Multimedia Systems (2024) 30:40
https://doi.org/10.1007/s00530-023-01206-7

REGULAR PAPER q

Check for
updates

A comparative study of color quantization methods using various
image quality assessment indices

Maria-Luisa Pérez-Delgado’ © - M. Emre Celebi?

Received: 5 July 2023 / Accepted: 8 December 2023 / Published online: 25 January 2024
©The Author(s) 2024

Abstract

This article analyzes various color quantization methods using multiple image quality assessment indices. Experiments
were conducted with ten color quantization methods and eight image quality indices on a dataset containing 100 RGB color
images. The set of color quantization methods selected for this study includes well-known methods used by many researchers
as a baseline against which to compare new methods. On the other hand, the image quality assessment indices selected are
the following: mean squared error, mean absolute error, peak signal-to-noise ratio, structural similarity index, multi-scale
structural similarity index, visual information fidelity index, universal image quality index, and spectral angle mapper index.
The selected indices not only include the most popular indices in the color quantization literature but also more recent ones
that have not yet been adopted in the aforementioned literature. The analysis of the results indicates that the conventional
assessment indices used in the color quantization literature generate different results from those obtained by newer indices
that take into account the visual characteristics of the images. Therefore, when comparing color quantization methods, it is
recommended not to use a single index based solely on pixelwise comparisons, as is the case with most studies to date, but
rather to use several indices that consider the various characteristics of the human visual system.

Keywords Color quantization - Image quality assessment - Image processing - Color image

1 Introduction

There are numerous image processing operations that require
the use of an image quality assessment (IQA) index to evalu-
ate the quality of the images generated. These include image
compression, filtering, segmentation, fusion and color quan-
tization. Image quality is subjective in nature, as different
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people may perceive the same image differently. There are
two types of IQA indices: subjective indices and objec-
tive indices. Subjective indices are based on the opinion of
human observers, while objective indices use mathematical
models.

Historically, objective IQA indices were primarily based
on simple mathematical measurements, such as the distance
between the corresponding pixels in the original and the
modified images. One such IQA index is the mean squared
error (MSE), which is by far one of the most widely used
due to its computational simplicity. However, simple IQA
indices like MSE do not always reflect the image distortions
perceived by the human visual system (HVS). For example,
two images may be considered by a human observer to be
nearly identical, but their MSE may be large [1]. For this
reason, more elaborate objective IQA indices have been
proposed over the past three decades that attempt to model
the mechanisms of the HVS [2, 3]. Objective IQA indices
can be divided into two groups: full-reference indices [4]
and no-reference indices [2, 5]. In the former, the original
image is available for comparison with the modified image.
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In contrast, in the latter, the quality of the modified image is
predicted without having access to the original image.

MSE falls into the category of full-reference indices.
Other well-known IQA indices in this group include the
mean absolute error (MAE) and the peak signal-to-noise
ratio (PSNR). Newer IQA indices in this group attempt to
capture visual features of the image that are important to a
human observer. Among these IQA indices are the structural
similarity index (SSIM), the multi-scale structural similar-
ity index (MS-SSIM), and the visual information fidelity
index (VIF).

Color quantization (CQ) is a common image processing
operation that not only has practical applications in itself,
but is also a preprocessing step for various other image pro-
cessing techniques [6]. Articles dealing with CQ methods
generally use MSE to evaluate the error of the resulting
images. MAE and PSNR are also used, although less fre-
quently. There are many articles that use only MSE as the
IQA index [7-17]. There are a few articles that use only
PSNR [18, 19]. Some articles employ both MSE and PSNR
[20, 21], or MSE and MAE [22-25]. It is uncommon to
find articles that use HVS-based IQA indices to compare
CQ methods, although there are only a few such articles in
the recent literature. For example, several articles use SSIM
[26-28].

Recent studies on image quality demonstrate the need to
use HVS-based IQA indices to better interpret the quality
of the images from a human perspective, since such indices
can measure the image quality consistently with subjective
evaluations [3, 4, 29-31]. For this reason, it is interesting
to compare the results of CQ methods using not only the
traditional IQA indices, but also newer IQA indices that take
into account the HVS characteristics.

The objective of this article is to compare the results
obtained with the three most common IQA indices in CQ
(MSE, MAE and PSNR) to the results obtained with more
recent IQA indices. As a result of the study, it will be pos-
sible to determine if these three IQA indices are adequate to
assess the quality of a new CQ method or if they should be
complemented with newer and more elaborate IQA indices
that are less common in the current CQ literature. For this
purpose, this article evaluates eight IQA indices to compare
the effectiveness of ten CQ methods.

The CQ methods selected for this study are the following:
Median-cut (MC) [32], Octree (OC) [33], Variance-based
method (WAN) [17], Binary splitting (BS) [34], Greedy
orthogonal bi-partitioning method (WU) [35], Neuquant
(NQ) [36], Adaptive distributing units (ADU) [7], Variance-
cut (VC) [22], WU combined with Ant-tree for color quan-
tization (ATCQ), (WUATCQ) [37] and BS combined with
iterative ATCQ (BSITATCQ) [38]. On the other hand, the
IQA indices selected are the following: MSE, MAE, PSNR,
SSIM, MS-SSIM, VIF, the universal image quality index
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(UQI) and the spectral angle mapper index (SAM). With the
exception of WUATCQ and BSITATCQ, these CQ meth-
ods are classical and many authors use them as benchmarks
against new CQ methods. WUATCQ and BSITATCQ were
included in the analysis because they are methods that try
to improve the solution obtained by two classical methods
(WU and BS, respectively). The articles that describe both
methods compare them with the originals using only MSE,
so it seems interesting to compare them using other IQA
indices. On the other hand, the selected IQA indices are
popular in the image processing literature due in part to their
publicly available implementations. Therefore, the selected
IQA indices can be easily used by other researchers.

The experiments in this study were performed on images
from the publicly available CQ100 dataset [39], which
includes 100 color images. The results generated in this
study will be published in the upcoming version of CQ100.
Since the chosen CQ methods are deterministic, these results
may be used by other researchers to assess the effectiveness
of new CQ methods.

There are several articles that compare various IQA indi-
ces, but do not consider the specific problem of CQ. This
includes articles that compare the results of several IQA
indices when considering image acquisition and recon-
struction strategies [40], image restoration [41], and train-
ing deep neural networks for several low-level vision tasks
[42]. However, there is a recent work that compares several
IQA indices calculated on quantized images [43]. The said
article compares nine IQA indices (PSNR, UQI, SSIM, MS-
SSIM, VIF, noise quality index, signal-to-noise ratio (SNR),
VSNR, weighted SNR) applied to distorted images obtained
from two datasets and shows that PSNR outperforms SSIM.
The research described in [43] is different from the proposal
presented in this article, since it used subjective scores of the
distorted images (provided by human observers) to evaluate
the results obtained by IQA indices.

Since many IQA indices have been proposed over the
years [44], it is necessary to choose some of them to carry
out our study. The best would be to use the indices that
have generated the best results for the image processing
task under consideration, but there is no clear information
on this [45]. As an example, the results presented in [46]
compare MSE, PSNR, UQI, and SSIM, among other IQA
indices, and show that there is no index that generates good
results for all the types of distortions that can be present in
an image. Therefore, as there is no universal set of indices
suitable for CQ, we have used several criteria to make the
selection. On one hand, we have selected indices that are
commonly used when applying various image processing
techniques. On the other hand, a higher priority was given
to indices with publicly available implementations, which
makes it easier for other researchers to compare their results
with ours. In addition, because in the CQ operation both
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the original image and the one resulting from processing
are available, we consider that it is interesting to apply full-
reference quality indices. After considering this first set of
general criteria, more specific criteria were considered to
choose the specific indices.

MSE, MAE, and PSNR are the most used indices in the
literature regarding CQ, so it is necessary to consider them.
While these three indices are based on a pixel-by-pixel com-
parison between the original and the quantized image, the
other selected indices use other information. SSIM, UQI,
and MS-SSIM quantify the extent to which the image struc-
ture has been distorted; VIF is based on the mutual informa-
tion between the original and quantized images; while SAM
compares image spectra.

