

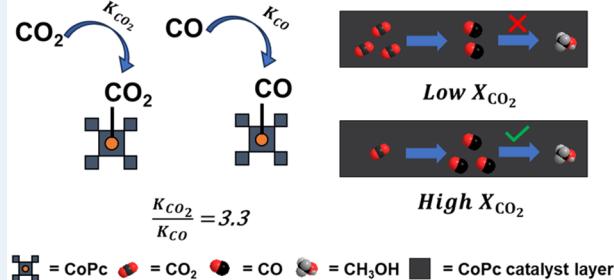
# Electrochemical $\text{CO}_2$ Reduction to Methanol by Cobalt Phthalocyanine: Quantifying $\text{CO}_2$ and CO Binding Strengths and Their Influence on Methanol Production

 Libo Yao,<sup>#</sup> Kevin E. Rivera-Cruz,<sup>#</sup> Paul M. Zimmerman,<sup>\*</sup> Nirala Singh,<sup>\*</sup> and Charles C. L. McCrory<sup>\*</sup>

 Cite This: *ACS Catal.* 2024, 14, 366–372


Read Online

ACCESS


Metrics &amp; More

Article Recommendations

Supporting Information

**ABSTRACT:** Cobalt phthalocyanine (CoPc) is an active electrocatalyst for the sequential electrochemical reductions of  $\text{CO}_2$ -to-CO and CO-to-methanol ( $\text{CH}_3\text{OH}$ ), and it has been shown to be active for the conversion of  $\text{CO}_2$ -to- $\text{CH}_3\text{OH}$  through a cascade catalysis reaction. However, in gas-fed flow electrolyzers equipped with gas diffusion electrodes (GDEs), the reduction of  $\text{CO}_2$  by CoPc selectively produces CO with minimal  $\text{CH}_3\text{OH}$  formation. Herein, we show that the limited performance of the  $\text{CO}_2$ -CO- $\text{CH}_3\text{OH}$  cascade reactions by CoPc is primarily due to the competitive binding between the  $\text{CO}_2$  and CO species. Through microkinetic analyses, we determine that the effective equilibrium constant for  $\text{CO}_2$  binding is three times higher than that for CO binding. The stronger  $\text{CO}_2$  binding suppresses the CO-to- $\text{CH}_3\text{OH}$  reaction even at moderate local  $\text{CO}_2$  concentrations. Because the GDE configuration enhances the  $\text{CO}_2$  mass transport, gas-fed flow electrolyzers exacerbate this suppression of  $\text{CH}_3\text{OH}$  formation from the  $\text{CO}_2$ RR. In contrast,  $\text{CH}_3\text{OH}$  formation is observed when the local concentration of the  $\text{CO}_2$  is low, compared to the local CO concentration. To promote methanol formation via  $\text{CO}_2$  reduction, we propose applying modifications to the coordination environments of CoPc to strengthen the binding of CO and regulate the transport of  $\text{CO}_2$ .

**KEYWORDS:** *Electrochemical  $\text{CO}_2$  reduction, methanol synthesis, cobalt phthalocyanine, competitive  $\text{CO}_2$  and CO binding, DFT calculations*



## INTRODUCTION

The electrochemical  $\text{CO}_2$  reduction reaction ( $\text{CO}_2$ RR) to produce value-added chemicals holds great promise for carbon recycling and energy storage.<sup>1–3</sup>  $\text{CO}_2$ RR to highly reduced products like methanol ( $\text{CH}_3\text{OH}$ ) is of particular interest, because  $\text{CH}_3\text{OH}$  is a critical chemical building block and promising energy storage molecule.<sup>4,5</sup> However, designing catalyst systems for the selective  $\text{CO}_2$ RR to products that require more than two-electron transfers is challenging due to the complexity of reaction pathways and the limited understanding of the reaction mechanisms.<sup>6–9</sup> Therefore, the six-electron reduction of  $\text{CO}_2$  to  $\text{CH}_3\text{OH}$  often suffers from sluggish reaction kinetics and poor selectivity.<sup>9</sup>

Using immobilized molecular catalysts (IMCs) that are adsorbed or grafted on conductive carbon supports provides promising model systems to understand reaction mechanisms and control the kinetics and selectivity. IMCs not only provide single-atom active sites that suppress competitive C–C coupling reactions,<sup>10,11</sup> but also offer precise control over catalytic performance at a mechanistic level due to their tunable electronic properties and microenvironments.<sup>8,12–15</sup> Early examples of molecular transition-metal complexes for  $\text{CO}_2$ -to- $\text{CH}_3\text{OH}$  reactions include Co-, Fe-, Ni-, and Cr-based molecular catalysts that are aided by heterogeneous and

homogeneous co-catalysts to facilitate the production of  $\text{CH}_3\text{OH}$  in organic solvents.<sup>16,17</sup> However, perhaps the most prevalent examples of the CO-to- $\text{CH}_3\text{OH}$  by IMCs in aqueous electrolyte emerged in 2019. Robert and co-workers<sup>18,19</sup> and Wang and co-workers<sup>20</sup> independently reported that cobalt phthalocyanine immobilized on multi-walled carbon nanotubes (CoPc/MWCNT), which is a catalyst known for its selectivity for the  $\text{CO}_2$ -to-CO reaction, exhibited activity in an aqueous H-type cell (H-cell) for the reduction of  $\text{CO}_2$  to  $\text{CH}_3\text{OH}$ .  $\text{CH}_3\text{OH}$  formation is proposed to occur through a  $\text{CO}_2$ -CO- $\text{CH}_3\text{OH}$  cascade reaction with CO acting as the intermediate.<sup>18–21</sup> Further studies have demonstrated that formaldehyde is a likely intermediate for the CO-to- $\text{CH}_3\text{OH}$  reaction<sup>19</sup> and higher Faradaic efficiencies for  $\text{CH}_3\text{OH}$  ( $FE_{\text{CH}_3\text{OH}}$ ) are achieved from the four-electron CO-to- $\text{CH}_3\text{OH}$  reaction than the six-electron  $\text{CO}_2$ -to- $\text{CH}_3\text{OH}$  reaction.<sup>18</sup>

