


Our main results are that rationale-style mod-

els learn to ignore these attacks more effectively

than only with data augmentation, leading to an

improvement of ∼10% in accuracy on attacked ex-

amples compared to baseline models and an ad-

vantage of 2.4% over data augmentation alone,

mostly recovering clean test performance. While

human explanations may potentially improve the

interpretability of these models, they are of limited

use in improving this defense even further.

In summary, we offer three main contributions:

• We show that explicitly training an extractive

rationale layer to ignore attack tokens is more

effective than implicitly training a model via data

augmentation with adversarial examples.

• We assess whether human-annotated rationales

augment this defense, showing that they have

only a limited benefit.

• We conduct an in-depth error analysis of differ-

ences between models, explaining some of the

patterns we observe in our main results.

Our code is available at https:

//github.com/ChicagoHAI/

rationalization-robustness.

2 Related Work

We build on prior work on adversarial robustness

and learning from explanations.

Adversarial robustness. Adversarial attacks

against NLP models seek to maliciously manip-

ulate model output by perturbing model input.

Zhang et al. (2020) present a survey of both attacks

and defenses. Example attacks include character-

level manipulations (Gao et al., 2018; Li et al.,

2019), input removal (Li et al., 2017; Feng et al.,

2018), synonym substitutions (Ren et al., 2019),

and language model-based slot filling (Li et al.,

2020; Garg and Ramakrishnan, 2020; Li et al.,

2021). A distinction in attack types is whether

the attack requires access to the model (Ebrahimi

et al., 2018; Yoo and Qi, 2021; Wallace et al., 2019)

or not (Alzantot et al., 2018; Jin et al., 2020). Tex-

tAttack (Morris et al., 2020) is a framework and

collection of attack implementations. Our work

focuses on the ADDSENT attack proposed by Jia

and Liang (2017) in reading comprehension.

As interest in adversarial attacks has increased,

so has interest in developing models robust to these

attacks. A popular defense method is adversarial

training via data augmentation, first proposed by

Szegedy et al. (2014) and employed by Jia and

Liang (2017) to bring their model almost back to

clean test performance. A recent example in this

vein is Zhou et al. (2020), which proposes Dirichlet

Neighborhood Ensemble as a means for generating

dynamic adversarial examples during training. An-

other popular approach is knowledge distillation

(Papernot et al., 2016), which trains an intermedi-

ate model to smooth between the training data and

the final model. Our work explores a new direction

that explicitly learns to ignore attacks.

Learning from explanations. Recent work has

sought to collect datasets of human-annotated ex-

planations, often in the form of binary rationales,

in addition to class labels (DeYoung et al., 2019;

Wiegreffe and MarasoviÂc, 2021), and to use these

explanations as additional training signals to im-

prove model performance and robustness, some-

times also known as feature-level feedback (Hase

and Bansal, 2021; Beckh et al., 2021).

An early work is Zaidan et al. (2007), which uses

human rationales as constraints on an SVM. More

recently, Ross et al. (2017) uses human rationales

to penalize neural net input gradients showing ben-

efits for out-of-domain generalization, while Erion

et al. (2021) use a similar method based on ªex-

pected gradientsº to produce improvements in in-

domain test performance in certain cases. Katakkar

et al. (2021) evaluate feature feedback for two

attention-style models, finding, again, gains in out-

of-domain performance, while Han and Tsvetkov

(2021) use influence functions (Koh and Liang,

2017) to achieve a similar outcome. Where our

study differs from most previous work is in using

feature feedback for adversarial rather than out-of-

domain robustness. A concurrent work by Chen

et al. (2022) uses rationalization to improve robust-

ness. The proposed method is similar to our work,

but we explore supervision with attack tokens and

achieve stronger robustness to additive attacks.

3 Adversarial Attacks and Datasets

In this paper, we focus on model robustness against

the ADDSENT additive attack proposed by Jia and

Liang (2017). The attack is designed for reading

comprehension: consider each instance as a tuple

of document, query, and label (d, q, y), where y

indicates whether the query is supported by the

document. The attack manipulates the content of

the query to form an attack sentence (A) and adds A

to the document to confuse the model. Specifically,

ADDSENT proceeds as follows:
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Query q:
FC Bayern Munich was founded in 2000.
Mutated Query q̂:
DYNAMO Leverkusen Cologne was founded in 1998.
Modified Document d′

. . . has won 9 of the last 13 titles. DYNAMO Leverkusen
Cologne was founded in 1998. They have traditional local
rivalries with . . .

Figure 2: An example of the ADDSENT attack.

1. We modify the query q by converting all named

entities and numbers to their nearest neighbor in

the GloVe embedding space (Pennington et al.,

2014). We flip all adjectives and nouns to their

antonyms using WordNet (Miller, 1995) and

yield a mutated query q̂. If we fail to mutate

the query due to not being able to find matching

named entities or antonyms of adjectives and

nouns, we skip the example.

2. We convert the mutated query q̂ into an adver-

sarial attack A using CoreNLP (Manning et al.,

2014) constituency parsing, under a set of about

50 rules enumerated by Jia and Liang (2017).

This step converts it into a factual statement that

resembles but is not semantically related to the

original query q.

