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Private Information Retrieval With Private

Noisy Side Information

Hassan ZivariFard and Rémi A. Chou

Abstract— Consider Private Information Retrieval (PIR),
where a client wants to retrieve one file out of K files that are
replicated in N different servers and the client selection must
remain private when up to T servers may collude. Additionally,
suppose that the client has noisy side information about each
of the K files, and the side information about a specific file is
obtained by passing this file through one of D possible discrete
memoryless test channels, where D ≤ K. While the statistics of
the test channels are known by the client and by all the servers,
the specific mapping M between the files and the test channels
is unknown to the servers. We study this problem under two
different privacy metrics. Under the first privacy metric, the
client wants to preserve the privacy of its desired file selection
and the mapping M. Under the second privacy metric, the client
wants to preserve the privacy of its desired file and the mapping
M but is willing to reveal the index of the test channel that is
associated to its desired file. For both of these two privacy metrics,
we derive the optimal normalized download cost. Our problem
setup generalizes PIR with colluding servers, PIR with private
noiseless side information, and PIR with private side information
under storage constraints.

Index Terms— Private Information Retrieval (PIR), capacity,
optimal download cost, colluding servers, noisy side information.

I. INTRODUCTION

P
IR refers to a problem where a client wishes to download,

as efficiently as possible, one of the K files that are repli-

cated among a set of distributed servers such that the servers

cannot learn anything about the client’s file selection [2], [3].

Aside from its direct applications in data security and privacy,

it is closely related to many fundamental problems such as

secret sharing [4], [5] and oblivious transfer [6], [7], which

is also called symmetric PIR and is a PIR problem where

the server wants to keep any non-selected file private from the

client. Therefore, PIR is a subject that relates to different areas

in computer science.
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The PIR problem was studied in [8] from an

information-theoretic point of view to characterize

the maximum number of bits of desired information

that can be retrieved privately per bit of downloaded

information. In [8], the authors showed that this quantity is

(1+1/N +1/N2 + · · ·+1/NK−1)−1 when a client wishes to

retrieve one of the K files that are distributed in N replicated

and non-colluding servers. This problem was subsequently

extended to various scenarios. Reference [9] considered a

PIR problem where T of the N servers may collude and

some of the servers may not respond. References [10], [11],

and [12] studied PIR with N non-colluding servers, where

each server stores an MDS-coded version of the K files.

References [13] and [14], extended the results to symmetric

PIR, in which the privacy of both the client and the servers

is considered.

A. Overview of the Setting Studied in This Paper

In this paper, we study a PIR problem where the client wants

to retrieve one of the K files that are replicated in N servers

and T of these servers may collude. As reviewed in the next

section, only PIR with noiseless side information has been

studied in the literature, i.e., the client has access to a subset

of the files or portions of each file and their corresponding

positions in the original files. By contrast, in our problem

setting, the client has a noisy version of each file which is

obtained by passing each file through a discrete memoryless

test channel. We assume that there are D f K different test

channels whose statistics are public knowledge and known by

the client and the servers.1 We denote the mapping between the

files and the test channels by M. We study this problem under

two different privacy metrics. For the first privacy metric, the

client wants to keep the index of the desired file and the entire

mapping M secret from the servers, and this includes the

index of the test channel that is associated with the desired

file. For the second privacy metric, the client wants to keep the

index of the desired file and the mapping M secret from the

servers, but the client is willing to reveal the index of the test

channel that is associated with the desired file, i.e., M(Z).
For both privacy metrics, we derive the optimal normalized

download cost, and we show that the second privacy metric

always leads to a lower normalized download cost.

1We assume that the statistics of the test channels, i.e. C(ℓ), ℓ ∈ [D], are
public information. Note that for each file, Xn

k
, for k ∈ [K], the client has

side information about Xn
k

which can potentially be ∅, consequently, no more
than K test channels are needed to model the side information available at
the client.
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B. Motivations

Consider the following motivational example of PIR, e.g.,

[15]: a stock market investor may want to privately retrieve

some of the stock records because showing interest in one spe-

cific record could undesirably affect its value. Now, consider

the case where an investor has already retrieved some or all of

the stock records in the past. The investor could now retrieve

a record by leveraging their knowledge of outdated records,

which represents side information. As another example, the

client could have acquired the noisy side information in several

ways. For example, the user could have acquired a noisy

version of the files opportunistically from other users in its

network, overheard them from a wireless noisy broadcast

channel, or downloaded them previously through classical PIR

schemes from other servers. Note that the availability of noisy

side information encompasses having obtained parts of the

files in a noiseless manner. Also, the noise could have been

the result of storing the files for a long period of time.

Note that in the stock market example, revealing the map-

ping between the stock records and the test channels shows

how much information the investor has about each stock

record, which is not in the interest of the investor since they do

not want to affect the value of the stock records. Additionally,

if the client has a subset of the files in a noiseless manner

as side information [16], [17], then not keeping private the

mapping between the test channels and the files may reveal

to the servers the indices of the files that are available as side

information at the client. These are examples of our first pri-

vacy metric. We also consider a privacy metric where the client

reveals the index of the test channel associated with the desired

file. As discussed in Example 9 and Remark 3, this privacy

metric can lead to a lower download cost, when, for example,

the desired file is available in the side information in a noise-

less manner and the client does not need to download anything.

C. Related Works

As identified in [17], three main models for PIR with side

information have been studied in the literature, which are

summarized as follows.

• PIR with side information globally known by all

the terminals: the effect of side information on the

information-theoretic capacity of the PIR problem was

first studied in [18], where the author considers a PIR

problem in which a client wishes to privately retrieve one

out of K files from N replicated non-colluding servers.

Specifically, in [18], the client has a local cache that can

store any function of the K files.

• PIR with side information, where the privacy of the

side information is not required: the single-server PIR

problem, where the client has access to a subset of the

files and wants to protect only the identity of the desired

file, is introduced and solved in [16]. An achievability

result for the multiserver case is also derived in [16], and

was later shown to be optimal in [19]. Single-server PIR

when the client knows M files out of K files, or a linear

combination of M files, has further been studied in [20],

[21], and [22] under various scenarios. Also, a multiserver

PIR when the client has a noisy version of the desired file

is studied in [15]. A more general notion of partial privacy

for noiseless side information is introduced in [23], where

a subset of the files available as side information is kept

private from the servers while the complement of this

subset of files is not required to be kept private.

• PIR with private side information, where the joint pri-

vacy of the file selection and the side information is

required: [16] derived an achievable normalized down-

load cost for N replicated and non-colluding servers. PIR

from N replicated and non-colluding servers, where a

cache-enabled client possesses side information, in the

form of uncoded portions of the files, that is unknown

to the servers, is studied in [24]. Specifically, in [24], the

client knows the first ri bits, for i ∈ [M ], of M randomly

selected files, and the identities of these side information

files need to be kept private from the servers. Also, PIR

from N replicated and non-colluding servers when the

client knows M files out of K files as side information,

and each server knows the identity of a subset of the

side information files, is studied in [25]. In [17], the

authors studied the PIR problem where the client wishes

to retrieve one of the K files from N replicated servers,

when T of the servers may collude, and the client has

access to M files in a noiseless manner. This problem is

extended to the case where the client wants to retrieve

multiple files privately in [26].

Difference between our model and previous models: In this

paper, we focus on PIR with private side information. Note

that the side information in the PIR problems in [16], [17],

[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], and [28]

is always noiseless, in the sense that all the side information

available at the client corresponds to sub-sequences of each file

and the client knows the corresponding symbol positions in the

original files. By contrast to [16], [17], [18], [19], [20], [21],

[22], [23], [24], [25], [26], [27], and [28], the side information

in this paper is noisy, for instance, if the files are binary and the

test channels are Binary Symmetric Channels (BSCs), then the

client does not know which information bits have been flipped

by the BSCs and which ones have not been flipped.

Previous works recovered as special cases of our model:

Since the side information considered in this paper is gener-

ated by passing the files through some Discrete Memoryless

Channels (DMCs), our problem setup can recover the previous

works if we assume that the test channels are Binary Erasure

Channels (BECs). This is because passing a file through a BEC

with parameter 0 means that the side information is equal to

the input file, and passing a file through a BEC with parameter

1 means that there is no side information. For example, when

there is only one BEC with parameter 1, then the problem

studied in this paper subsumes the PIR problem [8] and the

PIR problem with colluding servers [9]. If we assume there are

two BECs with parameters 0 and 1, then the problem studied

in this paper subsumes the PIR problem with private noiseless

side information [16, Theorem 2], and the PIR problem with

colluding servers and private noiseless side information [17] as

special cases. If we assume there are M + 1, where M ∈ N∗,

BECs with parameters 1 − ri, then the problem studied here

subsumes the PIR problem with private side information under
Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 25,2024 at 18:24:38 UTC from IEEE Xplore.  Restrictions apply. 
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storage constraints [24]. We provide more details about each

of these scenarios after we formally define the problem.

D. Notation

Let N∗ be the set of positive natural numbers, and R be

the set of real numbers. For any a, b ∈ N∗ such that a f b,

[a : b] denotes the set {a, a + 1, . . . , b}, [a] denotes the set

{1, 2, . . . , a}. Random variables are denoted by capital letters

and their realizations by lowercase letters unless specified

otherwise. Superscripts denote the dimension of a vector, e.g.,

Xn. For a set of indices I ¢ N∗, XI denotes (Xi)i∈I . EX [·]
is the expectation with respect to the random variable X .

The cardinality of a set S is denoted by |S|. For a mapping

M : A → B, the preimage of b ∈ B by M is denoted

as M
−1(b) ≜ {a ∈ A : M(a) = b}. For K ∈ N∗ and a

mapping M : [K] → R, we represent the domain and

co-domain of M as a matrix of dimension 2 × K as

M =

(

1 2 . . . K
M(1) M(2) . . . M(K)

)

.

E. Paper Organization

The remainder of this paper is organized as follows. We for-

mally define the problem in Section II. We present our main

results in Section III and provide the proofs in Section IV

and Section V. Finally, we provide concluding remarks in

Section VI.