Received: October 16, 2023

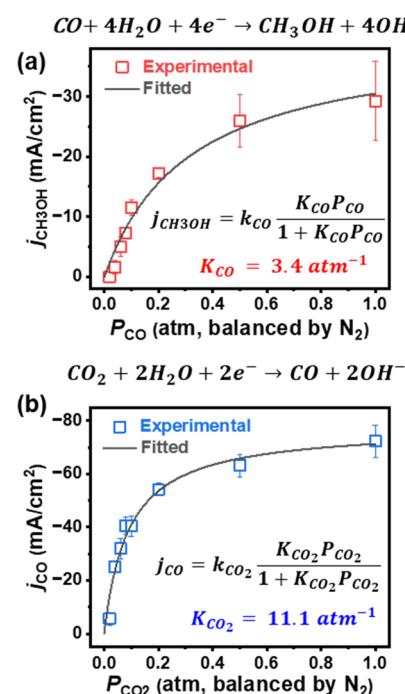
Revised: November 20, 2023

Accepted: December 8, 2023

Published: December 19, 2023



Although CoPc/MWCNT can catalyze the  $\text{CO}_2$ –CO– $\text{CH}_3\text{OH}$  cascade reaction, the rates and  $\text{CH}_3\text{OH}$  selectivity remain low, compared to state-of-the-art solid-state  $\text{CO}_2$ – $\text{CH}_3\text{OH}$  electrocatalysts.<sup>22–24</sup> Moreover, incorporating the CoPc/MWCNT into gas-fed flow electrolyzers makes this  $\text{CO}_2$ –CO– $\text{CH}_3\text{OH}$  performance even worse, compared with the equivalent systems studied in aqueous H-cells. For example, Wang and co-workers reported an average  $\text{CO}_2$ –CO– $\text{CH}_3\text{OH}$  current density ( $j_{\text{CH}_3\text{OH}}$ ) of  $<10 \text{ mA/cm}^2$  and a  $FE_{\text{CH}_3\text{OH}}$  value of  $\sim 40\%$  in H-cell configuration.<sup>20</sup> However, CoPc-based gas-diffusion electrodes (GDEs) have shown  $\text{CO}_2$ -to-CO current densities ( $j_{\text{CO}}$ ) of hundreds of  $\text{mA/cm}^2$  and almost 100% CO Faradaic efficiency ( $FE_{\text{CO}}$ ),<sup>11,25–29</sup> but  $\text{CH}_3\text{OH}$  has rarely been detected in the numerous flow electrolyzer studies published in recent years. One recent exception has been reported by Ye and co-workers, in which they achieved  $j_{\text{CH}_3\text{OH}} > 60 \text{ mA/cm}^2$  under  $>30\% FE_{\text{CH}_3\text{OH}}$  in a GDE by engineering the strain effects of single-walled carbon nanotubes.<sup>30</sup> In contrast to the low  $\text{CH}_3\text{OH}$  production from  $\text{CO}_2$  in GDEs, the direct CO reduction reaction (CORR) by CoPc is active and selective for  $\text{CH}_3\text{OH}$  production. Multiple reports demonstrate CORR performance with  $20$ – $90 \text{ mA/cm}^2 j_{\text{CH}_3\text{OH}}$  and  $>65\% FE_{\text{CH}_3\text{OH}}$  in zero-gap flow electrolyzers.<sup>30,31</sup>


The contrast in  $\text{CH}_3\text{OH}$  production by CoPc under the  $\text{CO}_2\text{RR}$  and CORR conditions suggests that CO-to- $\text{CH}_3\text{OH}$  is largely suppressed by the presence of  $\text{CO}_2$ . The suppression is closely related to the relative binding strength of CO and  $\text{CO}_2$  to CoPc.<sup>31</sup> In more recent studies, Wang and co-workers pointed out that the bound CO species ( ${}^*\text{CO}$ ) is labile on CoPc sites and high  ${}^*\text{CO}$  concentration in the microenvironment is necessary to compete with  $\text{CO}_2$  in order to facilitate  $\text{CH}_3\text{OH}$  formation.<sup>32</sup> However, a gap in the literature is a quantitative understanding of CO and  $\text{CO}_2$  binding and how the difference in binding influences the formation of  $\text{CH}_3\text{OH}$  on CoPc. This knowledge gap may hinder future optimization studies aiming at scaling up  $\text{CH}_3\text{OH}$  production.<sup>33</sup> Therefore, the objective of this study is to quantify binding of CO and  $\text{CO}_2$  to CoPc and elucidate how the relative  $\text{CO}_2$ /CO binding impacts the  $\text{CO}_2$ –CO– $\text{CH}_3\text{OH}$  reaction by CoPc/MWCNT catalysts in gas-fed flow electrolyzers.

## COMPARING $\text{CO}_2$ AND CO BINDING CONSTANTS TO COPC/MWCNT CATALYST

To quantitatively compare the relative binding for CO and  $\text{CO}_2$  to CoPc/MWCNT, we measured the CORR and  $\text{CO}_2\text{RR}$  activity of CoPc/MWCNTs in our gas-fed flow electrolyzer where the feed gas stream had different partial pressures of CO ( $P_{\text{CO}}$ ) and  $\text{CO}_2$  ( $P_{\text{CO}_2}$ ), respectively, balanced by  $\text{N}_2$ . The results of these experiments were fitted to a microkinetic reaction model to determine the equilibrium binding constants for CO and  $\text{CO}_2$  to CoPc (denoted as  $K_{\text{CO}}$  and  $K_{\text{CO}_2}$ , respectively). Details of the flow electrolyzer and reaction methods are provided in Section 1 in the Supporting Information and Figure S1 in the Supporting Information. In addition to the flow electrolyzer studies, we conducted H-cell electrolysis for  $\text{CO}_2\text{RR}$  and CORR with CoPc/MWCNT to determine whether our catalyst is comparable with the reported state-of-the-art performance in aqueous non-flowing H-cells. The experimental methods are detailed in Section 1 in the Supporting Information, and the results of electrolysis are shown in Figure S2 in the Supporting Information. For the  $\text{CO}_2\text{RR}$ , we saw an onset of  $\text{CH}_3\text{OH}$  formation at approximately  $-0.70 \text{ V}$  vs RHE with  $1.4\% FE_{\text{CH}_3\text{OH}}$ . Under

a more negative potential of  $-0.85 \text{ V}$  vs RHE  $FE_{\text{CH}_3\text{OH}}$  reaches  $11.7\%$ . For the CORR,  $7.4\%$  and  $24.1\% FE_{\text{CH}_3\text{OH}}$  is achieved at the aforementioned potentials. When taking the difference of reactor and reaction conditions into consideration, the  $\text{CH}_3\text{OH}$  production in our sealed H-cell is qualitatively comparable with the state-of-the-art performance reported with CoPc/MWCNT catalysts under similar reaction conditions.<sup>20,30</sup>

To determine  $K_{\text{CO}}$ , we studied the CORR by CoPc/MWCNT at different inlet  $P_{\text{CO}}$  values. First, we determined the optimal operating potential for  $\text{CH}_3\text{OH}$  formation from the CORR on a CoPc/MWCNT GDE with 1 atm of CO in our gas-fed flow electrolyzer. We observe that  $\text{CH}_3\text{OH}$  formation commences at a potential of approximately  $-0.44 \text{ V}$  vs RHE and reaches its peak at approximately  $-0.77 \text{ V}$  (Figures S3 and S4 in the Supporting Information). At this peak potential,  $j_{\text{CH}_3\text{OH}} = -44.7 \text{ mA/cm}^2$ .  $\text{CH}_3\text{OH}$  is most selectively generated at  $-0.70 \text{ V}$  vs RHE with  $FE_{\text{CH}_3\text{OH}} > 80\%$ . We therefore used the potential of  $-0.70 \text{ V}$  vs RHE to measure  $j_{\text{CH}_3\text{OH}}$  as a function of  $P_{\text{CO}}$  for the CORR. As shown in Figure 1a and Figure S5,  $j_{\text{CH}_3\text{OH}}$  increases with CO partial pressure until it plateaus at  $P_{\text{CO}} = 1 \text{ atm}$ , and we attribute this plateau to saturated CO binding. Using microkinetic analyses detailed in Section 2 in the Supporting Information, we determined that the rate-determining step (RDS) for the conversion of CORR to methanol to be the protonation of  $[\text{CO}-\text{CoPc}]^-$ , which



