I(Yy; Xc|X7) > 0. Define for any S,V C D,
e{1,2

R(S|V) £ min /(Ys; Xz |Yy X7).

For convenience, we also define for S C D, R(S) £ R(S|0).
Theorem 3 shows the achievability of the secret sum-rate R{"™,
while Theorem 5 shows the achievability of the secret sum-rate
max(R{"™, R$™, R§™), where
RY™ £ min (R({1,2}); R({1}) +
Ry™ £ [R({1}) + R({2}{1})],
R3™ = [R({2}) + R({1}[{2})]-
From Theorem 4, we will also have the following outer bound.

Corollary 5 (Outer Bound): Assume that D = 2. We have
REW(A*) D C(A*), where

R({2}),

R(Om)(A*)
R1 gmnI(Yl,XgYﬂXT)
2 ) (R Ry) - R, <g1cn1(1@,xm|XT)
Ri+ R, gmr}:I(YD;XdXT)

Next, we provide a sufficient condition for having found the
optimal secret sum-rate in Corollary 4.

Corollary 6: We use the same notation as in Corollary 5. If
R({1,2}) < R({1}) + R({2}), then the secret sum-rate Rj"™
in Corollary 4 is optimal by Corollary 5.

3) Result for a Single-Dealer Setting, i.e., D = I: In the
presence of a single dealer, i.e., when D = 1, we have the
following capacity result.

Theorem 6: Assume that D =
C(A*) is given by

C(AY) = i I(Yp; Xc|X7).

1. The secret capacity

Proof: See Section VII-A. [ ]
Theorem 6 can be seen as a counterpart to the result for a
channel model in [6].
Example 2: Suppose that D =
by Theorem 6, we have

C(A*) = min[I(Yp; X1|X2), T

1 and L = 2. Then,

(Yp; Xa| X1)].

Example 3: Suppose that D = 1 and consider L identical
and independent channels C; = (), Px|y, X ) with X and Y
two finite alphabets. Suppose that, for any [ € £, A} = X,
and X is the output of the channel C; when Yp, distributed
according to py, is the input. Then, by Theorem 6, we have

C(A*) == I(YD;X1|X[[2,L]]).

C. Threshold Access Structures When the Source of
Randomness Corresponds to Pairwise Secret Keys

We define threshold access structures as follows. Let ¢ €
[1,L] and z € [1,¢ — 1]. Define the access structure

A E2{SCL:IS| >},
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and the set of non-authorized participants as

U, 2{SCL:|S| <z},

and consider Definition 3 with the substitution A «— A; and
U « U;. We denote the capacity region by C(A;,U,) instead
of C(A), and the secret capacity by C(t, z) instead of C(A)
when D = 1. This setting means that any set of participants
of size larger than or equal to ¢ must be able to recover the
secrets, and any set of participants of size smaller than or equal
to z must be unable to learn any information about the secrets.

Clearly, for arbitrarily correlated source of randomness, the
results of Section IV-A apply for any ¢ € [1,L] and z €
[1,t — 1], and the results of Section IV-B apply for (¢,z) =
(L,L — 1). We then have the following capacity result when
the source of randomness corresponds to pairwise secret keys.

Theorem 7 (Capacity Region): Suppose that Participant [ €
L and Sub-dealer d € D share a secret key K;'; uniformly
distributed over {0,1}", and that all the keys are jointly
independent. With the notation of Section III, we thus have
X" = (K['3)aep for User I € L and V' = (K['j)iec for
Sub-dealer d € D. Let t € [1,L] and z € [1,¢t — 1]. Then,
we have

C(A,U,) = {(Ra)aep : Rs < [S|(t - 2),¥S C D}
= {(Ra)aep : Ry <t —2,Yd € D},

moreover, the rate-tuple (Rj)qep is achievable with R} =
t—z.
Proof: See Section VII-B. [ |

Note that Theorem 7 is consistent with known results for
Shamir’s secret sharing model. Indeed, suppose that D =1
and z =t — 1 in Theorem 7. Using Shamir’s secret sharing,
the dealer can first form L shares of n bits for a secret S with
entropy H(S) = n, and then secretly transmit each share to
a participants via a one-time pad over the public channel by
using the secret keys of length n. The dealer has thus shared
a secret with rate % = 1. Now, since C(t,z) =t —z =
1 by Theorem 7, we also conclude in this example that there
is no loss of optimality in independently handling the share
generation phase and the secure share distribution phase.

Example 4: Suppose that D = 1 and L = 10. Then,
C(t,z) =t — z is depicted in Figure 5.
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V. ACHIEVABILITY PROOFS

Sections V-A, V-B, V-C contain the achievability proofs
of Theorems 1, 3, and 5, respectively. In the following,
we will use the following notation. For a pair of discrete
random variables (X,Y’) distributed according to pxy over
a_finite alphabet X x ), let 7"(X) £ {z" € &x" :
(= M=) ()] < epx(x),Va € A} denote the
e-letter-typical set associated with px for sequences of length
n, e.g., [30], and define px £ mingex sipy(@)>0Px ().
Letalso 7*(XY|z") £ {y" € Y™ : (2™, y") € T(XY)} be
the conditional e-letter-typical set associated with pxy with
respect to " € A",

A. Proof of Theorem 1

Theorem 1 relies on random binning. The coding scheme
and its analysis are described in Sections V-A.l and V-A.2,
respectively.

1) Coding Scheme: Binnings: Fix ¢ € D. Define the
functions g; : V" — [1,2"%] and h; : Y — [1,2"R],
where, for yI' € V7, gi(y;‘) is drawn uniformly at random in
the set [1,2"%], and h;(y?) is drawn uniformly at random in
the set [1,2"F].

Then, the encoding at the sub-dealers and the decoding at
the participants are as follows:

Encoding at Sub-dealer © € D: Given y;', Sub-dealer ¢ € D
computes m; = g;(y7') and s; = hy(y7").

Decoding for a set of participants A € A: Given mp £
(mq)qep and x7), the set of participants A returns g7 (A) =
(91")iep if it is the unique sequence such that (3 (A), z7y) €
T (YpX4) and (gi(97'));cp = mp, otherwise it returns an
error.

Next, we determine how to choose R; and R}, i € D,
to ensure the reliability, security, and uniformity conditions
as described in Definition 3.