As noted above, SSIM is the index used in some CQ arti-
cles that are not limited to the use of MSE, MAE, or PSNR.
SSIM has received a lot of attention since its inception and
several variants have been proposed that attempt to improve
it. This index has produced good results in various image
processing operations and has been shown to improve MSE
and PSNR results [47]. On the other hand, the UQI index is
a particular case of the SSIM index, which can be calculated
with lower computational cost. Therefore, it is interesting
to check if UQI generates results similar to those of SSIM,
since this would allow the use of an index that can be cal-
culated more quickly, which would allow it to be integrated
more efficiently in CQ-related applications. The results
published by several authors indicate that UQI outperforms
MSE and PSNR for several types of image distortions [4,
48]. As far as MS-SSIM is concerned, it is an improved ver-
sion of SSIM calculated at a variety of scales and considers
a wider range of viewing distances. Furthermore, various
authors concluded that it generates better results than SSIM
[49].

VIF has been tested across a wide variety of image dis-
tortion types, showing good results. In addition, several
researchers concluded that VIF generates better results than
PSNR, MS-SSIM, SSIM, and UQI [50-52]. A distinctive
property of VIF over other IQA indices is that it can handle
cases where the distorted image is visually superior to the
original image [42].

Spectral information is considered an important aspect
of human vision [53]. As noted above, SAM determines
the spectral similarity between the original and quantized
images. This index is widely used in hyperspectral image
analysis, computer vision, and remote sensing applications.
The popularity of this index is mainly due to its simplicity
and geometrical interpretability. It can be computed easily
and quickly, and it is insensitive to illumination.

The main contribution of this article is the comparison
of several CQ methods (including very popular methods)
using a large test set and several IQA indices that take into
account different image characteristics. The article compares

the results of ten CQ methods, using eight IQA indices and
a test set with 100 images. The tests carried out allow us to
conclude that the most widely used IQA index in the CQ
literature, the MSE index, does not generate results com-
parable to those obtained by the other indices analyzed.
Therefore, it seems appropriate that when evaluating new
CQ methods, several IQA indices are used to compare them
with existing CQ methods. On the other hand, to help other
researchers in the comparison of CQ methods, the IQA
index of the quantized images generated by each CQ method
(32000 values in total) is included as supplementary mate-
rial to the article and will also be published in the upcoming
version of CQ100.

The rest of the article is organized as follows. Section 2
briefly describes the CQ methods considered in the article,
while Sect. 3 describes the IQA indices that will be used.
Then, Sect. 4 discusses the experimental results and finally
Sect. 5 presents the conclusions of the investigation.

2 Color quantization methods

Consider a color image whose pixels are distributed over
H rows and W columns. If the RGB color space is used
to represent the image, each pixel Pij> with i € [1, H] and
Jj € [1, W], is defined by three integer values from the inter-
val [0, 255] that represent the amount of red (R), green (G)
and blue (B) color of the pixel: p; = (R;;, G, B).

The goal of a CQ method is to obtain a new image, called
a quantized image, that has a limited number of distinct
colors, g, but is visually as similar as possible to the original
image. In other words, while the dimensions of the two
images are identical, the size or number of colors of the
palette used to represent the original image is much larger
than the size of the palette used to represent the quantized
image. Let pl’j = (lej, G;,B;) denote the pixel of the quan-
tized image in row i and column j, with i € [1, H] and
j € [1, W], that is, p[’j occupies in the quantized image the
same position as p;; in the original image.

Most of the CQ methods described below are divisive
methods. In general, they are fast methods that perform suc-
cessive divisions of the color space. They apply an iterative
process to divide the color space into g regions and add
a color to the quantized palette representing each of these
regions. The methods differ mainly in the region selected for
the next split, the splitting axis and the splitting point used.

2.1 The median-cut method
MC generates a quantized palette where each color repre-

sents approximately the same number of pixels in the origi-
nal image [32]. Each iteration of the splitting process splits
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the region with the most pixels to obtain two new regions.
The selected region is divided along the longest axis at the
median point. When the splitting process is complete, the
centroids of the resulting regions define the colors of the
quantized palette.

2.2 The octree method

OC uses an octree structure to define the quantized palette
[33]. The nodes of this tree can have 8 children and the tree
needs to include a maximum of 8 levels to store the colors
of an RGB image. This method includes two stages. The first
stage uses the original image pixels to build the tree. The
second stage merges the leaves of the tree that represent a
few pixels, and this operation continues until the number of
leaves equals the size of the quantized palette.

2.3 The variance-based method

WAN is based on the same idea as MC, but uses a differ-
ent criterion to select the region to split and also considers
different splitting axis and splitting point [17]. The selected
region is the one with the largest weighted variance. This
region is divided along the axis with the least weighted sum
of projected variances at the point that minimizes the mar-
ginal squared error.

2.4 The binary splitting method

BS uses a binary tree to define the colors of the quantized
palette [34]. Each iteration selects the leaf node with the
highest distortion and creates two children for that node,
distributing the parent’s pixels between the two. The process
ends when the number of leaves in the tree reaches g. The
average color of the pixels associated with each leaf defines
a color of the quantized palette.

2.5 The greedy orthogonal bi-partitioning method

This method applies the same idea as WAN but the splitting
axis considered is different. WU uses the axis that minimizes
the sum of the variances of both sides to divide the selected
region [35].

2.6 The neuquant method
NQ is based on the use of a one-dimensional self-organizing

feature map [36]. This neural network includes as many neu-
rons as the size of the quantized palette. The image pixels
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are used to train this neural network. The final weights of
the network define the quantized palette.

2.7 The variance-cut method

VC applies the binary splitting strategy like MC, WAN,
BS, and WU [22]. In each iteration, this method selects the
region with the largest sum of squared errors. That region
is then divided along the coordinate axis with the largest
variance. In this case, the splitting point is the mean point.
When the splitting process is complete, the centroids of the
final set of regions define the colors of the quantized palette.

2.8 The adaptive distributing units method

ADU is a clustering-based method that applies competitive
learning [7]. The centroid of each cluster defines a color of
the quantized palette. All pixels in the image initially define
a single cluster, so the quantized palette only includes one
color. The method applies an iterative process that increases
the number of clusters and, therefore, the size of the quan-
tized palette, until a palette of desired size is obtained. In
each iteration, a pixel of the original image is associated
with the closest color in the current quantized palette.
When the number of pixels associated with a color reaches
a threshold, a new color is added to the palette.

2.9 WU combined with ATCQ

WUATCQ [37] is a two-stage method that applies a swarm-
based algorithm (ATCQ) to improve the quantized palette
obtained by WU. ATCQ is a CQ method that represents
each pixel of the original image by an ant and builds a tree
where the ants progressively connect, taking into account
the similarity between their color and the color of the tree
node they are trying to connect to. The second level nodes
of the resulting tree define the colors of the quantized palette
[12]. WUATCAQ first applies the WU method, resulting in a
quantized palette. Next, the ATCQ operations are applied,
but using a tree whose second level nodes initially represent
the colors of the quantized palette generated by WU.

2.10 BS combined with ITATCQ

BSITATCQ [38] is another two-stage method where the iter-
ative variant of ATCQ (ITATCQ) is applied to the quantized
palette generated by BS. In this case, the methods used in
the two stages use a tree structure to carry out the quanti-
zation process. ITATCQ applies a first phase in which the
ATCQ operations define an initial tree. An iterative process
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is then applied to improve the quality of the quantized pal-
ette, where all ants are disconnected from the tree and then
reconnected [21].

3 Image quality assessment indices

This section describes the IQA indices that are used in this
study to compare the results of the selected CQ methods. All
of them are full-reference IQA indices.

3.1 Mean squared error

The MSE compares each pixel of the original image to the
corresponding pixel in the quantized image (Eq. 1). The
interval for this error is [0, 3 X 2552]. The smaller the MSE
value, the better the quantized image. The error is zero when
the original and quantized images are exactly the same [54,
551

1 H W | H W
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3.2 Peak signal-to-noise ratio

The PSNR of a quantized image can be computed from its
MSE by Eq. 2. Larger values of this error correspond to
quantized images more similar to the original image. In the
numerator of the logarithm function’s argument, the value
255 represents the dynamic range of the pixel values for an
8-bit-per-channel RGB image [55].