**Figure 1.** Current density to specified product as a function of inlet partial pressure of reactant for (a) CO-to-methanol ( $j_{\text{CH}_3\text{OH}}$ ,  $\text{mA/cm}^2$ ) and (b)  $\text{CO}_2$ -to-CO ( $j_{\text{CO}}$ ,  $\text{mA/cm}^2$ ) using CoPc/CNT catalyst. All electrochemical measurements are conducted in a flow electrolyzer under  $-0.7 \text{ V}$  vs RHE with  $0.5 \text{ M KHCO}_3$  electrolyte ( $\text{pH} \sim 8.5$ ). Both the CO and  $\text{CO}_2$  gases are balanced by  $\text{N}_2$  to 1 atm with total gas flow rate controlled at  $15 \text{ mL/min}$ . Experimental results are shown by data points from three repetitions, fitting is shown by a solid line. The numerical fitting was done by using the equation shown and derived in Section 2 in the Supporting Information. The effective equilibrium constants for CO ( $K_{\text{CO}}$ ) and  $\text{CO}_2$  ( $K_{\text{CO}_2}$ ) binding to CoPc are obtained from the fitted results.

represents the CO-bound, singly reduced CoPc molecule. The RDS determined from our microkinetic analysis is in agreement with the recent kinetic studies in aqueous H-cell by Wang and co-workers.<sup>34</sup> Using this RDS, we derived a rate law for CH<sub>3</sub>OH production from CO shown in eq 1.

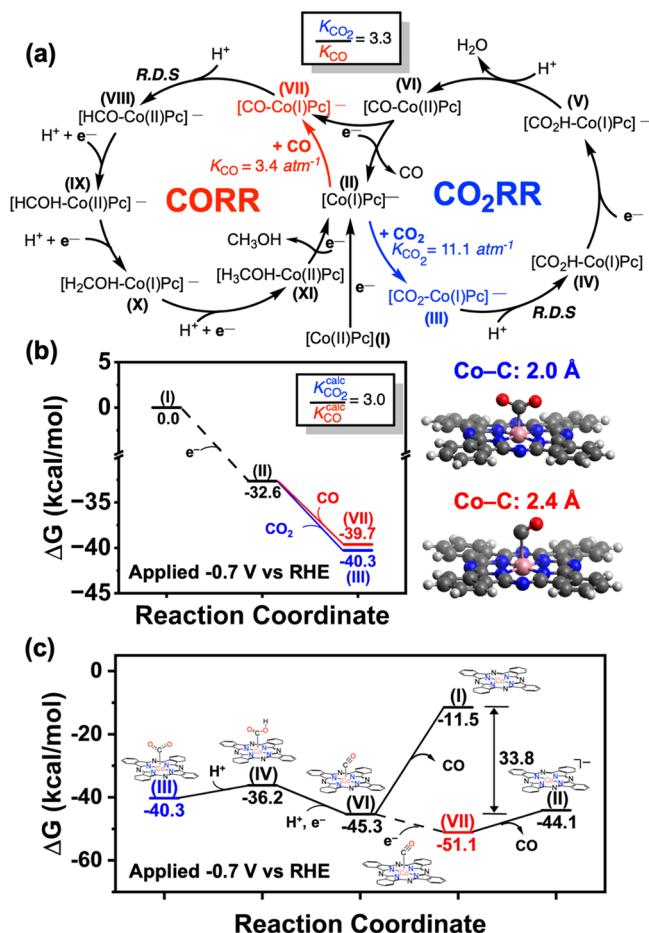
$$j_{\text{CH}_3\text{OH}} = k_{\text{CO}} \left( \frac{K_{\text{CO}} P_{\text{CO}}}{1 + K_{\text{CO}} P_{\text{CO}}} \right) \quad (1)$$

$k_{\text{CO}}$  refers to an effective rate constant for the CORR to CH<sub>3</sub>OH as defined in **Section 2 in the Supporting Information** and  $K_{\text{CO}}$  is the apparent equilibrium binding constant to the CoPc/MWCNT catalyst. By numerically fitting the experimental  $j_{\text{CH}_3\text{OH}}$  data in **Figure 1a** to eq 1, we determined  $K_{\text{CO}} = 3.4 \text{ atm}^{-1}$ .

We conducted analogous studies of the CO<sub>2</sub>RR by CoPc/MWCNT at different  $P_{\text{CO}_2}$  to determine  $K_{\text{CO}_2}$  at  $-0.7 \text{ V}$  vs RHE. The primary products for the CO<sub>2</sub>RR with CoPc catalyst are CO and H<sub>2</sub>, with minimal CH<sub>3</sub>OH produced. The relationship between  $j_{\text{CO}}$  from the CO<sub>2</sub>RR as a function of  $P_{\text{CO}_2}$  is shown in **Figure 1b**.  $j_{\text{CO}}$  increases with increasing CO<sub>2</sub> partial pressure until it plateaus at  $P_{\text{CO}_2} \approx 0.8\text{--}1.0 \text{ atm}$ , qualitatively similar to the relationship between  $j_{\text{CH}_3\text{OH}}$  and  $P_{\text{CO}}$  in **Figure 1a**. We applied a similar microkinetic analysis to derive a rate law for CO production from CO<sub>2</sub> assuming protonation of the [CO<sub>2</sub>–CoPc]<sup>–</sup> species is the RDS shown in eq 2.

$$j_{\text{CO}} = k_{\text{CO}_2} \left( \frac{K_{\text{CO}_2} P_{\text{CO}_2}}{1 + K_{\text{CO}_2} P_{\text{CO}_2}} \right) \quad (2)$$

Similarly,  $k_{\text{CO}_2}$  refers to an effective rate constant for the CO<sub>2</sub>RR to CO and  $K_{\text{CO}_2}$  is the apparent equilibrium binding constant to the CoPc/MWCNT catalyst. By fitting the  $j_{\text{CO}}$  data in **Figure 1b** to eq 2, we determined  $K_{\text{CO}_2} = 11.1 \text{ atm}^{-1}$ .


Note that the various assumptions used in these microkinetic models and data fitting are described in **Section 2 in the Supporting Information**, and the MATLAB code used for fitting and the statistical significance of the fitted results are shown in **Section 3 in the Supporting Information**. The  $j$ – $P$  relationships shown in **Figures 1a** and **b** demonstrate a correlation between the current density and the bulk concentration of reactants, while it is the local concentration that intrinsically determines the reaction rate. By fitting our rate laws derived from microkinetic analysis to  $P$ -dependent experimental trends to derive equilibrium binding constants for the purpose of comparing relative binding strengths for CO and CO<sub>2</sub>, we are implicitly assuming that (1) the local CO or CO<sub>2</sub> concentration is a regular function of the measured  $P_{\text{CO}}$  and  $P_{\text{CO}_2}$  pressures, and (2) equilibrium of CO and CO<sub>2</sub> binding is rapidly achieved at any given  $P_{\text{CO}}$  and  $P_{\text{CO}_2}$ . If valid, then these assumptions mean that these apparent  $K_{\text{CO}}$  and  $K_{\text{CO}_2}$  values provide important insights into the relative ability of CoPc/MWCNTs to bind CO<sub>2</sub> and CO.