2) Coding Scheme Analysis:

a) Reliability analysis: Fix A € A. Define for any
SCD,S#0,

€0 2 {(X3.YE) ¢ T/ (Xa¥p)},
Es = {vie 8,3y #Y", 9:(47) = 9:(Y]")
and (X35, Y5\s) € T"(Xa¥p) }
so that by the union bound,

EPYH(A) A YR <Pl&]+ Y. PEs], 9

SCD,S#0
where the expectation is over the random choice of the
binnings.
Lemma 1: For any S C D, § # (), we have
]P)[(SS] < 2n(1+6) max.Aeca H(Y$|YSCXA)77ZR:9, (6)
P[€o] < 2|Xc||Vple " HxevD, (7
Proof: See Appendix A. [ ]

Hence, by (5), (6), and (7), we have

E | maxP[Y5(A) # V5]
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Z PY5(A) # Yp]
A€A
= Y E[PVA(A) # 3]
AeA

< 2A||Xc||Vple < mxevD
+ |A] Z gn(l+e) maxaes H(Ys|Yse Xa)—nRjs
SCD,S#0

®)
b) Security and uniformity analysis: Fix U € U. For all
mp, sp, Ty, we have

PMpSp X}, (mD, SD, JUZ)

= ZP YD, Tyy) H H{ai(y;")

i€D

=m}1{hi(y;") = si}.

Hence, on average over the random choice of the binnings,
for all mp, sp, 7, we have

E [papspxy (mp, sp,a;)] = p(ap)2 - Be+ip)

which allows us to write
E[V(prpsp X5 p(g\lﬂﬂsp pxp )
=E {Zm,,,s,,,m; |pArp sz (MD, 5D, 27;)
—E [prrpspxp (mp, sp, a7y)]|]
(k)

2
<ZE[ mp,SD,TY

k=1

Xz (mop, sp, )

k
-E [pg\/ILSDX" (mDv D, ‘TZ/{)} H
©))
where p%‘;ﬂsp is the uniform distribution over the sample
space of par, 55, and Vimop, Vsp, Vg,

1
p§\4)DSDX" (mDa D, xl/l)

= > pp,2) [ o)

yp €T (Y Xulzy)) i€D

x 1{hi(y}) = i},

()
p]V[DSDX” (mD’ 8D, xu)

= > pd, ) [ 1 (w) = mi}
ypETr (Yo Xulay i€D
x W{hi(y;") = si}-

Lemma 2: We have

(2)
E [Zmp,sD,x{l

Pypspxy (mp, sp, ;)

(2 n
-E {pM)DSng (mp, sp, xu)} H
2
< 2[Ypl|Xele™ Yo Xe, (10)
and

(1)
E [ op me

Prpspxp (mp, sp, x7;)

—-E [pg\/[)DSDX&' (mDa SD, JZZ):| H
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< Z 2—%(1—6) miny ey H(Ys \XM)Q%(RS-&-Rg).
SCD,S#0

Proof: See Appendix B. [ ]
Finally, by (9), (10), and (11), we obtain

(1)

f
E |:IZ§1§LX V(prpspxp s PE\?L)SDPX )}

Z V(prpsp g p(jﬂ}l;ﬂsp 2 )]
Ueu
= Z E [V(pMDSDXg,P%?SDPXg)}]
Ueu
< 2UYp || Xle Hroxe
+ U Z 2%[R5+Rg—(1—e)minueu H(Ys|Xu)]
SCD,5+£0
3) Rate Choices: By Markov’s inequality, (8), and (12),
there exists a random binning choice and a constant
a > 0 such that maXAeA PIYZ(A) # Y2 +
maxyeu V(pMDSDXu, pMD spPxp n) = 0( —na) provided that
for any SCD, ( + 6) maxAca H(Y5|Y3cXA> < Rg and
Rs + Rs < (1 — €) minyey H(Ys| Xy ). Finally, we remark
that V(parpsp x7: ,pN}‘;ﬂSDpX ) = o(e™"*) implies (2) and (3)
by [31, Lemma 2.7].

12)

B. Proof of Theorem 3

Our coding scheme operates in two steps to successively
deal with reliability and secrecy by means of reconciliation
and privacy amplification. The main difficulty compared to the
case D = 1 is the analysis of privacy amplification because
of the distributed setting induced by the multiple sub-dealers.
Additionally, our analysis of the privacy amplification step
requires a modified reconciliation protocol with additional
properties compared to the case D = 1. We describe our
coding scheme in Section V-B.1 and provide its analysis in
Section V-B.2. We use the same notation as in Appendix V-A.

1) Coding Scheme:

a) Reconciliation: We define the encoding and decoding
procedures for reconciliation through 2 + 1 nested random
binnings as follows.

Binnings: Fix i € D. For y* € Y, for j € [1,2P +1], draw
uniformly at random an index in the set [1, 2"f%.7] and let this
index assignment define the function b; ; : Y — [1,2"Fui].
The value of R;; will be chosen later. For any subset S C
[1,27 4 1], we define Ris £ 3.5 Rij-

Encoding at Sub-dealer i € D: Given y}', Sub-dealer ¢ € D
computes (mi,;)jeq 20411 = (0 (Y1) ;e 00117

Decoding at the participants: For i € D, given m; =
(Mij)jel1,2p41]s Y1 (7 )jeqn,i—11» and x, output
g if it is the unique sequence such that (§7,y7,_q,2}) €
1" (V1. X,) and (b;;(97))
otherwise output 1.

Design properties of the reconciliation protocol: Fix
i € D. We first introduce additional definitions. Let § > 0.
Define for S - D, Ri,S e H(Y;|Y1;i,1Y3X£) — 0 if
H(Y;|Y1.;-1YsX,) # 0 and R; s = 0 otherwise. We sort
the sequence (Riys)sgp in increasing order and denote the

je[1,2P+1] — (mi,j)je[[l,2D+1]}»
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result by (R; ;) ]e[[l op]. For notation convenience, we denote
by S;. j € [1,2P]. the subset of D such that R;; =
H(Y;|Y1.4-1Ys,X) — d. Observe that Rhl =0and R, ,p =
H(Y;|Y1.,1Xz) — 6.

(1) We will design the reconciliation such that, for any
i € D, the participants in £ can form an approximation
Y™ of Y”, from (M”)]e[[l 2041 and (Y71, X7),
such thatIP’[Yi”;éYi"} n=o, ),

For j € [1,2P] such that H(Y;|Y1.;_1Ys, Xz) # 0,
we will design the reconciliation such that almost
independence holds between M; 1.; £ (Mi k) keq.51

(i)

and (Y[}, 1]]US"XZ) in the sense that
(unif) n—oo
nV(pML 1Y 1]Us; L’pML 1JpY[1 i—1]US; Xn)

0, where pﬁt}"? is the uniform distribution over the

sample space of DM; 1,5

Note that the second property is crucial in our analysis of
privacy amplification, and is not necessary in the treatment of
the case D = 1.

b) Privacy amplification: We rely on two-universal hash
functions as defined next.

Definition 4 ([32]): A family F of two-universal hash
functions F = {f : {0,1}" — {0,1}"} is such that Vz,2’' €
{0,1}", 2 # 2/ = P[F(z) = F(2')] < 27", where F is a
function uniformly chosen in F.

