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Private Information Retrieval With Private

Noisy Side

Hassan ZivariFard

Abstract— Consider Private Information Retrieval (PIR),
where a client wants to retrieve one file out of K files that are
replicated in N different servers and the client selection must
remain private when up to 7" servers may collude. Additionally,
suppose that the client has noisy side information about each
of the K files, and the side information about a specific file is
obtained by passing this file through one of D possible discrete
memoryless test channels, where D < K. While the statistics of
the test channels are known by the client and by all the servers,
the specific mapping M between the files and the test channels
is unknown to the servers. We study this problem under two
different privacy metrics. Under the first privacy metric, the
client wants to preserve the privacy of its desired file selection
and the mapping M. Under the second privacy metric, the client
wants to preserve the privacy of its desired file and the mapping
M but is willing to reveal the index of the test channel that is
associated to its desired file. For both of these two privacy metrics,
we derive the optimal normalized download cost. Our problem
setup generalizes PIR with colluding servers, PIR with private
noiseless side information, and PIR with private side information
under storage constraints.

Index Terms— Private Information Retrieval (PIR), capacity,
optimal download cost, colluding servers, noisy side information.

I. INTRODUCTION

IR refers to a problem where a client wishes to download,

as efficiently as possible, one of the K files that are repli-
cated among a set of distributed servers such that the servers
cannot learn anything about the client’s file selection [2], [3].
Aside from its direct applications in data security and privacy,
it is closely related to many fundamental problems such as
secret sharing [4], [5] and oblivious transfer [6], [7], which
is also called symmetric PIR and is a PIR problem where
the server wants to keep any non-selected file private from the
client. Therefore, PIR is a subject that relates to different areas
in computer science.
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The PIR problem was studied in [8] from an
information-theoretic =~ point of view to characterize
the maximum number of bits of desired information

that can be retrieved privately per bit of downloaded
information. In [8], the authors showed that this quantity is
(1+1/N+1/N?+-.-+1/NK=1)=1 when a client wishes to
retrieve one of the K files that are distributed in IV replicated
and non-colluding servers. This problem was subsequently
extended to various scenarios. Reference [9] considered a
PIR problem where T of the N servers may collude and
some of the servers may not respond. References [10], [11],
and [12] studied PIR with N non-colluding servers, where
each server stores an MDS-coded version of the K files.
References [13] and [14], extended the results to symmetric
PIR, in which the privacy of both the client and the servers
is considered.

A. Overview of the Setting Studied in This Paper

In this paper, we study a PIR problem where the client wants
to retrieve one of the K files that are replicated in IV servers
and T of these servers may collude. As reviewed in the next
section, only PIR with noiseless side information has been
studied in the literature, i.e., the client has access to a subset
of the files or portions of each file and their corresponding
positions in the original files. By contrast, in our problem
setting, the client has a noisy version of each file which is
obtained by passing each file through a discrete memoryless
test channel. We assume that there are D < K different test
channels whose statistics are public knowledge and known by
the client and the servers.! We denote the mapping between the
files and the test channels by M. We study this problem under
two different privacy metrics. For the first privacy metric, the
client wants to keep the index of the desired file and the entire
mapping M secret from the servers, and this includes the
index of the test channel that is associated with the desired
file. For the second privacy metric, the client wants to keep the
index of the desired file and the mapping M secret from the
servers, but the client is willing to reveal the index of the test
channel that is associated with the desired file, i.e., M(Z).
For both privacy metrics, we derive the optimal normalized
download cost, and we show that the second privacy metric
always leads to a lower normalized download cost.

'We assume that the statistics of the test channels, i.e. C(%), £ € [D], are
public information. Note that for each file, X ,?, for k € [K], the client has
side information about X;» which can potentially be (), consequently, no more
than K test channels are needed to model the side information available at
the client.
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B. Motivations

Consider the following motivational example of PIR, e.g.,
[15]: a stock market investor may want to privately retrieve
some of the stock records because showing interest in one spe-
cific record could undesirably affect its value. Now, consider
the case where an investor has already retrieved some or all of
the stock records in the past. The investor could now retrieve
a record by leveraging their knowledge of outdated records,
which represents side information. As another example, the
client could have acquired the noisy side information in several
ways. For example, the user could have acquired a noisy
version of the files opportunistically from other users in its
network, overheard them from a wireless noisy broadcast
channel, or downloaded them previously through classical PIR
schemes from other servers. Note that the availability of noisy
side information encompasses having obtained parts of the
files in a noiseless manner. Also, the noise could have been
the result of storing the files for a long period of time.

Note that in the stock market example, revealing the map-
ping between the stock records and the test channels shows
how much information the investor has about each stock
record, which is not in the interest of the investor since they do
not want to affect the value of the stock records. Additionally,
if the client has a subset of the files in a noiseless manner
as side information [16], [17], then not keeping private the
mapping between the test channels and the files may reveal
to the servers the indices of the files that are available as side
information at the client. These are examples of our first pri-
vacy metric. We also consider a privacy metric where the client
reveals the index of the test channel associated with the desired
file. As discussed in Example 9 and Remark 3, this privacy
metric can lead to a lower download cost, when, for example,
the desired file is available in the side information in a noise-
less manner and the client does not need to download anything.

C. Related Works

As identified in [17], three main models for PIR with side
information have been studied in the literature, which are
summarized as follows.

o« PIR with side information globally known by all
the terminals: the effect of side information on the
information-theoretic capacity of the PIR problem was
first studied in [18], where the author considers a PIR
problem in which a client wishes to privately retrieve one
out of K files from NN replicated non-colluding servers.
Specifically, in [18], the client has a local cache that can
store any function of the K files.

o PIR with side information, where the privacy of the
side information is not required: the single-server PIR
problem, where the client has access to a subset of the
files and wants to protect only the identity of the desired
file, is introduced and solved in [16]. An achievability
result for the multiserver case is also derived in [16], and
was later shown to be optimal in [19]. Single-server PIR
when the client knows M files out of K files, or a linear
combination of M files, has further been studied in [20],
[21], and [22] under various scenarios. Also, a multiserver
PIR when the client has a noisy version of the desired file
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is studied in [15]. A more general notion of partial privacy
for noiseless side information is introduced in [23], where
a subset of the files available as side information is kept
private from the servers while the complement of this
subset of files is not required to be kept private.

o PIR with private side information, where the joint pri-
vacy of the file selection and the side information is
required: [16] derived an achievable normalized down-
load cost for N replicated and non-colluding servers. PIR
from NN replicated and non-colluding servers, where a
cache-enabled client possesses side information, in the
form of uncoded portions of the files, that is unknown
to the servers, is studied in [24]. Specifically, in [24], the
client knows the first r; bits, for ¢ € [M], of M randomly
selected files, and the identities of these side information
files need to be kept private from the servers. Also, PIR
from N replicated and non-colluding servers when the
client knows M files out of K files as side information,
and each server knows the identity of a subset of the
side information files, is studied in [25]. In [17], the
authors studied the PIR problem where the client wishes
to retrieve one of the K files from N replicated servers,
when T of the servers may collude, and the client has
access to M files in a noiseless manner. This problem is
extended to the case where the client wants to retrieve
multiple files privately in [26].

Difference between our model and previous models: In this
paper, we focus on PIR with private side information. Note
that the side information in the PIR problems in [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], and [28]
is always noiseless, in the sense that all the side information
available at the client corresponds to sub-sequences of each file
and the client knows the corresponding symbol positions in the
original files. By contrast to [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], and [28], the side information
in this paper is noisy, for instance, if the files are binary and the
test channels are Binary Symmetric Channels (BSCs), then the
client does not know which information bits have been flipped
by the BSCs and which ones have not been flipped.

Previous works recovered as special cases of our model:
Since the side information considered in this paper is gener-
ated by passing the files through some Discrete Memoryless
Channels (DMCs), our problem setup can recover the previous
works if we assume that the test channels are Binary Erasure
Channels (BECs). This is because passing a file through a BEC
with parameter 0 means that the side information is equal to
the input file, and passing a file through a BEC with parameter
1 means that there is no side information. For example, when
there is only one BEC with parameter 1, then the problem
studied in this paper subsumes the PIR problem [8] and the
PIR problem with colluding servers [9]. If we assume there are
two BECs with parameters O and 1, then the problem studied
in this paper subsumes the PIR problem with private noiseless
side information [16, Theorem 2], and the PIR problem with
colluding servers and private noiseless side information [17] as
special cases. If we assume there are M + 1, where M € N,,
BECs with parameters 1 — r;, then the problem studied here
subsumes the PIR problem with private side information under

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on March 25,2024 at 18:24:38 UTC from IEEE Xplore. Restrictions apply.