2
PSNR = 101log,, (MZSS—E5/3> 2)

3.3 Mean absolute error

MAE is computed by Eq. 3. It is based on the calculation of
the absolute value of the difference between the correspond-
ing pixels in the original and the quantized images [55]. The
quantized image is more similar to the original as this error
approaches zero. The interval for this error is [0, 3 X 255].
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3.4 Universal image quality index

The UQI models any image distortion as a combination
of three factors: loss of correlation, luminance distortion
and contrast distortion [48]. It is computed by Eq. 4, where
X and o, are the average color and the standard deviation,
respectively, of the pixels in the original image; y and o,
represent the same quantities, but for the pixels of the quan-
tized image; o,, is the correlation coefficient between the
two images. This index takes values in the range [—1, 1]. The
value 1 is obtained when both images are the same.

ol = Oy 2%y 20,0, A
B 0.0, ) \¥ +3* )\ 0 +o0? @

The developers of the index proposed to apply it to local
regions of the image. With this purpose, a sliding window
of size B X B is used to compute the index for the pixels
inside that window. This sliding window operates in raster
fashion. Therefore, the overall index is computed by Eq. 5,
where UQI, is the local index computed within the sliding
window at step k and W denotes the total number of steps.

w
vor =+ 3 voi, )
4 k=1

3.5 Structural similarity index measure

SSIM is computed by Eq. 6, based on the differences in the
luminance (/), the contrast (c¢) and the structure (s) between
the original and quantized images [47]. The index values
range from O (completely different images) to 1 (identical
images).

SSIM = 1% - ¢ - 57 (6)

where a, f and y are positive constants that define the rela-
tive importance of each component. The values of /, c and s
are computed by Egs. 7, 8 and 9, respectively, where sym-
bols x, o, ¥, o, and Oy have the same meanings as in UQI.
In addition, T}, T, and T; are positive constants introduced
to avoid instabilities. The authors of the index proposed the
following values for these constants [47]: T| = (0.01L)2,
T, =(0.03L)?, Ty =T,/2, a=pf =y =1, where L rep-
resents the dynamic range of the pixel values and it is set
to 255 for 8-bit-per-channel RGB images. SSIM was pro-
posed by the same authors that developed the UQI index.
As can be observed, Eq. 4 is a special case of Eq. 6 with
I'=T,=T;=0anda=f=y=1

[ 2%+ T, o
X+y+T,
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The authors of the index proposed a mean SSIM index
(MSSIM) to assess the overall quality of the entire image
[47]. This is computed in the same raster fashion as UQIL.
Then, the index for the entire image is computed by Eq. 10,
where W is the number of windows processed in the image
and SSIM, is the SSIM index computed within the sliding
window k.

w
1
MSSIM = — » SSIM 1
i 2SS, (10)

3.6 Multi-scale structural similarity index

The MS-SSIM [49] is based on SSIM and calculates lumi-
nance, contrast, and structure on multiple scales. SSIM is a
single-scale index, while MS-SSIM is a multi-scale index
based on the idea that the correct scale depends on viewing
conditions. For this reason, MS-SSIM simulates different
spatial resolutions by iterative downsampling and weighting
the values of the three SSIM components at different scales.
MS-SSIM is computed on several scales of the images
(Eq. 11). Each scale is obtained by downscaling the original
and quantized images by a power of two followed by suitable
filtering to avoid aliasing. The original image corresponds
to the case with j = 1, and the highest scale corresponds to
the case with j = M. In other words, j = 1 represents the
original resolution of the image, while M corresponds to
the lowest resolution considered (the number of times the
image is downsampled). The global error is then obtained by
combining the measurements at different scales.

M

MS-SSIM = ()™ - [ (e - s (n
j=1

where /,, denotes the luminance component, which is calcu-
lated for the highest scale only, while ¢; and s; represent con-
trast component and structure component at the j-th scale,
respectively. The parameters a,,, f;, y; control the relative
importance of each component. The authors recommend
ay = B; =y, for all j, to simplify parameter selection. They
also suggest normalizing the cross-scale settings such that
zi[\il ¥; = 1. The best results presented by the authors were
obtained for M = 2. A value of the index closer to 1 indi-
cates better image quality, whereas a value closer to 0 indi-

cates poorer quality.
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3.7 Visual information fidelity

The VIF index is based on the idea that the IQA problem
can be viewed as an information fidelity problem [50].
This IQA index quantifies the information present in the
original image and how much of this information can be
extracted from the quantized image.

VIF uses three models to measure the visual informa-
tion: the Gaussian scale mixture model, the distortion
model, and the HVS model. To calculate the index, the
images are first decomposed into several sub-bands and
each sub-band is analyzed in blocks. The visual informa-
tion is measured by computing mutual information in the
different models in each block and each sub-band. The
final value of the IQA index is computed by integrating
visual information for all the blocks and all the sub-bands.

VIF is computed on multiple sub-bands that are com-
pletely independent of each other with respect to the
parameters of the Gaussian and distortion models. It is
computed by Eq. 12, where k is the sub-band index and b
is the block index.

ZkEsub—band Zb I(Ckb’ Fkb)
Zkesub—band Zb ](Ckb’ Ekh)

where I(Cy,,, E;,) (Eq. 13) and I(Cy,,, F};,) (Eq. 14) represent
the information that could ideally be extracted by the brain
from a particular sub-band and block in the original and the
quantized images, respectively. Cy, represents the original
image in a sub-band and block, while E;;, and F};, denote
the cognitive output of the original and quantized images
extracted from the brain, respectively. They are created by
applying the HVS model in one sub-band and block to the
original and the quantized images, respectively.

VIF =

12)

2
1 55,Cu
1(Cyp, Ep) =3 log, <1 + kbz > (13)
Oy
2 2
1 8w Cu
I(Cyy Fyy) == log, <1 + —2> (14)
2 O-‘%kb + oy,

2 2 2 : :
where Oys Oy s 8kbs Spp and C; must be estimated in advance.

The HVS parameter 01%, (the variance of the visual noise) can
be adjusted based on trial-and-error to get the optimum VIF
estimation, but it can also be set to the constant value 2, as
proposed in [50]. On the other hand, sib Cy can be estimated
from the local variance of the original image pixels based on
maximum likelihood criteria by Eq. 15, where oy, is the
standard deviation of the original image in the block b at the

sub-band k.
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sCu = (o7, (15)

The distortion channel parameter g, and 6> can be esti-
kb

mated using simple linear regression based on the coeffi-
cients of the original and quantized image bands by Egs. 16
and 17, respectively, where o-,t”bl is the covariance of the origi-
nal image and the quantized image in the block b at the sub-
band k.
%

8kb :@ (16)

2 _d2 22
o, =(0,)" — 8y (0y,) (17

The index takes values in the interval [0, 1]. The quality of
the quantized image is better as the error approaches 1. The
value 0 indicates that all information from the original image
has been lost, while the value 1 indicates that the images are
the same.

3.8 Spectral angle mapper

SAM is an indicator of the spectral quality of the quantized
image. It determines the spectral similarity between two spec-
tra (the reference spectrum and the image spectrum) by com-
puting the angle formed between the two spectra, which are
treated as vectors in a space of dimensionality equal to the
number of bands [56, 57]. SAM is computed by Eq. 18, where
X is the test spectrum (i.e., quantized image) and Y the refer-
ence spectrum (i.e., original image). The angle a defines the
similarity between the two spectra. The operation computes
the arccosine of the dot product of the spectra and it can also
be expressed as Eq. 19, where nb is the number of spectral
bands.

a =COS_1 <&> (18)
HXI]- 1Y

b
Yo XY

VI X0 T (i

a =CoS~

19)

The similarity between the images increases as the angle
computed decreases. The angle a presents a variation any-
where between 0 and 90 degrees. If the equation is expressed
as cos a, the value of the index ranges in [0, 1] and the best
estimate takes values close to 1.

4 Experimental results and discussion

This section presents various results of our experimen-
tal study. It has been divided into several subsections to
give it a better structure. The first subsection describes
the experiments performed and the remaining subsec-
tions describe the analysis of the results. First, various
box plots are given, which allow analyzing the distribution
of the results. Then, the mean values obtained for each
CQ method and IQA index are analyzed. Next, a ranking
of the methods is established, in order to determine if dif-
ferent IQA indices result in comparable rankings. Finally,
statistical tests are performed to support the conclusions
presented in the previous subsections.