II. PROBLEM STATEMENT

Consider a client and N servers, where up to T of these N
servers may collude, and each server has a copy of K files

of length n. Additionally, consider a set of D test channels,

whose transition probabilities are known to the client and

the servers, and whose outputs take value in finite alphabets.

We assume that the client has noisy side information about all

the K files in the sense that each file is passed through one

of the D test channels, and the output of this test channel is

available at the client but not the servers, as depicted in Fig. 1.

The mapping M between the files and the test channels is not

known at the servers. The objective of the client is to retrieve

one of the files such that the index of this file and the mapping

M are kept secret from the servers.

A. Problem Definitions

Definition 1: Consider K, N, T, D, n ∈ N∗, (di)i∈[D] ∈

N
D
∗ such that

∑D

i=1 di = K, and D distinct test channels
(

C(i)
)

i∈[D]
, with C(i) ≜ (X , P

(i)
X|Y ,Yi), where X and Yi,

i ∈ [K], are finite alphabets. Without loss of generality, assume

that H(U |Vi) f H(U |Vj), for i, j ∈ [D] such that i f j,

where U is uniformly distributed over X , and Vi and Vj are

the outputs of C(i) and C(j), respectively, when U is the input.

A PIR protocol with private noisy side information and param-

eters
(

K, N, T, D, n, (di)i∈[D] ,
(

C(i)
)

i∈[D]

)

consists of,

• N servers, where up to T of these servers may collude;

• K independent random sequences Xn
[K] uniformly dis-

tributed over Xn, which represent K files shared at each

of the N servers;

Fig. 1. PIR with private noisy side information and T -colluding servers,
where the side information about a specific file is obtained by passing this
file through one of D possible DMCs

(

C(i)
)

i∈[D]
, where D ≤ K, i.e., for

j ∈ [K], there exists some i ∈ [D] such that Y n
j is the output of channel C(i)

when Xn
j is the input. Here,

(

Xn
i

)

i∈[K]
are the K files that are replicated

in N servers, (Qi)i∈[N ] are the queries for the servers, and (Ai)i∈[N ] are

the corresponding answers of the servers. Z is the index of the client’s file
selection and Xn

Z is the desired file by the client.

• D distinct test channels
(

C(i)
)

i∈[D]
;

• a mapping M chosen at random from the set

M ≜
{

M : [K] → [D] : ∀i ∈ [D],
∣

∣M
−1(i)

∣

∣ = di

}

;

this mapping is only known at the client and not at the

servers;

• for each file Xn
i , where i ∈ [K], the client has access to

a noisy version of Xn
i , denoted by Y n

i,M(i), which is the

output of the test channel C(M(i)) when Xn
i is the input;

• the random variable Z represents the index of the file

that the client wishes to retrieve, i.e., the client wants

to retrieve the file Xn
Z ; when the client has noiseless

side information about some of the files, which means

that C(1) is a noiseless test channel, then Z is uniformly

distributed over [K]\M−1(1), otherwise Z is uniformly

distributed over [K];
• a stochastic query function Fi : [K]×M×Y

n
[K] → Qi,

for i ∈ [N ], where Qi is a finite alphabet;

• for i ∈ [N ], a deterministic answer function Ei : Qi ×
XnK →

[

2nR(Qi)
]

;

• a decoding function D : [K] × M ×
[

2n
∑N

i=1 R(Qi)
]

×

YnK → Xn;
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and operates as follows,

1) the client creates the queries Qi ≜ Fi

(

Z,M,Yn
[K],M

)

,

where Yn
[K],M ≜

(

Y n
i,M(i)

)

i∈[K]
, and sends it to

Server i ∈ [N ]; we assume that the queries must be

of negligible length compared to the file length n, i.e.,

log |Qi| = o(n), for i ∈ [N ];2

2) then, for all i ∈ [N ], Server i creates the answer Ai ≜

Ei

(

Qi,X
n
[K]

)

, where Xn
[K] ≜ (Xn

i )i∈[K], and sends it

to the client; therefore,

H
(

Ai

∣

∣Qi,X
n
[K]

)

= 0, ∀i ∈ [N ]; (1)

3) finally, the client computes an estimate of Xn
Z as

D
(

Z,M,A[N ],Y
n
[K],M

)

, where A[N ] ≜ (Ai)i∈[N ].

Therefore, the probability of error for the client is,

Pe ≜ lim sup
n→∞

P

[

D
(

Z,M,A[N ],Y
n
[K],M

)

̸= Xn
Z

]

. (2)

R
(

Q[N ]

)

≜
∑N

i=1 R (Qi), where Q[N ] ≜ (Qi)i∈[N ], is the

normalized download cost of the PIR protocol and is random

with respect to Q[N ], which makes the protocol a variable

length coding scheme. We also define the expected normalized

download cost of the protocol as R ≜ EQ[N]
[R
(

Q[N ]

)

].
Example 1 (When K = D = 2, T = 1, and d1 = d2 = 1):

Let Xn
1 and Xn

2 be the two files at the server and Y n
i,M(i)

be the side information about Xn
i , i ∈ {1, 2}, available at

the client but unavailable at the server, where Y n
i,M(i) is the

output of the test channel C(M(i)) when the input is Xn
i . Note

that M can take two values (with the notation introduced in

Section I-D):

M1 ≜

(

1 2
1 2

)

, M2 ≜

(

1 2
2 1

)

.

When Z = 1, since there are two different possibilities for the

side information about Xn
1 , that are Y n

1,1 and Y n
1,2, we define,

P (1)
e

(

Z = 1,M1

)

≜

P

[

D
(

Z,M,A[N ], Y
n
1,1, Y

n
2,2

)

̸= Xn
1

∣

∣

∣
Z = 1,M = M1

]

,

P (2)
e

(

Z = 1,M2

)

≜

P

[

D
(

Z,M,A[N ], Y
n
1,2, Y

n
2,1

)

̸= Xn
1

∣

∣

∣
Z = 1,M = M2

]

.

Similarly, when Z = 2, since there are two different possibil-

ities for the side information about Xn
2 at the server, that are

Y n
2,1 and Y n

2,2, we define,

P (3)
e

(

Z = 2,M1

)

≜

P

[

D
(

Z,M,A[N ], Y
n
1,1, Y

n
2,2

)

̸= Xn
2

∣

∣

∣
Z = 2,M = M1

]

,

P (4)
e

(

Z = 2,M2

)

≜ P

[

D
(

Z,M,A[N ], Y
n
1,2, Y

n
2,1

)

̸= Xn
2

∣

∣

∣
Z = 2,M = M2

]

.

2When D = 1 and the test channel is a BEC with parameter ϵ1 = 1,
or when D = 2 and the test channels are BECs with parameters ϵ1 = 0 and
ϵ2 = 1, which correspond to PIR without side information in [9] and PIR with
noiseless side information in [17], respectively, it is shown in [9] and [17]
that there is no loss of generality by making this assumption. In general,
allowing the query cost to be non-negligible with the file length n is a different
problem. However, similar to [16, Remark 1] and [24], this assumption can
also be removed in our converse proofs when the queries Qi, for i ∈ [N ],
are only allowed to depend on (Z,M).

Therefore, the probability of error in (2) is equal to,

P[Z = 1,M = M1

]

P (1)
e

(

Z = 1,M1

)

+

P[Z = 1,M = M2

]

P (2)
e (Z = 1,M2) +

P[Z = 2,M = M1

]

P (3)
e

(

Z = 2,M1

)

+

P[Z = 2,M = M2

]

P (4)
e (Z = 2,M2) .

We consider two privacy metrics to study the problem

defined above. For the first metric, we keep the index of the

desired file Z and the mapping M private from the servers,

whereas, for the second metric, we allow the index M(Z)
to be revealed to the server through the queries. As discussed

in Section II-B, these two privacy metrics recover, as special

cases, several PIR settings previously studied in the literature.

Definition 2 (CPIR-PNSI Optimal Normalized Download

Cost): An expected normalized download cost R ∈ R+ is

achievable with private noisy side information and undisclosed

side information statistics of the desired file, when up to T
servers may collude, if there exist PIR protocols such that, for

any set T ¦ [N ] such that |T | = T ,

Pe = 0, (3a)

I
(

QT ,AT ,Xn
[K];Z,M

)

= 0. (3b)

The privacy metric (3b) means that the client file choice Z
and mapping M must be kept secret from any T colluding

servers. The infimum of all achievable normalized download

costs is referred to as the PIR optimal normalized download

cost with private noisy side information and undisclosed side

information statistics of the desired file, and is denoted by

CPIR-PNSI.

Definition 3 (C∗
PIR-PNSI Optimal Normalized Download

Cost): An expected normalized download cost R ∈ R+ is

achievable with private noisy side information and disclosed

side information statistics of the desired file, when up to T
servers may collude, if there exist PIR protocols such that, for

any set T ¦ [N ] such that |T | = T ,

Pe = 0, (4a)

I
(

QT ,AT ,Xn
[K];Z,M

∣

∣M(Z)
)

= 0. (4b)

The privacy metric (4b) means that the client file choice Z and

the mapping M must be kept secret from any T colluding

servers, but the noise statistics of the side information of the

desired file available at the client, i.e., M(Z), may be revealed

to the servers.3 This contrasts with privacy metric (3b) where

the noise statistics of the side information of the desired file

available at the client must be kept secret from the servers.

The infimum of all achievable normalized download costs is

referred to as the PIR optimal normalized download cost with

private noisy side information and disclosed side information

statistics of the desired file, and is denoted by C∗
PIR-PNSI.