2888

storage constraints [24]. We provide more details about each
of these scenarios after we formally define the problem.

D. Notation

Let N, be the set of positive natural numbers, and R be
the set of real numbers. For any a,b € N, such that a < b,
[a:b] denotes the set {a,a + 1,...,b}, [a] denotes the set
{1,2,...,a}. Random variables are denoted by capital letters
and their realizations by lowercase letters unless specified
otherwise. Superscripts denote the dimension of a vector, e.g.,
X™. For a set of indices Z C N,., Xz denotes (X;)iez- Ex|[]
is the expectation with respect to the random variable X.
The cardinality of a set S is denoted by |S|. For a mapping
M : A — B, the preimage of b € B by M is denoted
as M7 (b) 2 {a€ A: M(a)=b}. For K € N, and a

mapping M : [K] — R, we represent the domain and
co-domain of M as a matrix of dimension 2 x K as
1 2 K
M= <M(1) M(2) M(K)> :

E. Paper Organization

The remainder of this paper is organized as follows. We for-
mally define the problem in Section II. We present our main
results in Section III and provide the proofs in Section IV
and Section V. Finally, we provide concluding remarks in
Section VI.

II. PROBLEM STATEMENT

Consider a client and N servers, where up to 7' of these N
servers may collude, and each server has a copy of K files
of length n. Additionally, consider a set of D test channels,
whose transition probabilities are known to the client and
the servers, and whose outputs take value in finite alphabets.
We assume that the client has noisy side information about all
the K files in the sense that each file is passed through one
of the D test channels, and the output of this test channel is
available at the client but not the servers, as depicted in Fig. 1.
The mapping M between the files and the test channels is not
known at the servers. The objective of the client is to retrieve
one of the files such that the index of this file and the mapping
M are kept secret from the servers.

A. Problem Definitions
Definition 1: Consider K, N,T,D,n € N,, (di)iE[D] €
Nf’ such that Zi’;l d, = K, and D distinct test channels
(C(Z))ie[D], with C() 2 (X,P)(;l)y,%), where X’ and Y,
i € [K], are finite alphabets. Without loss of generality, assume
that H(U|V;) < H(U|V;), for 4,5 € [D] such that i < j,
where U is uniformly distributed over X, and V; and V; are
the outputs of C'*) and C'9), respectively, when U is the input.
A PIR protocol with private noisy side information and param-
eters (K, N,T,D,n, (d,;)ie[D] , (C(l))iE[D]
o N servers, where up to 1" of these servers may collude;
o K independent random sequences Xt uniformly dis-
tributed over A, which represent K files shared at each

of the N servers;

) consists of,
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Server 1 Server 2 Server N
X7 X7 X7
Xy Xy Xy
Xz Xz Xz
X X Xk

QN

Fig. 1. PIR with private noisy side information and 7’-colluding servers,
where the side information about a specific file is obtained by passing this
file through one of D possible DMCs (C(Z))ie[D]’ where D < K, i.e., for
J € [K], there exists some ¢ € [D] such that Y is the output of channel C' O]
when XJT‘ is the input. Here, (X 1”)1 [k e the K files that are replicated
in N servers, (Qi);c[y) are the queries for the servers, and (A;), |y are
the corresponding answers of the servers. Z is the index of the client’s file
selection and X7 is the desired file by the client.

—

¢ D distinct test channels (C(i) i)

e a mapping M chosen at random from the set
m £ {M:[K]— [D]:Vie [D],|M @G| =d}:
this mapping is only known at the client and not at the
servers;

o for each file X7, where i € [K], the client has access to
a noisy version of X*, denoted by anM( i) which is the
output of the test channel CM®) when X7 is the input;

o the random variable Z represents the index of the file
that the client wishes to retrieve, i.e., the client wants
to retrieve the file X7; when the client has noiseless
side information about some of the files, which means
that C") is a noiseless test channel, then Z is uniformly
distributed over [K]\M (1), otherwise Z is uniformly
distributed over [K];

e a stochastic query function JF; : [K] x 9T x y[}q — Q,,
for i € [N], where Q; is a finite alphabet;

o for i € [N], a deterministic answer function &; : Q; x

« a decoding function D : [K] x Mt x |27 X% R(Qi)} X
ynK N Xn;

~—
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and operates as follows,

1) the client creates the queries Q; = F;(Z, M, Y, )
n A

where Y[K] = (Yi’M(i))ie[K]’ and sends it to
Server i € [N]; we assume that the queries must be
of negligible length compared to the file length n, i.e.,
log |Q;| = o(n), for i € [N];?

2) then, for all ¢ € [N], Server i creates the answer A; =
& (Qi,X"K]), where X7, = (XP) x)» and sends it
to the client; therefore,

H (Ai|Qi, FK]) =0, Vie|N); 1)
3) finally, the client computes an estimate of X7 as
D (2, M, A, i) aq ) Where Apy 2 (Ay) i py-
Therefore, the probability of error for the client is,

P2 limsupP[ (Z MARN, Y, ) ”; XZ} )

R(Quw) (Qi)icing

(K] — i€

= Zf\;l R(Q;), where Q) £ , is the
normalized download cost of the PIR protocol and is random
with respect to Q[n), which makes the protocol a variable
length coding scheme. We also define the expected normalized
download cost of the protocol as R = Eq,,[R (Qn)]-
Example 1 (When K =D =2, T =1, and dy =dy = 1):
Let X' and X3 be the two files at the server and an.M(v)
be the side information about X', i € {1,2}, available at
the client but unavailable at the server, where Yltf,w(z) is the
output of the test channel C'* (%) when the input is X ;. Note
that M can take two values (with the notation introduced in

Section I-D):

a (12 (1 2
s () sy 7).

When Z = 1, since there are two different possibilities for the
side information about X7, that are Y7, and Y7",, we define,

PY(Z=1,M;) 2
IP’[D (Z, M, Ay, Y, Y3h) # X7
PP (Z=1,M,) &

P[D (Z, M, ANy, YT, Y3h)

Z:1,M:M1],

”Z:LM:MQ}.

Similarly, when Z = 2, since there are two different possibil-
ities for the side information about X3’ at the server, that are
Y5 and Y35, we define,

PBE(Z =2,M;) &

P|D (2, M, A, YTy, Vi) # X3
P (Z = 2,M,)

ép[ (Z, M, ANy, YT, Y5h) # X35 | Z

Z:2,M:M1},

_2,M=M2}.

2When D = 1 and the test channel is a BEC with parameter €1 = 1,
or when D = 2 and the test channels are BECs with parameters €; = 0 and
€2 = 1, which correspond to PIR without side information in [9] and PIR with
noiseless side information in [17], respectively, it is shown in [9] and [17]
that there is no loss of generality by making this assumption. In general,
allowing the query cost to be non-negligible with the file length n is a different
problem. However, similar to [16, Remark 1] and [24], this assumption can
also be removed in our converse proofs when the queries Q;, for ¢ € [N],
are only allowed to depend on (Z, M).

2889

Therefore, the probability of error in (2) is equal to,

PZ =1,M=M,;|PM(Z=1,M)+
PZ =1, M =M,|P® (Z =1,M,) +
P[Z =2,M =M,;|P®(Z =2,M,)+
P[Z =2, M = M| P (Z = 2,Ms).

We consider two privacy metrics to study the problem
defined above. For the first metric, we keep the index of the
desired file Z and the mapping M private from the servers,
whereas, for the second metric, we allow the index M(Z)
to be revealed to the server through the queries. As discussed
in Section II-B, these two privacy metrics recover, as special
cases, several PIR settings previously studied in the literature.