Suppose that the reconciliation step in Section V-B.1 is
independently repeated B times. Let Y%, d € D, be the
estimate of Y'5. For d € D, let Fy : {0,1}"% — {0,1}"4,
be uniformly chosen in a family F; of two-universal hash
functions. We leave the quantities (r4)4cp unspecified in this
section, and will specify them in Section V-B.2. The privacy
amplification step operates as follows. Sub-dealer d € D
computes Sy = F;(Y,*B), while the participants in £ compute
ford € D, Sy 2 Fd(}A’d”B ), where }A/d”B has been obtained in
the reconciliation step.

2) Coding Scheme Analysis: We now show that any rate-
tuple (Rg)4ep in Rgm), defined in Theorem 3, is achievable.

a) Analysis of reconciliation: We first prove that Prop-
erty (i) of Section V-B.1.a holds. The probability of error aver-
aged over the random choice of the binnings (b; ;);c1,2041]
is upper bounded as

E[P[V7 £7]] <Pl +Plial,
where
Ein =AW}, X2) ¢ T" (V1 X )}
Eio :{EIA?1 #Y",
(b 1,5 @ZLD]E[H 2041 (bi,j (Yin))je[[LQD.H]]
and (yz ?Yl i— laX ) S 7—6n(Y11X£)}
Similar to the proof of (6) and (7), one can show that

E [P {ffzn a anH < 2|y1:i||XL|€7"62“Y1”X4

n(R; I, 2D+1H_H(Yi‘ylzi—lxﬂ)(l"l‘f)).

+27 13)

We next prove that Property (ii) of Section V-B.1.a holds.
Leti € D and j € [1,2P] such that H(Y;|Y1.;_1Ys, X.) # 0.
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In the following, for notation convenience, we define Z; ; =
(Y[1,i-1jus;, Xc). We have
IOV IREYA (mi,l:j> Zlnj)

= p(l 27) 1 (v}

Y3

n
= mi,l:j}avmi,l:javzi,ja

where b;1.;(y") = (b; i (y"))ke 51> hence, on average over
(bi,k ) ke[1,j]

E [PM,- 127 (mi 1~j721nj)
= p(z )2 —nRi 1151 i, 1J,Vz”
Then, similar to the proof of (10) and (11), one can show that

(unif)

EW(I’M 152 7pM

< 2|yi|‘z}j
4 o318 HMiYiioaYs; Xe) =R ]

pzy,)]

11]

44,5

(14)

Finally, we choose the rates as follows. Let 7 € D. We
define for j € [2,2P], R;; £ Ri; _Ru 1, and R; 1
Ri1. We thus have for any j € [1,2P], Rip1;) = R,J
We then choose § = 3¢H (Y;|Y1.-1Xz) + € and R; 904 =
d+eH (Y| V1., 1X,) +e. B

Hence, we have R;[19op41) = Rjop + Riopy =
(1+6)H(Y;‘Y1:1'71X£)+6 and (1—36)H(Y;‘Y1;i,1YSjX£)—
Rinyg = (1 = 3eHYi|Y1.i-1Ys; Xz) — H(Yi|Y141
Ys;Xz) + 6 = e which ensures, by (13) and
(14), that E[Sep Yjepany VPM.w,zr, DAL pzn )+

i,1:5 i,7

Siep PIY;" # Y]] “==5 0. Then, by Markov’s Lemma,
there exist binnings (b ;)icp jeqi,2p+1) such that for

any ¢+ € D, P[Y”#Y”} 2%, 0 and for any i € D,
€ 11,2P], V(pas, 2z, Por pzn,) = 0.

b) Analysis of przvacy amplzﬁcanon. We use the follow-
ing version of the leftover hash lemma [21], [33] to analyze
the privacy amplification step. The lemma is of independent
interest as related versions of this lemma [18], [19], [20], [34]
had found a wide variety of applications including oblivious
transfer [18], [19], [35], commitment [36], secret generation
[20], [37], multiple-access channel resolvability [38], and
private classical communication over quantum multiple-access
channels [34].

Lemma 3 (Distributed Leftover Hash Lemma): Consider a
sub-normalized non-negative function px,z defined over
Xiep X1 X Z, where X 2 (X))ier and, Z, &, 1 € L, are
finite alphabets. For | € L, let F; : {0,1}™ — {0,1}"™,
be uniformly chosen in a family F; of two-universal hash
functions. Define sz = [];c. s where s; £ |7, | € L,
and for any S C L, define rs £ >, g7 Define also
Fr £ (F)iec and Fz(Xz) £ (Fi(X))),e.- Then, for any
gz defined over Z such that supp(qz) C supp(pz), we have

V(pre(x0)Fe 2z, PUCPUSDPZ) < > s Helrxszlaz),
SCLS#D

15)
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where py,. and py . are the uniform distributions over [1,2"4]
and [1, sc], respectively, and the min-entropies are defined as
in [39], ie., for any S C L, S # 0,

Pxsz(Ts,2)

Hy £ _log max
(stZ|QZ) g $5€X5 qZ(Z)
z€supp(qz)
Proof: See Appendix C. [ |

A challenge with using Lemma 3 is the evaluation of the
min-entropies in (15). A possible solution is to use the method
in [24] to lower bound a min-entropy in terms of a Shannon
entropy. However, one drawback of this method is that an
extra round of reconciliation is needed, as in [40], which
complexifies the coding scheme. Another solution could be to
rely on the notion of smooth min-entropy, as in [39]. However,
this technique is challenging to apply here because one would
need to simultaneously smooth all the min-entropies in (15).
Instead, we propose to lower bound the min-entropies in (15)
by relying on the following lemma.

Lemma 4: Let (Y4q)dep be D finite alphabets and define
for SC D, Vs £ X des Y,. Consider the random variables
YA £ (Y")aep and Z" defined over Y x Z™ with probability
distribution Qvgzn £ H?:l qypz- For any € > 0, there exists
a subnormalized non-negative function Wypzn defined over
Vg5 x Z™ such that V(qyp zn, wypzn) < € and

VS C D, Hoo(wyp zn|qzn) = nH(Ys|Z) — nds(n),

where ds5(n) £ (log(|Vs| + 3))y/ 2(D + log(1)).
Proof: See Appendix D. ]
We now combine Lemma 3 and Lemma 4 as follows.
Lemma 5: For any U € U, we have

V(pr, (YEBYFp MB X[ B PUpPU-PME X1 B )

Z 2r5—BH(yg\MDX;)JrBas(n,B)
?