Note that the privacy constraint in Definition 2 implies

the privacy constraint in Definition 3, i.e., (3b)⇒(4b), and

we will show that revealing the index of the test channel

3For this privacy metric, we assume that Z is uniformly distributed over
[K] because if the client has access to the desired file in a noiseless manner,
then according to (4b), the client can reveal this to the servers and as a result
the normalized download cost will be equal to zero.
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Fig. 2. Example with (K, N, T, D) = (2, 1, 1, 2) when the test channels are BECs.

associated with the desired file Xn
Z can result in a strictly lower

normalized download cost. When D = 1, the mapping M

is deterministic and therefore the secrecy constraints in (3b)

and (4b) are both equal to

I
(

QT ,AT ,Xn
[K];Z

)

= 0. (5)

Remark 1 (Rate definition): Note that in all the previous

PIR settings, as reviewed in the introduction, the normalized

download cost is not a random variable. However, in our

setting, since the privacy condition in Definition 3 depends on

the index of the desired file, the normalized download cost is

potentially a random variable. Specifically, we allow the query

Q[N ] to depend on M(Z), which leads to the normalized

download cost R
(

Q[N ]

)

to be a random variable.

B. Examples

In Example 2, Example 3, and Example 4, we show

that our problem setup recovers the problem setup for PIR

with colluding servers [9], PIR with colluding servers and

noiseless side information [16], [17], and PIR with private

side information under storage constraints [24].

Example 2 (PIR With Colluding Servers): When D = 1 and

the test channel is a BEC with parameter ϵ = 1, then

the client has no side information about the files. In this

case, Definition 1 reduces to PIR without side information as

introduced in [9], and the privacy constraints in Definition 2

and Definition 3 reduce to (5), which is equivalent to the

privacy constraint in [9].

Example 3 (PIR With Private Noiseless Side Information):

When D = 2 and the test channels are BECs with parameters

ϵ1 = 0, and ϵ2 = 1, the client has access to d1 files in a

noiseless manner as side information. This case corresponds

to PIR with side information as introduced in [16, Theorem 2]

for non-colluding servers and in [17, Theorem 1] for colluding

servers, with the privacy constraint in Definition 2.

Example 4 (PIR With Private Side Information Under

Storage Constraints): Suppose that T = 1, D = M + 1,

for M ∈ N∗ and M f K, the test channels are BECs

with parameters ϵD = 1, ϵi = 1 − ri, for i ∈ [M ], with

r1 g r2 g · · · g rM , and di = 1, for i ∈ [M ]. This problem

setup, under the privacy constraint in Definition 2, is related

to the problem studied in [24]. The difference with [24] is that

the positions of the erasures are known at the servers in [24],

whereas in our setting, the positions of the erasures are random

and unknown at the servers. Therefore, the optimal normalized

download cost for our problem setup in this example might be

higher than the normalized download cost in [24]. However,

we will show in the next section that the same normalized

download cost as in [24] is achievable.

III. MAIN RESULTS

The novel element of the achievability scheme in this paper

is the redundancy removal based on the noisy side information.

Before we present our main results, we provide a toy example

to illustrate the main ideas of the achievability scheme.

A. Example With (K, N, T, D) = (2, 1, 1, 2)

In this example, as illustrated in Fig. 2, we assume that the

files are binary sequences, and the test channels are BECs with

parameters ϵ1 and ϵ2, where ϵ1 < ϵ2. Therefore, the mapping

M is a random mapping that maps the first file to one of the

test channels and maps the other file to the other test channel.

Hence, M is a random permutation of the set {1, 2}. Here,

as seen in Fig. 3, we first generate the source codes of the

files in the database, assuming that the side information of all

the files at the client is according to a BEC with parameter

ϵ1, by using the Slepian-Wolf encoder [29] [30, Section 10.4].

We refer to these source codes as SC1. Similarly, we generate

the source codes of the files in the database, assuming that the

side information of all the files at the client is according to a

BEC with parameter ϵ2 − ϵ1, by using a second Slepian-Wolf

encoder that is nested with the first Slepian-Wolf encoder, and

refer to these source codes as SC2. For the privacy metric

defined in Definition 2, i.e., when the client does not reveal

the index of the test channel associated with the desired file,

the client first downloads SC1, which results in retrieving the

file that is associated with the BEC with parameter ϵ1 and also

gaining some information about the other file. The normalized

download cost for downloading SC1 is 2ϵ1 [8]. According to

the Slepian-Wolf Theorem, e.g., [29] and [30], the probability

of error for retrieving the file that is associated with the BEC

with parameter ϵ1 at the client goes to zero as n goes to infinity

since the source coding rate is ϵ1. Next, since the client has

noiseless access to the file that is associated with the BEC

with parameter ϵ1, and therefore to the source coded version

of this file, it then suffices to download SC2(1)·SC2(2),
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where SC2(i), for i ∈ {1, 2}, is the source code of File i, and

· denote the modulo 2 addition. Therefore, the normalized

download cost of this operation is ϵ2 − ϵ1 [16, Theorem 2],

[17, Therorem 1]. The probability of error for decoding the

file that is associated with the BEC with parameter ϵ2 at the

client goes to zero as n goes to infinity since the source coding

rate for this file is ϵ1 + (ϵ2 − ϵ1) = ϵ2. The total normalized

download cost for this privacy metric is 2ϵ1+ϵ2−ϵ1 = ϵ1+ϵ2.

Consider now the privacy metric defined in Definition 3, i.e.,

when the client is willing to reveal the index of the test channel

associated with the desired file. When Z = 1, the client only

downloads SC1, therefore, the normalized download cost is

2ϵ1. When Z = 2, the client downloads SC1 and retrieves the

file that is associated with the BEC with parameter ϵ1, then

it retrieves the desired file by downloading SC2(1)·SC2(2).
Therefore, the normalized download cost is 2ϵ1+ϵ2−ϵ1 = ϵ1+
ϵ2. Since Z is a random variable with uniform distribution, the

average normalized download cost is ϵ1+
1
2 (ϵ1+ϵ2). Therefore,

the normalized download cost when the client is willing to

reveal the index of the test channel associated with the desired

file, i.e., Definition 3, is 1
2 (ϵ2 − ϵ1) less than the normalized

download cost when the client does not reveal the index of the

test channel associated with the desired file, i.e., Definition 2.

However, this reduced normalized download cost comes at a

price, since the privacy metric in Definition 2 is stronger than

the privacy metric in Definition 3.

B. Main Results

We now state our main results and present some examples

that recover and extend known results.

Theorem 1: Consider K files that are replicated in N
servers, where up to T of them may collude. Then, the optimal

normalized download cost of PIR with private noisy side

information and undisclosed side information statistics of the

desired file is

CPIR-PNSI =

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)d[ℓ+1:D]

×

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)dℓ−1
)

=

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

,

(6)

where Ψ−1(A, B) ≜
(

1 + A + A2 + · · · + AB−1
)

, and for

i, j ∈ N∗, d[i:j] ≜
∑j

t=i dt, when i f j, and d[i:j] ≜ 0, when

i > j.

Proof: The achievability proof is based on a multilevel

nested random binning scheme, that allows the client to use

the side information efficiently, and the achievability schemes

in [9] and [17]. Without loss of generality, we assume that

the channels are ordered according to their noise level, i.e.,

we assume H(U |Vi) f H(U |Vj), for i, j ∈ [D] such that i f
j, where U is uniformly distributed over X and Vi and Vj are

the outputs of C(i) and C(j), respectively, when U is the input.

In our scheme, for each test channel C(ℓ), ℓ ∈ [D], the servers

store the source coded version of all the files in a new database,

denoted by SCℓ. These databases are obtained by applying a

multilevel nested random binning scheme that performs source

coding with side information. The client first downloads SC1,

which results in retrieving the d1 files that are associated with

the first test channel and obtaining some information about

the other files. To download SC2 the client uses the d1 files

that have been retrieved from the previous level as noiseless

side information similar to [17]. Downloading SC2 results

in retrieving the d2 files that are associated with the second

test channel and obtaining some information about the other

files. The client continues this process to download all the

(SC1, . . . ,SCD) new databases and, in each step, uses all

the files retrieved from the previous steps as noiseless side

information. When the client is willing to reveal the index

of the test channel that is associated with the desired file,

which is denoted by i, it only downloads (SC1, . . . ,SCi). Our

converse proof shows that this scheme is optimal. The details

of the achievability proof are available in Section IV-B. The

converse proof is presented in Section IV-A. □

Remark 2 (Index of random variables): Since all the files

are generated according to the same distribution, namely, the

uniform distribution over Xn, the index 1 of X1 and Y1,ℓ in

Theorem 1 can be replaced with any other index i ∈ [K].
Corollary 1: Consider K files that are replicated in N

servers, where up to T of them may collude. Additionally, the

test channels are BECs with parameters (ϵi)i∈[D] ∈ [0, 1]D

such that ϵi < ϵj , for i, j ∈ N∗ and i < j. Then, the

optimal normalized download cost of PIR with private noisy

side information and undisclosed side information statistics of

the desired file is

CPIR-PNSI =

D
∑

ℓ=1

ϵℓ

(

T

N

)d[ℓ+1:D]

×

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)dℓ−1
)

.

Example 5 (No Side Information): In Corollary 1, if we

set D = 1, and ϵ1 = 1, which means that the client has no

side information and dD = K, then the optimal normalized

download cost result in Corollary 1 reduces to [9, Theorem 1],

i.e.,

CPIR-PNSI =

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)K−1
)

.

Example 6 (Private Noiseless Side Information): In Corol-

lary 1, if we set D = 2, T = 1, ϵ1 = 0, which means that the

client knows d1 files as side information in a noiseless manner,

and ϵ2 = 1, which means that there is no side information

about d2 = K−d1 files, then the optimal normalized download

cost result in Corollary 1 reduces to [16, Theorem 2], i.e.,

CPIR-PNSI =

(

1 +
1

N
+

(

1

N

)2

+ · · · +

(

1

N

)K−d1−1
)

.

Example 7 (Erasure Side Information With D = 1): In

Corollary 1, if we set D = 1 and the test channel to be a
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Fig. 3. Source codes of the files when the side information available at the client is according to the BEC with parameter ϵ1, i.e., SC1, and source codes of
the files when the side information available at the client is according to the BEC with parameter ϵ2 − ϵ1, i.e., SC2. Note that the source codes considered
are nested.