The ratio of the equilibrium binding constants extracted from kinetic fitting is  $K_{\text{CO}_2}/K_{\text{CO}} = 3.3$ , implying that binding of CO<sub>2</sub> to the CoPc catalyst is stronger, compared to that of CO binding. This insight provides a thermodynamic explanation for the inefficient CH<sub>3</sub>OH formation on CoPc/MWCNTs during the CO<sub>2</sub>RR. Under most conditions, as CO<sub>2</sub> is converted to CO, the CO is preferentially displaced by a CO<sub>2</sub> molecule before the CO can be further protonated to produce CH<sub>3</sub>OH. In other words, we postulate that CH<sub>3</sub>OH

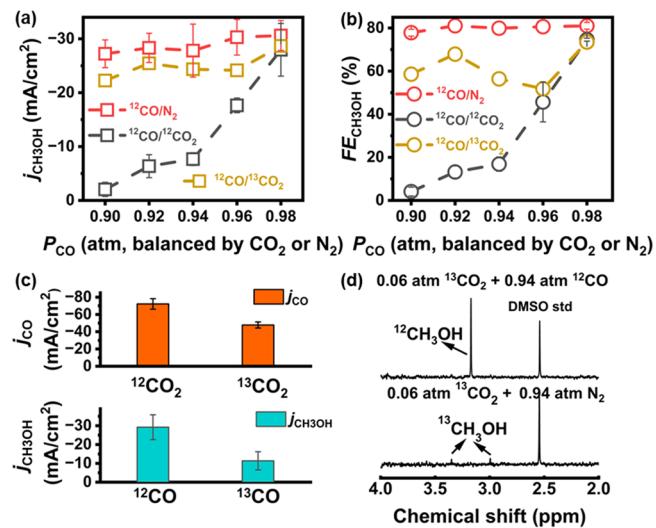
formation is suppressed by the presence of CO<sub>2</sub> through competitive binding of CO<sub>2</sub> at the catalyst active sites.

## COMPUTATIONAL STUDIES OF CO AND CO<sub>2</sub> BINDING AT COPC

To understand better the atomistic behavior of the CO and CO<sub>2</sub> binding, we performed density functional theory (DFT) calculations using quantum mechanics/molecular mechanics models of CoPc and explicit solvent, as detailed in **Section 4 in the Supporting Information**. The CORR and CO<sub>2</sub>RR pathways investigated by DFT are shown in **Figure 2a**. The binding of



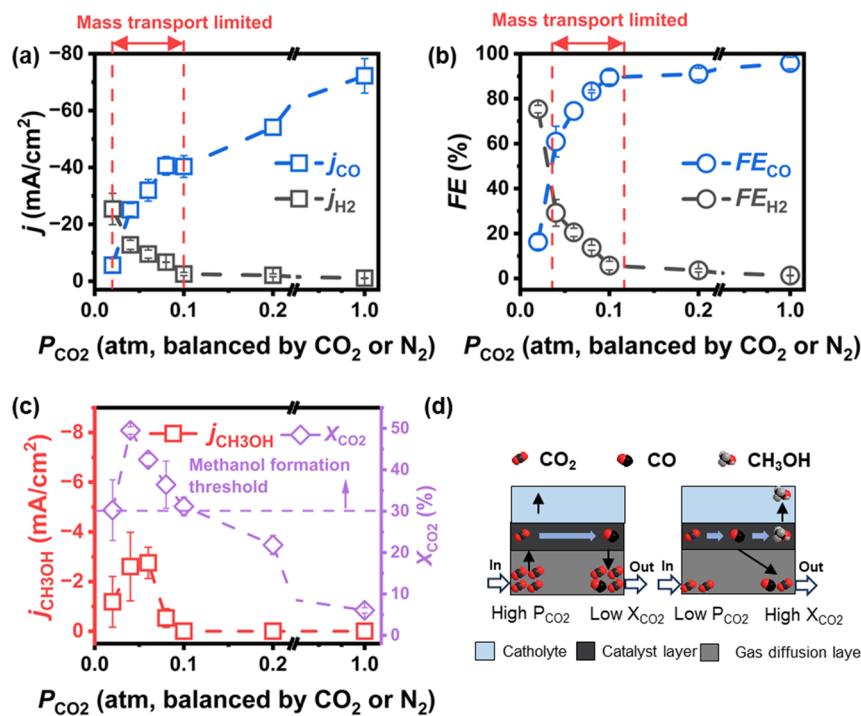
**Figure 2.** (a) Proposed reaction mechanism for CO<sub>2</sub>-to-CO and CO-to-CH<sub>3</sub>OH on CoPc/CNT under  $-0.7 \text{ V}$  vs RHE applied potential. (b) Calculated Gibbs free energy for the binding of CO and CO<sub>2</sub> on singly reduced Co(I)Pc intermediate. (c) Calculated Gibbs free energy for the CO<sub>2</sub>-CO reduction reaction on CoPc catalyst. All electron reduction events are referenced to the experimentally applied  $-0.7 \text{ V}$  vs RHE potential. Structures show graphical representations of the optimized [CO<sub>2</sub>–CoPc]<sup>–</sup> (Intermediate III) and [CO–CoPc]<sup>–</sup> (Intermediate VII) systems. [Legend: pink sphere = Co, blue sphere = N, gray sphere = C and white sphere = H.]


CO<sub>2</sub> to singly reduced CoPc, i.e., [CO<sub>2</sub>–CoPc]<sup>–</sup>, has a more favorable Gibbs free energy ( $\Delta G_{\text{CO}_2} = -7.6 \text{ kcal/mol}$ , **Figure 2b**, Intermediate III) than its CO-bound counterpart ([CO–CoPc]<sup>–</sup>,  $\Delta G_{\text{CO}} = -7.0 \text{ kcal/mol}$ , **Figure 2b**, Intermediate VII). This difference between  $\Delta G_{\text{CO}_2}$  and  $\Delta G_{\text{CO}}$  equates to a ratio of equilibrium binding constants of  $K_{\text{CO}_2}^{\text{calc}}/K_{\text{CO}}^{\text{calc}} = 3.0$  (see **Section 3 in the Supporting Information**), which agrees well with the experimentally obtained  $K_{\text{CO}_2}/K_{\text{CO}} = 3.3$ .