SCD
SH#0)

<2+ (16)

where 65(n, B) 2 (log(|Vs|™ + 3)) %(D + log(%)).
Proof: See Appendix E. ]
Note that in the case D = 1, a standard technique could
be used [24, Lemma 10] to lower-bound the min-entropy
appearing in the leftover hash lemma and study the effect
of the public communication on the information leaked to
unauthorized participants. However, using [24, Lemma 10] in
the case D > 1 to lower-bound the min-entropies in (39)
would result in the achievability of

{(Rd)dGD :

Rs < min [I(Ys; X |X7) - H(Yse|YsXp)|t,VS C D}

=

which is always contained in the region R{" of Theorem 3.
For this reason, we did not study the effect of the public
communication on the information leaked to unauthorized
participants in Lemma 5. Instead, we do it by lower-bounding
the Shannon entropies that appear in (16) as follows. Note
that Property (ii) in the reconciliation protocol described in
Section V-B.1.a plays a key role in the proof of Lemma 6.
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Lemma 6: For any S C D, S # (), we have
H(Yg'|MpXj;) = n[I(Ys; Xc|Xu) — d(e)] — d(n),

where d(n) is such that lim,, . d(n) = 0 and d(e) is such
that lim,_o 5(¢) = 0.
Proof: See Appendix F. [ ]
We are now equipped to prove that (2) and (3) hold. For
any U € U and ¢ > 0, we have

V(PFD(YgB)FDnggB ) PUDPUfPnggB)

(a)
< 2+

Z 9rs —nBI(Ys;X | Xy )+nBs(e)+Bs(n)+Bds(n,B)

SCD
S#0

Z 2—né

SCD
S40

g 26 _|_ 2D/22—n§/2’

(b)
< 2e+

a7)

where (a) holds by Lemmas 5 and 6, in (b) we have chosen
rc such that for any S C D,

< mi ;
rs < minnBI(Ys; Xc|Xy)
—nBd(e) — Bé(n) — Bés(n, B) — n€.

We conclude that (2) and (3) hold by (17) and [31,
Lemma 2.7].

C. Proof of Theorem 5

By successively, rather than jointly (as in Theorem 3),
considering the security constraints for the two sub-dealers,
we prove Theorem 5. The coding scheme and its analysis
are described in Sections V-C.1 and V-C.2, respectively. Note
that R({1,2}) = R{™, where the achievability of R\™
follows from Theorem 3 with D = 2. Note also that if
one can show the achievability of [R({1}) x R({2}/{1})].
then one has the achievability of [R({2}) x R({1}|{2})] by
exchanging the roles of the two dealers. Hence, it is sufficient
to prove the achievability of [R({1}) x R({2}|{1})]-

1) Coding Scheme: In this section, we use the notation 6(n)
to denote a generic function of n that vanishes to 0 as n goes
to infinity. Our achievability scheme operates in two phases
as follows.

a) Initialization phase: By using n}, source observations,
Sub-dealer 2 shares a secret Ky with non-zero rate with
the requirement lim,,; ., rTnéuﬁ(I (Kg; M init, X;L—2> = §(n}),
where My i corresponds to the public communication sends
by Sub-dealer 2. This is possible by Theorem 6 because we
assumed that minge 11 oy mingc I(Yq; X2|X7) > 0. Define
for U C L. TyU) 2 (M i, X,2).

b) Successive secret distribution phase: This phase
requires n source observations. Sub-dealer 1 performs the
coding scheme in the proof of Theorem 3 for the case D =1
with the requirement

lim max I (Sy; My, X7) =0.

n—oo TCL

(18)
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Sub-dealer 2 performs the coding scheme in the proof of
Theorem 3 assuming that all the participants have access to
Y* with the requirement

lim max I (Sa; Mo, X7,Y") =0,

n—oo TCL

19)

for the case D = 1 with the following modification: Using
the same notation as in the proof of Theorem 3, instead of
defining My £ My 1.3, define My as My £ (M, MY) with
M} £ Ky @ M3 and M§ £ My 1.5. By Property (ii) in the
reconciliation step of the proof of Theorem 3, we have

I(MY; Y XE) = 6(n). (20)

Then, the proof of Theorem 3 is still valid because Ko is
known by the participants (by the initialization phase provided
that nj is such that |K>| = |Ms3|), and the secrecy rates
Ry = R({1}) and Ry = R({2}|{1}) are achievable for
Requirements (18) and (19). Note that |K3| = |Mags] is
negligible compared to n. More specifically, by inspecting
the proof of Theorem 3, one can choose |Mj 3|, on the
order of n'/2=¢, ¢ > 0, similar to [41] and [42]. Hence,
it only remains to show that Requirements (18) and (19) imply
Requirements (2) and (3).

2) Coding Scheme Analysis: We first prove that (3) holds.
We have

log(|S1|S2]) — H(S1,52)
= 10g(|51||82|) — H(Sl) - H(Sz) + I(SQ; Sl)
< log(|S1[Sz]) — H(S1) — H(S2) + I(S2; Y7")

n—00
—0,

where the limit holds by almost uniformity of S; and Ss, and
by (19).

We now prove that (2) holds. We first ignore the
initialization phase and upper bound the quantity qug}ﬁ([
(S1, S2; My, My, X77). i

Lemma 7: For any 7 C L, we have

Proof: See Appendix G. [ |
Next, we jointly consider the initialization phase and the
successive secret distribution phase.
Lemma 8: We have for any U, 7 C L,

I(S1, So; I (U), My, My, X7) < 6(n) + 6(nj).
Proof: See Appendix H. ]

VI. CONVERSE PROOFS
A. Proof of Theorem 2

Consider a secret-sharing strategy, as in Definition 2, that
satisfies the constraints (1), (2), and (3). For any 7 C D,
Ae A, U €U, we have

nRy = log |St|
(a)
< H(ST) 4+ o(n)

(®)
< H(S7|MpXj;) + o(n)
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(c) o~

< I(St; Sp(A)|Mp X)) + o(n)
(d)

< 1(Y7 XGMp|Mp Xjg) + o(n)
I(Y7; X4 |Mp X{y) + o(n)
I(Y7FM7; X3 M1e|X]}) + o(n)

<

—~

€

< I(YF; XU YZE|X7)) + o(n)
nl(Yr; XaYre| Xu) + o(n), 22)

where (a) holds by (3), (b) holds by (2), (c) holds by Fano’s
inequality and (1), (d) holds because Sp(.A) is a function of
(X"4, Mp) and S7 is a function of Y, (e) holds because Ms
is a function of Y for any S C D.

Then, since (22) is valid for any A € A, U € U,
an upper-bound on the sum-rate Rs = >, des Ry, S C D,

is min min I (Ys; X 4Ys¢| X, 1).
s IR palp T (Vo3 Xa¥orXan) + o(1)

—

B. Proof of Theorem 4

The proof of Theorem 4 follows from the proof of Theo-
rem 2, since for the all-or-nothing access structure we have
for any S C D

5161&2161{1[}1](}/5; X4Yse|Xy) = 5161%[(}/3; X, Yse|Xy)

=min [ (Ys; X Yse| Xy).
ugl%(s’ £Yse| Xy)

VII. PROOF OF CAPACITY RESULTS IN
SOME SPECIAL CASES
A. Proof of Theorem 6

The result holds by Corollary 3 using the facts that for any
T C L, the Markov chain Yp — X — X7 holds, and that U
is the set of strict subsets of £ for the all-or-nothing access
structure.

B. Proof of Theorem 7

In the following, for any S C £, 7 C D, we use the
notation KS,T £ (Khd)des}de’]’.