BEC with parameter ϵ, then the result in Corollary 1 reduces

to

CPIR-PNSI = ϵ

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)K−1
)

. (7)

The optimal result in Example 7 is equal to the optimal

normalized download cost of the PIR problem when the side

information is known by all the terminals.

Example 8 (PIR With Private Side Information Under

Storage Constraints): Set T = 1, D = M + 1, for M ∈ N∗

and M < K. If we set di = 1, for i ∈ [M ], dM+1 = K −M ,

and ϵi = 1 − ri, with r1 g r2 g · · · g rM , and ϵD = 1, then

the optimal normalized download cost in Corollary 1 reduces

to

CPIR-PNSI =
1 − r1

NK−1
+

1 − r2

NK−2
+

1 − r3

NK−3
+ · · · +

1 − rM−1

NK−M+1
+

1 − rM

NK−M
+ 1 +

1

N
+

1

N2
+ · · · +

1

NK−M−1
.

Note that this result is stronger than that of [24, Theorem 1],

since in [24] it is assumed that the client knows the first ri

bits, for i ∈ [M ], of M randomly selected files, however, our

result in Corollary 1 reduces to the same optimal download

cost as the optimal download cost derived in [24] by removing

the constraint that the client knows the first ri bits of M files

and assumes that the client knows any randomly chosen ri

bits of M files.

Theorem 2: Consider K files, N replicated servers, where

up to T of them may collude, and D test channels
(

C(i)
)

i∈[D]
as in Definition 1. Then, the optimal normalized download cost

of PIR with private noisy side information and disclosed side

information statistics of the desired file is

C∗
PIR-PNSI = EU [R(U)]

=
1

K

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)



d[ℓ+1:D]

−1+dℓ+d[ℓ+1:D]
∑

j=d[ℓ+1:D]

(

T

N

)j

+dℓ

−1+d[ℓ:D]
∑

j=0

(

T

N

)j





=
1

K

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

[

d[ℓ+1:D]

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

+dℓΨ
−1

(

T

N
, d[ℓ:D]

)]

, (8a)

where

R(U) ≜

U−1
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

+

H
(

X1|Y1,U

)

Ψ−1

(

T

N
, d[U :D]

)

, (8b)

with U distributed according to P[U = u] ≜ du

K
, for u ∈ [D],

Ψ−1(A, B) ≜
(

1 + A + A2 + · · · + AB−1
)

, and for i, j ∈

N∗, d[i:j] ≜
∑j

t=i dt, when i f j, and d[i:j] ≜ 0, when i > j.

Proof: Similar to the achievability scheme of Theorem 1,

the achievability scheme of Theorem 2 is based on source

coding with side information, and the achievability schemes

in [9] and [17]. Specifically, we use the same achievability

scheme as in Theorem 1 by using M(Z), instead of D, nested

random bin indices for each file. The details of the proof are

available in Section V-B. The converse proof is presented in

Section V-A. □

The optimal results in Theorem 1 and Theorem 2 show

that the optimal normalized download cost grows linearly with

H
(

X1|Y1,ℓ

)

, for ℓ ∈ [D], which quantifies how noisy the side

information is. This confirms the intuition that the noisier the

side information is, the higher the normalized download cost

will become. Note that, the same remark as Remark 2 also

applies to Theorem 2.

Corollary 2 (Binary Erasure Test Channels): Consider K
files and N replicated servers, where up to T of them may

collude. Additionally, assume that the test channels are BECs

with parameters (ϵi)i∈[D] ∈ [0, 1]D such that ϵi < ϵj , for

i, j ∈ N∗ and i < j. Then, the optimal normalized download

cost of PIR with private noisy side information and disclosed

side information statistics of the desired file is

C∗
PIR-PNSI = EU [R(U)]

=
1

K

D
∑

ℓ=1

ϵℓ

[

d[ℓ+1:D]

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

+

dℓΨ
−1

(

T

N
, d[ℓ:D]

)]

, (9a)

R(U) ≜

U−1
∑

ℓ=1

ϵℓ

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

+

ϵUΨ−1

(

T

N
, d[U :D]

)

. (9b)

Corollary 3 (Binary Symmetric Channels): When the test

channels C(ℓ), for ℓ ∈ [D], are BSCs with parameters 0 f
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p1 < p2 < · · · < pD f 1
2 , then the optimal normalized

download cost of the PIR problem with private noisy side

information and disclosed side information statistics of the

desired file is

C∗
PIR-PNSI

=
1

K

D
∑

ℓ=1

H(pℓ)

[

d[ℓ+1:D]

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

+

dℓΨ
−1

(

T

N
, d[ℓ:D]

)]

, (10)

where H(pℓ) ≜ −pℓ log(pℓ) − (1 − pℓ) log(1 − pℓ).
Example 9 (Private Noiseless Side Information): In Corol-

lary 2, if we set D = 2, ϵ1 = 0, which means that the

client knows d1 files as side information in a noiseless manner,

ϵ2 = 1, which means that there is no side information about

d2 files, and M(Z) = 1, which means that the intended

file is included in the noiseless side information, then the

normalized download cost R(U) in (9b) is equal to zero. When

M(Z) = 2, which means that the intended file is not included

in the noiseless side information, then the optimal normalized

download cost R(U) in (9b) reduces to,

R(U) =

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)d2−1
)

,

which is the result in [16, Theorem 2], with T = 1, and [17,

Theorem 1]. Additionally, on average over the file choice, the

expected normalized download cost is C∗
PIR-PNSI = EU [R(U)].

Example 10 (When D = 1): When D = 1, U = 1, the first

term on the Right Hand Side (RHS) of (8b) is equal to zero,

and the optimal normalized download cost in (8a) reduces to

Theorem 1 when D = 1, that is,

C∗
PIR-PNSI = CPIR-PNSI

= H
(

X1|Y1,1

)

(

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)K−1
)

.

Remark 3 (Comparing the results in Theorem 1 and Theo-

rem 2): We rewrite the result in Theorem 1 for any U ∈ [D]
as follows,

CPIR-PNSI =

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

=

U−1
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

+

D
∑

ℓ=U

H
(

X1|Y1,ℓ

)

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

(a)
= R(U) − H(X1|Y1,U )Ψ−1

(

T

N
, d[U :D]

)

+

D
∑

ℓ=U

H
(

X1|Y1,ℓ

)

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

(b)
= R(U) +

D
∑

ℓ=U

(

H
(

X1|Y1,ℓ

)

− H
(

X1|Y1,U

)

)

×

(

T

N

)d[ℓ+1:D]

Ψ−1

(

T

N
, dℓ

)

(c)

g R(U), (11)

where

(a) follows from (8b);

(b) follows by expanding Ψ−1
(

T
N

, d[U :D]

)

;

(c) follows since H
(

X1|Y1,U ) f H
(

X1|Y1,ℓ), for ℓ ∈ [U :
D].

Therefore, the optimal normalized download cost in (8a),

which is the average of R(U), with respect to U , is always

smaller than or equal to the optimal normalized download cost

in Theorem 1, i.e., C∗
PIR-PNSI f CPIR-PNSI. This shows that

revealing the index of the test channel that is associated with

the desired file reduces the normalized download cost.

Hence, the optimal normalized download cost in Theorem 2

is smaller than the optimal normalized download cost in

Theorem 1, and the difference between these two quantities

increases as the index M(Z) of the test channel that is

associated with the desired file decreases.

IV. PROOF OF THEOREM 1

A. Converse Proof

Define Z ≜ (Z, Z̄), where Z̄ ≜
(

Z̄1, Z̄2, . . . , Z̄K−1

)

, and











Z̄[1+d[i−1]:d[i]] ≜ M
−1(i) if i < M(Z)

Z̄[1+d[i−1]:−1+d[i]] ≜ M
−1(i)\{Z} if i = M(Z)

Z̄[d[i−1]:−1+d[i]] ≜ M
−1(i) if i > M(Z)

,

(12a)

where d[i] ≜
∑i

j=1 di, Z̄[i:j] ≜ (Z̄i, Z̄i+1, . . . , Z̄j), and,

by convention, for a, b ∈ N∗ and a > b define Z̄[a : b] ≜ ∅.

Then, we index all the files as depicted in Fig. 4 such that the

mapping M can be described as (13), shown at the bottom

of the page, (with the notation introduced in Section I-D).

From (12a) and (13), the side information available at the

client is (14), shown at the bottom of the page, in which

Yn
Z̄[i:j],ℓ

≜

(

Y n
Z̄i,ℓ

, Y n
Z̄i+1,ℓ

, . . . , Y n
Z̄j ,ℓ

)

.

M =

(

Z̄[1:d1] . . .
(

Z, Z̄[1+d[i−1]:−1+d[i]]

)

. . . Z̄[d[D−1]:−1+d[D]]

(1, . . . , 1) . . . (i, i, . . . , i) . . . (D, . . . , D)

)

, (13)

Yn
[K],M ≜

(

Yn
M−1(i),i

)

i∈[D]
=

(

Yn
Z̄[1:d1],1

,Yn
Z̄
[1+d1:d[2]]

,2, . . . ,Y
n
Z̄
[1+d[i−2]:d[i−1]]

,i−1, Y
n
Z,i,

Yn
Z̄
[1+d[i−1]:−1+d[i]]

,i
,Yn

Z̄
[d[i]:−1+d[i+1]]

,i+1,Y
n
Z̄
[d[i+1]:−1+d[i+2]]

,i+2, . . . ,Y
n
Z̄
[d[D−1]:−1+d[D]]

,D

)

. (14)
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Fig. 4. Indexing the files based on the mapping M.