4.1 Experiments

The experiments were carried out on the images included
in the CQ100 dataset [58]. This is a large, diverse, and
high-quality color image dataset collected in order to com-
pare CQ methods. The dataset includes 100 RGB images,
each with dimensions 768 X 512 or 512 X 768. Researchers
can download the original images as well as the quantized
images obtained by various CQ methods. The MSE values
for all quantized images are also publicly available [39]. A
table is included, as supplementary material to this article,
with the names of the images and the number of distinct
colors in each one (Online Resource 1). For thumbnails of
the images in the dataset, see [58].

Table 1 lists the IQA indices used in the experiments,
together with the ranges of those indices and the best
value. It also shows the values of the parameters used in
the experiments (whenever parameters are required). For
SSIM, the calculated value is the average value obtained
by Eq. 10, although SSIM is used to represent that value
(instead of MSSIM) for simplicity. In general, the value
calculated in the literature is the one obtained with the said
equation and is usually referred to as SSIM. It should be
noted that MSE and MAE are not necessarily comparable
across images, as their values are unnormalized.

The ten CQ methods considered in the experiments are
WU, BS, OC, MC, VB, VC, WAN, NQ, WUATCQ, BSI-
TATCQ. These are all deterministic methods, so the same
result is obtained when applied to the same original image
under identical settings.

The selected CQ methods were executed to generate
quantized images with 32, 64, 128 and 256 colors, which
are common palette sizes in the CQ literature. Therefore,
each CQ method generated 400 quantized images, result-
ing in a total of 4000 quantized images. Then, the eight
IQA indices were calculated for each quantized image. The
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Table 1 IQA indices used in

Parameters

. IQA index Range Best

the study and their ranges, best

possible values, and parameters MSE [0,3%x2552] O
MAE [0,3 x 255] 0
PSNR [0, 48.13]
UQI [-1,1] 1
SSIM [0, 1] 1
MS-SSIM [0, 1] 1
VIF [0, 1] 1
SAM [0, 1] 0

Sliding window size = 8

Sliding window size = 11,7, = (0.01L)?, T, = (0.03L)%, L =255
Sliding window size = 11, #Scales=5

Weights for the scale = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
T\, T, and L with the same values defined for SSIM

Variance of the visual noise = 2

IQA index value for each image, CQ method, palette size,
and IQA index are included as supplementary material to
this article (Online Resource 1). The following subsections
discuss the results obtained and summarize the data.

4.2 Box plots

This subsection analyzes the box plots of the results (Figs. 1,
2, 3, 4). Each figure shows the results for a palette size and
includes a subfigure for each IQA index. The figures exhibit
some clear trends.

MC is the worst method and WAN is the second-worst
method. The box corresponding to MC has the worst median,
and 25th and 75th percentile in all subfigures. In the case of
WAN, these three statistics are worse than the correspond-
ing ones for all methods except MC. On the other hand,
the boxes corresponding to the BSITATCQ and WUATCQ
methods are very similar in all the subfigures, so the three
statistics obtained by these hybrid methods for each IQA
index are very similar.

ADU is the best method. In general, the box correspond-
ing to the ADU method is the one with the smallest ampli-
tude (i.e., difference between the 75th and 25th percentiles)
for all IQA indices except VIF so its results have the least
dispersion. Certainly, ADU always has the box with the
smallest amplitude for the MSE, MS-SSIM, and SAM indi-
ces, while for the other four indices the box has either the
smallest or the second-smallest amplitude. ADU has the best
median in most cases, being the second-best in the six cases
in which it is not the best. In those six cases, the best median
is obtained by BSITATCQ. Finally, it should be noted that
in the case of the VIF index, MC has the least dispersion.

Among the four IQA indices for which the best result is 1,
UQI and MS-SSIM are the ones that generate larger values
and vary in a smaller interval (this especially in the case of
MS-SSIM). This makes many of the boxes very small and
therefore difficult to differentiate. In any case, it is clearly
observed that the results obtained for UQI present an asym-
metrical distribution, but this does not occur with the results
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of MS-SSIM. Conversely, VIF is the IQA index that gener-
ates smaller values and varies over a larger interval.

4.3 Average results

Tables 2 and 3 summarize the results of the tables included
in Online Resource 1. They show the average and standard
deviation of each IQA index and CQ method for each palette
size. The best average value obtained for each IQA index
and palette size is underlined. Because a limited number of
decimal places can be included in the tables, in some cases
the same result is highlighted for multiple methods. In these
cases, italics are used to identify the best of all these values
(taking into account more decimals than those shown in the
table).

It is clearly observed that MC generates the worst average
results for all the IQA indices and palette sizes. In addition,
it is observed that WAN is the second-worst method. On
the contrary, ADU, BSITATCQ, WUATCQ and NQ are the
subset of methods attaining the best results.

ADU is the method that generates the overall best results.
This method is the best according to SSIM, MS-SSIM and
VIF for all palette sizes; it is also the best for three palette
sizes when MAE and UQI are considered (32, 64, and 256
colors for MAE; 64, 128, and 256 colors for UQI). On the
other hand, MSE indicates that ADU is the best only for
the case with 32 colors and the second-best for the other
palette sizes. The SAM index values are very similar (even
almost the same) for the ADU, WUATCQ and BSITATCQ
methods, which are the best methods according to this IQA
index. Finally, ADU is the third-best method based on PSNR
(for all four palette sizes).

BSITATCQ is the best according to MSE, PSNR and
SAM for palettes with more than 32 colors; it is the second-
best based on PSNR and SAM for 32 colors, and the third-
best based on MSE for 32 colors. Based on VIF this is the
second-best method for 32 colors, and the third-best method
for the other palette sizes. MAE indicates that this is the
third-best method for all palette sizes. For the other three



Page90f24 40

MSE

A comparative study of color quantization methods using various image quality assessment...

NQ Hl— NQ Hil—e -+ N NQ
MC HI——oe ++ + MC i - MC MC
WAN HIlF—ec « |+ | < lwan Hil—e - WAN WAN
wuatca  HIll—moo WUATCQ HlHe= « WUATCQ WUATCQ
BS _Hl—o0 BS Wv Hill e - BS BS
BSITATCQ W_-|noo gsarca O Hijf—pe « BSITATCQ _Wr BSITATCQ
oc - = oc m HilF—oe  « oc oc
ADU HIlF—mo ADU HlF+= - ADU ADU
wu HIll—+o wu Hill—pwe - wu wu
VC _..l.a! | = | vC T-|.c . VC VC
2 283 5383 & 53 = 2 B = =
NQ T NQ NQ NG
MC s I MC MC MC
WAN —l— wan WAN WAN
WUATCQ —ll— | wuatca WUATCQ WUATCQ
—

MM_._.B.no = - = - & ”

S —ll—  |ssmaTca a —l— o BSTATCG & BSITATCQ
oc —— - oc —l——®° |oc o oc
ADU .|l|_ ADU _|II|_S ADU ADU
w —,— | WU "
Ve —— | ve Ve

g 888 8 g ° % 8 =© 2 8 8 R M. U S S -
o) (a1} [a] - - = (=] = (=1 = = — = = = (=] =T o o o o -

Fig.1 Box plots for 32-color

images

pringer

A's



MAE

M.-L. Pérez-Delgado, M. E. Celebi

NQ = NQ HiH oo - NQ NQ

MC T..|6 00  x % * MC _.I..f»|_o - MC MC

WAN HIlF—e=  « « % |WAN HIl—o WAN WAN
woatca il - wusrca  HElH o+ WUATCQ WUATCQ
BS 1 oo BS = oo - BS BS
BSITATCQ WS-|.B; BSITATCQ %. HiH oo« BSITATCQ W BSITATCQ
oc = oc @ Hilb g oc oc

ADU = ADU HHe - ADU ADU

wu = - WU Hll- oo wu Wi

Ve Il " e | ve HiHoe |+ - Ve

MSE

=1 o o o =1 el [=1
=1 [= =] [=) [=) o (=21 w = =] 'r] < [=] (=23 (=% O o P~ I~ =] ~ L=} uy =T o =]
= @ 3] - — [=] (=] [=1 (=1 (=] =} — o o [=] =1 (=1 (=} =} o [=1 [=] o (=] [=]
*0 © T-I_ NG _|.|l|h NG _ll|_ o« NQ L 0|.||_ NQ