3. The adversarial attack A is inserted at a random

location within the original document and leads

to a new tuple (d′, q, y).1

The key idea behind the ADDSENT attack is

that the mutations alter the semantics of the query

by mutating the named entities and numbers, so

that the attack contains words or phrases that are

likely confusing to the model without changing the

true semantics of the input. An example of the

ADDSENT attack is given above.

The original approach includes an additional step

of using crowdsourced workers to filter ungram-

matical sentences. We do not have access to this

manual validation process in all datasets. Occasion-

ally, ADDSENT generates ungrammatical attacks

but it nevertheless proves empirically effective in

reducing the performance of our models.

Datasets. To evaluate our hypotheses on learning

to ignore adversarial attacks, we train and evaluate

models on the Multi-Sentence Reading Comprehen-

sion (MULTIRC; Khashabi et al., 2018) and Fact

Extraction and VERification (FEVER; Thorne

et al., 2018) datasets. Both are reading compre-

1We experimented with variants of inserting only at the
beginning or the end. The results are qualitatively similar, so
we only report random in this paper.

Dataset
Text
length

Rationale
length

Total
size

MULTIRC 336.0 52.0 32,088
FEVER 335.9 47.0 110,187
SQUAD 119.8 ÐÐ 87,599

Table 1: Basic statistics of MULTIRC, FEVER, and

SQUAD.

hension datasets, compatible with the ADDSENT

attack. For MULTIRC, the query consists of a

question and potential answer about the document,

labeled as true or false, while for FEVER it is a

factual claim about the document labeled as ªsup-

portedº or ªunsupportedº. Both datasets include

human rationales, indicating which tokens are per-

tinent to assessing the query. Table 1 summarizes

their basic statistics.

In modeling these two datasets, we follow stan-

dard practice in appending the query to the end

of the document with [SEP] tokens. We use

train/validation/test splits prepared by the ERASER

dataset collection (DeYoung et al., 2019). Because

we are interested in relative differences between

training regimes rather than absolute performance,

we subsample the FEVER training set to 25% so

that it is comparable to MULTIRC for the sake of

training efficiency.

Directly applying the synthetic ADDSENT attack

to MULTIRC and FEVER leads to occasionally

ungrammatical adversarial examples due to incor-

rectly applied conversion heuristic or errors in con-

stituency parsing. To alleviate this concern, we fur-

ther evaluate on SQUAD (Rajpurkar et al., 2016),

for which Jia and Liang provide an ADDSENT-

attacked evaluation set that is re-written and ap-

proved by human workers. However, this dataset

does not have human rationales. We again use

the train/validation/test splits provided by Jia and

Liang in our experiments.

4 Modeling

Our study assesses whether adding an explicit ratio-

nale extractor to a model and training it to ignore at-

tack tokens results in a more effective defense than

simply adding attacked examples to the training set.

This comparison results in several combinations of

model architectures and training regimes.

We denote each training instance as (x, r, y): a

text sequence x consisting of the concatenated doc-

ument and query, a ground-truth binary rationale

sequence r, and a binary label y.
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Human rationale & attack ADV. + ATK. SUP. ADV. + HUMAN SUP.

... and 18 national cups. FC Bayern was

founded in 1900 by 11 football play-

ers, led by Franz John. Although Bay-

ern won ... European Cup three times in

a row (1974 ± 1976). DYNAMO Lev-

erkusen Cologne was founded in 1998.

Overall , Bayern has reached ten Euro-

pean ...

... and 18 national cups. FC Bayern was

founded in 1900 by 11 football play-

ers, led by Franz John. Although Bay-

ern won ... European Cup three times in

a row (1974 ± 1976). DYNAMO Lev-

erkusen Cologne was founded in 1998.

Overall , Bayern has reached ten Euro-

pean ...

... and 18 national cups. FC Bayern was

founded in 1900 by 11 football play-

ers, led by Franz John. Although Bay-

ern won ... European Cup three times in

a row (1974 ± 1976). DYNAMO Lev-

erkusen Cologne was founded in 1998.

Overall , Bayern has reached ten Euro-

pean ...

Table 2: An example from FEVER illustrating different modes of adversarial training with rationale supervision.

Human rationales are colored yellow, and attack tokens are colored red. Rationale models are supervised to extract

the blue tokens, while ignoring the gray tokens.

Data augmentation? Rationale?

No data
augmentation

None
Human (HUMAN SUP.)

Augmented with

attack data (Adv.)

None
Non-attack (ADV. + ATK. SUP.)
Human (ADV. + HUMAN SUP.)

Table 3: Summaries of rationale model setups.

Baseline models and training. We use BERT (De-

vlin et al., 2018) and RoBERTa (Liu et al., 2019) as

basis models. In the baseline training condition we

fine-tune these models as normal, evaluating them

on both the original test set and a version of the test

set where each item has been corrupted with the

ADDSENT attack described above. We denote this

condition as ªNO ADV.º

In the baseline adversarial training via data

augmentation condition (denoted ADV.), we add

ADDSENT-attacked versions of each training ex-

ample to the training set on a one-to-one basis,

allowing the model to train for the presence of such

attacks. This represents a fairly standard baseline

defense in the literature (Zhang et al., 2020).

Following prior adversarial robustness literature

(Jia et al., 2019), we also consider a stronger base-

line by augmenting the training set with K per-

turbed examples for each training example. For

our main experiments, we use K = 10. This set-

ting (denoted ADV.-10X) measures whether the

baseline method implicitly adapts to the ADDSENT

attack when abundant signal is provided.