Having computational support for the preferential binding of  $\text{CO}_2$  over CO, we studied the key reaction intermediates for the reduction of  $\text{CO}_2$  to CO under the applied potential of  $-0.7$  V vs RHE (Figure 2c). After binding of  $\text{CO}_2$  to the singly reduced CoPc active site, protonation of the  $\text{CO}_2$  adduct is uphill by  $4.1$  kcal/mol (Figure 2c, III  $\rightarrow$  IV). The protonated  $\text{CO}_2$  adduct, however, can be reduced by proton-coupled electron transfer (Figure 2c, IV  $\rightarrow$  VI) that generates CO bound to neutral CoPc and is downhill from the IV ion by  $-9.1$  kcal/mol. While direct desorption of the CO adduct from VI is highly unfavorable thermodynamic ( $33.8$  kcal/mol; Figure 2c, VI  $\rightarrow$  I), the reduction of the [CO-CoPc] intermediate at  $-0.7$  V vs RHE is favorable (VI  $\rightarrow$  VII). The singly reduced CoPc species releases CO at a cost of only  $7.0$  kcal/mol (Figure 2c, Step VII  $\rightarrow$  II). This suggests that desorption of the CO adduct is enabled by reduction of the neutral [CO-CoPc] intermediate (Figure 2c, VII), which regenerates the singly reduced CoPc species. (Figure 2c, II) It is worth noting that further protonation of [CO-CoPc]<sup>-</sup> to form [HCO-CoPc]<sup>-</sup> is possible, but our microkinetic analysis as well as recent studies reveal the protonation of [CO-CoPc]<sup>-</sup> is a likely RDS for  $\text{CH}_3\text{OH}$  formation,<sup>32,35</sup> therefore making this route difficult to compete with  $\text{CO}_2$  replacement. Altogether, these results suggest that the stronger binding of  $\text{CO}_2$ , compared to that of CO on singly reduced CoPc, is responsible for the reduced methanol activity observed in the experiment.

## STUDYING THE COMPETITIVE INHIBITION OF CORR BY $\text{CO}_2$

Our studies above provided experimental and computational evidence that CoPc/MWCNT has a stronger binding affinity for  $\text{CO}_2$  compared to CO, and computational mechanistic analysis suggested that this stronger binding affinity for  $\text{CO}_2$  inhibits  $\text{CH}_3\text{OH}$  formation during the  $\text{CO}_2\text{RR}$ . To verify this competitive inhibition by  $\text{CO}_2$ , we studied the activity of CoPc/MWCNT for  $\text{CH}_3\text{OH}$  production in a series of CO/ $\text{CO}_2$  cofeeding experiments in a gas-fed flow electrolyzer. Here, we varied  $P_{\text{CO}}$  while balancing by  $P_{\text{CO}_2}$  to achieve a total inlet pressure of  $1$  atm. The results of these experiments are shown in Figures 3a and 3b, and Figure S5. Importantly,  $\text{CH}_3\text{OH}$  is detected as a product only when  $P_{\text{CO}} \geq 0.9$  atm ( $P_{\text{CO}_2} \leq 0.1$  atm). At all partial pressures of  $P_{\text{CO}} < 0.9$  atm and corresponding  $P_{\text{CO}_2} > 0.1$  atm, CO is the only C-containing product. This result is quantitatively consistent with similar studies by Liu and co-workers conducted in a non-flow aqueous H-cell.<sup>31</sup> We interpret this result to mean that the partial pressure of CO must be sufficiently high relative to  $\text{CO}_2$  for CO to bind to the catalyst and react to form  $\text{CH}_3\text{OH}$ . In comparison, when  $\text{CO}_2$  was substituted with  $\text{N}_2$ ,  $\text{CH}_3\text{OH}$  forms at a much lower  $P_{\text{CO}}$  of  $0.02$  atm (Figure 1a)— $\text{N}_2$  does not competitively inhibit  $\text{CH}_3\text{OH}$ , whereas  $\text{CO}_2$  does. Moreover, at any given  $P_{\text{CO}}$ ,  $j_{\text{CH}_3\text{OH}}$  and  $FE_{\text{CH}_3\text{OH}}$  are much higher in the CO/ $\text{N}_2$  mixture than in the CO/ $\text{CO}_2$  mixture (see Figures 3a and b, as well as Figure S6 in the Supporting Information). The difference in  $j_{\text{CH}_3\text{OH}}$  achieved in the CO/ $\text{N}_2$  and CO/ $\text{CO}_2$  mixtures diminishes when  $P_{\text{CO}}$  approaches  $1$  atm.


We conducted further verification of the suppression of  $\text{CH}_3\text{OH}$  by  $\text{CO}_2$  on CoPc/MWCNT with <sup>13</sup>C isotope labeling experiments. We hypothesize that the <sup>13</sup> $\text{CO}_2$  has weaker binding to CoPc, compared to its <sup>12</sup>C isotopologue, resulting in less-severe suppression on methanol formation via CORR. This hypothesis is supported by the carbon isotope



**Figure 3.** (a)  $j_{\text{CH}_3\text{OH}}$  and (b)  $FE_{\text{CH}_3\text{OH}}$  under different gas mixtures for CoPc/MWCNT catalyst at  $-0.7$  V vs RHE. The gas mixtures include  $^{12}\text{CO}$  balanced by  $\text{N}_2$  (red),  $^{12}\text{CO}$  balanced by  $^{12}\text{CO}_2$  (black), and  $^{12}\text{CO}$  balanced by  $^{13}\text{CO}_2$  (yellow). (c) Performance of  $\text{CO}_2\text{R}$  ( $j_{\text{CO}}$ , orange) and CORR ( $j_{\text{CH}_3\text{OH}}$ , blue) using  $^{12}\text{C}$  and  $^{13}\text{C}$  isotopologues with  $1$  atm  $\text{CO}_2$  or CO gases. (d) <sup>1</sup>H NMR spectra for the liquid products collected with  $0.06$  atm  $^{13}\text{CO}_2 + 0.94$  atm  $^{12}\text{CO}$  (upper panel), and  $0.06$  atm  $^{13}\text{CO}_2 + 0.94$  atm  $\text{N}_2$  (lower panel) gas mixtures. All electrochemical measurements are conducted in a flow electrolyzer under  $-0.7$  V vs RHE with  $0.5$  M  $\text{KHCO}_3$  electrolyte ( $\text{pH} \sim 8.5$ ).