WAN —— |wan —l— WAN +—l— WAN

WUATCQ —l—  |wece ——— oo WUATCQ oo — Il WUATCQ

B s —l— |ss — B3 x ° °o—l— BS

BSITATCQ < —lll—  |esmaco ® BsmATca & | o o —JIl— BSITATCQ
a

o
]

s

]

hhi

*
o
o

SSIM

0]

oc _|I|_ QC TT oo oc oo .|.|_ oc
ADU —|]l|. ADU .|.|_ am ADU oo v|.|..o ADU
wu —m— W —l— e WU o o —Jil WU

8

% O

i

Fig.2 Box plots for 64-color

images

40 Page100f24

© ol v —— — .
vC
vC vC
(=3 (=] (=] (=] o o
[=} o (=] o [=] (=] wy (=] uwy (=}
[T =] w = w ™ = i =3 = < o i B © w o w o W o 0
o~ o - — [=] (=] (=] o o — (=1 (=] (=] [=] =T = o« o« o4 (2] ol

pringer

A's



Page 11 0f24 40

MAE

40

MSE

800
600

A comparative study of color quantization methods using various image quality assessment...

Fig.3 Box plots for 128-color
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Table 2 Average and standard QA BS WU OC ADU VC WAN MC NQ  WUAT. BSITAT.
deviation of the IQA indices for
each CQ method—32 and 64 32 colors
colors MSE av 43565 425.64 469.55 35736 38596 542.58 666.64 408.94 360.19 362.10
de 29659 261.12 297.89 217.93 24521 34090 361.53 246.03 235.09 233.72
MAE av 24614 24766 25795 22.142 24283 27.433 32366 22293 23.093 23.029
de 9228 6379 9.013 8050 7.940 9432 9550 8.105 8.463 8358
PSNR av 27378 27420 26.895 28.033 27.773 26272 25283 27.482 28.190 28.136
de 2.890 2856 2.594 2453 2590 2591 2459 2.620 2.898  2.845
UQI av 0946 0946 0946 0955 0936 0929 0913 0956 0951  0.951
de 0.051 0049 0.045 0041 0084 0082 0087 0039 0046 0.046
SSIM av 0.858 0.856 0854 0.881 0866 0.834 0802 0879 0873 0.873
de 0.065 0065 0.066 0.057 0060 0071 0076 0058 0.060  0.060
MS- av 0952 0950 0947 0960 0956 0938 0910 0957 0958  0.957
SSIM de 0.029 0028 0030 0025 0.026 0037 0044 0025 0025 0027
VIF  av 0414 0408 0406 0441 0427 0393 0368 0439 0430 0433
de 0074 0075 0072 0074 0074 0072 0064 0076 0077 0.077
SAM av 0.095 0095 0.100 0087 0.090 0.107 0.118 0094 0087 0087
de 0035 0034 0034 0030 0032 0037 0041 0033 0032 0031
64 colors
MSE av 24453 238.67 260.64 199.70 222.16 317.40 417.12 221.99 201.03 199.65
de 163.04 14420 14791 117.64 134.84 178.81 277.47 12836 127.63 128.90
MAE av 18205 18414 18961 16273 18.477 20.853 25378 16306 17.138 16.940
de 6982 6810 6952 6002 5908 6812 7768 6062 6342 6306
PSNR av 29951 29.998 29.485 30.610 30.153 28.595 27.464 30.186 30.777 30.801
de 3.066 3.046 2757 2630 2574 2640 2672 2779 3.039  3.023
UQI av 0962 0960 0961 0968 0946 0941 0926 0967 0962 0962
de 0.039 0040 0.037 0032 0081 0079 0083 0.034 0042 0.040
SSIM av 0901 0899 0.898 0920 0902 0.878 0.840 0917 0913 0913
de 0.052 0052 0052 0043 0048 0056 0070 0.044 0046  0.046
MS- av 0971 0970 0969 0977 0972 0961 0937 0976 0975 0975
SSIM de 0019 0019 0019 0016 0017 0023 0037 0016 0016 0017
VIF  av 0490 0485 0481 0518 0500 0465 0429 0516 0509 0514
de 0.078 0079 0074 0076 0074 0076 0064 0078 0.079  0.079
SAM av 0071 0071 0074 0065 0068 0082 0092 0069 0065 0064
de 0027 0026 0026 0023 0025 0030 0033 0025 0024 0.024

IQA indices, BSITATCQ obtains results very similar to
WUATCQ); the two methods share the second or third rank
in many cases. The only case in which BSITATCQ is below
the third rank corresponds to the UQI index and palette size
of 256, where it ranks fourth.

NQ ranks between second and fourth in many cases. It
is the best method only based on MAE for 128 colors and
UQI for 32 colors. It is the second-best based on MAE and
for the other palette sizes, and also based on UQI for 64 and
128 colors, but the seventh-best based on this IQA index for
256 colors. In addition, it is the second-best method for all
palette sizes when considering SSIM and for three palette
sizes when considering MS-SSIM and VIF (64, 128, and
256 colors for MS-SSIM; 32, 64, and 128 colors for VIF).
Indeed, NQ ranks the same as WUATCQ or BSITATCQ

in some cases when considering the SSIM and MS-SSIM
indices. The MSE and PSNR indices assign the worst value
to this method (it ranks fifth for 32 colors and fourth for the
rest of the palette sizes). Based on the SAM index, NQ is
the second-best method for 128 colors (tied with ADU) and
ranks third or fourth for the rest of the palette sizes.
WUATCQ oscillates between the second and fourth ranks
in most cases, since it is the best method only based on
PSNR and SAM for 32 colors. It is the second-best method
based on PSNR and SAM for palettes with more than 32
colors. It should be noted that based on the SAM index,
this method generates results comparable to ADU and BSI-
ATCQ. On the other hand, WUATCQ is the second-best
method based on the MSE index for 32 colors and the third-
best for the other palette sizes. It is the third-best method
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Table 3 Average and standard QA BS WU OC ADU VC WAN MC NQ  WUAT. BSITAT.
deviation of the IQA indices for
each CQ method—128 and 256 128 colors
colors MSE av 14070 137.86 14938 11537 133.64 193.93 24893 12042 11586 113.50
de 89.89 8257 87.02 66.18 7570 10405 12442 72.60 72.17  72.03
MAE av 13.680 13.875 14.132 12.182 14.391 16310 20.106 12.145 12.883 12.674
de 5239 5080 5301 4500 4339 4942 5540 4611 4741 4756
PSNR av 32401 32416 31965 33.022 32308 30.721 29.557 32.944 33202 33.323
de 3233 3.38 2909 2730 2486 2.625 2495 2984 3.125 3213
UQI av 0971 0970 0970 0976 0954 0948 0936 0974 0970  0.970
de 0.032 0034 0031 0027 0078 0079 0079 0030 0038 0.035
SSIM av 0932 0931 0930 0946 0928 0910 0.871 0944 0941  0.941
de 0.039 0038 0039 0031 0038 0045 0063 0.033 0033 0.034
MS- av 0983 0982 0982 0987 0983 0976 0958 00986 0985  0.986
SSIM de 0.012 0011 0013 0009 0011 0014 0022 0010 0010 0010
VIF  av 0562 0558 0555 0592 0567 0533 0486 0590 0584  0.589
de 0.080 0078 0076 0.075 0071 0076 0065 0077 0079 0.079
SAM av 0054 0054 0056 0050 0.053 0064 0073 0050 0049 0049
de 0021 0020 0020 0018 0019 0024 0026 0019 0019 0.019
256 colors
MSE av 8232 8072 8603 67.36 83.11 12357 165.19 7350 6795 6596
de 51.14 4724 4877 3666 4275 6449 7981 4171 41.19  39.82
MAE av 10375 10625 10.618 9.188 11489 13.131 16366 9.368 9.856  9.658
de 4.021 3.834 4.036 3457 3.186 3.645 4265 3.504 3.603  3.561
PSNR av 34754 34718 34.406 35352 34282 32.635 31.307 35.049 35507 35.666
de 3340 3.102 3.058 2767 2314 2512 2421 2924 3.118  3.221
UQI av 0979 0976 0977 0982 0960 0952 0944 0969 0975 0976
de 0.025 0030 0027 0023 0069 0079 0077 0058 0035 0.032
SSIM av 0.955 00953 0954 0965 0947 0932 0895 0961 0961  0.961
de 0.027 0026 0028 0020 0028 0037 0055 0023 0022 0.023
MS- av 0990 0990 0990 0993 0989 0985 0969 0992 0992  0.992
SSIM de 0.07 0.007 0007 0.005 0006 0009 0018 0005 0.006 0.005
VIF  av 0.631 0626 0.627 0660 0628 0597 0545 0654 0.652  0.659
de 0.078 0073 0075 0071 0066 0072 0063 0073 0075 0.076
SAM av 0.042 0041 0043 0038 0042 0051 0059 0040 0.038 0037
de 0017 0016 0016 0014 0015 0019 0022 0015 0015 0015