Definition 2 (Cpropnst Optimal Normalized Download
Cost): An expected normalized download cost R € R, is
achievable with private noisy side information and undisclosed
side information statistics of the desired file, when up to T’
servers may collude, if there exist PIR protocols such that, for
any set 7 C [N] such that |7| =T

P, =0,
I1(Qr,Ar,

The privacy metric (3b) means that the client file choice Z
and mapping M must be kept secret from any 7" colluding
servers. The infimum of all achievable normalized download
costs is referred to as the PIR optimal normalized download
cost with private noisy side information and undisclosed side
information statistics of the desired file, and is denoted by

(3a)

Xfp; Z, M) = 0. (3b)

Cpir-PNsI-

Definition 3 (Cprpnst Optimal Normalized Download
Cost): An expected normalized download cost R € R, is
achievable with private noisy side information and disclosed
side information statistics of the desired file, when up to T’
servers may collude, if there exist PIR protocols such that, for
any set 7 C [N] such that |7T] =

P. =0,
1(Qr, A7, X[y

The privacy metric (4b) means that the client file choice Z and
the mapping M must be kept secret from any 7" colluding
servers, but the noise statistics of the side information of the
desired file available at the client, i.e., M(Z), may be revealed
to the servers.® This contrasts with privacy metric (3b) where
the noise statistics of the side information of the desired file
available at the client must be kept secret from the servers.
The infimum of all achievable normalized download costs is
referred to as the PIR optimal normalized download cost with
private noisy side information and disclosed side information
statistics of the desired file, and is denoted by Cp_pnsi-
Note that the privacy constraint in Definition 2 implies
the privacy constraint in Definition 3, i.e., (3b)=-(4b), and
we will show that revealing the index of the test channel

(4a)

i Z,M|M(Z)) = 0. (4b)

3For this privacy metric, we assume that Z is uniformly distributed over
[K] because if the client has access to the desired file in a noiseless manner,
then according to (4b), the client can reveal this to the servers and as a result
the normalized download cost will be equal to zero.
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Erasure Type of Side Information

| v = BEC,, (X7) =710700 ... 170170 |
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Database

[ Xp =010100...110110 |

[ X7 =101110...100100 |

Q
A

| v = BEC,,(Xp) =101710... 100170]

{ Client

I—)Xg

Fig. 2. Example with (K, N,T, D) = (2,1, 1,2) when the test channels are BECs.

associated with the desired file X7, can result in a strictly lower
normalized download cost. When D = 1, the mapping M
is deterministic and therefore the secrecy constraints in (3b)
and (4b) are both equal to

(&)

Remark 1 (Rate definition): Note that in all the previous
PIR settings, as reviewed in the introduction, the normalized
download cost is not a random variable. However, in our
setting, since the privacy condition in Definition 3 depends on
the index of the desired file, the normalized download cost is
potentially a random variable. Specifically, we allow the query
Qn] to depend on M(Z), which leads to the normalized
download cost R (Q[ N]) to be a random variable.

I(QT,AT,XFK];Z) = 0.

B. Examples

In Example 2, Example 3, and Example 4, we show
that our problem setup recovers the problem setup for PIR
with colluding servers [9], PIR with colluding servers and
noiseless side information [16], [17], and PIR with private
side information under storage constraints [24].

Example 2 (PIR With Colluding Servers): When D = 1 and
the test channel is a BEC with parameter ¢ = 1, then
the client has no side information about the files. In this
case, Definition 1 reduces to PIR without side information as
introduced in [9], and the privacy constraints in Definition 2
and Definition 3 reduce to (5), which is equivalent to the
privacy constraint in [9].

Example 3 (PIR With Private Noiseless Side Information):
When D = 2 and the test channels are BECs with parameters
€1 = 0, and €5 = 1, the client has access to d; files in a
noiseless manner as side information. This case corresponds
to PIR with side information as introduced in [16, Theorem 2]
for non-colluding servers and in [17, Theorem 1] for colluding
servers, with the privacy constraint in Definition 2.

Example 4 (PIR With Private Side Information Under
Storage Constraints): Suppose that T' = 1, D = M + 1,
for M € N, and M < K, the test channels are BECs
with parameters ep = 1, ¢, = 1 — ry, for ¢ € [M], with
ry >rg > -+ >ry, and d; = 1, for ¢ € [M]. This problem
setup, under the privacy constraint in Definition 2, is related
to the problem studied in [24]. The difference with [24] is that
the positions of the erasures are known at the servers in [24],

whereas in our setting, the positions of the erasures are random
and unknown at the servers. Therefore, the optimal normalized
download cost for our problem setup in this example might be
higher than the normalized download cost in [24]. However,
we will show in the next section that the same normalized
download cost as in [24] is achievable.

IIT. MAIN RESULTS

The novel element of the achievability scheme in this paper
is the redundancy removal based on the noisy side information.
Before we present our main results, we provide a toy example
to illustrate the main ideas of the achievability scheme.

A. Example With (K, N,T,D)=(2,1,1,2)

In this example, as illustrated in Fig. 2, we assume that the
files are binary sequences, and the test channels are BECs with
parameters €; and ez, where €; < ez. Therefore, the mapping
M is a random mapping that maps the first file to one of the
test channels and maps the other file to the other test channel.
Hence, M is a random permutation of the set {1,2}. Here,
as seen in Fig. 3, we first generate the source codes of the
files in the database, assuming that the side information of all
the files at the client is according to a BEC with parameter
€1, by using the Slepian-Wolf encoder [29] [30, Section 10.4].
We refer to these source codes as SC;. Similarly, we generate
the source codes of the files in the database, assuming that the
side information of all the files at the client is according to a
BEC with parameter e — €1, by using a second Slepian-Wolf
encoder that is nested with the first Slepian-Wolf encoder, and
refer to these source codes as SCs. For the privacy metric
defined in Definition 2, i.e., when the client does not reveal
the index of the test channel associated with the desired file,
the client first downloads SC;, which results in retrieving the
file that is associated with the BEC with parameter €; and also
gaining some information about the other file. The normalized
download cost for downloading SC; is 2¢; [8]. According to
the Slepian-Wolf Theorem, e.g., [29] and [30], the probability
of error for retrieving the file that is associated with the BEC
with parameter ¢; at the client goes to zero as n goes to infinity
since the source coding rate is €;. Next, since the client has
noiseless access to the file that is associated with the BEC
with parameter €1, and therefore to the source coded version
of this file, it then suffices to download SCy(1)®SC2(2),
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where SCy (i), for ¢ € {1, 2}, is the source code of File 4, and
@ denote the modulo 2 addition. Therefore, the normalized
download cost of this operation is €5 — €1 [16, Theorem 2],
[17, Therorem 1]. The probability of error for decoding the
file that is associated with the BEC with parameter ¢ at the
client goes to zero as n goes to infinity since the source coding
rate for this file is €; + (e2 — €1) = €2. The total normalized
download cost for this privacy metric is 2¢; +e3—€1 = €1 +€9.

Consider now the privacy metric defined in Definition 3, i.e.,
when the client is willing to reveal the index of the test channel
associated with the desired file. When Z = 1, the client only
downloads SC;, therefore, the normalized download cost is
2¢1. When Z = 2, the client downloads SC; and retrieves the
file that is associated with the BEC with parameter €;, then
it retrieves the desired file by downloading SC4(1)8SCs(2).
Therefore, the normalized download cost is 2¢1+e2—€; = €1+
€o. Since Z is a random variable with uniform distribution, the
average normalized download cost is €1+ % (e1+€2). Therefore,
the normalized download cost when the client is willing to
reveal the index of the test channel associated with the desired
file, i.e., Definition 3, is %(62 — €1) less than the normalized
download cost when the client does not reveal the index of the
test channel associated with the desired file, i.e., Definition 2.
However, this reduced normalized download cost comes at a
price, since the privacy metric in Definition 2 is stronger than
the privacy metric in Definition 3.

B. Main Results

We now state our main results and present some examples
that recover and extend known results.

Theorem 1: Consider K files that are replicated in N
servers, where up to 7" of them may collude. Then, the optimal
normalized download cost of PIR with private noisy side
information and undisclosed side information statistics of the
desired file is

D T die+1:D)
Cpir-pnst = ZH(X1|Y1,€) (N) x
=1

(1+§+ <JI\;)2+...+(]1\;)<1@1>

7\ He+1:0) T
H(X1|Yl,l) <N> \Ilil <N7dﬁ) ’

(6)

where U71(A,B) £ (1+A+ A%+ .-+ AB~1), and for
i,j € Ny, djjj) £ Y1, dy, when i < j, and dj;.; £ 0, when
P> 7.

Proof: The achievability proof is based on a multilevel
nested random binning scheme, that allows the client to use
the side information efficiently, and the achievability schemes
in [9] and [17]. Without loss of generality, we assume that
the channels are ordered according to their noise level, i.e.,
we assume H(U|V;) < H(U|V;), for i,j € [D] such that i <
J, where U is uniformly distributed over X and V; and V; are
the outputs of C'¥) and C'U), respectively, when U is the input.
In our scheme, for each test channel CY), ¢ [D], the servers

D
=

1
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store the source coded version of all the files in a new database,
denoted by SC,. These databases are obtained by applying a
multilevel nested random binning scheme that performs source
coding with side information. The client first downloads SC1,
which results in retrieving the d; files that are associated with
the first test channel and obtaining some information about
the other files. To download SC5 the client uses the d; files
that have been retrieved from the previous level as noiseless
side information similar to [17]. Downloading SCs results
in retrieving the do files that are associated with the second
test channel and obtaining some information about the other
files. The client continues this process to download all the
(SC4,...,SCp) new databases and, in each step, uses all
the files retrieved from the previous steps as noiseless side
information. When the client is willing to reveal the index
of the test channel that is associated with the desired file,
which is denoted by 4, it only downloads (SCq,...,SC;). Our
converse proof shows that this scheme is optimal. The details
of the achievability proof are available in Section IV-B. The
converse proof is presented in Section IV-A. ]

Remark 2 (Index of random variables): Since all the files
are generated according to the same distribution, namely, the
uniform distribution over X", the index 1 of X; and Y7, in
Theorem 1 can be replaced with any other index ¢ € [K].