discrimination phenomenon observed in photosynthesis, where the  $^{13}\text{C}/^{12}\text{C}$  ratios in the products are lower than that of  $\text{CO}_2$  in nature.<sup>36</sup> This phenomenon has been identified in  $\text{CO}_2\text{RR}$ .<sup>37</sup> We performed <sup>13</sup>C-labeled  $\text{CO}_2\text{RR}$  and CORR. We observed noticeable decreases in  $j_{\text{CO}}$  and  $j_{\text{CH}_3\text{OH}}$  when using  $1$  atm of  $^{13}\text{CO}_2$  and  $^{13}\text{CO}$ , compared with their  $^{12}\text{C}$  isotopologues (see Figure 3c, as well as Figures S7 and S8 in the Supporting Information). Note that  $^{13}\text{CO}_2\text{RR}$  produces only  $^{13}\text{CO}$  while  $^{13}\text{CORR}$  only generates  $^{13}\text{CH}_3\text{OH}$ . We further conducted cofeeding experiments with  $^{12}\text{CO}/^{13}\text{CO}_2$  mixtures, and the  $j_{\text{CH}_3\text{OH}}$  and  $FE_{\text{CH}_3\text{OH}}$  values for the  $^{12}\text{CO}/^{13}\text{CO}_2$  mixtures are similar to the  $^{12}\text{CO}/\text{N}_2$  mixtures, as shown in Figures 3a and b. This suggests the  $^{13}\text{CO}_2$  did not suppress the CO-to-methanol reaction as much as its  $^{12}\text{C}$  isotopologue, supporting our hypothesis that the more weakly bound  $^{13}\text{CO}_2$  has less suppression of the CO-to- $\text{CH}_3\text{OH}$  reaction. Note that the interpretation of the  $^{13}\text{C}$  isotope labeling experiments is conducted under two key hypotheses: (1) the  $^{13}\text{C}$  discrimination observed in electrochemical  $\text{CO}_2$  reduction applies to CoPc catalyst systems, and (2) the binding strength of  $\text{CO}_2$  is positively correlated with the  $\text{CO}_2\text{RR}$  performance on CoPc. Both hypotheses are supported by previous studies,<sup>13,15,37</sup> but the slower kinetics of certain  $^{13}\text{CO}_2\text{RR}$  and  $^{13}\text{CORR}$  reaction steps is a possible contributing factor that cannot be completely ruled out.

While our results demonstrate the suppression of  $\text{CH}_3\text{OH}$  formation in the presence of  $\text{CO}_2$  at the catalyst active sites, we show that  $\text{CH}_3\text{OH}$  can still be produced via the  $\text{CO}_2\text{RR}$  if the local  $\text{CO}_2$  is sufficiently consumed. For the  $P_{\text{CO}_2}$ -dependent  $\text{CO}_2\text{RR}$  shown in Figures 4a and b, the performance of the  $\text{CO}_2\text{RR}$  declines due to limited  $\text{CO}_2$  mass transport. This trend is more pronounced when  $P_{\text{CO}_2}$  is between  $0.02$  and  $0.1$  atm, where a linear correlation between  $j_{\text{CO}}$  and  $P_{\text{CO}_2}$  is observed, indicating that the reaction rate is predominantly controlled by



**Figure 4.** (a) Current densities and (b) Faradaic efficiencies to CO and H<sub>2</sub>, as a function of  $P_{CO_2}$ . (c) CH<sub>3</sub>OH current density ( $j_{CH_3OH}$ ) and CO<sub>2</sub> single pass conversion ( $X_{CO_2}$ , %) as a function of  $P_{CO_2}$ . CO<sub>2</sub> conversion of >30% coincides with CH<sub>3</sub>OH formation. CO<sub>2</sub> gas is balanced by N<sub>2</sub> to 1 atm with total gas flow rate controlled at 15 mL/min. All reactions were conducted in a flow electrolyzer under chronoamperometry mode with  $-0.7$  V vs RHE applied potential. (d) Schematic illustration of the relationship among  $P_{CO_2}$ ,  $X_{CO_2}$ , and CH<sub>3</sub>OH formation. When high  $P_{CO_2}$  is fed (left side image), there is low  $X_{CO_2}$  and high CO<sub>2</sub> concentration within catalyst layer, and no methanol is formed. When low  $P_{CO_2}$  is fed (right side image), a higher fraction of CO<sub>2</sub> is converted and the CO/CO<sub>2</sub> ratio becomes sufficiently high at the catalyst layer to produce CH<sub>3</sub>OH.

mass transport of CO<sub>2</sub> rather than the intrinsic kinetics of the catalyst. CH<sub>3</sub>OH is detected within the same  $P_{CO_2}$  range (Figure 4c), suggesting that CH<sub>3</sub>OH formation is “switched on” when the CO<sub>2</sub>RR is limited by the CO<sub>2</sub> mass transport. Additionally, we observe a strong correlation between the single-pass conversion of CO<sub>2</sub> ( $X_{CO_2}$ ) and CH<sub>3</sub>OH formation. The decrease in  $P_{CO_2}$  results in higher  $X_{CO_2}$ , and higher  $X_{CO_2}$  leads to the formation of CH<sub>3</sub>OH. A threshold of 30%  $X_{CO_2}$  is required in our case for methanol formation from the CO<sub>2</sub>–CO-methanol route (Figure 3c). The high  $X_{CO_2}$  value required to generate methanol suggests the need to establish a CO<sub>2</sub> “lean” or “depleted” local environment to minimize the CO<sub>2</sub> competition (Figure 4d). Based on this rationale, we identify the main reason for the absence of methanol formation via the CO<sub>2</sub>RR in most flow electrolyzer studies using CoPc-based catalysts. The use of pure or high partial pressure CO<sub>2</sub> gas enables a high CO<sub>2</sub> volumetric flow rate that leads to low  $X_{CO_2}$ , which, combined with fast CO<sub>2</sub> transport, results in a high CO<sub>2</sub> concentration near the catalyst active site. This high local CO<sub>2</sub> concentration significantly suppresses the CO–methanol pathway due to the preferential binding of CO<sub>2</sub>, compared to CO.

## CONCLUSIONS

In conclusion, we study the relative binding strength of CO<sub>2</sub> and CO to CoPc and its influence on CH<sub>3</sub>OH formation through the CO<sub>2</sub>RR. We find that CO<sub>2</sub> exhibits stronger binding to CoPc than CO, leading to the suppression of the CO–CH<sub>3</sub>OH reaction during the CO<sub>2</sub>–CO–CH<sub>3</sub>OH cascade. We determine that the effective equilibrium constant for CO<sub>2</sub> binding ( $K_{CO_2}$ , 11.1 atm<sup>-1</sup>) is more than 3 times higher

than that for CO binding ( $K_{CO}$ , 3.4 atm<sup>-1</sup>), resulting in an unfavorable CO–CH<sub>3</sub>OH reaction when CO<sub>2</sub> is present near the catalyst at appreciable concentrations. The use of flow electrolyzers exacerbates the suppression of CH<sub>3</sub>OH due to the significantly improved CO<sub>2</sub> mass transport, which maintains high local CO<sub>2</sub> concentrations. To enhance CH<sub>3</sub>OH formation via the CO<sub>2</sub>RR, future studies can target catalyst design and control of the catalyst microenvironment. Catalyst design should aim at addressing the weaker binding of CO. Rational ligand modifications on CoPc should be investigated to enhance the level of binding of CO, with a specific emphasis on decreasing the  $K_{CO_2}/K_{CO}$  ratio. Additionally, control of local concentrations (i.e., the relative ratio of CO<sub>2</sub> and CO concentrations near the catalyst) can be achieved through the construction of catalyst–polymer composites, where the polymers effectively modulate the local CO<sub>2</sub> concentration in the microenvironment.<sup>12,28,38</sup> Successful implementation of these strategies could effectively improve CH<sub>3</sub>OH production via the CO<sub>2</sub>–CO–CH<sub>3</sub>OH route with CoPc-based catalysts.

## ASSOCIATED CONTENT

### Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acscatal.3c04957>.