according to SSIM and the fourth-best method according to
MAE and VIF. MS-SSIM indicates that this method is the
fourth-best for 128 colors and the second-best for all other
palette sizes. Finally, UQI indicates that this method is the
third-best for palettes with less than 256 colors, but sharing
this rank with other methods (BSITATCQ in all cases and
BS, WU and OC in one case). This IQA index gives the
worst result for 256 colors, since it indicates that WUATCQ
is the sixth-best method.

Based on the above analysis, we can conclude that the
quality assessment obtained when analyzing the MSE
index does not coincide with that of the rest of the IQA
indices. Next we will analyze a concrete example to show
the differences. The detailed results included in Online
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Resource 1 indicate that the best MSE value (over the 100
images) is obtained for shopping_bags image reduced to
256 colors by the BS method (MSE = 3.308). Figures 5
and 6 show the quantized image with 256 colors obtained
by the ten CQ methods. Each subfigure shows the values
obtained for each of the eight IQA indices; the best value
of each IQA index appears in bold. It can be seen that
BS generates the best image according to MSE, PSNR,
SAM, MS-SSIM and UQI. On the other hand, according
to SSIM, VIF and MAE, the best image is generated by
three different methods (NQ, BSITATCQ and OC, respec-
tively). Therefore, the best value of all IQA indices is not
obtained by BS.
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(a) BS (MSE: 8.31, MAE: 0.84, PSNR: 47.71, (b) WU (MSE: 3.47, MAE: 1.04, PSNR: 47.50,
SAM: 0.0090, SSIM: 0.9959, MS-SSIM: 0.9992, SAM: 0.0090, SSIM: 0.9950, MS-SSIM: 0.9988,
VIF: 0.8069, UQI: 0.9998) VIF: 0.7983, UQI: 0.9998)

(c) OC (MSE: 4.26, MAE: 0.83, PSNR: 46.61, (d) ADU (MSE: 8.97, MAE: 1.20, PSNR: 43.37,
SAM: 0.0102, SSIM: 0.9961, MS-SSIM: 0.9992, SAM: 0.0150, SSIM: 0.9932, MS-SSIM: 0.9984,
VIF: 0.7864, UQI: 0.9998) VIF: 0.7107, UQI: 0.9996)

(e) VC (MSE: 32.55, MAE: 8.45, PSNR: 37.78, (f) WAN (MSE: 37.65, MAE:9.42, PSNR:
SAM: 0.0213, SSIM: 0.9826, MS-SSIM: 0.9957, 37.14, SAM: 0.0230, SSIM: 0.9839, MS-SSIM:
VIF: 0.7753, UQI: 0.9908) 0.9965, VIF: 0.7643, UQI: 0.9900)

Fig.5 shopping_bags image with 256 colors

4.4 Ranking of the methods the objective quality of the images generated by each of

them. For this, the eight IQA indices calculated for the
To better understand the global results obtained, a ranking  quantized images generated by each CQ method were ana-
can be established to order the methods, taking into account  lyzed independently. Furthermore, the results obtained for

@ Springer



40 Page160f24

M.-L. Pérez-Delgado, M. E. Celebi

(a) MC (MSE: 22.25, MAE: 5.84, PSNR: 39.43, (b) NQ (MSE: 5.26, MAE: 1.48, PSNR: 45.69,
SAM: 0.0218, SSIM: 0.9836, MS-SSIM: 0.9899, SAM: 0.0118, SSIM: 0.9962, MS-SSIM: 0.9992,

VIF: 0.7052, UQI: 0.9964)

VIF: 0.7946, UQI: 0.9991)

(c) WUATCQ (MSE: 5.74, MAE: 2.47, PSNR: (d) BSITATCQ (MSE: 4.22,

0.9987, VIF: 0.7906, UQI: 0.9997)

Fig. 6 shopping_bags image with 256 colors

each palette size were considered independently. An index
between 1 and 10 was assigned to the results generated by
the ten CQ methods for an image, where 1 represents the
method that produces the best result and 10 the method that
produces the worst result. In the event that several methods
generate exactly the same result for an image, they are all
assigned the same index (for example, if two methods gener-
ate the best result in the set, they are both assigned an index
of 1, and the second-best method is then assigned an index
of 3). This process was applied for each of the 100 images.

Table 4 shows the average rank obtained for the set of 100
images considering each palette size independently and also
the average value for the four palette sizes. The table does
not show integers between 1 and 10, but real values, with the
aim of being able to determine if multiple methods obtain
a close value in the ranking. An attempt has been made to
place the columns of the table in ascending order, so that the
interpretation of the results is easier. Figure 7 shows the rank
of each method for each IQA index and palette size. Ten
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MAE:
45.31, SAM: 0.0110, SSIM: 0.9949, MS-SSIM: PSNR: 46.65, SAM: 0.0094, SSIM: 0.9954, MS-

2.39,

SSIM: 0.9989, VIF: 0.8244, UQI: 0.9991)

integer values are used in the subfigures to plot the results,
so that the order assigned to the ten CQ methods can be seen
more clearly. In addition, Fig. 8 shows the overall results for
each IQA index and each CQ method, without separating the
results by the palette size.

Table 4 shows that BSITATCQ is the best method accord-
ing to MSE, PSNR and SAM, but ADU is the best method
according to the other five IQA indices. The values for ADU
and BSITATCQ are very close with respect to MSE and
PSNR for 32 and 64 colors, but the difference increases for
SAM for all the palette sizes.

Based on the MSE and PSNR values, the second-best
method is ADU for the two largest palettes; however,
WUATCAQ is the second-best method for the two smallest
palettes. WUATCQ is also the second-best according to
SAM and UQI. On the other hand, NQ is the second-best
method according to MAE, SSIM, and VIF. In the case of
MS-SSIM, WUATCAQ is the second-best for 32 colors, but
BSITATCAQ is the second-best for all other palette sizes.



A comparative study of color quantization methods using various image quality assessment...