We first prove the achievability part. Let ¢ € [1,L] and
S C D. We have

(a)
H(Ys|YseX4) = H(K;s|Krs<K
max H(Ys|YseXa) = max H(Kc,s|Kes-Kap)

= eali( H(K£7S|KL7SCKA7SKA7SC)

A
)
= H(K K
max (Kes|Kas)
()
== H K c
ﬁleaA)i ( A’S)
d
D 5|z —1), (23)

where (@) holds by definition of Y, Y¢., and X, (b) holds
by independence between (K 4 sc, Kz se) and (Kz s, Ka.s),
(¢c) holds by independence between K 4cs and K4 s,
(d) holds by independence and uniformity of the keys. Next,
let z € [1,t — 1] and S C D. We have

min H(Ys|Xy) ¥

in H(Kps|K
e, iy H K s Ku )
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= min H(K. s|Ky.sKuy.s<)

Uel.,
© min (Kr,s|Ku,s)
UEU, ’ ’
© .
= Jnin H(Kyes)
d
D IS|(L - =), (24)

where (a) holds by definition of Y and X7j, (b) holds by
independence between K se and (K. s, Ky.s), (¢) holds
by independence between Ky s and Ky s, (d) holds by
independence and uniformity of the keys. Next, we have

RV (A, U.)

(a) .

= PrOJ(Rd)dED {(Rd’RLDdGD :

R:g > gleaA)i H(Ys|Yse X 4),¥S CD
< i C
< iy H(Ys|X,),¥5 € D

(b) .
= PrOJ(Rd)deD {(Rd’Rii)deD :

Rs >|S|(L—-1t),¥ySCD
s+ Rs <|S|(L—2),¥SCD
D {(Ra)yep : Rs < |S|(t — 2),¥8 € D},
where (a) holds by Theorem 1, (b) holds by (23) and (24),
(c) holds as follows. First, consider the system
Rs > |S|(L—1),¥SCD
Rs+ Rs <|S|(L—2),VSCD)’

and remark that the set functions f : 2P — R, S +— |S]
(L—-2) —Rs and g : 2P — R,S — —|S|(L —t) are
submodular, ie., VS, 7 C D,g(S)+ g(7) > g(SUT) +
g(NT)and f(S)+ f(T) = f(SUT)+ f(SNT). Hence,
by Lemma 9 below, we have that the system (25) has a solution
if and only if

IS|(L —t) < |S|(L — 2) — Rs,¥S C D,

(25)

which we rewrite as
Rs < ‘S|(t —2),VS CD.

Lemma 9 ([16, Lemma 2]): Consider two submodular
functions f : 2P — R and g : 2P — R. Then, the following
system of equations for (z4)gep € RE

—9(8) <> _x. < f(S),¥S C D,
sES
has a solution if and only if —g(S) < f(S),VS C D.
We now prove the converse. Let ¢ € [1,L], z € [1,t — 1],
and S C D. We have
in min I(Ys; X4Yse|X,

min min J(Ys; X4Yse|Xu)

(@ . . )
= Iin min I(K¢si KapKese|Kup)

= mi in|I(Kys; K K;
Egsxl,,brtlélltjnz[( L,S; A,D| M,D)

+ I(Krs;Kr se|KupKap))
(©]

< jlr}eiA{lt LT{IéiUnz[I(Kﬁ,S§KA,D|KM,D)
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+ 1K sKusKas; KreseKuseKase)]
(c) . .
= (K, s; K K;

nin min (Kc,s; Kap|Ku,p)

(d)
< min min I(K, g; KA p Ky s¢|K;
< min min (Kz,.s5 KapKuy.se|Ku,s)

— min min[I(K; s: K4s|K
min min [1(Kz,s5 KaslKu.s)

+ I(Kr,s; KaseKy,se|KasKu,s)]
(2 Eg& Z,I{Iél[[? [[(Kcs; Kas|Kuy,s)

+ I(Kr sKasKu.s; KaseKu,se)
L min min 1(Ke s Kas|Ku.s)
@ Eéi& uné%l H(Kas|Ku,s)

= min min H(K
AeA, UEU, ( A\M’S)

sl -2,
where (a) holds by definition of Y, Y., X7, and X7}, (b)
holds by the chain rule, (¢) holds by independence between
(Kr.s,Ku.s, Kas) and (K¢ se, Ky se, Ka,s¢), (d) and (e)
hold by the chain rule, (f) holds by independence between
(Kes,Kas,Ku,s) and (KA se, Ky .se), (g) holds because
K, s contains K4 s, (h) holds because the minimum is
achieved for a choice of A and I/ that minimizes the car-
dinality of A\U, which happens when U C A, |A] is as small
as possible, i.e., |A| = t, and |U]| is as large as possible,
i.e., |U| = z. Hence, (26) and Theorem 2 proves the converse
of Theorem 7.

(26)

VIII. EXTENSION TO CHOSEN SECRETS

Note that, similar to a secret-key generation problem, the
secrets in the problem statement in Section III are random. In
this section, we prove that if, instead the secrets are chosen
by the sub-dealers, then our results remain unchanged. We
first formalize the problem statement for chosen secrets in
Section VIII-A. Then, in Section VIII-B, we show how the
results of Section IV for random secrets extend to the setting
of Section VIII-A.

A. Problem Statement

We modify Definitions 2 and 3 of Section III as follows.
Additionally, Figure 3a of Section III now becomes Figure 6.

Definition 5: For d € D, define the alphabet S; 2
[1,2"f4] and Sp = Xaep Sa- A ((2"Fd)gep, A, U, n) secret-
sharing strategy consists of:

« A monotone access structure A.

e D sub-dealers indexed by the set D.

o D independent secrets (Sg)qep € Sp, where Sy, d € D,
is uniformly distributed over S; and only known at Sub-
dealer d € D. Moreover, the secrets are assumed to be
independent from the source observations.

L participants indexed by the set L.

o D encoding functions (fq)qep, where fq : Vi x Sq —
My, d € D, with My an arbitrary finite alphabet.
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Yln X”
l A
sq@Msﬁ(Yl",S[) M @
| —L i1l —
Sub-dealer 1
X,

M,
2
@X;

Fig. 6. Secret sharing with D = 2 sub-dealers, L = 3 users. Formation and
distribution of shares.

n

|
Sr@Mz £ L07,5,)

Sub-dealer 2

Public Channel

N

e |A|x D decoding functions (h.4,q) aca,dep, Where hg g :

X;{xMDesd,AeAwithXQéxaeAX" and
D= Xiep M.
and operates as follows:

o Sub-dealer d € D observes Y.

o Participant [ € £ observes X'

e Sub-dealer d € D sends over a noiseless public
authenticated channel the public communication My £
fa(Y}, Sq) to the participants. We write the global com-
munication of all the sub-dealers as Mp £ (Mg)dep-

« Any subset of participants A € A can compute for d €
D, Sq(A) £ haa(X%, Mp), and thus form Sp(A) £
(54(A))aep, an estimate of Sp 2 (S4)aep.