Corollary 1: Consider K files that are replicated in N
servers, where up to 7" of them may collude. Additionally, the
test channels are BECs with parameters (¢;),c(p; € [0, 1P
such that ¢; < ¢;, for 4,5 € N, and ¢ < j. Then, the
optimal normalized download cost of PIR with private noisy
side information and undisclosed side information statistics of
the desired file is

D T die41:D)
Cprr-pNst = Z €| X
N

{=1

(1+;+ (2) s (;)d“).

Example 5 (No Side Information): In Corollary 1, if we
set D = 1, and ¢; = 1, which means that the client has no
side information and dp = K, then the optimal normalized
download cost result in Corollary 1 reduces to [9, Theorem 1],

ie.,
T 7\> T\ 5!
si= 14+ =+ (= (= .
CpIR-PNSI < +N+(N> + +<N> )

Example 6 (Private Noiseless Side Information): In Corol-
lary 1, if we set D = 2, T = 1, ¢; = 0, which means that the
client knows d; files as side information in a noiseless manner,
and eo = 1, which means that there is no side information
about do = K —d; files, then the optimal normalized download
cost result in Corollary 1 reduces to [16, Theorem 2], i.e.,

2 K—di—1
C =1+ i + l 44 i
PIR-PNSI N N N .

Example 7 (Erasure Side Information With D = 1): In
Corollary 1, if we set D = 1 and the test channel to be a
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Source Codes According to €; (SCl)

| Source Code(X}) =1011001...10111010 |

Database

[ Source Code(X3) =1010100... 10001001 |

| X7 =010100...110110 |

&

[Xp=101110... 100100 ]

Source Codes According to e; — €; (SCz)

| Source Code(X7) =0010111...11101110 |

[ Source Code(X5) =1110010...01001110 ]

Fig. 3.

Source codes of the files when the side information available at the client is according to the BEC with parameter €1, i.e., SC1, and source codes of

the files when the side information available at the client is according to the BEC with parameter €3 — €1, i.e., SCa. Note that the source codes considered

are nested.

BEC with parameter e, then the result in Corollary 1 reduces
to

T T2 7N\ E-1
CPIR-PNSI=€<1+N+<N> +~-~—|—<N) ) 7

The optimal result in Example 7 is equal to the optimal
normalized download cost of the PIR problem when the side
information is known by all the terminals.

Example 8 (PIR With Private Side Information Under
Storage Constraints): SetT =1, D = M + 1, for M € N,
and M < K. If wesetd; =1, fori € [M], dppy1 = K— M,
and e; =1 —r;, withry > r9 > --- > 71y, and ep = 1, then
the optimal normalized download cost in Corollary 1 reduces
to

1—7’1 1—7’2 1—7’3 1—T’M_1
Cprr-pNsI = NE-1 + NE—2 + NE-3 T m+

177‘]\4 1 1 1

7NK_M+1+N+W+“'+W~

Note that this result is stronger than that of [24, Theorem 1],
since in [24] it is assumed that the client knows the first r;
bits, for ¢ € [M], of M randomly selected files, however, our
result in Corollary 1 reduces to the same optimal download
cost as the optimal download cost derived in [24] by removing
the constraint that the client knows the first r; bits of M files
and assumes that the client knows any randomly chosen r;
bits of M files.

Theorem 2: Consider K files, N replicated servers, where
up to 1" of them may collude, and D test channels (C’ (i))i €[D]
as in Definition 1. Then, the optimal normalized download cost
of PIR with private noisy side information and disclosed side
information statistics of the desired file is

CF’IR-PNSI =Evu [R(U)]

1 D —14de+det1:p) T j
= — H(X|Y; . —
% (X11Y1e) | dies1:p) '22 (N)
=1 J=de41:0)
—1+dp.p) j
T P
v Y (3)

=0

D d .
1 T\
=% ;H(XHYL@) diet1:) (N) v (N’de)

(T
+dF\Ij ! (N;d[ZD]>:| )

(8a)

where
-1

w2 Y ) (L) e (L
RU)E Y H(Xi|Y1, () v < e>+
—~ N N

H(X.|Yip)w™! (T d[U:D]>, (8b)
with U distributed according to P[U = u] £ %, for u € [D],
UYA,B) £ (1+A+ A%+ 4+ AB71), and for i,j €
N, djjj) = >0, dy, when i < j, and dj;.;) £ 0, when i > j.

Proof: Similar to the achievability scheme of Theorem 1,
the achievability scheme of Theorem 2 is based on source
coding with side information, and the achievability schemes
in [9] and [17]. Specifically, we use the same achievability
scheme as in Theorem 1 by using M (Z), instead of D, nested
random bin indices for each file. The details of the proof are
available in Section V-B. The converse proof is presented in
Section V-A. ]

The optimal results in Theorem 1 and Theorem 2 show
that the optimal normalized download cost grows linearly with
H (X 1 \YM), for £ € [D], which quantifies how noisy the side
information is. This confirms the intuition that the noisier the
side information is, the higher the normalized download cost
will become. Note that, the same remark as Remark 2 also
applies to Theorem 2.

Corollary 2 (Binary Erasure Test Channels): Consider K
files and N replicated servers, where up to 1" of them may
collude. Additionally, assume that the test channels are BECs
with parameters (€;),c(p] € [0,1]” such that €; < e;, for
i,7 € N, and ¢ < j. Then, the optimal normalized download
cost of PIR with private noisy side information and disclosed
side information statistics of the desired file is

C;IR—PNSI =Evu [R(U)]

D d .
1 T [£+1:D] B T
=% ;w [d[eﬂ:m (N) vt (N,de> +

B T
dpV 1<N7dm:mﬂ, (9a)
U—-1 d .
T [¢+1:D] T
RU)£ Y e <) vt (7d(> +
— N N
T
et (N,d[U:DO : (9b)

Corollary 3 (Binary Symmetric Channels): When the test
channels C¥), for ¢ € [D], are BSCs with parameters 0 <
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p1 < pa < --- < pp < %, then the optimal normalized
download cost of the PIR problem with private noisy side
information and disclosed side information statistics of the
1 2
=% > Hi(pe)

desired file is
digsn.
T “tettpl T
dipsr.pl | = (|l
2 l [6+1:D] (N) <N’ z) +

(T
délI/ ! (Nad[ZD]>:| )

where H (p¢) = —pelog(pe) — (1 — pe) log(1 — pe).

Example 9 (Private Noiseless Side Information): In Corol-
lary 2, if we set D = 2, ¢ = 0, which means that the
client knows d; files as side information in a noiseless manner,
€9 = 1, which means that there is no side information about
dy files, and M(Z) = 1, which means that the intended
file is included in the noiseless side information, then the
normalized download cost R(U) in (9b) is equal to zero. When
M(Z) = 2, which means that the intended file is not included
in the noiseless side information, then the optimal normalized
download cost R(U) in (9b) reduces to,

R(U) <HZTV+(;>Z...+(;)‘“),

which is the result in [16, Theorem 2], with T' =1, and [17,
Theorem 1]. Additionally, on average over the file choice, the
expected normalized download cost is Cpr_pnst = Ev[R(U)].

Example 10 (When D = 1): When D =1, U = 1, the first
term on the Right Hand Side (RHS) of (8b) is equal to zero,
and the optimal normalized download cost in (8a) reduces to
Theorem 1 when D = 1, that is,

*
CPIR-PNSI

(10)

*
CPIR-PNSI = Cprr-pnsI

=H(X1|Y1,1) <1+ % + <Z€)2+~~+ (fz)Kl) .

Remark 3 (Comparing the results in Theorem 1 and Theo-
rem 2): We rewrite the result in Theorem 1 for any U € [D]
as follows,

D T d[£+1:D] 1 T
Cpir-pNsI = ZH(X1|Y1,Z> <N) v (N7de>

=1

-1 d .
T [£4+1:D] 1 T
= H(X1|Y17[) <N> \I/ <N’d£)

2893
(@) (T
R©) - B (gden) +
D digan.
T [¢+1:D] T
H(X,|Y; — U=
i,
+Z( X1|Y1e (Xl\Yl,U)>><
T d[HLD]
— /S
(N> (¥)
()
> R(U), (11)
where

(a) follows from (8b);
(b) follows by expanding ¥~ (%7
(c) follows since H (X;|Yy ) <
D].
Therefore, the optimal normalized download cost in (8a),
which is the average of R(U), with respect to U, is always
smaller than or equal to the optimal normalized download cost
in Theorem 1, i.e., Cprpns: < Cprpnsi. This shows that
revealing the index of the test channel that is associated with
the desired file reduces the normalized download cost.
Hence, the optimal normalized download cost in Theorem 2
is smaller than the optimal normalized download cost in
Theorem 1, and the difference between these two quantities
increases as the index M(Z) of the test channel that is
associated with the desired file decreases.