Page 17 of 24 40

Table 4 Ranking of each CQ

: IQA index 1 ADU BSITAT. WUAT. NQ VC WU BS OC WAN MC
method for each IQA index (c:
number of distinct colors. The MSE 32 236 223 2.26 549 414 593 609 7.64 894 992
label "all” represents the average 64 232 211 225 491 482 592 605 770 897 995
of the four ranks corresponding
to 32, 64, 128, and 256 colors) 128 2.51 1.81 2.60 374 562 6.01 611 7.65 9.02 9.93
256 245 1.54 2.68 425 623 572 584 737 899  9.93
all 241 192 2.45 460 520 590 602 759 898  9.93
MAE 32 162 344 3.54 201 566 632 599 758 8.88  9.96
64 161 325 3.74 189 613 634 578 738 891  9.97
128 174 3.8 3.87 163 655 637 557 720 894 995
256 141 313 4.04 216 720 647 519 653 894 993
all 160  3.25 3.80 192 639 638 563 7.7 892 995
PSNR 32 236 223 2.26 549 4.14 593 609 7.64 894 992
64 232 211 2.25 491 482 592 605 7.70 897  9.95
128 251 181 2.60 374 562 601 611 7.65 9.02 993
256 245 154 2.68 425 623 572 584 737 899 993
all 241 192 2.45 460 520 590 602 759 898  9.93
UQI 32 249 377 3.12 353 537 596 539 697 864 976
64 225 3.68 3.06 342 650 569 529 657 872 9.2
128 220 358 3.28 335 694 571 514 616 887 976
256 2.10  3.58 3.25 424 734 565 456 570 897 9.6l
all 226 3.65 3.18 3.64 654 575 510 635 880 974
SIM 32 188 349 3.59 244 445 689 633 7.1 895 987
64 160 327 342 246 541 6.66 629 7.00 897 992
128 156 3.19 3.53 238 6.17 649 604 673 896 995
256 146  2.96 3.32 311 671 662 581 610 896 995
all 163 323 3.47 260 569 667 612 674 896  9.92
MS-SSIM 32 201 325 3.16 351 440 662 601 731 874 999
64 1.80 2.94 3.16 300 535 661 608 7.19 890  9.97
128 1.81 290 3.42 241 6.03 678 592 684 894 995
256 1.65  2.67 3.45 282 674 690 575 609 896 997
all  1.82 294 3.30 294 563 673 594 686 8.89 997
VIF 32195 325 3.85 240 439 7.03 629 732 874 978
64 189 265 3.61 270 496 6.89 627 726 888  9.89
128 184 255 3.55 248 541 680 627 726 889 995
256 181  2.11 3.55 297 598 684 605 678 894 997
all 187 2.64 3.64 264 519 689 622 7.6 886  9.90
SAM 32 251 215 2.25 551 398 6.02 612 7.69 892 985
64 246  2.06 2.19 501 454 596 6.3 7.74 899 991
128 262 169 2.57 383 544 609 610 7.68 9.05 993
256 261 1.52 2.56 428 603 580 583 741 903 993
all 255  1.86 2.39 466 500 597 605 7.63 9.00 991

For cases (palette sizes and IQA indices) not listed above,
the third rank is attained by one of the following methods:
ADU, BSITATCQ, WUATCQ, and NQ.

For all the IQA indices, MC is the worst method and
WAN is the second-worst. In addition, OC is the third-
worst method for all IQA indices but UQI, in which case
it is the seventh method. On the other hand, for 256 colors,

OC achieves results similar to those of WU for MAE, UQI,
SSIM, and VIF.

Table 4 shows that in some cases the ranks obtained by
various methods are very similar. For example, the second-
best and third-best methods identified by SAM (WUATCQ
and ADU, respectively) have ranks that exceed 2 but do not
reach 3. In order to show a summary of the ranking of CQ
methods for each IQA index showing a clear order for the ten
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Fig.7 Rank of each CQ method
for each IQA index (lower ranks
are better)—results for each
palette size

Fig. 8 Rank of each CQ method
for each IQA index (lower ranks
are better)
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CQ methods, Table 5 shows the ranking obtained consider-
ing the results of the 400 images generated by each method
as a single set (that is, without grouping the images by pal-
ette size). The methods that rank second and third accord-
ing to VIF attain the same rank (2.64) in Table 4. NQ was
assigned the best of both ranks because its rank is slightly
lower (2.6375) than that of the other method (2.6400). In
any case, for all practical purposes, we can consider both
methods to have the same rank. The same is true for the
same methods with respect to the MS-SSIM index. Table 5
includes superscripts to mark the methods that attain similar
ranks with respect to a certain IQA index, so they could have
been assigned the same rank in the said ranking. Table 5
and Fig. 8 summarize the classification of the CQ methods
obtained for each IQA index analyzed.

The analysis of Table 5, Fig. 8, and the results included
in the rows labeled ‘all’ in Table 4 allows us to interpret the
final ranking and establish a clear order among the ten CQ
methods analyzed:

e It is possible to identify two groups of IQA indices that
generate the same ranking for the CQ methods: a group
made up of SSIM, MS-SSIM, and VIF (we will call it
group A), and a second group made up of MSE, PSNR,
and SAM (we will call it group B). It can be observed
that the methods that rank second and third according
to the group-B indices could be interchanged, since the
corresponding ranks are very similar.

The rankings obtained for the other two IQA indices
(MAE and UQI) are not directly comparable with any
other, except for the two worst methods, which are the
same for all IQA indices. The ranking defined for MAE
is the same as for group-A indices except for ranks 5, 6,
and 7. Although the ranking defined according to UQI
shows more differences with the other IQA indices, the

Table 5 Ranking of methods for each IQA index (lower ranks are better)

subset that defines the four best methods includes the
same cases as for the other IQA indices.

ADU, BSITATCQ, WUATCQ and NQ attain the best
four ranks for all the IQA indices.

ADU is the best method according to group A, but the
second or third according to group B. BSITATCQ is the
best method according to group B, but the third accord-
ing to group A. The second rank according to group A
corresponds to NQ, but this method ranks fourth accord-
ing to group B. On the other hand, WUATCQ ranks bet-
ter according to the group-B indices (second and third)
than the group-A indices (fourth). It is observed that
ADU and BSITATCQ obtain very similar results for the
IQA indices in group B, so we can consider both methods
to have the same rank.

Although both MAE and UQI indicate that ADU is
the best method, the results of these two IQA indices for
the next three ranks are not the same. Certainly, MAE
generates the same results as group-A indices for the top
four ranks.

VC ranks the same (fifth) according to the IQA indices
in groups A and B but it ranks worse according to MAE
and UQI (between sixth and seventh).

BS and WU share ranks sixth and seventh, respectively,
according to the IQA indices in groups A and B. In the
case of group B, it is observed that both methods gener-
ate very similar results and attain the same rank. In the
case of group A, BS is better than WU and also for two
of the IQA indices in this group (SSIM and MS-SSIM),
the rank of WU is comparable to that of OC.

OC ranks eighth according to all IQA indices except
UQ]L according to which it ranks seventh although with a
result very similar to that of the method that ranks eighth
(VO).

MC and WAN attain the worst ranks (tenth and ninth,
respectively) according to all the IQA indices.

rank MSE PSNR SAM MAE SSIM MS-SSIM  VIF UQI

1 BSITAT. BSITAT. BSITAT. ADU ADU ADU ADU ADU

2 ADU! ADU! WUAT.* NQ NQ NQ° NQ° WUAT.
3 WUAT.! WUAT.! ADU* BSITAT. BSITAT. BSITAT.®  BSITAT. NQ!

4 NQ NQ NQ WUAT. WUAT. WUAT. WUAT. BSITAT. !
5 VC vC \e BS \e VvC VvC BS

6 wu3 wu? wu? wu! BS BS BS WU

7 BS? BS? BS? V(! wu? wu3 WU oct

8 ocC ocC oC oC oc? oc3 oC vct

9 WAN WAN WAN WAN WAN WAN WAN WAN
10 MC MC MC MC MC MC MC MC

A superscript is used to mark cases with similar ranking (0: same value, 1: difference less than 0.05, 2: difference less than 0.10, 3: difference

less than 0.15, 4: difference less than 0.20)
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4.5 Statistical analysis

A statistical analysis was performed to complete the discus-
sion of the results. The Friedman test was executed to deter-
mine if the applied CQ method has an effect on the objective
quality of the quantized image. This test makes it possible to
compare several related samples, indicating whether there
are significant differences between any of the pairs of the
samples. The test was applied independently to the results
obtained for each of the eight IQA indices. The p-value used
for the test was 0.05. Table 6 shows the test statistic obtained
in each case. The significance obtained in all cases is 0, so
it is not included in the table. This value indicates that the
Friedman test is significant in all eight cases.

The Friedman test indicates that the quality of the quan-
tized image obtained is not the same for the ten CQ methods
compared. This statement is true for any of the eight IQA
indices considered. This means that at least two of the meth-
ods compared are significantly different, but the test does
not indicate which ones. Therefore, it is necessary to carry
out an additional test to determine which methods present
differences. For this purpose, the Wilcoxon post-hoc test
was conducted, with the Bonferroni correction to control the
probability of occurrence of a type I error. Since we have 10
CQ methods, it was necessary to compare 45 pairs of CQ
methods for each IQA index. The test was significant for
most of the 360 total cases that were evaluated. Therefore,
to reduce the table size, only the corrected p-values associ-
ated with non-significant cases were included (Table 7). It
can be seen that, for each IQA index, the differences are not

significant for a number of method pairs ranging between
3 and 6 cases. The smallest value corresponds to VIF and
MAE. Rows 2—4 show cases for which only one IQA index
shows no significant differences between two methods. Rows
5-6 show pairs of methods with non-significant differences
only regarding two IQA indices.