Definition 6: A secret rate-tuple (R4)qep is achievable if

there exists a sequence of ((2"%4),cp,A, U, n) secret-sharing
strategies such that

lim maxP Sp(A) # SD} = 0 (Reliability), 27)
n—oo A€A

lim rgllaﬁcl (Sp; Mp, X7;) = 0 (Strong Security). (28)
n—oo Ue

Let Chosem(A) denote the set of all achievable secret rate-
tuples. When D = 1, Chem(A) denotes the supremum of
all achievable secret rates and is called the secret capacity.

B. Results

Theorem 8: Fix L,D € N*.
o For an arbitrary access structure A,

R(in) (A) C C(chosen)(A) C R(out) (A),

where R (A) and R(°"0 (A) are defined in Theorems 1
and 2.
« For the all-or-nothing access structure A* = {£},

Rgin) - ((chosen) (A*) C R(out) (A*),
where R(in) and R("(A*) are defined in Theorems 3

and 4. And when D = 2,if min mm I(Yy; X2 | X7) >
de{1,2} TCL

0, then we also have
Rgin) c ,Réin) C C(Chosen)(A*> C R(out) (A*),

where Rgn) is defined in Theorem 5.
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Proof: The converse proof is obtained by modifying
Equation (22) in Section VI-A as follows. For any 7 C D,
Ae A U e U, we have

nRs = log |St|
@ H(Sr)
H(St|MpXy;) + o(n)

<
(e) n
< I(S7: Sp(A)| MpXJy) + o(n)

//\ =

(ST7XAMD|MDXU)+ o(n)
(S1; X4|MpXy;) + o(n)
(STM7; X Mre|X}}) + o(n)

VANl
»\.~

NS

STYP XSy V.

I( X{i) +o(n)
D 1(vp: X587V X5) + oln)

) [(Y2 XTYRXE) + o(n)
nl(Yr; Xa¥Yre|Xu) + o(n),

—~
=

s

where (a) holds by the uniformity of the secrets, (b) holds
by (28), (c) holds by Fano’s inequality and (27), (d) holds
because Sp(A) is a function of (X, Mp), (e) holds because
My is a function of (Y, S7) for any T C D, (f) holds
by the chain rule and because I(S7; X% S7-Y7.|X/}YF) =
0, (g) holds by the chain rule and because I(Y};Ste]
XnYr. X)) =0.

The achievability proof consists in doing a one-time pad on
top of the achievability proofs from Section V. More specifi-
cally, suppose that one has generated the secrets (Sd)dep with
rate (R4)4ep with the achievability schemes of Section V such
that

Jim max ] (SD,MD,XM) 0, (29)
hm log |Sp| — H(Sp) = 0. (30)

Then, Sub-dealer d € D transmits over the public channel
Md £ Sd @ Sy and the security requlrement is satisfied
because, for any & € U and by defining Mp £ (Md)dE'D,
we have

I(Sp; Mp, Mp, X))
— I(Sp; Mp) + I(Sp; Mp, XJj|Mp)

(a) N N s
< log |Sp| — H(Sp) + I(Sp; Mp, Xj|Mp)
< log|Sp| — H(Sp) + I(SpMp; Mp, X))
= lOg |SD| — H(SN’D) + I(SD, S'D; MD>X£;)
b ~ ~ ~

Y 1og |Sp| — H(Sp) + 1(Sp; Np, XJ1)
n—oo 07

where (a) holds because H (Mp) < log|Sp| and

(MD|SD) = H(Sp|Sp) = H(Sp), (b) holds because
(SD7MD7X[/{|SD) < I(SD;MD,Xﬁ,gp) = 0, and the
limit holds by (29) and (30). |
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IX. CONCLUDING REMARKS

We defined a secret-sharing model between multiple partic-
ipants and a dealer made of multiple sub-dealers, when each
party observes the realizations of correlated random variables
and each sub-dealer can communicate with the participants
over a public channel. Our model extends Shamir’s secret-
sharing model in three directions. First, it allows a joint design
of the creation of the shares and their distribution to the par-
ticipants. This contrasts with Shamir’s model which considers
the creation of the shares and their distribution independently.
Second, unlike Shamir’s model, which assumes that the partic-
ipants and the dealer have access to information-theoretically
secure channels, our model rely on more general resources,
namely, a public channel and correlated randomness in the
form of realizations of independently and identically dis-
tributed random variables. Third, motivated by a wireless
network setting, we explored the problem of secret sharing
in a distributed setting where the dealer is an entity made of
multiple sub-dealers.

We derived inner and outer regions for the achievable secret
rates that the dealer can obtain via its sub-dealers. To this end,
we developed two new achievability techniques, a first one
to successively handle reliability and security constraints in a
distributed setting, and a second one to reduce a distributed
setting to multiple single-user settings. We obtained capacity
results in the case of threshold access structures when the
correlated randomness corresponds to pairwise secret keys
shared between each sub-dealer and each participant, and in
the case of a single-dealer setting for the all-or-nothing access
structure and arbitrarily correlated randomness. We highlight
that in all our achievabilitiy results the length of each share
always scales linearly with the size of the secret for any access
structures.

Note that constructive and low-complexity coding schemes
for secret-sharing source model and channel model have been
proposed in the case of a single dealer in [43] and [44], [45],
[46], respectively. While the question of providing constructive
and low-complexity coding schemes for distributed-dealer
settings is not addressed in this paper and represents an open
challenge, we expect that our proof technique that separates the
reliability and security constraints for the all-or-nothing access
structure can lead to such a constructive and low-complexity
coding scheme for an arbitrary number of sub-dealers.

APPENDIX A
PROOF OF LEMMA 1

By [47], we have

P& < 2|XA|D)D\6_"€2“XAYD < 2|X£||yp|e_"€2”xﬁyﬁ.
Then, for any S C D, S # ), we have
PlEs] = > pla, yp)P[vi € S, 34 # ',

TP

9:(07") = 9:(yi') and (2%, 95, ys.) € T"(XaYp)]

<

TRYD

'r.AayD
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X > P[vie S, 9i(4) = g:(i")]
IRETM(X AYp e ylke)
I57Y5s
) —nR),
= > plal.yb) > 27
YD JEETN(X 2 YplaTyyle)
ys#l]s
< Y p(alh, yp) T (X aYplelys. )2 s
YD
(2) Z 2n(1+e)H(Y5\YScXA)2—nRS
TRYD

— 2n(1+6)H(Y5‘Y50XA)7anS

< 2n(1+e) maxacs H(Ys|YseXa)—nRg
)

where in (a) g% # y% means ¢ # y7,Vi € S, (b) holds
by independence of the random binning choices across the
sub-dealers, (c) holds by [47].