Example 11: To illustrate the definition of Z̄ ≜

(Z̄1, . . . , Z̄K−1) in (12a), consider a setting where di = 1,

for i ∈ [D], which means that D = K. In this case,
∑i−1

t=1 dt = i− 1 and
∑i

t=1 dt = i, therefore, the definition of

Z̄i, for i ∈ [K − 1], in (12a) reduces to
{

Z̄i ≜ M
−1(i) if i < M(Z)

Z̄i−1 ≜ M
−1(i) if i > M(Z)

. (15)

For example, let K = D = 3, Z = 2, and the side information

at the client be
(

Y n
1,3, Y

n
2,1, Y

n
3,2

)

, therefore M(Z) = 1, Z̄1 ≜

M
−1(2) = 3, and Z̄2 ≜ M

−1(3) = 1.

The following equations and lemmas are essential for the

converse proof. From the dependency graph in Fig. 5 we have

I
(

Z,Q[N ];X
n
[K]

∣

∣

∣
Yn

[K],M,M
)

= 0. (16)

Considering the probability of error in (2), by Fano’s inequal-

ity [31, Section 2.11], we also have

max
z∈[K]

max
M∈M

H
(

Xn
Z |Q[N ],A[N ],Y

n
[K],M, Z = z,M = M

)

= o(n). (17)

Lemma 1: For all M ∈ M, z ∈ [K], T ′ ¦ [N ], and

T ¦ [N ] such that |T | = T , we have

I
(

AT ;Q[N ]\T

∣

∣

∣
QT ,Yn

[K],M,Xn
T ′ , Z = z,M = M

)

= 0.

(18)

Proof: We have,

I
(

AT ;Q[N ]\T

∣

∣

∣
QT ,Yn

[K],M,Xn
T ′ , Z = z,M = M

)

(a)

f I
(

AT ,Xn
[K];Q[N ]\T

∣

∣

∣
QT ,Yn

[K],M,Xn
T ′

, Z = z,M = M
)

(b)
= I

(

Xn
[K];Q[N ]\T

∣

∣

∣
QT ,Yn

[K],M,Xn
T ′ , Z = z,M = M

)

Fig. 5. Dependency graph for all the involved random variables.

+ I
(

AT ;Q[N ]\T

∣

∣

∣
Xn

[K],QT ,Yn
[K],M, Z = z,M = M

)

,

(19)

where (a) and (b) hold by the chain rule and non-negativity

of the mutual information. The first term on the RHS of (19)

is equal to zero because of (16) and the second the term on

the RHS of (19) is also equal to zero from (1). □

Lemma 2: For each M ∈ M, z, z′ ∈ [K], T ′ ¦ [N ], and

T ¦ [N ] such that |T | = T , we have

H
(

AT

∣

∣

∣
Xn

T ′ ,QT ,Yn
[K],M, Z = z,M = M

)

= H
(

AT

∣

∣

∣
Xn

T ′ ,QT ,Yn
[K],M, Z = z′,M = M

)

− o(n).

(20)

Proof: We have,

I
(

Q[N ],A[N ],X
n
[K],Y

n
[K],M;Z

∣

∣M = M
)

(a)
= I

(

Q[N ],X
n
[K],Y

n
[K],M;Z

∣

∣M = M
)

= I
(

Xn
[K],Y

n
[K],M;Z

∣

∣M = M
)

+

I
(

Q[N ];Z
∣

∣Xn
[K],Y

n
[K],M,M = M

)

(b)

f I
(

Xn
[K],Y

n
[K],M;Z

∣

∣M = M
)

+ o(n)
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(c)
= I

(

Xn
[K];Z

∣

∣Yn
[K],M,M = M

)

+ o(n)

(d)
= o(n), (21)

where

(a) follows from the chain rule and (1);

(b) follows since the queries are of negligible length

compared to the file length n and, therefore,

I
(

Q[N ];Z
∣

∣Xn
[K],Y

n
[K],M,M = M

)

f H
(

Q[N ]

)

=

o(n);
(c) follows from the chain rule and because

H
(

Yn
[K],M

∣

∣M = M, Z
)

=
∑

z

P[Z = z
∣

∣M = M]H
(

Yn
[K],M

∣

∣Z = z, M = M
)

=
∑

z

P[Z = z
∣

∣M = M]H
(

Yn
[K],M

)

= H
(

Yn
[K],M

)

,

where the second equality follows since all the files are

generated according to the same distribution and, thus,

the entropy of the side information does not depend on

M and z.

(d) follows from (16).

Then, we have

o(n)
(a)
= I

(

AT ,QT ,Yn
[K],M,Xn

T ′ ;Z
∣

∣M = M
)

(b)
= I

(

AT ;Z
∣

∣QT ,Yn
[K],M,Xn

T ′ ,M = M
)

+ o(n),

(22)

where (a) holds by (21), and (b) holds by (21) and the chain

rule. Finally, (22) implies (20). □

Then, we bound nR
(

Q[N ]

)

as (23d), shown at the bottom

of the next page, where

(a) follows since conditioning does not increase the entropy;

(b) follows from Fano’s inequality in (17);

(c) follows since for i ≜ M(Z), we have

I
(

Q[N ],Y
n
Z̄,[D];X

n
Z

∣

∣Y n
Z,i, Z,M = M

)

= I
(

Q[N ];X
n
Z

∣

∣Y n
Z,i, Z,M = M

)

+

I
(

Y n
Z̄,[D];X

n
Z

∣

∣Q[N ], Y
n
Z,i, Z,M = M

)

= I
(

Y n
Z̄,[D];X

n
Z

∣

∣Q[N ], Y
n
Z,i, Z,M = M

)

= 0,

where Yn
Z̄,[D]

≜

(

Yn
Z̄1,[D]

,Yn
Z̄2,[D]

, . . . ,Yn
Z̄K−1,[D]

)

and

Yn
Z̄i,[D]

≜

(

Y n
Z̄i,1

, Y n
Z̄i,2

, . . . , Y n
Z̄i,D

)

, for i ∈ [K − 1],

and the second equality holds because, from Fig. 5,

Q[N ] − (Y n
Z,i, Z,M) − Xn

Z forms a Markov chain, and

the last equality holds because, from Fig. 5, Y n
Z̄,[D]

−

(Q[N ], Y
n
Z,i, Z,M) − Xn

Z forms a Markov chain;

(d) follows since for i ∈ [K] and j ∈ [D], H(Xn
i |Y

n
i,j) =

H(Xn
1 |Y

n
1,j) = nH(X1|Y1,j) because PXn

i
= PXn

1
=

P¹n
X and, therefore, we have H

(

Xn
z

∣

∣Y n
z,j , Z = z, M =

M
)

= H(Xn
z |Y

n
z,j) = H(Xn

1 |Y
n
1,j) = nH(X1|Y1,j), for

any z and M;

(e) follows from Lemma 1;

(f) follows from Lemma 2;

(g) follows since one can lower bound the second term on

the RHS of (23b) using the following inequality,

H
(

A[N ]

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

g
1
(

N
T

)

∑

T :|T |=T

H
(

AT

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M,

Z = z̄K−2,M = M
)

(24a)

g
T

N
H
(

A[N ]

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M,

Z = z̄K−2,M = M
)

, (24b)

where (24a) follows by writing (23c) for all
(

N
T

)

different

subsets T ¢ [N ] with cardinality T and adding up

all these inequalities; and (24b) follows from Han’s

inequality [31, Theorem 17.6.1].

Repeating the steps described in (23d) starting from (23a)

with Z = z′, where z′ changes from the first ele-

ment till the last element of
[

z̄K−2, z̄K−3, . . . , z̄d[D−1]

]

,

to bound the second entropy term on the RHS of (23d),

we obtain (25), shown at the bottom of the next page,

where (a) follows by induction and repeating the steps

described in (23d) starting from (23a) with Z = z′, where

z′ changes from the first element till the last element of
[

z̄d[D−1]−1, z̄d[D−1]−2, . . . , z̄1+d[i−1]
, z, z̄d[i−1]

, . . . , z̄1

]

, where

i ≜ M(z), and (b) follows from (1).

B. Achievability Proof

A high-level description of the achievability scheme is

provided after Theorem 1.

1) Preliminaries: Our achievability is based on nested

source coding, which we define first and then use in our

achievability proof as a black box. Consider a discrete

memoryless source (X1 ××ℓ∈[D]
Y1,ℓ, PX1,Y1,[D]

) with D +

1 components. Assume that (Xn
1 ,Yn

1,[D]) are independent and

identically distributed (i.i.d.) samples of this source. Then,

consider an encoder E : Xn
1 → J

(1)
[D], that maps the sequence

Xn
1 to J

(1)
[D] ≜ (J

(1)
ℓ )ℓ∈[D], where the asymptotic rate of

J
(1)
ℓ , for ℓ ∈ [D], is H(X1|Y1,ℓ) − H(X1|Y1,ℓ−1), with

the convention H(X1|Y1,0) = 0. Consider also D decoders

Dℓ : J
(1)
[ℓ] × Yn

1,ℓ → Xn
1 , for ℓ ∈ [D], where the Decoder

Dℓ assigns an estimate X̂n
1 to (J

(1)
[ℓ] , Y n

1,ℓ) such that P
[

X̂n
1 ̸=

Xn
1

]

−−−−→
n→∞

0. In Appendix A, we explain how to obtain such

a scheme with nested random binning and how to implement

it with nested polar codes when the side information at the

decoders forms a Markov chain.

Assume that each file is of length n = NK , with symbols

in a sufficiently large finite field Fq. Fix ¶ > 0.

2) Nested Source Coding: For every file xn
i , i ∈ [K],

generate D nested source codes as in Section IV-B.1. For each

test channel ℓ ∈ [D], we denote the source code of the file

xn
i , i ∈ [K], by j

(i)
ℓ ∈ Jℓ ≜

[

qn
ℓ

]

, where qℓ ≜ qRℓ . Here,
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R0 ≜ 0 and for t ∈ [K],

ℓ
∑

i=1

Ri = H
(

Xt|Yt,ℓ

)

+ ¶. (26)

We refer to SCℓ ≜

(

j
(1)
ℓ , . . . , j

(K)
ℓ

)

ℓ∈[D]
as the database

ℓ. The query is constructed to retrieve each one of the SCℓ

databases in ascending order.