Rationale model. To lend the baseline model an ex-

tractor capable of filtering out confounding tokens,

we use the rationale model proposed by Lei et al.

(2016). It comprises a rationale extractor g and a

label predictor f (Fig. 1). The rationale extractor

generates a binary predicted rationale r̂, which is

applied as a mask over the input to the predictor via

masking function m, producing a predicted label:

g(x) → r̂

f(m(x, r̂)) → ŷ
(1)

The two components are trained together to opti-

mize predicted label accuracy as well as loss as-

sociated with the predicted rationale. In an unsu-

pervised scenario, this loss punishes the norm of

the predicted rationale, encouraging sparsity on

the (heuristic) assumption that a sparse rationale is

more interpretable. In this study, we rather consider

the supervised scenario, where we punish r̂’s error

with respect to a ground-truth rationale r. How-

ever, we find empirically that the rationale sparsity

objective is useful in combination with the ratio-

nale supervision objective, leading to the following

joint objective function using cross-entropy loss

LCE with hyperparameter weights λ1 and λ2:

LCE(ŷ, y) + λ1LCE(r̂, r) + λ2||r̂||. (2)

Adversarial training with rationale supervision.

To introduce rationale supervision, we augment the

training set with attacked examples on a one-to-one

basis with original examples, similar to adversarial

training. Moreover, we can change the ground-

truth rationale to reflect the desired behavior for

the model. We consider two options for this new

ground-truth r: (1) a binary indicator of whether

a token is adversarial or not (ADV. + ATK. SUP.),

and (2) the human-annotated rationale (ADV. +

HUMAN SUP.), which also filters adversarial to-

kens. Table 2 contains an example illustrating the

distinction between ADV. + ATK. SUP. and ADV.

+ HUMAN SUP.

Table 3 summarizes all the combinations of se-

tups that we use in our study. For each of these

setups, we test one rationale model using indepen-

dent BERT modules for g and f , and one using in-
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dependent RoBERTa modules for both. We present

additional implementation details in Appendix A.

Taken together, these conditions address our

three research questions: (1) Is adversarial training

via rationale supervision more effective than via

attacked examples? (2) Does training the model

to emulate human explanation make it intrinsically

more robust to attacks? (3) Do human explanations

improve upon adversarial training with non-attack

tokens as rationale supervision?

5 Experimental Setup and Results

We start by describing our experimental setup and

evaluation metrics. We then investigate model per-

formance with different training regimes and con-

duct an in-depth error analysis.

5.1 Experimental Setup

Our study compares whether rationale-style mod-

els are better at learning to explicitly ignore adver-

sarial tokens than standard models via adversarial

training. As we describe above, we train three vari-

ants of the standard classification model (NO ADV.,

ADV., ADV.-10X), and three variants of the ratio-

nale model (ADV. + ATK. SUP., HUMAN SUP.,

ADV. + HUMAN SUP.).

Exploring these 6 architecture/training combina-

tions for three datasets (MULTIRC, FEVER, and

SQUAD) and two underlying models (BERT and

RoBERTa), we report results from all trained mod-

els in Table 4. We report relevant metrics on both

the clean test set and the attacked test set for each

model. For MULTIRC and FEVER, the metric we

use is accuracy. Since SQUAD is a span extraction

task, we report the Span F1 score instead. Perfor-

mance on the attacked test set is our key measure

of robustness.

Additionally, for the rationale models, we re-

port the mean percentage of attack and non-attack

tokens included in each predicted rationale, two

metrics that help explain our accuracy results. The

mean percentage of attack tokens included in the

predicted rationale indicates the effectiveness of

ignoring attack tokens: the lower the better.

5.2 Main Results

We focus our analysis on three questions:

1. Does adversarial rationale supervision on aug-

mented data improve robustness over adversar-

ial data augmentation alone?

2. Does human rationale supervision improve ad-

versarial robustness over a standard model?

3. Does the addition of human rationales to adver-

sarial training further improve robustness?

Table 4 summarizes the main results of the paper,

showing the accuracy of each combination of ar-

chitecture, training regime, underlying model and

dataset. Looking at the attacked versus clean test

set performance for the standard model, we see

that the ADDSENT attack is effective, reducing

accuracy on MULTIRC (∼6%), FEVER (∼10%),

and SQUAD (∼12-24%).

Adversarial rationale supervision (ADV. + ATK.

SUP.). Rationale models provide an interface for

explicitly supervising the model to ignore attack to-

kens. Our key question is whether they can be used

to improve the effectiveness of adversarial training.

We first discuss the effect of data augmentation and

then show that rationale models are indeed more

effective at ignoring attack tokens.

Data augmentation with adversarial examples

works, mostly. In almost all cases, data augmen-

tation does result in improved performance on

the attacked test set, improving +5.9% (FEVER)

and +17.6% (SQUAD) for BERT, as well as

+6.4% (MULTIRC), +9.7% (FEVER), and +9.4%

(SQUAD) for RoBERTa. The exception is BERT

on MULTIRC, where it causes a decrease of -1.0%.

However, in only one case out of six does data

augmentation with adversarial examples bring the

model back to clean test performance (RoBERTa

on MULTIRC, +0.3%).