Additional information including materials and experimental methods; full computational description of the implicit solvated catalyst structure, description of the quantum mechanics/molecular mechanics model; tables including the electronic, solvated and frequency corrected energies for all intermediates studied; derivation of the microkinetic models; MATLAB codes

for the numerical fitting; exploded view of flow electrolyzer; results for potential-dependent CO reduction; supplementary CORR and CO<sub>2</sub>RR results under different partial pressures; <sup>1</sup>H NMR and electrolysis results for the <sup>13</sup>C labeling experiments (PDF)

## AUTHOR INFORMATION

### Corresponding Authors

Paul M. Zimmerman – Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; [orcid.org/0000-0002-7444-1314](https://orcid.org/0000-0002-7444-1314); Email: [paulzim@umich.edu](mailto:paulzim@umich.edu)

Nirala Singh – Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States; [orcid.org/0000-0003-0389-3927](https://orcid.org/0000-0003-0389-3927); Email: [snirala@umich.edu](mailto:snirala@umich.edu)

Charles C. L. McCrory – Department of Chemistry and Macromolecular Science & Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States; [orcid.org/0000-0001-9039-7192](https://orcid.org/0000-0001-9039-7192); Email: [cmccrory@umich.edu](mailto:cmccrory@umich.edu)

### Authors

Libo Yao – Department of Chemical Engineering and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; [orcid.org/0000-0001-7183-529X](https://orcid.org/0000-0001-7183-529X)

Kevin E. Rivera-Cruz – Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; [orcid.org/0000-0001-6690-1571](https://orcid.org/0000-0001-6690-1571)

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acscatal.3c04957>

### Author Contributions

#L.Y. and K.E.R.-C. contributed equally to this work. N.S., C.C.L.M., and L.Y. conceived the project. L.Y. carried out all the experiments. K.E.R.-C. performed DFT calculations. P.M.Z. provided supervision of computational studies. L.Y. and K.E.R.-C. drafted the manuscript. All authors were involved in revising the manuscript and gave approval to the final version.

### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

We thank the Carbon Neutrality Acceleration Program (CNAP) from Graham Sustainability Institute in University of Michigan for providing funding support. C.C.L.M. acknowledges support by a Cottrell Scholars Award, a program of Research Corporation for Science Advancement. N.S. acknowledges support from the National Science Foundation under Grant No. 2247194. K.E.R.-C. acknowledges support from the NSF Graduate Research Fellowship Program (No. DGE 125260) and a Ford Foundation Predoctoral Fellowship.

## REFERENCES

- (1) Masel, R. I.; Liu, Z.; Yang, H.; Kaczur, J. J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C. P. An Industrial Perspective on Catalysts for Low-Temperature CO<sub>2</sub> Electrolysis. *Nat. Nanotechnol.* **2021**, *16* (2), 118–128.
- (2) Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels. *Nat. Energy* **2019**, *4* (9), 732–745.
- (3) Nielsen, D. U.; Hu, X.-M.; Daasbjerg, K.; Skrydstrup, T. Chemically and Electrochemically Catalysed Conversion of CO<sub>2</sub> to CO with Follow-up Utilization to Value-Added Chemicals. *Nat. Catal.* **2018**, *1* (4), 244–254.
- (4) Dalena, F.; Senatore, A.; Marino, A.; Gordano, A.; Basile, M.; Basile, A. Methanol Production and Applications: An Overview. *Methanol*; Elsevier, 2018; pp 3–28.
- (5) Wang, Y.-R.; Ding, H.-M.; Sun, S.-N.; Shi, J.; Yang, Y.-L.; Li, Q.; Chen, Y.; Li, S.-L.; Lan, Y.-Q. Light, Heat and Electricity Integrated Energy Conversion System: Photothermal-Assisted Co-Electrolysis of CO<sub>2</sub> and Methanol. *Angew. Chem., Int. Ed.* **2022**, *61* (50), No. e202212162.
- (6) Todorova, T. K.; Schreiber, M. W.; Fontecave, M. Mechanistic Understanding of CO<sub>2</sub> Reduction Reaction (CO<sub>2</sub>RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts. *ACS Catal.* **2020**, *10* (3), 1754–1768.
- (7) Chang, X.; Li, J.; Xiong, H.; Zhang, H.; Xu, Y.; Xiao, H.; Lu, Q.; Xu, B. C–C Coupling Is Unlikely to Be the Rate-Determining Step in the Formation of C<sub>2+</sub> Products in the Copper-Catalyzed Electrochemical Reduction of CO. *Angew. Chem.* **2022**, *134* (2), No. e202111167.
- (8) Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO<sub>2</sub> Reduction (CO<sub>2</sub>RR) to Multi-Carbon Products over Copper-Based Catalysts. *Coord. Chem. Rev.* **2022**, *454*, No. 214340.
- (9) Zhang, S.; Jing, X.; Wang, Y.; Li, F. Towards Carbon-Neutral Methanol Production from Carbon Dioxide Electroreduction. *ChemNanoMat* **2021**, *7* (7), 728–736.
- (10) Yang, D.; Ni, B.; Wang, X. Heterogeneous Catalysts with Well-Defined Active Metal Sites toward CO<sub>2</sub> Electrocatalytic Reduction. *Adv. Energy Mater.* **2020**, *10* (25), No. 2001142.
- (11) Wu, X.; Sun, J. W.; Liu, P. F.; Zhao, J. Y.; Liu, Y.; Guo, L.; Dai, S.; Yang, H. G.; Zhao, H. Molecularly Dispersed Cobalt Phthalocyanine Mediates Selective and Durable CO<sub>2</sub> Reduction in a Membrane Flow Cell. *Adv. Funct. Mater.* **2022**, *32* (11), No. 2107301.
- (12) Soucy, T. L.; Dean, W. S.; Zhou, J.; Rivera Cruz, K. E.; McCrory, C. C. L. Considering the Influence of Polymer–Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO<sub>2</sub> Reduction Reaction. *Acc. Chem. Res.* **2022**, *55* (3), 252–261.
- (13) Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the Reactivity and Mechanism of CO<sub>2</sub> Electroreduction at Highly Dispersed Cobalt Phthalocyanine. *ACS Energy Lett.* **2018**, *3* (6), 1381–1386.
- (14) Liu, Y.; McCrory, C. C. L. Modulating the Mechanism of Electrocatalytic CO<sub>2</sub> Reduction by Cobalt Phthalocyanine through Polymer Coordination and Encapsulation. *Nat. Commun.* **2019**, *10* (1), 1683.
- (15) Rivera Cruz, K. E.; Liu, Y.; Soucy, T. L.; Zimmerman, P. M.; McCrory, C. C. L. Increasing the CO<sub>2</sub> Reduction Activity of Cobalt Phthalocyanine by Modulating the  $\sigma$ -Donor Strength of Axially Coordinating Ligands. *ACS Catal.* **2021**, *11* (21), 13203–13216.
- (16) Ogura, K.; Takamagari, K. Electrocatalytic Reduction of Carbon Dioxide to Methanol. Part 2. Effects of Metal Complex and Primary Alcohol. *J. Chem. Soc., Dalton Trans.* **1986**, *8*, 1519–1523.
- (17) Ogura, K.; Yoshida, I. Electrocatalytic Reduction of CO<sub>2</sub> to Methanol: Part 9: Mediation with Metal Porphyrins. *J. Mol. Catal.* **1988**, *47* (1), 51–57.
- (18) Boutin, E.; Wang, M.; Lin, J. C.; Mesnage, M.; Mendoza, D.; Lassalle-Kaiser, B.; Hahn, C.; Jaramillo, T. F.; Robert, M. Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine. *Angew. Chem., Int. Ed.* **2019**, *58* (45), 16172–16176.
- (19) Boutin, E.; Salamé, A.; Merakeb, L.; Chatterjee, T.; Robert, M. On the Existence and Role of Formaldehyde During Aqueous Electrochemical Reduction of Carbon Monoxide to Methanol by

Cobalt Phthalocyanine. *Chem.—Eur. J.* **2022**, *28* (27), No. e202200697.