APPENDIX B
PROOF OF LEMMA 2

We first bound the second term in (9) as follows

2
E E : ’pSM)DSDXn(mD7SD7IU)
MD,SD,Tjy
2
—-E {pg\/f)pspxg (mp, sp, x{j)} H

(a) ) .
< Z 2[E |:p5\/[)DSDXg(mD75D,xu):|

mp,SD,L]y

mp,sp,2f yp €T (Yo Xulep,)

= 2P (Y5, X}}) ¢ 1" (YpXu)]

p(yp, apy)2 e +in)

(b) 2

< 2[Vp|| Xy le™ R Xu

< 2|yp|\Xg|e’”€2”YDXL,
where (a) holds by the triangle inequality and (b) holds
by [47].

We now upper-bound the first term in (9) using Jensen’s
inequality by

Z \/Var pMDS Xn(mD,SD,xu)>

mD,SD,Iu

€1y

and upper-bound the variance in (31) as follows
1 n
Var (pS\/[)DSDX{j (mDv 5D, xu))
(1) 2
=E (pMDSDX"(mpv Svafu))

2
-E [(pM)DSDX" (mp, sp, xu))}
(a)

< Z Z Z H{yp € 7" (Yo Xulzy)}

SCD yp
s.tys Ayl
Y§e=yge

x Hyp € T (Yo Xulzy)} x p(yp, 20)p(yp , 217)
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XE[[T;ep MHgi(yf) = mi}1{hi(y}) = s:}
X [Liep H{gi (W) = mi} 1{hi(y}) = s:}]

= Z Z Z Wyp € 1" (YpXulay)}

SCD yp y»
(’Vl/

stys #Ys
YSe=y3e

x H{yp € T"(YpXulxgy)}
x p* ()p” (y&e|a g )p (Y ety s )p(y
« 9~ (2Rs+2Rs+Rse+Rjsc)

S [egyse)

—n(l—€e)H(Yse |Xu)27n(2Rs+2Rfs+Rsc +R5c)
)

(32)

where in (a) the notation y%' # y% means y}" # y;*,Vi € S,
and (b) holds by [47]. Hence, by (31) and (32), we upper-
bound the first term in (9) by

Z \/Var pMDSDXn (mp, sp, xu))

mp,SD,TY

\ Z 2n RD+RD)2—§(1—€)H(Y5c|XM)

SCD <9 5 (2Rs+2Rs+Rse+Risc)

_ Z 9~ 51— H(Yse|Xu) g (Rse+Rise)

SCD

7% 1—¢ H(Y5|Xu)22(R5+RS)

wS

CcD,S
< Z 5} 1 € mlnMeUH(YS‘XL{)22(RS+R$)
cD,S

APPENDIX C
PROOF OF LEMMA 3

— 2 2
= px,Pr,» We have

Z p2FL(X£)F£(m£’ fﬁ)
me,fc

= ZpFﬁ fc) ZpFL(XE)FE(mﬁLfﬁ)

me

= ZPFL f2) D pxexy(we, ) 1{ fe(xe) =

Tr, fﬁ

=s:' > pxox,(vc,7)P[Fr(ac)

TL,xl,

i _122 Z PFL‘ IE/; FL(:L'Z)]

SCL ,
- wﬁs.t.xi;;cxs X pXL (x[,)pXL (Jfﬁ)
Ilsc—:vsc

'Y S [IPIE@) = R

SCL xr x' lel xpxc(xc)pxﬁ(fig,e??&)
staxs#Ts
Tge=wse

For px,.x,F.F.

fe(ap)}

= Fc(xc)]

(v)

< S[JI Z Z Z 2- TSpXL l’g)pxﬁ(ws,.%'sc)

SC,C L xL
’7
SLTgATS
Tse=TscC
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(c)
< szt DD 27, (wn)pxse (wse)

SCL zc¢
< D0 2 px (wp)2 e lrse)
SCL z¢
821 Z 2—rs—Hoo(pxsc)’ (33)
SCL

where in (a) the notation z's # xs means z # z;,Vi € S,
(b) holds by the two-universality of the F}’s, I € £, (¢) holds
by marginalization over X%, (d) holds by definition of the
min-entropy.

Next, consider gz defined over Z such that supp(gz) C
supp(pz). We have in (34), shown at the bottom of the next
page, where (a) holds by Cauchy-Schwarz inequality, in (b)
we have defined for z € Z, Xéz) distributed according to
Px( =DPXc|z=2 (c) holds by (33).

APPENDIX D
PROOF OF LEMMA 4

Proof: For any z™ € Z™ such that gz~ (2

A(Z") & {yp € Vb -
IOgQY"|Z"(yS|Z )=

™) > 0, define

H(YZ|Z™)—nds(n),¥S C D},
and for S C D,
As(z") 2 {y5 € Vi :
—10g a3 7+ (U31") > H(YZ|Z")=nds(n)}

Define for (yp,2") € Yp x 2™,

wygze (yp, 2") & Hyp € A")}avgze (yp. 2"),  (35)
and for S C D,
wypzn (Y32 2D wypzn(yp, ") (36)

Yse €V5e

We first show that V(pygzvz7 wngzn) < e. We have

V((JYgzn , Wy zn)

= > lavgzn(yp, 2") — wygzn (Y, 2"

Yp,z"
= Z QY,QZ”(yin)aZn)]l{y% ¢ A(z")}
y%72n

_P(YE ¢ A(Z")]
< S P ¢ As(z)

SCD
b n6% (n)
(g) Z 27210g(|3513\+3>2
SCD
-y
SCD
S6
where (a) holds by the union bound, (b) holds by [39,

Theorem 3.3.3].

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 25,2024 at 18:24:35 UTC from IEEE Xplore. Restrictions apply.



2866

Next, for S C D, we have

Hoo(wyg znlqzn)
wyzzn (Y3, 2")
qzn (2")
Z Hyp € A(Z")tavpzn (yp, ")
(@) 5

=—  max max log
zmesupp(gzn) Y5 €Vs

Yie
= —maxmaxlog
o

E qzn (")
® Hys € As(z") v zn (v, 2")
> —max maxlog

on Yo qzn (Zn)

(©)
> H(Yg|Z")—nds(n),
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where the first maximum in (a) and (b) is over supp(gzn ), (a)
holds by (35) and (36), (b) holds because for any y3, € V3,
1{y% € As(z™)} > 1{y} € A(z")} and by marginalization
over YZ., (¢) holds by definition of As(z"). |

APPENDIX E
PROOF OF LEMMA 5
Let / € U. By Lemma 4, for any ¢ > 0, there exists a
subnormalized non-negative function Wy s 5 xp5 such that
V(pypemgxps, Wypspexps) <6 (37
VS C D, Hoo(Wypensxpe PrExne)
> BH(Yg'|MpXj;) — Bés(n,B).  (38)

V(pr.(xe),Fe,2 PUCPUFPZ)

= > (%) (02" prexe) ez (me. fe,2) = poe (me)pus (f)p2(2) |)

me,fr,z

(a)