(X1|Y12 for ¢ € [U :

IV. PROOF OF THEOREM 1

A. Converse Proof

Define Z £ (Z,Z), where Z = (21722, ce ZK—1), and
Zisa, pyap) =M if M(Z)
Lt gy—rdy) = MTEN{Z} i i=M(Z),
Zig, \y14ay) = M) it i>M(Z)

(12a)
where dj; = Z;zl d;, Z[i:j] £ (Zi,Zis1,...,Z;), and,

by convention, for a,b € N, and a > b define Z[a:b] £ 0.
Then, we index all the files as depicted in Fig. 4 such that the
mapping M can be described as (13), shown at the bottom
of the page, (with the notation introduced in Section I-D).

=1 From (12a) and (13), the side information available at the
D T\ %e+1:0] T client is (14) shown at the bottom of the page, in which
+ Y HXVie) (& U e Y2 VER'E Yo
= N N z[”]e Zi N Ziga 0 N Z 0 )
M _ Z[l dl] (Z7 Z[l-‘rd[l,l]—l—‘rd[l]]) Z[d[D,1]1—1+d[D]] , (13)
(1,...,1) (i,4,...,1) (D,...,D)
Yn . ) = YT—L ,Y7—1 ,...,Yy—Z ; 7Yn7§7
[K] M ( (Z)KL i€[D] ( Z[1;d1],1 Z[1+d1:d[2]]72 Z[1+d[7‘,_2]1d[i_1]} ,i—1 Z,
Y2 Y7 i1 Yz iy Yo . (14)
[1rdps_qy=1td ] Z[ﬂ‘[z‘]i*”‘lwu]’ i Z[dwu:*l*dwzﬂ’ i Z[‘%D—lrl*d[m]’D)
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Channels

Fig. 4. Indexing the files based on the mapping M.

Example 11: To illustrate the definition of Z £

(Z1,...,Zk_1) in (12a), consider a setting where d; = 1,
for ¢ € [D], which means that D = K. In this case,
3 ‘ldy=i—1and Y!_, d; = i, therefore, the definition of
Z;, for i € [K — 1], in (12a) reduces to

{Zi 2 ML) if i< M(2)

it i>M(Z) (13)

Zi  AMG

~—

For example, let K = D = 3, Z = 2, and the side information
at the client be (Y73, Y5, Y3, therefore M(Z) =1, Z; £
M2 =3, and Zy 2 M1(3) = 1.

The following equations and lemmas are essential for the
converse proof. From the dependency graph in Fig. 5 we have

1(2, Qi X | Vi aes M) = 0.

Considering the probability of error in (2), by Fano’s inequal-
ity [31, Section 2.11], we also have

(16)

H(X2 AN, YT Z=z2M=M
e e (XZ1Qv), A Y m z )

=o(n). 17

Lemma I: For all M € 9, z € [K]|, T’ C [N], and
7 C [N] such that |7| =T, we have

I (AT; Q[N]\T‘QT,YE%],M,X%, Z=z M= M) =0.
(13)

Proof: We have,
1 (A7: Q7| Q7 Yiigpe X5, Z = 2, M = M)
(a)
< 1 (A7, Xfic Quvnr| Q7. Y pe X5
L=z M= M)

(b) n n n

n
[K],m

Fig. 5. Dependency graph for all the involved random variables.

+1 (A'Ta Q[N]\T’X?K]a Qr, Yf}(LMa Z=z,M= M) )
19)

where (a) and (b) hold by the chain rule and non-negativity
of the mutual information. The first term on the RHS of (19)
is equal to zero because of (16) and the second the term on
the RHS of (19) is also equal to zero from (1). O

Lemma 2: For each M € 9, 2,2’ € [K], T’ C [N], and
T C [N] such that |T| =T, we have

H (A7|X%,Qr, Yiig a2 = 2. M = M)
e (AT‘xg,, Qr. Yjqm.Z =7 M= M) — o(n).
(20)
Proof: We have,
I (Q[N]’A[N]’XFK]’Y&LM;Z|M = M)
<y (Quw1s Xy, Yy ani Z2|M = M)
= 1 (Xfiq. Yy pa 2l M = M) +
I (Q[NNZ\XT'KPY%,M’M = M)

®)
< (XfK],YE}(LM; Z|M = M) + o(n)
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(i)l( AN M,M:M) +o(n)

o(n), 21

where

(a) follows from the chain rule and (1);

(b) follows since the queries are of negligible length
compared to the file length n and, therefore,
1(Quv; Z|X i, Y aes M = M) < H (Qu) =
o(n);

follows from the chain rule and because

H( M =M Z)

— ZIP[Z = z|M =M]H (YFKLM’Z =z M= M)
= ZP[Z = z|M =M]H (Yﬁm,M)

—H( f.am)

where the second equality follows since all the files are
generated according to the same distribution and, thus,
the entropy of the side information does not depend on
M and z.

(d) follows from (16).

Then, we have

(@)

o(n) 1 (Az, Qr, Yiio pu X5 7| M = M)

(b)
: (ATaZ|QT7 K] M7XT’ M M) + ( )7
(22)
where (a) holds by (21), and (b) holds by (21) and the chain
rule. Finally, (22) implies (20). ([l

Then, we bound nR (Q[ N]) as (23d), shown at the bottom
of the next page, where

(a) follows since conditioning does not increase the entropy;
(b) follows from Fano’s inequality in (17);
(¢) follows since for i & M(Z), we have

Q) Yy 1p)i X7 [YZ:, 2, M = M)
=1(Q; X3|Y4 . Z, M = M)+

I(YZ 1) X2|Qn), Y24, Z. M = M)
= I1(YZ o X2|Q) Y24, Z, M = M)

207
A n n n
where Y5 o) 2 (Y3 1 Y% s Y5 y) and
Y ) = (Yzn sz”i,zw--»Yéi,D)’ for i € [K — 1],

and the second equality holds because, from Fig. 5,
Qv — (Y7, Z, M) — X7, forms a Markov chain, and
the last equality holds because, from Fig. 5, Y£ D]
(Qn), Y25 Z, M) — X7 forms a Markov chain;
follows since for i € [K] and j € [D], H(X]'|Y]") =
H(XTYY";) = nH(X1]Y1;) because PX;L = Pxn =
P®n and, therefore, we have H(X"| e L= zZ, M=

M) = H(XZ|YZ,) = H(XP|YY,) = nH(X1|Y1,), for
any z and M;
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(e) follows from Lemma 1;

(f) follows from Lemma 2;

(g) follows since one can lower bound the second term on
the RHS of (23b) using the following inequality,

H( N]’XZK 1’Q[N

> H(AT‘XZK Qv Yk
TTI=T

Yikim 2 =2k-1, M = M)

7 =25 0, M= M) (24a)
2 ZH(A[NHX@ Q. Y7
Z N Zro1) s YK, M
7 =35 0, M= M), (24b)

where (24a) follows by writing (23c) for all (g) different
subsets 7 C [N] with cardinality 7 and adding up
all these inequalities; and (24b) follows from Han’s
inequality [31, Theorem 17.6.1].

Repeating the steps described in (23d) starting from (23a)
with Z = 2/, where 2’ changes from the first ele-
ment till the last element of [ZK_Q,ZK_g,...,Zd[Dill],
to bound the second entropy term on the RHS of (23d),
we obtain (25), shown at the bottom of the next page,
where (a) follows by induction and repeating the steps
described in (23d) starting from (23a) with Z = 2/, where
z' changes from the first element till the last element of
[Zd[Dq],l, Zdip_1)—25 - Plbdp_1ys Zs Zdp_qyy - s 21], where
i £ M(z), and (b) follows from (1).

B. Achievability Proof

A high-level description of the achievability scheme is
provided after Theorem 1.