Surprisingly, BERT on MULTIRC is the only

scenario where the ADV.-10X augmentation signif-

icantly improves attack accuracy (4.3% improve-

ment over ADV.). In all the other cases, adding

more adversarial examples does not improve ro-

bustness and even leads to a 3.5% drop in SQUAD

for RoBERTa. This result demonstrates that BERT

and RoBERTa may not learn from adversarial ex-

amples alone.

Adversarial rationale supervision improves on

adversarial training baselines in all cases. We see

an improvement of +4.6% for BERT on MULTIRC,

+2.9% for BERT on FEVER, +2.7% for BERT

on SQUAD, +2.2% for RoBERTa on MULTIRC,

+0.7% for RoBERTa on FEVER, and +1.0% for

RoBERTa on SQUAD (2.4% on average). For

the one case where adversarial data augmentation

recovered clean test performance (RoBERTa on

MULTIRC), adversarial rationale supervision actu-
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Model Architecture Training
MULTIRC (Acc.) FEVER (Acc.) SQUAD (Span F1)

Clean AttackedS Clean AttackedS Clean AttackedH

BERT
Standard

NO ADV. 68.6 62.6 88.2 78.9 86.4 62.8
ADV. 67.3 61.6 88.5 84.8 86.0 80.4
ADV.-10X 66.2 65.9 86.3 84.5 82.2 78.0

Rationale
ADV. + ATK. SUP. 69.6 66.2 87.1 87.7 86.5 83.1
HUMAN SUP. 70.0 64.4 88.0 76.7 - - - - - -
ADV. + HUMAN SUP. 70.5 69.4 87.5 87.5 - - - - - -

RoBERTa
Standard

NO ADV. 82.6 76.5 93.5 83.0 93.2 81.0
ADV. 84.4 82.9 93.2 92.7 92.9 90.4
ADV.-10X 83.5 82.1 93.5 93.2 89.9 86.9

Rationale
ADV. + ATK. SUP. 85.2 85.1 93.4 93.4 93.3 91.4
HUMAN SUP. 84.0 74.9 94.1 85.7 - - - - - -
ADV. + HUMAN SUP. 85.0 82.5 93.4 93.4 - - - - - -

Table 4: Model performance on clean and attacked test sets for MULTIRC, FEVER, and SQUAD. AttackedS are

synthetic attacks produced by ADDSENT, and AttackedH are attacks generated by human workers. We vary the

level of augmentation for the standard classification models (NO ADV., ADV., ADV.-10X). For rationale models, we

control for the presence of adversarial training data and the type of rationale supervision: ADV. + ATK. SUP. treats

non-attack tokens as rationale, and HUMAN SUP. does not use adversarial training. Rationale models outperform

the baseline classifiers across all attacked datasets.

Model Training
MULTIRC FEVER SQUAD

Attack % NON-A % Attack % NON-A % Attack % NON-A %

BERT
ADV. + ATK. SUP. 1.4 98.4 0.2 96.7 27.8 99.7
HUMAN SUP. 87.5 8.2 66.7 17.8 - - - - - -
ADV. + HUMAN SUP. 9.5 14.4 0.5 24.4 - - - - - -

RoBERTa
ADV. + ATK. SUP. 6.0 96.7 0.9 95.8 16.1 99.0
HUMAN SUP. 92.4 12.6 60.0 12.2 - - - - - -
ADV. + HUMAN SUP. 32.1 15.6 0.1 23.0 - - - - - -

Table 5: Percentage of attack and non-attack (NON-A) tokens included in the predicted rationales. Lower is better

for attack tokens. Arguably, a lower percentage of non-attack tokens is also better as it improves interpretability.

ally improves clean test performance by +2.5%.

The effectiveness of ADV. + ATK. SUP. is

even more salient if we compare with NO ADV. on

attacked test: 3.6%, 8.8%, and 20.3% for BERT on

MULTIRC, FEVER, and SQUAD, 8.6%, 10.4%,

and 10.4% for RoBERTa on MULTIRC, FEVER,

and SQUAD (10.4% on average).

The above findings remain true even when we

compare our methods against the theoretically

stronger baseline of ADV.-10X, where the train-

ing dataset is augmented with 10 perturbed ex-

amples for every training example. Our models

trained with adversarial rationale supervision out-

performs ADV.-10X across all datasets and mod-

els, and our best model outperforms the ADV.-10X

baseline by 3.3% on average. This result high-

lights both the efficiency and the effectiveness of

our method: with adversarial rationale supervi-

sion, BERT and RoBERTa achieve greater defense

against the ADDSENT attack using 10% of the ad-

versarial examples.

Interestingly, the adversarially-supervised ratio-

nale model demonstrates a strong ability to gen-

eralize knowledge learned from synthetic attacks

to tune out human-rewritten attacks (+20.3% on

SQUAD; recall we do not have human-rewritten

attacks during training), indicating the potential of

our method in a real-world scenario.

Table 5 explains this success. The adversarially-

supervised rationale model includes 6% or fewer

attacking tokens on MULTIRC and FEVER, in-

dicating that it did largely succeed in learning to

occlude these tokens for the predictor. Addition-

ally, both BERT and RoBERTa rationale models

are able to tune out most human-generated attack

tokens, ignoring over 70% of attack tokens while

keeping 99% of the original text for both models.