< Z 47" (2) (Pre(xo)Fe,2(me, fo.2) — pue (me)pus (f)pz(2) )2 Z qz(2)
me,fr,z me,fr,z

me,fe
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Next, we have Next, the second term in the right-hand side of (40) is lower

V(pFD(YgB)FDMngB ) pUDprngXﬁB)
(@)
< V(pFD(YgB)FDMgX{;B ) wFD(YgB)FDMngB)

+ V(U}FD(Y{;B)FDMEX{;B ) pUDPUf’LUngﬁB)
+ V(PupPUsWrLE X108, PULPUFPME X7 )

(b)
< V(pygB]\/[gX&B 5 ngBMgXﬁB)

+ V(wFD(YgB)FDMngB y DU PU wMngB)
+ V(wpsxne, Pag xps)
< 2V(pypensxps, Wyps e xps)

+ V(wFD(YgB)FDMngB ) pUDPUfwMngB)

c
S 26+ V(wFp(Y{;B)FDMDX{;B 7pUDpU}'wMDX£;B)

(d)

Z 2rs—Hoc (wygBhlgxﬁB‘ngX&B> (39)

< 2e +
SCD
S20
(2 2¢ + Z grs—BH(YE|MpX)+Bds(n.B)
SCD
S0

where (a) holds by the triangle inequality, (b) holds by the
data processing inequality, (¢) holds by (37), (d) holds by
Lemma 3, (e) holds by (38).

APPENDIX F
PROOF OF LEMMA 6

Let SC D, S # (). We have

H(Y§|MpX}))
— H(Y$MpX})) — H(MpX})
— H(YZ|X}) + H(Ms:|Y3 X[}) — H(Mp|X7})

> H(YS|X) + H(Mse|[YEX) —nY Y Rij,
€D je1,2P+1]
(40)

where we have used in the last inequality that H (Mp|X]))
is upper bounded by the logarithm of the cardinality of the
alphabet of Mp.

The third term in the right-hand side of (40) is evaluated as
follows.

>, > Ry

i€D je[1,2P+1]

(a) =
= E (R;2p 4+ R; 20 41)
i€D

O SN HYYig 1 Xe) + eHYilVia 1 Xe) + €)

i€D

(@

= H(Yp|X,) +e(H(Yp|X,) + D), (41)

where (a) and (b) holds by the definitions and rates chosen
in Section V-B.2.a, (¢) holds by the chain rule.

bounded as follows.
H(Mse|Yg X7;)
(@)
> H(Ms:|Yg'X7})

(b)

P> Z H(M;|My.;-1Y3X})
1€S¢C

(C) n n n

Z Z H(M;|Y\; Y5 XE)

i€S®

(d)
> Y H(Miay|Yi  Y3XE)

iese

=3 H(M;y ) = I(M; 15 Yy YEXE)
iese

(e)

> Y H(M; ;) —o(1)
€S

= n(H (Yi|Y1.i-1Ys Xc)
i€se - 36H(Y;‘Y1;i,1X[;) - 6) — O(].)

= n[H(Yse[YsXc)—0(e)] —o(1),

—~
=

(42)

where (a) and (b) holds because conditioning reduces entropy,
(¢) holds because M;j.;_; is a function of Y7%;,_;, (d) holds
because M; contains M;1.; for any j € [1,2P] by the
construction in Section V-B.l.a, (e) holds by Property (ii) in
Section V-B.l.a and [48, Lemma 1], (f) holds by the rates
chosen in Section V-B.2.a and Property (ii) in Section V-B.1.a
with [31, Lemma 2.7], and in (g) we have defined
5(e) £ €(X;es-(BH(Y;|Y1;;-1X,) +1)). Hence, combin-
ing (40), (41), (42), we obtain

H(Yg'|MpXy)
> H(YS|X{)) +n[H(Yse|YsXc) —6(€)] — o(1)
—n(H(Yp|X,) + e(H(Yp|Xc) + D))
=n[H(Ys|Xy) — H(Ys|Xc)]
—nd(e) —o(1)—ne(H(Yp|X,) + D).

APPENDIX G
PROOF OF LEMMA 7

For any 7 C L, we have
I(Sy, So; My, My, X7)

W (Sy; My, My, X22) + 1(So; My, My, X22|S1)

@ 1(Sy; My, X3) + 1(81; Ma| My, X7)

+ I1(S9; M1, Mo, X7|S71)
& 10 My, X2 + I(Sv; Ma| My, X2)

+ 1(S2; Mo, X7,Y{")
(é) 6(n) + I(S1; Ma| My, X7)

S(n) + I(Sy; MY | My, X5) + 1(Sy; My| MY, My, XZ)

< 5(”) + ](Y1n7X2; Mé/) + I(SlaM2,3; MélMé/’ My, X’?’)
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(9)
< (5(11) + |Mé| — H(K2|51,M2’3,MQI,M17X?—)

(»)

®

0(n) + |Ms| — H(K>)
d(n) +6(ns),

where (a) and (b) hold by the chain rule, (¢) holds because
(My,S7) is a function of Y7*, (d) holds by (18) and (19),
(e) holds by the chain rule and the definition of My, (f)
holds because I(Sy; My |My, X%) < I(My, X%, S1; MY) <
I(Y?", X} MY), where the first inequality holds by the chain
rule and the second inequality holds as in (c), (g) holds by (20)
and by the definition of M, (h) holds by independence of
the initialization phase and the successive secret distribution
phase, (¢) holds by almost uniformity of K5 in the initializa-
tion phase.

(43)

APPENDIX H
PROOF OF LEMMA 8

We have for any U, 7 C L,

I(S1, S5 I(U), My, My, X7) — 8(n) — 8(nj)
(a)

< I(S1, So; Lo (U)| My, M2, X7)

< I(S1, 82, My, Mo; I, (U)| X77)

(b)

I(My, Ma; I5(U)|S1, S2, XT7)
- I(Ml;IQ(Z/{”Sl,SQ,X%L*) + I(MQ;IQ(U)‘Ml,Sl,SQ,X»?—)
(9

(My; I, (U)| My, My, S1, S, X7)
< I(My; My g, I (U)| My, My, S1, S2, XF)

(d)
< |Ka| — H(K3|My s, Io(U), My, My, S1, Sz, XF7)
(e)

|Ko| — H(K2|Ix(U))

D \ky| — H(E) + I(Ky: LU))

where (a) holds by the chain rule and (43), (b) holds because
I1(S1,S9; L(U)| X%) < I(S1,S2, X% I,(U)) = 0, where the
equality holds by independence of the initialization phase
and the successive secret distribution phase, (c¢) holds by
the definition of Ms, the chain rule, and independence of
the initialization phase and the successive secret distribution
phase, (d) holds by the definition of MJ, (e) holds by the
independence of the initialization phase and the successive
secret distribution phase, (g) holds by the initialization phase.
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