3) Query Structure Construction: The client constructs the

query in D different levels. In the first level, we apply to

the database SC1 the same query structure as in [9], which

consists of K sublevels. In the level ℓ ∈ [2 : D], we apply

to the database SCℓ the same query structure as in [17],

which also consists of K sublevels. Specifically, as in [17],

the kℓ
th sublevel consists of sums of kℓ symbols, which are

called kℓ-sums. There are
(

K
kℓ

)

different types of kℓ-sums

nR
(

Q[N ]

)

g H
(

A[N ]

)

(a)

g H
(

A[N ]

∣

∣Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

= H
(

A[N ], X
n
z̄K−1

∣

∣Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

− H
(

Xn
z̄K−1

∣

∣Q[N ],A[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

(23a)

(b)

g H
(

A[N ], X
n
z̄K−1

∣

∣Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

− o(n)

= H
(

Xn
z̄K−1

∣

∣Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

+ H
(

A[N ]

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

− o(n)

(c)
= H

(

Xn
z̄K−1

∣

∣Y n
z̄K−1,D, Z = z̄K−1,M = M

)

+ H
(

A[N ]

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

− o(n)

(d)
= nH

(

X1

∣

∣Y1,D

)

+ H
(

A[N ]

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

− o(n) (23b)

g nH
(

X1

∣

∣Y1,D

)

+ H
(

AT

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M, Z = z̄K−1,M = M

)

− o(n)

(e)
= nH

(

X1

∣

∣Y1,D

)

+ H
(

AT

∣

∣Xn
z̄K−1

,QT ,Yn
[K],M, Z = z̄K−1,M = M

)

− o(n)

(f)
= nH

(

X1

∣

∣Y1,D

)

+ H
(

AT

∣

∣Xn
z̄K−1

,QT ,Yn
[K],M, Z = z̄K−2,M = M

)

− o(n)

g nH
(

X1

∣

∣Y1,D

)

+ H
(

AT

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M, Z = z̄K−2,M = M

)

− o(n) (23c)

(g)

g nH
(

X1

∣

∣Y1,D

)

+
T

N
H
(

A[N ]

∣

∣Xn
z̄K−1

,Q[N ],Y
n
[K],M, Z = z̄K−2,M = M

)

− o(n), (23d)

R
(

Q[N ]

)

g H
(

X1|Y1,D

)

+
T

N

[

H
(

X1|Y1,D

)

+
T

N

[

H
(

X1|Y1,D

)

+ · · · +
T

N

[

H
(

X1|Y1,D

)

+
1

n
H
(

A[N ]

∣

∣Xn
Z̄[

d[D−1]:K−1

]

,Q[N ],Y
n
[K],M, Z = z̄d[D−1]−1,M = M

)

]]]

− o(1)

= H
(

X1|Y1,D

)

[

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)dD−1
]

+
1

n

(

T

N

)dD

H
(

A[N ]

∣

∣Xn
Z̄[

d[D−1]:K−1

]

,Q[N ],Y
n
[K],M, Z = z̄d[D−1]−1,M = M

)

− o(1)

(a)

g
D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)

∑D
i=ℓ+1 di

[

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)dℓ−1
]

+
1

n

(

T

N

)K−1

H
(

A[N ]

∣

∣Xn
[K],Q[N ],Y

n
[K],M, Z = z̄1,M = M

)

− o(1)

(b)
=

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)

∑D
i=ℓ+1 di

[

1 +
T

N
+

(

T

N

)2

+ · · · +

(

T

N

)dℓ−1
]

− o(1) (25)
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and (N − T )kℓ−1TK−kℓ different instances of each type in

the kℓ
th sublevel. Hence, the total number of symbols that

will be downloaded from each server is
∑K

kℓ=1

(

K
kℓ

)

(N −

T )kℓ−1TK−kℓ .

4) Query Specialization: For ℓ ∈ [D], we do the query

structure construction and query specialization without con-

sidering the availability of any side information as in [17],

and denote this scheme by Πℓ. Then, we do query redundancy

removal based on the availability of noiseless side information

similar to [17]. Specifically, after each level ℓ ∈ [D], the client

is able to recover the dℓ files that are associated with the

ℓth test channel, and therefore considering the files that are

decoded in the previous levels, the client knows Xn
[d[ℓ]]

and,

therefore,

(

j
(1)
ℓ+1, . . . , j

(d[ℓ])
ℓ+1

)

, which is used as noiseless side

information to recover

(

j
(d[ℓ]+1)
ℓ+1 , . . . , j

(K)
ℓ+1

)

in level ℓ + 1.

For level ℓ = 1, the client does not have any noiseless side

information and cannot perform query redundancy removal

but, for level ℓ ∈ [2 :D], since it has recovered
∑ℓ−1

t=1 dt

files, the client can perform query redundancy removal. For

each ℓ ∈ [D] and for each server, let pℓ,1 denote the number

of symbols downloaded with Πℓ. Out of these pℓ,1 symbols,

we denote by pℓ,2 < pℓ,1 the number of symbols that the

client already knows by decoding some of the files in the

previous levels. For ℓ ∈ [D], let Uℓ,j ∈ F
pℓ,1
qℓ denote

the symbols downloaded from the jth server with Πℓ. For

each server, use a systematic (2pℓ,1 − pℓ,2, pℓ,1) Maximum

Distance Separable (MDS) code [32], with generator matrix

G(2pℓ,1−pℓ,2)×pℓ,1
= [Vpℓ,1×(pℓ,1−pℓ,2)|Ipℓ,1×pℓ,1

]⊺ to encode

the pℓ,1 symbols into 2pℓ,1 − pℓ,2 symbols, of which pℓ,1 are

systematic, and pℓ,1 − pℓ,2 are parity symbols, such that it is

sufficient to download V
⊺

pℓ,1×(pℓ,1−pℓ,2)
Uℓ,j . For level ℓ = 1,

since the client does not have any noiseless side information

about SC1, p1,2 = 0.

5) Decoding: For ℓ ∈ [D], after reconstructing (j
(t)
i )i∈[ℓ],

for t ∈ M
−1(ℓ), given Yn

[K],M, the client forms X̂n
t ,

an estimate of the sequence Xn
t by using the nested source

decoders with (26), and thus P
[

X̂n
t ̸= Xn

t

]

−−−−→
n→∞

0.

6) Rate Calculation: Similar to [17], for the scheme Πℓ,

the total number of downloaded symbols from each server is

pℓ,1 =
∑K

kℓ=1

(

K
kℓ

)

(N − T )kℓ−1TK−kℓ , ℓ ∈ [D] and out of

these pℓ,1 symbols pℓ,2 =
∑d[ℓ−1]

kℓ=1

(

d[ℓ−1]

kℓ

)

(N −T )kℓ−1TK−kℓ

symbols are already known at the client, where d[ℓ−1] ≜
∑ℓ−1

i=1 di and d[0] = 0. Then, we have,

pℓ,1 =
K
∑

kℓ=1

(

K

kℓ

)

(N − T )kℓ−1TK−kℓ

=

K
∑

kℓ=0

(

K
kℓ

)

(N − T )kℓTK−kℓ − TK

N − T

=
NK − TK

N − T
, (27a)

similarly,

pℓ,2 =

d[ℓ−1]
∑

kℓ=1

(

d[ℓ−1]

kℓ

)

(N − T )kℓ−1TK−kℓ

= TK−d[ℓ−1]

d[ℓ−1]
∑

kℓ=1

(

d[ℓ−1]

kℓ

)

(N − T )kℓ−1T d[ℓ−1]−kℓ

=
TK−d[ℓ−1]

(

Nd[ℓ−1] − T d[ℓ−1]
)

N − T
. (27b)

Therefore, the normalized download cost for the level ℓ is,

R(ℓ) =
RℓN(pℓ,1 − pℓ,2)

n
(a)
=

RℓN(pℓ,1 − pℓ,2)

NK

(b)
=

Rℓ

(

1 −
(

T
N

)K−d[ℓ−1]

)

(

1 − T
N

)

(c)
=
(

H
(

X1|Y1,ℓ

)

− H
(

X1|Y1,ℓ−1

)

)

K−d[ℓ−1]−1
∑

i=0

(

T

N

)i

,

(28)

where

(a) follows since n = NK ;

(b) follows from (27);

(c) follows from (26).

Therefore, the total normalized download cost is,

D
∑

ℓ=1

R(ℓ) =

D
∑

ℓ=1

(

H
(

X1|Y1,ℓ

)

− H
(

X1|Y1,ℓ−1

)

)

×

K−d[ℓ−1]−1
∑

i=0

(

T

N

)i

=

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)K−d[ℓ] dℓ−1
∑

i=0

(

T

N

)i

.

7) Privacy Analysis: Note that for all the D levels, the client

does not use any side information to construct the queries.

Indeed, the systematic MDS codes of all the levels in the query

redundancy removal do not depend on the side information that

the client obtains after each level. The decoding starts when

the client collects all the answers from the servers for all the

D levels. Thus, the side information is used only when the

client collects all the answers from the servers for all the D
levels. Therefore, privacy is inherited from the privacy of the

schemes in [9] and [17].

V. PROOF OF THEOREM 2

A. Converse Proof

The following equations and lemma are essential for the

converse proof. Considering the probability of error in (2),

by Fano’s inequality [31, Section 2.11], for every i ∈ [D],
we have

max
z∈[K]

max
M∈M

H
(

Xn
Z |Q[N ],A[N ],Y

n
[K],M,M(Z) = i,

Z = z,M = M
)

= o(n). (29)

Lemma 3: For all z, z′ ∈ [K], i ∈ [D], T , T ′ ¦ [N ], and

M,M′ ∈ M, such that M(z) = M′(z′),

H
(

AT

∣

∣

∣
QT ,Xn

T ′ ,Yn
[K],M, Z = z,M(Z) = i,M = M

)
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= H
(

AT

∣

∣

∣
QT ,Xn

T ′ ,Yn
[K],M, Z = z′,

M(Z) = i,M = M′
)

− o(n). (30)

Proof: Since H(Z) = log K and H(M) f log |M|,
then for all i ∈ [D], and T , T ′ ¦ [N ], we have

I
(

AT ;Z,M
∣

∣QT ,Xn
T ′ ,Yn

[K],M,M(Z) = i
)

= o(n).