Effect of human rationale supervision alone

(HUMAN SUP.). We find mixed evidence for

whether human rationale supervision alone im-
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proves adversarial robustness. For BERT on MUL-

TIRC and RoBERTa on FEVER, human rationale

outperforms the standard classification model, but

the opposite occurs for the other two model/dataset

combinations.

Table 5 contextualizes this mixed result: the ra-

tionale model supervised solely on human ratio-

nales includes 60.0% to 92.4% of attack tokens in

its rationale (compared to between 8.2% and 17.8%

of non-attack tokens), indicating that it is largely

fooled by the ADDSENT attack into exposing the

predictor to attack tokens.

This result may be explained by the fact that

human rationales for these datasets identify the

part of the document that pertains particularly to

the query, while the ADDSENT attack crafts adver-

sarial content with a semantic resemblance to that

same query. Hence, it is understandable that human

rationale training would not improve robustness.

Human and adversarial rationale supervision

(ADV. + HUMAN SUP.). Although human ratio-

nales alone may not reliably improve model robust-

ness, a final question is whether human rationales

can serve as a useful addition to adversarial training.

Does training the model to both ignore adversar-

ial tokens and emulate human explanations further

improve robustness against the ADDSENT attack?

In two out of four cases, the performance of ADV.

+ HUMAN SUP. is equal to that of ADV. + ATK.

SUP. Only for BERT on MULTIRC does ADV. +

HUMAN SUP. result in an improvement, being the

only configuration that brings performance back

to that of clean test for that model, and dataset.

For RoBERTa on MULTIRC, it actually weakens

attacked test performance.

While these results are mixed, Table 5 shows

that the model does at least achieve this result at

a much lower included percentage of non-attack

tokens (∼20% vs. >95%), a concession toward

model interpretability.

Overall, our results suggest that human ratio-

nales have limited effect in defending against adver-

sarial attacks, but can be important in developing

sparse (and potentially interpretable) models.

5.3 Error Analysis

To better understand the behavior of the models, we

examine mistakes from BERT compared to explic-

itly training a rationale extractor on MULTIRC. We

start with a qualitative analysis of example errors,

and then discuss general trends, especially on why

human rationales only provide limited benefits over

ADV. + ATK. SUP. More in-depth analyses can be

found in the appendix for space reasons, including

a Venn diagram of model mistakes.

Qualitative analysis. We look at example errors

of ADV. to investigate attacks that are confusing

even after adversarial augmentation. Table 6 shows

example outputs of the rationale models based on

either non-attack tokens or human rationales.

Example 1 shows a case where models with ex-

plicit rationale extractors ignore attacks more effec-

tively than ADV. In the attack sentence, ªtete didn’t

stay inº is highly similar to the query, so a model

likely predicts True if it uses the attack information.

In comparison, both rationale models ignore the

attack in label prediction, which enables them to

make correct predictions.

Example 2 demonstrates that ADV. + HUMAN

SUP. makes mistakes when it fails to include cru-

cial information in rationales while avoiding attack

tokens. ADV. + HUMAN SUP. predicts the wrong

label because it misses information for the number

of friends in its rationale. ADV. + ATK. SUP. gets

this example correct because it can both ignore the

attack and include the necessary information.

Finally, Example 3 shows an example where

ADV. + HUMAN SUP. is better than ADV. + ATK.

SUP. when generating rationales to ignore noises.

ADV. + HUMAN SUP. includes attacks in rationale,

but it is still able to predict the label because the

attack is not confusing given the selected rationale.

The generated rationale helps ADV. + HUMAN SUP.

to avoid unnecessary information that may confuse

the model. For example, the sentence with ªpictsº

could confuse the model to predict True. On the

other hand, ADV. + ATK. SUP. gets this example

wrong, despite occluding all attack tokens.

More generally, we find that ADV. + HUMAN

SUP. tends to have high false negative rates. When

ADV. + HUMAN SUP. fails to extract good ra-

tionales, it tends to predict False due to missing

information from the rationale. In contrast, ADV. +

ATK. SUP. rarely occludes necessary information,

so it does not suffer from the same issue.

ADV. + ATK. SUP. is better than ADV. + HU-

MAN SUP. when human rationales are denser and

passage length is longer (see Table 9 in the ap-

pendix). We observe that denser human rationales

usually comprise evidence from different parts of

the passage. Since ADV. + ATK. SUP. predicts

almost all non-attack tokens as rationale, they have
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Human rationale & attack ADV. + ATK. SUP. ADV. + HUMAN SUP.

(A) Example 1, true label: False

[CLS] ... in may 1904 , the couple ’ s

first son , hans albert einstein , was born

in bern , switzerland . their second son ,

eduard , was born in zurich in july 1910 .