1) Preliminaries: Our achievability is based on nested
source coding, which we define first and then use in our
achievability proof as a black box. Consider a discrete
memoryless source (X; X Xee[D Vi, Px, Yip ) with D +
1 components. Assume that (X7, 17[ D]) are 1ndependent and
identically distributed (i.i.d.) samples of this source. Then,
consider an encoder £ : X" — J [11))], that maps the sequence

X' toJ EB] = (Je(l))ge[p], where the asymptotic rate of

I, for ¢ € (D], is H(X1|Yi,) — H(X1|Yi,—1), with
the convention H(X1|Y1,0) = 0. Consider also D decoders
j[e] x Yi'y — AT, for £ € [D], where the Decoder

Dg assigns an estimate X7 to (J &1]) Y)",) such that IP’[X £
X {L] —— 0. In Appendix A, we explaln how to obtain such
a scheme with nested random binning and how to implement
it with nested polar codes when the side information at the
decoders forms a Markov chain.

Assume that each file is of length n = N¥, with symbols
in a sufficiently large finite field F,. Fix § > 0.

2) Nested Source Coding: For every file 27, i € [K],
generate D nested source codes as in Section IV-B.1. For each
test channel ¢ € [D], we denote the source code of the file
P, i € [K], by ](Z) e & Lq?l, where ¢, £ ¢"¢. Here,

EE
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Ry = 0 and for t € [K],

14

> -

i=1

We refer to SC, £
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3) Query Structure Construction: The client constructs the
query in D different levels. In the first level, we apply to

- H ( X, |v;, e) + 6. (26) the Qatabase SC; the same query structure as in [9], which
consists of K sublevels. In the level £ € [2 : D], we apply

() (K) to the database SC, the same query structure as in [17],

(Jz REREW ) ) velD as the database  which also consists of K sublevels. Specifically, as in [17],

(. The query is constructed to retrieve each one of the SC, the k,M sublevel consists of sums of k, symbols, which are
databases in ascending order. called ky-sums. There are (,ﬁi ) different types of ky-sums

nR (Qn))
> H (Aln))

>H<A[N]‘Q[N K]M?ZZEKflvM:M)
— H(A[N]’X?K_JQ[N]an}(]’M,Z =Zg_ 1, M= M)

H( L Qv ANy Y a2 = 21, M = M) (23a)

(b)
> H(A[N],X?K_1 Q) Yiippms Z = 21, M = M) — o(n)
- H( Zi- 1|Q[N]’Y[K ML =2k, M= M)

+H( | XEe > Qv K]M7Z:5K—17M:M) —o(n)

©

SH(x5 |Vh 5 Z =2, M=M)

ZK—1

+H( 1| X e, Qo K]MaZZZthM:M)—O(n)

2 nH(X1|Y1 D) + H(A[N X2 Quvpy Yk Z = 21, M = M) —o(n) (23b)
(X v;, D) (AT|XZK Qs K]M,Z:ZK_l,M:M> —o(n)
© nH(X1|Y17D) + H(A7|X2, Q7 Vg Z = 21, M= M) = o(n)
2 nH(Xl\YLD) (ATszK QY Z = Zx—a M = M) —o(n)
nH(leY1 b ( TIX2 Qv Yl Z = Zr—2, M = M) — o(n) (23¢)
4 nH (X,|Yip) + %H( WIXE Qg Y a7 = 212, M = M) = ofn), (23d)
R (Qu)

T
> H(X1|Y1,p) + =

= H(X1|Y1.,p)

1 /T\" .
+ n (N) H(A[N]|XZ[

l i=0+41
11(‘<1|)1,5) ( )

(@) &
=D
/=1

Authorized Iicenseufus]e li

T T
|:H(X1|Y1,D) + N [H(lel,D) + -+ — [H(X1Y1,p)

PR

QL Y(kpme Z = Zapp_yy -1, M = M) —o(1)

N

7H(A[N]’X% aQ[N K]MVZZZd[D,I]—l,M:M>

e

1+ =y (X 2+ (£ v
N \N N

d[D—u:K*]

T (B e (5
NN N

N

N

n

1 T K-1 B
+ — () H(A[N]‘X’[”K],Q[N],YFK]’M,Z:Z1,M=M) —0(1)

2

N

mited to: University of Texas at Arlin

N N N
on. Downloaded on March 25,2024 at 18:24:38

®) ZH X1|Yi.) <T>Z?”1dl ll + Ly (T) ot (T>d[_il —o(1) (25)
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and (N — T)ke=1TE=ke different instances of each type in
the k,M sublevel. Hence, the total number of symbols that
will be downloaded from each server is Zgzl (g (N —
T)k:gflTkag.

4) Query Specialization: For ¢ € [D], we do the query
structure construction and query specialization without con-
sidering the availability of any side information as in [17],
and denote this scheme by II,. Then, we do query redundancy
removal based on the availability of noiseless side information
similar to [17]. Specifically, after each level ¢ € [D], the client
is able to recover the d, files that are associated with the
/M test channel, and therefore considering the files that are
decoded in the previous levels, the client knows Xﬁlw] and,

(de))

therefore, (jéi)l, e Jdova

>, which is used as noiseless side

(dig+1)
b1 aee

()

s Jogq | in level £+ 1.

information to recover (j

For level ¢ = 1, the client does not have any noiseless side
information and cannot perform query redundancy removal
but, for level ¢ € [2:D], since it has recovered Zf;% dy
files, the client can perform query redundancy removal. For
each ¢ € [D] and for each server, let pe¢,1 denote the number
of symbols downloaded with II,. Out of these p,1 symbols,
we denote by peo < pg1 the number of symbols that the
client already knows by decoding some of the files in the
previous levels. For ¢ € [D], let U,; € Fg' denote
the symbols downloaded from the ;" server with II,. For
each server, use a systematic (2ps1 — pe,2,pe,1) Maximum
Distance Separable (MDS) code [32], with generator matrix
G(2pﬁ,17p£,2)><p£,l = [Vpé,lX(P({,l*pé,z)|IPZ,1><P€,1]T to encode
the py 1 symbols into 2pg 1 — pg.o symbols, of which py ; are
systematic, and py 1 — D2 are parity symbols, such that it is
sufficient to download VT Uy, For level £ =1,

Pe,1 X (Pe,1—Pe,2) »J
since the client does not have any noiseless side information
about SC1, P12 = 0.

5) Decoding: For ¢ € [D], after reconstructing (ji(t))ie[g],
for t € M7(0), given Y{i am- the client forms Xn,
an estimate of the sequence X' by using the nested source
decoders with (26), and thus P[ X} # X]'] —— 0.

6) Rate Calculation: Similar to [17], forntﬁgo scheme II,,
the total number of downloaded symbols from each server is
pea = Yy (F)(N = T)ke=1TK ke, ¢ € [D] and out of
these py,1 symbols pg o = ZZL‘:P (d[g”)(N —T)ke—tpK—ke
symbols are already known at the client, where dj,_ =
Zf;ll d; and dpg) = 0. Then, we have,

(K
— N*T kgflTkag
pet ];1 (klz)( )
—
K
S (F)(N - T)kepE—ke —TK
k=0 "
B N-T
NK _ TK
= W, (273)
similarly,
dig—1) d
pa= 3 (M )ov - s

ke=1
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die—1)
_ TK_d[Zfl] Z (d[£1]> (N _ T)ke—le[l—l]_ki

ko=1 e
TK—dp—1 (Nd[ﬂ—u — Td[e—l])
= N . (27b)

Therefore, the normalized download cost for the level £ is,
RyN(pe,1 — pe,2)

RO —
n
(@) ReN(pey — pej2)
- NEKE
T K*d[@_l]
(:b) Ry (1 — (N)
(1-%)
© Kodu—g=1 i
= (H(Xe) = H(Xi Y)Y (N) :
i=0
(28)
where

(a) follows since n = NX;
(b) follows from (27);
(¢) follows from (26).

Therefore, the total normalized download cost is,
D

ZD:Rw) -y (H(XllYu) - H(X1|Yu_1)> x

=1
K=die-n=1 i
()
K—d
T 0
H(X1|Y1.0) (N)

7) Privacy Analysis: Note that for all the D levels, the client
does not use any side information to construct the queries.
Indeed, the systematic MDS codes of all the levels in the query
redundancy removal do not depend on the side information that
the client obtains after each level. The decoding starts when
the client collects all the answers from the servers for all the
D levels. Thus, the side information is used only when the
client collects all the answers from the servers for all the D
levels. Therefore, privacy is inherited from the privacy of the
schemes in [9] and [17].