(31)

□

Consider (z, z̄1, z̄2, . . . , z̄K−1) a realization of Z, and M

a realization of M such that M(z) = i. Then, we bound

nR(Q[N ]) as (32c), shown at the bottom of the page, where

(a) follows since conditioning does not increase entropy;

(b) follows from Fano’s inequality in (29);

(c) follows since, for i ≜ M(Z), we have,

I
(

Q[N ],Y
n
Z̄,[D];X

n
Z

∣

∣Y n
Z,i, Z = z,M(Z) = i,M = M

)

= I
(

Yn
Z̄,[D];X

n
Z

∣

∣Y n
Z,i, Z = z, M(Z) = i,M = M

)

+ I
(

Q[N ];X
n
Z

∣

∣Yn
Z̄,[D], Y

n
Z,i, Z = z,

M(Z) = i,M = M
)

(33a)

f o(n), (33b)

where (33b) holds because the first term on the RHS

of (33a) is equal to zero since the files are independent

of one another, and the second term on the RHS of (33a)

is less than or equal to o(n) since the queries are of

negligible normalized download cost;

(d) follows because H
(

Xn
Z

∣

∣Y n
Z,i, Z = z,M(Z) = i,M =

M
)

= H(Xn
z |Y

n
z,i) = H(Xn

1 |Y
n
1,i) = nH(X1|Y1,i), for

any z ∈ [K];
(e) follows since for all M ∈ M, z ∈ [K], T ′ ¦ [N ], and

T ¦ [N ], such that |T | = T , and M(z) = i we have

I
(

AT ;Q[N ]\T

∣

∣

∣
QT ,Yn

[K],M,Xn
T ′ , Z = z,M(Z) = i,

M = M
)

f H(Q[N ]\T ) = o(n);

(f) follows from Lemma 3 with M1 defined as in (34),

shown at the bottom of the page, where Äa,b ◦ M is

the transposition that exchanges M(a) and M(b) in the

second row of the matrix M;

(g) follows since the second term on the RHS of (32a) can

be lower bounded by using the following inequality

H
(

A[N ]

∣

∣Xn
z ,Q[N ],Y

n
[K],M, Z = z,

M(Z) = i,M = M
)

nR(Q[N ])

g H(A[N ])

(a)

g H
(

A[N ]

∣

∣Q[N ],Y
n
[K],M, Z = z,M(Z) = i,M = M

)

= H
(

A[N ], X
n
z

∣

∣Q[N ],Y
n
[K],M, Z = z, M(Z) = i,M = M

)

− H
(

Xn
z

∣

∣Q[N ],A[N ],Y
n
[K],M, Z = z,M(Z) = i,M = M

)

(b)

g H
(

A[N ], X
n
z

∣

∣Q[N ],Y
n
[K],M, Z = z,M(Z) = i,M = M

)

− o(n)

= H
(

Xn
z

∣

∣Q[N ],Y
n
[K],M, Z = z,M(Z) = i,M = M

)

+ H
(

A[N ]

∣

∣Xn
z ,Q[N ],Y

n
[K],M, Z = z,M(Z) = i,M = M

)

− o(n)

(c)
= H

(

Xn
z

∣

∣Y n
Z,i, Z = z,M(Z) = i,M = M

)

+ H
(

A[N ]

∣

∣Xn
z ,Q[N ],Y

n
[K],M, Z = z, M(Z) = i,M = M

)

− o(n)

(d)
= nH(X1|Y1,i) + H

(

A[N ]

∣

∣Xn
z ,Q[N ],Y

n
[K],M, Z = z,M(Z) = i,M = M

)

− o(n) (32a)

g nH(X1|Y1,i) + H
(

AT

∣

∣Xn
z ,Q[N ],Y

n
[K],M, Z = z,M(Z) = i,M = M

)

− o(n)

(e)
= nH(X1|Y1,i) + H

(

AT

∣

∣Xn
z ,QT ,Yn

[K],M, Z = z, M(Z) = i,M = M
)

− o(n)

(f)
= nH(X1|Y1,i) + H

(

AT

∣

∣Xn
z ,QT ,Yn

[K],M, Z = z̄K−1,M(Z) = i,M = M1

)

− o(n)

g nH(X1|Y1,i) + H
(

AT

∣

∣Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−1,M(Z) = i,M = M1

)

− o(n) (32b)

(g)

g nH(X1|Y1,i) +
T

N
H
(

A[N ]

∣

∣Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−1,M(Z) = i,M = M1

)

− o(n), (32c)

M1 ≜ Äz,z̄K−1
◦ M =

(

(z̄1 : z̄d1
) . . .

(

z, z̄1+d[i−1]
, . . . , z̄−1+d[i]

)

. . .
(

z̄d[D−1]
: z̄−1+d[D]

)

(1, . . . , 1) . . .
(

D, i, . . . , i
)

. . .
(

D, . . . , D, i
)

)

, (34)
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g
1
(

N
T

)

∑

T :|T |=T

H
(

AT

∣

∣Xn
z ,Q[N ],Y

n
[K],M,

Z = z̄K−1,M(Z) = i,M = M1

)

(35a)

g
T

N
H
(

A[N ]

∣

∣Xn
z ,Q[N ],Y

n
[K],M,

Z = z̄K−1,M(Z) = i,M = M1

)

, (35b)

where (35a) follows by writing (32b) for all the
(

N
T

)

different subsets T ¦ [N ] with cardinality T and adding

up all these inequalities; and (35b) follows from Han’s

inequality [31, Theorem 17.6.1].

Then, similar to (32c), for ℓ ∈ [K − 2] with Xn
z̄[K:K−1]

= ∅,

we bound the second term on the RHS of (32c) as provided

in (36), shown at the bottom of the next page, where (b)
to (g) follow with similar arguments of (b) to (g) in (32c)

with Mℓ+1 ≜ Äz̄K−ℓ,z̄K−ℓ−1
◦ Mℓ and Xn

z̄[K:K−1]
= ∅. The

justification of (c) is, however, different. Specifically, for

i ≜ M(Z), we have,

I
(

Q[N ],X
n
[K]\Z ,Yn

Z̄,[D];X
n
Z

∣

∣Y n
Z,i, Z = z̄K−ℓ,

M(Z) = i,M = Mℓ

)

= I
(

Xn
[K]\Z ,Yn

Z̄,[D];X
n
Z

∣

∣Y n
Z,i, Z = z̄K−ℓ,

M(Z) = i,M = Mℓ

)

+ I
(

Q[N ];X
n
Z

∣

∣Xn
[K]\Z ,Yn

Z̄,[D], Y
n
Z,i, Z = z̄K−ℓ,

M(Z) = i,M = Mℓ

)

(37a)

f o(n), (37b)

where (37b) holds because the first term on the RHS of (37a) is

equal to zero since the files are independent of one another, and

the second term on the RHS of (37a) is less than or equal to

o(n) since the queries are of negligible normalized download

cost;

Then, we repeat (36) to bound the second entropy term on

the RHS of (36), as provided in (38), shown at the bottom of

page 2901, where

(a) follows by repeating (36) with Z = z′, where z′

changes from the first element till the last element of
[

z̄K−1, z̄K−2, . . . , z̄1+d[i−1]

]

;

(b) follows by repeating (36) with Z = z′, where z′

changes from the first element till the last element of
[

z̄d[i−1]
, z̄d[i−1]−1, . . . , z̄1+d[i−2]

]

;

(c) follows by induction and repeating (b);
(d) follows from (1).

B. Achievability Proof

We use the same coding scheme as that of Theorem 1 in

Section IV-B with U ≜ M(Z) levels instead of D levels.

Therefore, from (28) the total normalized download cost is,

R(U) =

U
∑

ℓ=1

R(ℓ)

=
U
∑

ℓ=1

(

H
(

X1|Y1,ℓ

)

− H
(

X1|Y1,ℓ−1

)

)

×

(

1 +
T

N
+ · · · +

(

T

N

)K−1−
∑ℓ−1

i=1 di

)

=

U−1
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)K−
∑ℓ

i=1 di

×

(

1 +
T

N
+ · · · +

(

T

N

)dℓ−1
)

+ H
(

X1|Y1,U

)

×

(

1 +
T

N
+ · · · +

(

T

N

)K−1−
∑U−1

i=1 di

)

. (39)

Calculating the expectation of (39) with respect to U results

to

EU [R(U)]

=
1

K

D
∑

u=1

du

[

u−1
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)K−
∑ℓ

i=1 di

×

(

1 +
T

N
+ · · · +

(

T

N

)dℓ−1
)

+ H
(

X1|Y1,u

)

(

1 +
T

N
+ · · · +

(

T

N

)K−1−
∑u−1

i=1 di

)]

=
1

K

[

D
∑

u=1

du

u−1
∑

ℓ=1

H
(

X1|Y1,ℓ

)

(

T

N

)K−
∑ℓ

i=1 di

×

(

1 +
T

N
+ · · · +

(

T

N

)dℓ−1
)

+

D
∑

u=1

duH
(

X1|Y1,u

)

×

(

1 +
T

N
+ · · · +

(

T

N

)K−1−
∑u−1

i=1 di

)]

=
1

K

D
∑

ℓ=1

H
(

X1|Y1,ℓ

)

[(

K −
ℓ
∑

i=1

di

)

(

T

N

)K−
∑ℓ

i=1 di

×

(

1 +
T

N
+ · · · +

(

T

N

)dℓ−1
)

+dℓ

(

1 +
T

N
+ · · · +

(

T

N

)K−1−
∑ℓ−1

i=1 di

)]

.

Finally, similar to Section IV-B.7, privacy is inherited from

the privacy of the scheme in [9] and [17].