in 1914 , the couple separated ; einstein

moved to berlin and his wife remained

in zurich with their sons . they divorced
on 14 february 1919 , having lived apart
for five years . ... a - tete did n ’

t stay in basel after charles and houben

separated . ... [SEP] who did n ’ t

stay in zurich after albert and maric sep-

arated ? | | tete [SEP] ADV. prediction:
True

[CLS] ... in may 1904 , the couple

’ s first son , hans albert einstein , was

born in bern , switzerland . their second

son , eduard , was born in zurich in july

1910 . in 1914 , the couple separated ;

einstein moved to berlin and his wife

remained in zurich with their sons . they

divorced on 14 february 1919 , having

lived apart for five years . ... a - tete
did n ’ t stay in basel after charles and
houben separated . ... [SEP] who did

n ’ t stay in zurich after albert and maric

separated ? | | tete [SEP] ADV. + ATK.
SUP. prediction: False

[CLS] ... in may 1904 , the couple
’ s first son , hans albert einstein , was
born in bern , switzerland . their second
son , eduard , was born in zurich in july
1910 . in 1914 , the couple separated ;

einstein moved to berlin and his wife

remained in zurich with their sons . they

divorced on 14 february 1919 , having

lived apart for five years . ... a - tete
did n ’ t stay in basel after charles and
houben separated . ... [SEP] who

did n ’ t stay in zurich after albert and

maric separated ? | | tete [SEP] ADV. +
HUMAN SUP. prediction: False

(B) Example 2, true label: True

[CLS] ... on the day of the party ,

all five friends showed up . each friend

had a present for susan . 6 thank - you

cards did helen send . susan was happy

and sent each friend a thank you card

the next week . [SEP] how many thank

- you cards did susan send ? | | 5 [SEP]
ADV. prediction: False

[CLS] ... on the day of the party ,

all five friends showed up . each friend

had a present for susan . 6 thank - you

cards did helen send . susan was happy

and sent each friend a thank you card

the next week . [SEP] how many thank

- you cards did susan send ? | | 5 [SEP]
ADV. + ATK. SUP. prediction: True

[CLS] ... on the day of the party ,
all five friends showed up . each friend
had a present for susan . 6 thank - you
cards did helen send . susan was happy

and sent each friend a thank you card the

next week . [SEP] how many thank - you

cards did susan send ? | | 5 [SEP] ADV.
+ HUMAN SUP. prediction: False

(C) Example 3, true label: False

[CLS] ... roman legions encountered

the strongholds of the castle rock and

arthur ’ s seat , held by a tribe of an-

cient britons known as the votadini . the

mercians were probably the ancestors

of the manaw . little is recorded about

this group , but they were probably the

ancestors of the gododdin , whose feats

are told in a seventh - century old welsh

manuscript . ... the god ... din

... [SEP] who were probably the ances-

tors of the gododdin ? | | the picts [SEP]
ADV. prediction: True

[CLS] ... roman legions encountered

the strongholds of the castle rock and

arthur ’ s seat , held by a tribe of an-

cient britons known as the votadini . the
mercians were probably the ancestors
of the manaw . little is recorded about

this group , but they were probably the

ancestors of the gododdin , whose feats

are told in a seventh - century old welsh

manuscript . ... the god ... din ...

[SEP] who were probably the ancestors

of the gododdin ? | | the picts [SEP] ADV.
+ ATK. SUP. prediction: True

[CLS] ... roman legions encountered
the strongholds of the castle rock and
arthur ’ s seat , held by a tribe of an-
cient britons known as the votadini . the

mercians were probably the ancestors

of the manaw . little is recorded about

this group , but they were probably the

ancestors of the gododdin , whose feats

are told in a seventh - century old welsh

manuscript . ... the god ... din ...

[SEP] who were probably the ancestors

of the gododdin ? | | the picts [SEP] ADV.
+ HUMAN SUP. prediction: False

Table 6: Example outputs from ADV. + ATK. SUP. and ADV. + HUMAN SUP. with BERT in MULTIRC. Attack

tokens are marked in red. True human rationales are marked in yellow, and predicted rationales are marked in blue.

We only show tokens where generated rationales disagree with each other or with the human rationale/attack.

higher human rationale recall (98.6%) than ADV. +

HUMAN SUP. (57.6%). Thus, ADV. + ATK. SUP.

generates higher quality rationales when human ra-

tionales are dense. Similarly, long passages prove

difficult for ADV. + HUMAN SUP.

In summary, these analyses highlight the chal-

lenges of learning from human rationales: it re-

quires precise occlusion of irrelevant tokens while

keeping valuable tokens, and must account for vari-

ance in human rationale and input lengths. These

challenges partly explain the limited benefit of ADV.

+ HUMAN SUP. over ADV. + ATK. SUP.

6 Concluding Discussion

In this study, we find that adding an explicit ex-

tractor layer helps a model learn to ignore additive

adversarial attacks produced by the ADDSENT at-

tack more effectively than conventional adversarial

training via data augmentation.

This is an exciting result because it defeats an at-

tack which is otherwise stubbornly effective against

even copious adversarial data augmentation. It

is a novel use for this type of explicit token rel-

evance representation, which is more typically ap-

plied for model interpretability (Lei et al., 2016).
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This makes it related to defenses like Cohen et al.

(2019) which allow the model to reject inputs as

out-of-distribution and abstain from prediction, but

it differs in rejecting only part of the input, making

a prediction from the remainder as usual.

Generality. As Carlini et al. (2019) note, it is

easy to overstate claims in evaluating adversarial

defenses. Hence, we note that our results pertain

only to the ADDSENT attack, and perform favor-

ably against a baseline defense in adversarial train-

ing via data augmentation. Since most adversarial

training approaches assume the ability to generate

a large number of synthetic attack examples, it is

reasonable to further assume that we have access to

the positions of the attacks. However, such knowl-

edge about attacks may not be available in general.