D dei:l Z i
, N)
(=1 i=0

V. PROOF OF THEOREM 2
A. Converse Proof

The following equations and lemma are essential for the
converse proof. Considering the probability of error in (2),
by Fano’s inequality [31, Section 2.11], for every ¢ € [D],
we have

H(X% AN Yk M(Z) =1,
max  wmax H(XZQ), A, Yiic p M(Z) =i

Z =2z M=M) = o(n). (29)
Lemma 3: For all z,2’ € [K], i € [D], T,7' C [N], and
M, M’ € 91, such that M(z) = M'(2'),

o ATLQT,XTTL,,Y&],M,Z — 2 M(Z)=i,M =M
,2024 at 18:24:38 UTC from IEEE Xplore. Restrictions apply.
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- H(ATIQT,X%,YE}(],M,Z =2,
M(Z) =i, M= M) ~o(n).

Proof: Since H(Z) = log K and H(M) < log |91,
then for all ¢ € [D], and 7,7’ C [N], we have

(30)

I (AT; 2, M|Qr, X8, Yy pns M(Z) = z) = o(n).
(31
O
Consider (z,21,22,...,2K—1) a realization of Z, and M

a realization of M such that M(z) = 4. Then, we bound
nR(Qqny) as (32c), shown at the bottom of the page, where

(a) follows since conditioning does not increase entropy;
(b) follows from Fano’s inequality in (29);
(¢) follows since, for i = M(Z), we have,
I(Q[N] D],XZ‘YZ“ =z M( )_Z M:M)
+ I(Q[N ,XZ|YZV[D], YZ’Z-, 7 =z,
M(Z)=i,M = M)
< o(n),

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

where (33b) holds because the first term on the RHS
of (33a) is equal to zero since the files are independent
of one another, and the second term on the RHS of (33a)
is less than or equal to o(n) since the queries are of
negligible normalized download cost;

follows because H(Xg|Y£i,Z =2,M(Z)=i,M =
M) = H(XZY;) = H(XT[YY;) = nH(X1|Y1,), for
any z € [K];

follows since for all M € 9, z € [K]|, T’
7 C [N], such that |[7| =T, and M(z) =i we have

I(AT, Q[N}\T)QTaYFK]“/\/U XT’ZL'HZ = ZvM(Z) =1,
M =M) < H(Qu\r) = on);

follows from Lemma 3 with M; defined as in (34),
shown at the bottom of the page, where 7,5, o M is
the transposition that exchanges M(a) and M(b) in the
second row of the matrix M;

follows since the second term on the RHS of (32a) can
be lower bounded by using the following inequality

H (A X2 Quy
M(Z)=i,M = M)

C [N}, and

YE}(LM,Z =z,

nR(Qny)
> H(An)

(@)

> H(A[N]}Q[N],Y[@(LM, Z=2MZ)=i,M = M)

— H (A, X21Qu, Yiig aas Z = 2, M(Z) =i, M = M)
. H(X:|Q[N], A Yl Z = 2. M(Z) =i, M = M)

(®) .
> H (A, X2 Qs Vi a0 Z = 2, M(Z) = i, M = M) = o(n)
= H(X21Qu Vg an 2 = 2. M(Z) = 1. M =M
+ H(A[N] X2, Qo Yl Z = 2, M(Z) = i, M = M) —o(n)
@H(X”|YZ”71;, Z=2MZ)=i,M = M)
+ H(Ap| X2, Qi Vi a2 = 2 M(Z) = i, M = M) = o(n)
o )
H(X1[Y1) + H(A[N]|XZ Qv Y Z = 2, M(Z) =i, M = M) — o(n) (322)
> nH(X1|Y1.) + H<A7|X§, Q[N],Y@LM, Z=2M(Z)=i,M= M) — o(n)
o H (X Y1) + H(AT|XZ Q1 Yl Z = 2 M(Z) =i, M = M) — o(n)
(i) TLH(X1|Y1 1) + H(AT|XQ,QT,Y[7}(]7M, Z = EK_1,M(Z) =i, M= Ml) — O(TL)
> nH(X1|Y1.) + H(AT|XQ, Qs Yiiymn: Z = 251, M(Z) = i, M = M1> — o(n) (32b)
%) T . i .
> nH (X, Y1) + NH(A[N X2, Qg Yikans Z = Zx-1, M(2) :Z,M:Ml) —o(n), (32¢)
Ml é T Ex1 o M — (21 : 2d1> (Z7 21+d[i_1]7 . )271+dm) (zd[D_l] : 271+d[D]) , (34)
’ (1,...,1) (D,i,...,1) (D,...,D,i)
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1
> D H<AT|XQ,Q[N],YE}],M,
(T) T:\T|=T
Z =%k 1, M(Z)=i,M = Ml) (35a)
Z (A[N]’XzaQ[N K] M

Z =z, M(Z) =i, M= M), (35b)

where (35a) follows by writing (32b) for all the (7))
different subsets 7 C [IN] with cardinality 7" and adding
up all these inequalities; and (35b) follows from Han’s

inequality [31, Theorem 17.6.1].
Then, similar to (32¢), for ¢ € [K — 2] with X2

=0
ZK:K—1 ’
we bound the second term on the RHS of (32c) as provided
in (36), shown at the bottom of the next page, where (b)

to (g) follow with similar arguments of (b) to (g) in (32c)

with M£+1 £ TZx_0,Zx—0—1 © M( and XZKK T @ The
justification of (c) is, however, different. Specifically, for

. A
1=

(Z), we have,

I(Q[NMXFK}\Zv ALK ‘ Zza Z=ZK

M(Z) =i, M =My)
= I(Xf}(]\ZvY%,[DpX%YZn@ Z = ZK -y,
M(Z) =i, M =M)
+ I(Q[N];XE‘X?K]\ZaY%,[Dng,m Z =ZKg—4,

M(Z) =i, M =M,) (37a)

< o(n), (37b)

where (37b) holds because the first term on the RHS of (37a) is
equal to zero since the files are independent of one another, and
the second term on the RHS of (37a) is less than or equal to
o(n) since the queries are of negligible normalized download
cost;

Then, we repeat (36) to bound the second entropy term on
the RHS of (36), as provided in (38), shown at the bottom of
page 2901, where

(a) follows by repeating (36) with Z = 2/, where 2z’
changes from the first element till the last element of
[ZK—lv ZK—2y- -, 21+d[i,1]];

(b) follows by repeating (36) with Z = 2/, where 2’/
changes from the first element till the last element of
(Zdjy_ays Zd_yy =15+ 5 Z1bdygy )5

(c) follows by induction and repeating (b);

(d) follows from (1).

B. Achievability Proof

We use the same coding scheme as that of Theorem 1 in
Section IV-B with U £ M(Z) levels instead of D levels.
Therefore, from (28) the total normalized download cost is,

Z RO

(H(X1|Y1,g)

I
MQ I

~ H(X1|Yi1) ) x

o~
I

1
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( ) < nsimio

T
N

1+T+ + AN (39
N N ‘

to

Ey [R(U)]
1 D u—1 K->, ,d;
- ?Zdu > H(X[Y1y) (N) X
u=1 =1
T T\% !
<HN+...+(N) )

+ H(X1|Y1,4) (1 + =+

Lzld ZH (X1[Y1.0) (

:1 di
X

<)
)K

T do—1 D
<1+N+ --+<N) >+;duH(X1Y1,u)X
T T K—l—ZE‘;fdi
<1+N +(N> )
1 & T\ K 2=
?ZH X1|Y1,0) <K Zd)( ) X
=1 . o den
()
T T\ K-1-2 ds
+dg<1+N+~~+(N> >]

Finally, similar to Section IV-B.7, privacy is inherited from
the privacy of the scheme in [9] and [17].

VI. CONCLUSION

We have studied the PIR problem with N servers, where
each server has a copy of K files and T of the servers may
collude, when the client has a noisy version of each of the
K files. The side information is such that each file is passed
through one of D possible and distinct test channels, whose
statistics are known by the client and the servers. We studied
this problem under two different security metrics. Under the
first metric, the client wants to keep the index of the desired file
and the mapping between the files and the test channels secret
from the servers. Under the second metric, the client wants to
keep the index of the desired file and the mapping between the
files and the test channels secret from the servers, but is willing
to reveal the index of the test channel that is associated with
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the desired file. We derived the optimal normalized download
cost under both privacy metrics. We showed that the optimal
normalized download cost under the second privacy metric is
smaller than or equal to the optimal normalized download cost
under the first privacy metric, which shows that revealing the
index of the test channel that is associated with the desired
file results in a lower normalized download cost. Our setting
and results recover several known settings, including PIR with
private noiseless side information and PIR with private side
information under storage constraints. We note that the PIR
problem with noisy side information when the side information
is not required to be kept private is an interesting open
problem.

APPENDIX A
NESTED SOURCE CODING SCHEMES

In Appendix A-A, we provide a nested random binning
scheme to implement nested source coding, as described in
Section IV-B.1. In Appendix A-B, we provide an implemen-
tation of this scheme with polar codes for the case that the side
information forms the Markov chain X; —Y; 1 =Y, 0 —--- —

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 4, APRIL 2024

Y: p, for t € [K]. As formalized next, this Markov chain is
always satisfied for test channels that are degraded with respect
to one another as, for instance, in Corollaries 2, 3 for binary
erasure or binary symmetric test channels.