VI. CONCLUSION

We have studied the PIR problem with N servers, where

each server has a copy of K files and T of the servers may

collude, when the client has a noisy version of each of the

K files. The side information is such that each file is passed

through one of D possible and distinct test channels, whose

statistics are known by the client and the servers. We studied

this problem under two different security metrics. Under the

first metric, the client wants to keep the index of the desired file

and the mapping between the files and the test channels secret

from the servers. Under the second metric, the client wants to

keep the index of the desired file and the mapping between the

files and the test channels secret from the servers, but is willing

to reveal the index of the test channel that is associated with
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the desired file. We derived the optimal normalized download

cost under both privacy metrics. We showed that the optimal

normalized download cost under the second privacy metric is

smaller than or equal to the optimal normalized download cost

under the first privacy metric, which shows that revealing the

index of the test channel that is associated with the desired

file results in a lower normalized download cost. Our setting

and results recover several known settings, including PIR with

private noiseless side information and PIR with private side

information under storage constraints. We note that the PIR

problem with noisy side information when the side information

is not required to be kept private is an interesting open

problem.

APPENDIX A

NESTED SOURCE CODING SCHEMES

In Appendix A-A, we provide a nested random binning

scheme to implement nested source coding, as described in

Section IV-B.1. In Appendix A-B, we provide an implemen-

tation of this scheme with polar codes for the case that the side

information forms the Markov chain Xt − Yt,1 − Yt,2 − · · · −

Yt,D, for t ∈ [K]. As formalized next, this Markov chain is

always satisfied for test channels that are degraded with respect

to one another as, for instance, in Corollaries 2, 3 for binary

erasure or binary symmetric test channels.

Lemma 4: If there exists a test channel C̃i,j such that

C(j) = C̃i,j ◦ C(i), for i, j ∈ [D] and i < j, i.e., C(j) is

degraded with respect to C(i), then, without loss of generality,

one can assume that Xt−Yt,1−Yt,2−· · ·−Yt,D, for t ∈ [K],
forms a Markov chain.

Proof: Since the test channels are degraded with respect

to one another, one can redefine Xt, (Yt,i)i∈[D], t ∈ [K], such

that Xt −Yt,1 −Yt,2 −· · ·−Yt,D forms a Markov chain. Note

that the probability of error in (2) and the privacy condition

in (4b) will not be affected because they do not depend on

the joint distribution between Xt and (Yt,i, Yt,j), for t ∈ [K],
i, j ∈ [D], and i ̸= j. □

A. Nested Random Binning Scheme

Consider a discrete memoryless source (X1 ×

×ℓ∈[D]
Y1,ℓ, PX1,Y1,[D]

) with D+1 components. Assume that

(Xn
1 ,Yn

1,[D]) are i.i.d. samples of this source. Then, consider

H
(

A[N ]

∣

∣Xn
z̄[K−ℓ+1:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

= H
(

A[N ], X
n
z̄K−ℓ

∣

∣Xn
z̄[K−ℓ+1:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

− H
(

Xn
z̄K−ℓ

∣

∣Xn
z̄[K−ℓ+1:K−1]

, Xn
z ,Q[N ],A[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

(b)

g H
(

A[N ], X
n
z̄K−ℓ

∣

∣Xn
z̄[K−ℓ+1:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

− o(n)

= H
(

Xn
z̄K−ℓ

∣

∣Xn
z̄[K−ℓ+1:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

+ H
(

A[N ]

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

− o(n)

(c)
= H

(

Xn
z̄K−ℓ

∣

∣Y n
z̄K−ℓ,i, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

+ H
(

A[N ]

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

− o(n)

(d)
= nH(X1|Y1,i)

+ H
(

A[N ]

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

− o(n)

g nH(X1|Y1,i)

+ H
(

AT

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

− o(n)

(e)
= nH(X1|Y1,i)

+ H
(

AT

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,QT ,Yn

[K],M, Z = z̄K−ℓ,M(Z) = i,M = Mℓ

)

− o(n)

(f)
= nH(X1|Y1,i)

+ H
(

AT

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,QT ,Yn

[K],M, Z = z̄K−ℓ−1,M(Z) = i,M = Mℓ+1

)

− o(n)

g nH(X1|Y1,i)

+ H
(

AT

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ−1,M(Z) = i,M = Mℓ+1

)

− o(n)

(g)

g nH(X1|Y1,i)

+
T

N
H
(

A[N ]

∣

∣Xn
z̄[K−ℓ:K−1]

, Xn
z ,Q[N ],Y

n
[K],M, Z = z̄K−ℓ−1,M(Z) = i,M = Mℓ+1

)

− o(n), (36)
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an encoder E : Xn
1 → J

(1)
[D], that assigns D random bin indices

J
(1)
[D] ≜ (J

(1)
ℓ )ℓ∈[D] to the sequence Xn

1 , where the asymptotic

rate of J
(1)
ℓ , for ℓ ∈ [D], is H(X1|Y1,ℓ) − H(X1|Y1,ℓ−1),

with the convention H(X1|Y1,0) = 0. Consider D decoders

Dℓ : J
(1)
[ℓ] × Yn

1,ℓ → Xn
1 , for ℓ ∈ [D], such that the

decoder Dℓ assigns an estimate X̂n
1 to (J

(1)
[ℓ] , Y n

1,ℓ) if

there is a unique X̂n
1 such that

(

X̂n
1 , Y n

ℓ

)

are jointly

typical and
(

J
(1)
1 , J

(1)
2 , . . . , J

(1)
ℓ

)

corresponds to the first ℓ

components of E(X̂n
1 ). According to [29], [30, Section 10.4],

since the asymptotic sum rate for the bin indices that are

used at the decoder Dℓ, i.e., J
(1)
[ℓ] , is H(X1|Y1,ℓ), then

P
[

X̂n
1 ̸= Xn

1

]

−−−−→
n→∞

0.

B. Nested Polar Coding Scheme

We now provide an implementation for the nested source

coding in Section IV-B by using nested polar codes when the

side information available at the decoders forms a Markov

chain. We will rely on the following result for source coding

with side information from [33].

Lemma 5 (Source Coding With Side Information [33]):

Consider a probability distribution pXY over X×Y with |X | =
2 and Y a finite alphabet. Let N be a power of 2 and consider

(XN , Y N ) distributed according to
∏N

i=1 pXY . Define UN ≜

XNGN , where GN ≜

[

1 0

1 1

]¹ log N

is the source polarization

matrix defined in [33]. Define also for ¶N ≜ 2−N´

with ´ ∈
]0, 1

2 [, the set HX|Y ≜
{

i ∈ [N ] : H(Ui|U
i−1Y N ) > ¶N

}

.

Given UN [HX|Y ] and Y N , one can form ÛN by the succes-

sive cancellation decoder of [33] such that P[ÛN ̸= UN ] f
N¶N . Moreover, lim

N→∞
|HX|Y |/N = H(X|Y ).

Let N = 2n. Fix a joint probability distribution PX1Y1,[D]
≜

PX1
pY1,1|X1

∏D

ℓ=2 PY1,ℓ|Y1,ℓ−1
over X1×Y1,[D], where |X1| =

2, (Y1,ℓ)ℓ∈[D] are finite alphabets, Y1,[D] ≜×ℓ∈[D]
Y1,ℓ, and

Y1,[D] ≜ (Y1,ℓ)ℓ∈[D]. Define UN ≜ XNGN . For ¶N ≜ 2−N´

,

´ ∈]0, 1
2 [, define for ℓ ∈ [D],

HX|Yℓ
≜
{

i ∈ [N ] : H(Ui|U
i−1Y N

1,ℓ) g ¶N

}

.

Lemma 6: For ℓ ∈ [D−1], we have HX1|Y1,ℓ
¢ HX1|Y1,ℓ+1

.

Proof: Let i ∈ HX1|Y1,ℓ
. We have

¶N

(a)

f H(Ui|U
i−1Y N

1,ℓ)

(b)
= H(Ui|U

i−1Y N
1,ℓY

N
ℓ+1)

(c)

f H(Ui|U
i−1Y N

1,ℓ+1),

where (a) holds because i ∈ HX1|Y1,ℓ
, (b) holds because

I(U i;Y N
1,ℓ+1|U

i−1Y N
1,ℓ) f I(UN ;Y N

1,ℓ+1|Y
N
1,ℓ) = 0, (c) holds

because conditioning does not increase entropy. □

From Lemmas 5 and 6, we deduce the following proposi-

tion.

Proposition 1: Let ℓ ∈ [D − 1]. Define Jℓ ≜ UN [HX1|Y1,ℓ
]

and J ′
ℓ+1 ≜ UN [HX1|Y1,ℓ+1

\HX1|Y1,ℓ
]. Then, lim

N→∞
|Jℓ|/N =

H(X1|Y1,ℓ), lim
N→∞

|J ′
ℓ+1|/N = H(X1|Y1,ℓ+1)−H(X1|Y1,ℓ),

and one can reconstruct XN from (Jℓ, J
′
ℓ+1, Y

N
1,ℓ+1) with

vanishing probability of error as N goes to infinity.

Proof: We have |Jℓ|/N = |HX1|Y1,ℓ
|/N −−−−→

N→∞
H(X1|Y1,ℓ), where the limit holds by [33]. Then, by Lemma 6,

we have |J ′
ℓ+1|/N = |HX1|Y1,ℓ+1

\HX1|Y1,ℓ
|/N =

R
(

Q[N ]

)

(a)

g H
(

X1|Y1,i

)

+
T

N

[

H
(

X1|Y1,i

)
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|HX1|Y1,ℓ+1
|/N − |HX1|Y1,ℓ

|/N −−−−→
N→∞

H(X1|Y1,ℓ+1) −

H(X1|Y1,ℓ), where the limit holds by [33]. Finally, the

near lossless reconstruction of XN
1 from (Jℓ, J

′
ℓ+1) =

UN [HX1|Y1,ℓ+1
] follows from Lemma 5. □
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