(20) Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Domino Electroreduction of  $\text{CO}_2$  to Methanol on a Molecular Catalyst. *Nature* **2019**, *575* (7784), 639–642.

(21) Wu, Y.; Hu, G.; Rooney, C. L.; Brudvig, G. W.; Wang, H. Heterogeneous Nature of Electrocatalytic  $\text{CO}/\text{CO}_2$  Reduction by Cobalt Phthalocyanines. *ChemSusChem* **2020**, *13*, 6296–6299.

(22) Kong, S.; Lv, X.; Wang, X.; Liu, Z.; Li, Z.; Jia, B.; Sun, D.; Yang, C.; Liu, L.; Guan, A.; Wang, J.; Zheng, G.; Huang, F. Delocalization State-Induced Selective Bond Breaking for Efficient Methanol Electrosynthesis from  $\text{CO}_2$ . *Nat. Catal.* **2023**, *6* (1), 6–15.

(23) Li, P.; Bi, J.; Liu, J.; Zhu, Q.; Chen, C.; Sun, X.; Zhang, J.; Han, B. In Situ Dual Doping for Constructing Efficient  $\text{CO}_2$ -to-Methanol Electrocatalysts. *Nat. Commun.* **2022**, *13* (1), 1965.

(24) Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for  $\text{CO}_2$  Electroreduction to Methanol. *J. Am. Chem. Soc.* **2019**, *141* (32), 12717–12723.

(25) Ren, S.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular Electrocatalysts Can Mediate Fast, Selective  $\text{CO}_2$  Reduction in a Flow Cell. *Science* **2019**, *365* (6451), 367–369.

(26) Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulié, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Işci, U.; Berlinguette, C. P.; Robert, M.  $\text{CO}_2$  Electrochemical Catalytic Reduction with a Highly Active Cobalt Phthalocyanine. *Nat. Commun.* **2019**, *10* (1), 3602.

(27) Jiang, Z.; Zhang, Z.; Li, H.; Tang, Y.; Yuan, Y.; Zao, J.; Zheng, H.; Liang, Y. Molecular Catalyst with Near 100% Selectivity for  $\text{CO}_2$  Reduction in Acidic Electrolytes. *Adv. Energy Mater.* **2023**, *13* (6), No. 2203603.

(28) Yao, L.; Yin, C.; Rivera-Cruz, K. E.; McCrory, C. C. L.; Singh, N. Translating Catalyst–Polymer Composites from Liquid to Gas-Fed  $\text{CO}_2$  Electrolysis: A CoPc-P4VP Case Study. *ACS Appl. Mater. Interfaces* **2023**, *15* (26), 31438–31448.

(29) Li, H.; Pan, Y.; Wang, Z.; Yu, Y.; Xiong, J.; Du, H.; Lai, J.; Wang, L.; Feng, S. Coordination Engineering of Cobalt Phthalocyanine by Functionalized Carbon Nanotube for Efficient and Highly Stable Carbon Dioxide Reduction at High Current Density. *Nano Res.* **2022**, *15*, 3056–3064.

(30) Su, J.; Musgrave, C. B.; Song, Y.; Huang, L.; Liu, Y.; Li, G.; Xin, Y.; Xiong, P.; Li, M. M.-J.; Wu, H.; Zhu, M.; Chen, H. M.; Zhang, J.; Shen, H.; Tang, B. Z.; Robert, M.; Goddard, W. A.; Ye, R. Strain Enhances the Activity of Molecular Electrocatalysts via Carbon Nanotube Supports. *Nat. Catal.* **2023**, *6*, 818–828.

(31) Ren, X.; Zhao, J.; Li, X.; Shao, J.; Pan, B.; Salamé, A.; Boutin, E.; Groizard, T.; Wang, S.; Ding, J.; et al. In-Situ Spectroscopic Probe of the Intrinsic Structure Feature of Single-Atom Center in Electrochemical  $\text{CO}/\text{CO}_2$  Reduction to Methanol. *Nat. Commun.* **2023**, *14* (1), 3401.

(32) Rooney, C.; Lyons, M.; Wu, Y.; Hu, G.; Wang, M.; Choi, C.; Gao, Y.; Chang, C.-W.; Brudvig, G.; Feng, Z.; Wang, H. Active Sites of Cobalt Phthalocyanine in Electrocatalytic  $\text{CO}_2$  Reduction to Methanol. *Angew. Chem.* **2023**, No. e202310623.

(33) Yao, L.; Rivera-Cruz, K. E.; Singh, N.; McCrory, C. C. L. Challenges and Opportunities in Translating Immobilized Molecular Catalysts for Electrochemical  $\text{CO}_2$  Reduction from Aqueous-Phase Batch Cells to Gas-Fed Flow Electrolyzers. *Curr. Opin. Electrochem.* **2023**, *41*, No. 101362.

(34) Li, J.; Shang, B.; Gao, Y.; Cheon, S.; Rooney, C. L.; Wang, H. Mechanism-Guided Realization of Selective Carbon Monoxide Electroreduction to Methanol. *Nat. Synth.* **2023**, *2*, 1194.

(35) Ding, J.; Wei, Z.; Li, F.; Zhang, J.; Zhang, Q.; Zhou, J.; Wang, W.; Liu, Y.; Zhang, Z.; Su, X.; et al. Atomic High-Spin Cobalt(II) Center for Highly Selective Electrochemical  $\text{CO}$  Reduction to  $\text{CH}_3\text{OH}$ . *Nat. Commun.* **2023**, *14* (1), 6550.

(36) Farquhar, G. D.; Ehleringer, J. R.; Hubick, K. T. Carbon Isotope Discrimination and Photosynthesis. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **1989**, *40* (1), 503–537.

(37) Ren, H.; Kovalev, M.; Weng, Z.; Muhamad, M. Z.; Ma, H.; Sheng, Y.; Sun, L.; Wang, J.; Rihm, S.; Yang, W.; Lapkin, A. A.; Ager, J. W. Operando Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry of Carbon Dioxide Reduction Electrocatalysis. *Nat. Catal.* **2022**, *5* (12), 1169–1179.

(38) Kramer, W. W.; McCrory, C. C. L. Polymer Coordination Promotes Selective  $\text{CO}_2$  Reduction by Cobalt Phthalocyanine. *Chem. Sci.* **2016**, *7* (4), 2506–2515.