Lemma 4: If there exists a test channel C;; such that
cv) = C’i)j o CW, for i,j € [D] and i < j, i.e,, CY) is
degraded with respect to C(%), then, without loss of generality,
one can assume that X; —Y; 1 —Y; o —--- =Y, p, for t € [K],
forms a Markov chain.

Proof: Since the test channels are degraded with respect
to one another, one can redefine X, (Y;)ic[p). t € [K], such
that X; —Y; 1 —Y; 2 —--- =Y, p forms a Markov chain. Note
that the probability of error in (2) and the privacy condition
in (4b) will not be affected because they do not depend on
the joint distribution between X, and (Y3 ;,Y; ;), for ¢t € [K],
i,j € [D], and 4 # j. O

A. Nested Random Binning Scheme

Consider a discrete memoryless source (&) X
XZG[D] Vi, PXl;Yl,[D]) with D+ 1 components. Assume that
(X{', Y7 p)) are i.id. samples of this source. Then, consider

H (A [X;

Z(K—t+1:K—1]"

X2, Qs Vi an Z = 20 M(Z) = i, M = My )

= H (AN X2 X e X2 Qg i ae Z = 20 MUZ) = i, M = My )

. H(X@

ZK—¢

(®)
> H(A[N],Xn

ZK—0

X

Z[K—¢4+1:K—1]’

Zr—¢

:H(XP

X e X2 Qv A, Yk g Z = 2k MUZ) = i, M= ML)

X;L>Q[N]7YE;(],M7 Z = széaM(Z) =i,M= M@) - 0(”)

’XQ[K,K+1:K71]7X27Q[N]aYE}(]’Ma Z = EKfva(Z) = ZaM = MZ)

+ H(A[N]|X;L[K7[:K71]>X:a Q[N]vYFK],Mv Z =ZK 4, M(Z) =i, M= MZ) - O(n)

Zrk—e|" ZK 0,00

@H(Xﬂ vr Z:EK_g,M(Z):i,M:Mg>

+ H(A[NHX?[K_M_mX?y Qv Yikjm Z = Zk—0, M(Z) =i, M = Me) —o(n)

(d)
- nH(X1 |Y1’i)

+ H (A X2, X2 Qg Y a2 = 2ic-6 M(Z) = i, M= My ) = o(n)

>nH(X1|Y1,)

+ H(AT|X%K%;K71],X’?, Q[N],Y[T}(LM, Z=Zxk 4, M(Z)=i,M = Mz) —o(n)

(e)
= nH(X1 ‘YLi)

FH(AZXY, XD Qr Y Z = 7k MUZ) = i M= M) — ofn)

()
= TLH(X1|Y1,Z)

+ H(AT|X%K72:K71]7XQ,QT,Y[T}(],M,Z =Zxk 41, M(Z)=i,M = Me+1) —o(n)

> nH(X1|Y1,)

+H(ATX], X2 Qg Y e Z = Fmeo1, MU(Z) = i, M = M ) = of(n)

(9)
Z nH(X1 |Y1,7;)

T ] .
+ S H (AwXe, s X2 Qg Yiig a2 = it M(Z) = i, M = Moy ) = ofn),

(36)
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an encoder £ : A7 — J EB]’ that assigns D random bin indices
J EB] = (Jé(l)) ¢e[p) to the sequence X7, where the asymptotic
rate of J\V, for ¢ € [D], is H(X1|Y1,0) — H(X1|Y10-1),
with the convention H(X1|Y1,0) = 0. Consider D decoders
D, : J[Z] x Vi, — A, for ¢ € [D], such that the
decoder D, assigns an estimate X7' to (J Eel]),Y” ) if
there is a unique X{‘ (Xf,ﬂ) are jointly
typical and (Jl(l),Jél),...,Jél)) corresponds to the first ¢
components of £ (X ). According to [29], [30, Section 10.4],
since the asymptotic sum rate for the bin indices that are
used at the decoder Dy, i.e., J%), is H(X1|Y1¢), then
P[X} # X7] —— 0.

n— oo

such that

B. Nested Polar Coding Scheme

We now provide an implementation for the nested source
coding in Section IV-B by using nested polar codes when the
side information available at the decoders forms a Markov
chain. We will rely on the following result for source coding
with side information from [33].

Lemma 5 (Source Coding With Side Information [33]):
Consider a probability distribution pxy over X' x) with |X| =
2 and Y a finite alphabet. Let [NV be a power of 2 and consider
(XN, YN) distributed according to [[x, pxy. Define UN £

® log N
XNGN, where GN e {i ?}

matrix defined in [33]. Deﬁne also for oy £ 2—N ? with b e
10, [, the set Hx|y = {ze H(UJU YY) > n
leen UN[Hx|y] and YV, one can form UN by the succes-

is the source polarization

2901

sive cancellation decoder of [33] such that P[UN # UN] <
Ny . Moreover, A}im Hxy|/N = H(X|Y).

Let N' = 2". Fix a joint probability distribution Px, v, , =
lepyl 11X TTes Py, v, ,_, over X1 xyl (p]> Where | X1| =

2, (O, e)ze (p] are finite alphabets, Y1 p] = Xée[D Vi and
Y1 (0] 2 (Yi,0)ee(p)- Define UN 2 XNG . For oy £ 27N,
3 €0, 3[. define for ¢ € [D],

H(Ui‘Uiilyl{\z) > 51\[} .

Lemma 6: For £ € [D—1], we have Hx |y, , C Hx,
Proof: Leti € Hx,|y, ,- We have

HX\YZ £ {Z c [N

[Y1, 041"

(@) .
on < HU|UT'YLY)
® i
H(U U YY)
(¢) .
< H(Ui|U%1Y1].\2+1),
where (a) holds because i € HXl‘yl ,» (b) holds because
(U Yy €+1|U’L IY],V) < I(UY; 1£+1|Y1 ¢) = 0. (c) holds
because condltloning does not increase entropy. ]
From Lemmas 5 and 6, we deduce the following proposi-
tion.
Proposition 1: Let ¢ € [D —1]. Define J, £ UN[Hx, |y, ,]
and Jé+1 £ UN[HX1\Y1,2+1\HX1|Y1,Z]' Then, ]\;gnoo ‘JA/N =
H(X1[Y1e), Jim | Jp [/N = H(X1[Yie4a) = H(Xa Y1),

and one can reconstruct XV from (Jy,J, +1aY1],\2 41) with
vanishing probability of error as N goes to infinity.
Proof: = We have |Ji|/N = |Hx, v, ,|/N ——

N —o0

H(X1]Y1 ), where the limit holds by [33]. Then, by Lemma 6,
we  have |Jé+1|/N = |HX1\Y1,E+1\HX1\Y1,1|/N =

R (Qw)
(a) T
> H(X1|Y1,i) + N |:H(X1|Y1,i)

+ H(A[N]yx

[1+dp;_qy:

= H(Xl\YM)

1 /T

n

(b)
> H(X1]Y1,:)¥

1
n

i—1
H(X:1|Y1,)¥
=1

+,i(3;)

’XK]7Q[N

i—1

—
=

{=1

T
+ 5 |:H(X1|Yi,i) +

T di¢41:D] T
(v) v () -

= H(X1|Y1,)¥~ ( d[zD) +ZH (X1[Y7,0)

T
Ct N [H(X1|Y1,)

K_1]7X27Q[N]7Y{;{]’M7Z = Zd[i_l]aM = MKd[i_l]):|:|:| _0(1)
1+ L4 (L 2+ (L S
N N N
Ze i di
+ - (N> (A[N Xz ety K1) X2 Qn: Yk mo Z = Zag

[ D]) + H(X1|Y1,¢—1) <

H
d[z 1:D]
+( > H(A[N]‘X [1+dp; o) K~ 1]’XZ’Q[N]’Y[K]M’Zizd

1]’M = MK_d[i—l]) - 0(1)

dp;.
T [i:D] T
x) ()

M =My g, ])70(1)

T d[2+1:D] _ T
zD]) + ) H(X1|Y1,) (N) vt (N’d€>

K]M7 :217M:MK71) _0(1)

(38)
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|HX1|Y1,£+1|/N - |HX1\Y1,2|/N m H<X1|Y17€+1) -

H(X1|Y1,), where the limit holds by [33]. Finally, the
near lossless reconstruction of X{V from (Jy,J;,,) =
UNTHX, v, ,] follows from Lemma 5.
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