The differences between WAN and all other CQ methods
are significant with respect to all IQA indices. The same is
true for MC. When considering ADU, the differences are
significant compared to all methods except BSITATCQ and
WUATCQ regarding MSE, PSNR, and SAM, and compared
to NQ regarding MAE. It can be observed that the differ-
ences are not significant for BSITATCQ and WUATCQ
regarding all IQA indices except VIF. The same is true for
BS and WU except for MS-SSIM and MAE indices.

UQI, SSIM, MS-SSIM, and VIF do not show significant
differences for the pairs of methods WU-OC and NQ-BSI-
TATCQ, although the other IQA indices show the contrary.
In addition, there are no significant differences between the
methods for the pairs ADU-WUATCQ, ADU-BSITATCQ,
and VC-NQ regarding MSE, PSNR, and SAM, but there are
differences regarding the other five IQA indices. Regarding
MSE and PSNR, the cases that show no significant differ-
ences correspond to the same pairs of CQ methods. On the
other hand, the results of SAM are the same as those of MSE
and PSNR except for the VC-WU pair.

We can see that the results of the statistical test for the
IQA indices in group B defined in the previous section are
very similar. The only difference is in the pair of methods
VC-WU according to the SAM index. Regarding the indices

Table 6 Friedman test results (400 valid cases, 9 degrees of freedom, and p-value O for all tests)

MSE MAE PSNR SAM SSIM MS-SSIM VIF UQlI
3016.231 3136.419 3016.231 3024.308 2948.671 2903.731 3007.637 2342.081
Table7 Corrected significance MSE PSNR SAM  UQI  SSIM  MS-SSIM VIE  MAE
of the post-hoc test (only the
pairs of methods that generate NQ-ADU 1
some non-significant result are OC-BS 0177
given)
OC-VC 1
BS-VC 1 1
NQ-WUATCQ 1 1
ADU-WUATCQ 1 1 1
ADU-BSITATCQ 1 1 0.053
VC-NQ 0.212 0.212 1
VC-wU 0.055 0.055 1
WU-OC 0.237 1 1 1
NQ-BSITATCQ 1 0.146 1 1
BS-WU 1 1 1 0.096 0.475 0.079
WUATCQ-BSI- 0.639 0.639 0.542 1 1 1 0.475
TATCQ
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in group A, the results are not so homogeneous, as can be
seen in Table 7.

5 Conclusion

MSE is the most widely used IQA index in the CQ litera-
ture. MSE and its close relatives MAE and PSNR are con-
ventional IQA indices that are calculated based on a pixel-
by-pixel comparison between the original and quantized
images. However, there are more recent IQA indices that
take into account the HVS characteristics. Therefore, it is
interesting to determine if the conventional IQA indices gen-
erate comparable results with those generated by these new
IQA indices or if, on the contrary, it is necessary to combine
several IQA indices for a more comprehensive analysis of
CQ methods. With this purpose, this study compares images
generated by ten CQ methods (WU, BS, OC, MC, VB, VC,
WAN, NQ, WUATCQ, and BSITATCQ) using eight IQA
indices (MSE, MAE, PSNR, UQI, SSIM, MS-SSIM, VIF,
and SAM).

The results obtained indicate that the IQA index used
determines the ranking of the CQ methods. It was observed
that the results of the MSE index are comparable to those
obtained with PSNR and SAM. On the other hand, the
results obtained by the SSIM, MS-SSIM, and VIF indices
are also comparable. However, the results of these two sets
of IQA indices are different. On the other hand, the results
obtained for MAE are comparable to a certain extent to those
obtained by SSIM, MS-SSIM, and VIF, mainly with regard
to the best and worst CQ methods determined by each IQA
index. Finally, the results generated by UQI are not directly
comparable to those of other IQA indices.

As a result of the analysis carried out it is recommended
that the CQ studies not only include results from MSE, but
also from other IQA indices that take into account the
visual characteristics of the images, such as SSIM, MS-
SSIM, and VIF. It is important to use several IQA indices
to determine if a given CQ method produces better results
than the others.

Unlike what happens in other articles that analyze CQ
methods, the results included in this article are calculated
for a large set of quantized images (400 quantized images
generated by each CQ method) and various IQA indices are
used that take into account different characteristics of the
images. The results generated in this study will be published,
together with the original image set, in the upcoming ver-
sion of CQ100. This information will help other research-
ers to compare a new CQ method with the ten CQ methods
considered in this article. Since the selected IQA indices
are popular in the image processing literature, other authors

can use the publicly available implementations to compute
results for the new method and compare them to the results
included in CQ100. This will speed up and simplify the work
of other researchers in the comparison process.

MSE, MAE, and PSNR compare the original and
quantized images pixelwise and do not take the HVS into
account, so they do not always agree with human perception.
It is reasonable to expect the results of PSNR to be com-
parable to those of MSE, since PSNR is calculated based
on MSE. Although both MSE and MAE compare images
pixelwise, MAE is less sensitive to outliers than MSE. The
MSE calculation emphasizes large errors, while small errors
have little effect. This is probably why the results of the two
indices do not agree.

Unlike the aforementioned pixelwise indices, UQIL, SSIM,
and MS-SSIM consider changes in structural information
taking into account three factors (loss of correlation, lumi-
nance distortion, and contrast distortion). Various studies
show that SSIM performs remarkably well across a wide
variety of image and distortion types, and the scores of this
index are much more consistent with human perception than
the MSE scores [50]. The SSIM index was proposed by the
same authors as the UQI index as an improvement on the
latter, and our study shows that these two indices do not gen-
erate comparable results when applied to the CQ problem.
On the other hand, several studies indicate that the multi-
scale MS-SSIM performs better than the single-scale SSIM
[49, 59]. This seems logical since images contain structures
that occur over a range of spatial scales. In addition, the
HVS decomposes visual data into multi-scale spatial chan-
nels in the early stages of image perception [59]. On the
other hand, VIF is computed based on a statistical model for
natural scenes, a model for image distortions, and an HVS
model, which probably influences its greater correlation with
subjective assessment scores. Several studies indicate that
VIF generates better results than some of the other indices
considered in our study, including UQI, SSIM, MS-SSIM,
and PSNR [50-52].

Our experiments do not allow us to determine which
of the IQA indices is the best for CQ. As discussed in the
introduction, determining the best IQA index for a specific
image processing operation is non-trivial, and thus studies
carried out by different researchers present mixed results. If
we limit our attention to the CQ operation considered in this
study, we can compare our results with those presented in
[43]. As mentioned in the introduction, the said article com-
pares several IQA indices calculated on quantized images,
and concludes that the best results are provided by the VIF
index, followed by MS-SSIM, SSIM, and PSNR, while the
worst results are provided by UQI. The remaining IQA indi-
ces considered in both articles are different, so they cannot
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be compared. Therefore, it is observed that our results are
compatible to a certain extent with those presented in [43],
since the three best indices identified in the said study show
similar results according to our study. On the other hand, in
our study the UQI index does not generate results compara-
ble to the rest of the IQA indices analyzed.

Therefore, taking into account our results and those
presented in [43], we can suggest using MSE and VIF or
MS-SSIM to evaluate CQ methods. On the one hand, VIF
and MS-SSIM seem promising indices not only for CQ
but also for other image processing operations. On the
other hand, MSE allows comparisons with much of the
published CQ literature.

Based on the results presented in the article, it can be
concluded that it is necessary to use several IQA indi-
ces when comparing CQ methods. Using only one IQA
index can lead to erroneous conclusions about the relative
quality of the compared methods, so it is better to use
several IQA indices. We also suggest that IQA indices
with very high correlations should not be used together.
However, if two IQA indices have a low correlation, we
cannot automatically assume they can be used together
in a CQ application because one of the indices (or even
both) may be irrelevant for this application. In any case,
to conclude whether a specific IQA index is relevant for
CQ, it is necessary to perform subjective experiments to
quantify how well the index agrees with the results of
such experiments.

A future line of research to expand the work presented
in this article will consist of conducting subjective experi-
ments to compare the results of those experiments with
the results presented in this article. This information will
allow us to suggest the most promising IQA indices for
evaluating CQ methods.
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