Nevertheless, the success of the rationale model ar-

chitecture in learning to occlude adversarial tokens

does hold promise for a more general defense based

on a wider range of possible attacks and possible

defenses by the extractor layer.

Utility of human rationales. We explore the possi-

bility that human-provided explanations may make

the model more robust against adversarial attacks.

We mostly find that they do not, with the notable

exception of BERT on MULTIRC, the only case in

which the augmentation brings the model back to

clean test accuracy. While it does provide an advan-

tage of sparsity over supervision with non-attack

tokens, this advantage alone may not justify the

cost of collecting human explanations for robust-

ness. Further understanding of human rationales

and novel learning strategies are required for im-

proving model robustness.

Future directions. A generalization of our ap-

proach might convert the ªextractorº layer into a

more general ªdefenderº layer capable of issuing a

wider range of corrections in response to a wider

range of attacks. It could, for example, learn to

defend against attacks based on input removal (e.g.

Feng et al. (2018)) by training to recognize gaps in

the input and fill them via generative closure. This

defender could be coupled with a self-supervision

style approach (e.g., Hendrycks et al. (2019)) in-

volving an ªattackerº capable of levying various

types of attack against the model. We leave such a

generalization for future work.

Limitations

Our work focuses on improving model robustness

by explicitly ignoring adversarial attacks. In this

work, we only explore a known type of adversarial

attack (ADDSENT), and the performance of our

method against unknown attacks is yet to be val-

idated. Since our method uses rationalization as

the underlying mechanism for ignoring tokens, it

would take non-trivial work to make our method

compatible with attacks in the form of token re-

moval and flipping. Finally, we limit our experi-

ments to the domain of QA, where the ADDSENT

attack is naturally applicable.

Ethics Statement

Our work contributes to the line of research that

focuses on improving the adversarial robustness

of language models. We also explore novel ways

to integrate human explanations into the training

paradigm. We believe robustness to adversarial at-

tacks is essential to the deployment of trustworthy

models in the wild, and we hope this work brings

current research a step closer to this objective. To

avoid ethical concerns related to over-claiming re-

sults, we emphasize in both our concluding dis-

cussion and the limitations section that our work

builds on the assumption that we know the type

of attack and only experiments with ADDSENT.

Furthermore, our approach tends to increase the

computational cost compared to adversarial train-

ing both during training and inference. One should

consider the tradeoff between robustness and com-

putation.
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A Design choices and implementation

details

We use the HuggingFace (Wolf et al., 2020) dis-

tributions of BERT and RoBERTa, and Pytorch

Lightning (Falcon, 2019) for model training. Mod-

els are trained for a minimum of 3 epochs with

early stopping based on a patience of 5 validation

intervals, evaluated every 0.2 epochs.

In practice, we find it useful to pretrain the pre-

dictor layer f of the rationale model on full input

before jointly training it with the extractor g. We

observe that this trick stabilizes training and helps

prevent mode collapse. In producing the predicted

rationale, we automatically assign a 1 (indicating

relevance) to every token in the query, so that they

are always fully visible to the predictor and the ef-

fect of the extractor is in adjudicating which tokens

of the document are used or ignored.

Traditionally, this style of rationale model pro-

duces binary predicted rationales via either rein-

forcement learning (Williams, 1992) or categorical

reparameterization such as Gumbel Softmax (Jang

et al., 2016). One argument for this approach is

that binary rationales are more interpretable, leav-

ing less ambiguity about the precise role of a given

token in the model’s output. Another argument

is that transformer-based models like BERT don’t

have a native interpretation for partially-masked

input, whereas fully-masked input can represent

in-distribution modifications such as the [MASK]

token substitution used in masked-LM pretraining.

However, we find that relaxing this binary con-

straint leads to better outcomes for adversarial train-

ing. Thus, our model produces predicted rationale

r̂ by passing predicted rationale logits φ through a

sigmoid function. The masking function m we use

is simply to multiplicatively weight x by predicted

rationale r̂ during training (we discretize r during

testing),

m(x, r̂) = r̂ · x (3)

From a theoretical perspective, jointly optimiz-

ing the rationale extractor g and label predictor f

should allow the model to predict rationale r̂ that

is more adapted to the predictor. Separately opti-

mizing both components implies that the rationale

extractor does not get penalized for poor label pre-

diction performance, and often leads to predicted

rationale that is closer to human rationale r. In our

experiments, we include both training setups as a

hyperparameter.

B Hyperparameters

For our experiments, we fine-tune both the ratio-

nale extractor g and predictor f for the rationale

models from a pretrained language model. We fine-

tune BERT components from a pre-trained bert-

base-uncased model, and RoBERTa from a pre-

trained roberta-large model. We use an Adam op-

timizer with with β1 = 0.9 and β2 = 0.999 for all

experiments.

We find gradient accumulation helps with train-

ing stability of BERT and RoBERTa, and we report

gradient accumulation as a hyperparameter for both

models. Table 7 describes a list of hyperparameters

we use for both BERT and RoBERTa. We do a

grid search over all combinations of hyperparam-

eters listed in table 7, and we report results of the

model that achieves the highest performance on the

original dev set.

C Computation Details

We ran our experiments on a mix of RTX 3090,

A30 and A40 GPUs. All experiments combined

take less than 300 GPU hours.

The rationale model has about two times the

parameters of its base model. The BERT-based

rationale model has 220 million parameters and

RoBERTa-based rationale model has 708 million

parameters. Both models can be trained on a GPU

with 24GB of memory. Training the rationale

model typically takes double the training time com-

pared to the standard model. On a RTX 3090 GPU,

training a BERT Rationale model for SQuAD takes
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Model Dataset Baseline Variant (Acc) Rationale Variant (Acc) p-value

BERT MULTIRC ADV.-10X (65.9%) ADV. + HUMAN SUP. (69.4%) 1.0× 10−4

BERT FEVER ADV. (84.8%) ADV. + ATK. SUP. (87.7%) 8.1 × 10−13

RoBERTa MULTIRC ADV. (84.8%) ADV. + ATK. SUP. (85.1%) 9.4× 10−4

RoBERTa FEVER ADV.-10X (93.4%) ADV. + ATK. SUP. (93.2%) 0.18

Table 8: Wilcoxon signed-rank test for statistical significance of improvements of the top-performing rationale

models over the strongest baselines across models and datasets.

Input Length Human Rationale Length

human-supervised BERT correct,

attack-supervised BERT wrong 357.097 360.278

attack-supervised BERT correct,

human-supervised BERT wrong 81.191 79.098

Table 9: Input and human rationale length of mistakes by attack-supervised BERT and human-supervised BERT.

F More Results on SQUAD

In Table 10, we report the F1 scores of BERT

Classification and BERT Rationale models on four

different evaluation sets: the original SQUAD

development set dev, the synthetic attack set

ADDSENTS, the human re-written and filtered at-

tack set ADDSENTH and the human-generated,

model-free attack baseline ADDONESENTH.

Similar to §5.2, we find the performances on

the clean set (SQUAD dev) to be approximately

equal across models and training schemes. We ob-

serve a slight drop (-0.4%) on dev accuracy when

adding adversarial training to the BERT classifi-

cation, which points to compromised learning on

the original SQUAD task after adding adversarial

examples. Without adversarial training, we observe

roughly 38%, 24%, 15% performance decreases

for ADDSENTS, ADDSENTH, ADDONESENTH,

respectively. All three attacks lead to much more

significant performance drops than the ADDSENT

attack on MULTIRC and FEVER, which yields

an approximate 6% performance drop. This obser-

vation is likely due to the differences in how the

tasks are formulated across datasets: it is plausi-

ble that an additive attack such as ADDSENT is

more effective on a span-extraction style QA task

(SQUAD) than on answer classification style QA

tasks (MULTIRC and FEVER).

Surprisingly, the synthetic attack ADDSENTS is

more effective than human generated ADDSENTH

prior to adversarial training. Since the ADDSENT

attack works by mutating the query and adding a

fake answer, the synthetic attack often appears syn-

tactically similar to the query. On the other hand,

human generated attacks in ADDSENTH often fits

more naturally in the document and grammatically

correct, but does not mirror the structure of the

query. For a model that solves the QA task by sim-

ply looking for the best match of the query inside a

document while skipping complex reasoning, it’s

conceivable that ADDSENTS leads to the greatest

performance drop.

Since ADDSENTH and ADDONESENTH are at-

tack examples re-written and filtered by humans,

we use them as a proxy for understanding the

model behavior in a real-world setting. We find the

BERT Rationale model with attack rationale super-

vision significantly outperforms the BERT Classifi-

cation baseline trained with adversarial augmenta-

tion (+2.7% on ADDSENTH, +2.2% on ADDONE-

SENTH). Similar to findings in §5.2, we observe

attack rationale supervision (ADV. + ATK. SUP.)

as a more effective adversarial training method than

adversarial data augmentation (ADV.). It is worth

noting that the despite training on the synthetic at-

tacks, the rationale model demonstrates strong abil-

ity to generalize knowledge learned from synthetic

attacks to tune out human-rewritten attacks, which

explains the strong performance on ADDSENTH

and ADDONESENTH.

An apparent anomaly in Table 10 is the

strong performance of BERT Classification on

ADDSENTS (93.3%), which is even greater than

the performance on the clean development set
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Architecture Training dev ADDSENTS ADDSENTH ADDONESENTH

Bert Classification
NO ADV. 86.4 48.7 62.8 71.2

ADV. 86.0 93.3 80.4 81.9

ADV.-10X 82.2 95.9 78.0 79.7

Bert Rationale
NO ADV. 86.6 47.7 62.0 70.4

ADV. + ATK. SUP. 86.5 88.3 83.1 84.1

Table 10: F1 scores of BERT Rationale and Classification models on the SQUAD task.

(86.0%). During the ADDSENT attack, the answer

is mutated into an incorrect, but similar phrase (e.g.

Dallas Cowboys → Michigan Vikings). The pres-

ence of a mutated answer in the passage likely gives

the model additional information on what the cor-

rect answer looks like, while the rationale model

avoids utilizing this information to a much higher

degree (88.3%) due to attack rationale supervision.

This "mutated answer" signal is akin to spurious

correlations in datasets, and our method helps the

BERT rationale model ignore such spurious cor-

relations a lot more effectively than the baseline

BERT model.

Overall, these analyses shine light on the bene-

fits of including rationale supervision in adversar-

ial training. Our method achieves greater adver-

sarial robustness in a close-to-real-world setting

(ADDSENTH and ADDONESENTH) by generaliz-

ing from synthetic attacks.
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