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ABSTRACT
We present a methodology for simulating multidimensional electronic spectra of molecular aggregates with coupling of electronic excitation
to a structured environment using the stochastic non-Markovian quantum state diffusion (NMQSD) method in combination with pertur-
bation theory for the response functions. A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system
Hilbert space but with the same noise. We demonstrate that our approach shows fast convergence with respect to the number of stochastic
trajectories, providing a promising technique for numerical calculation of two-dimensional electronic spectra of large molecular aggregates.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0107925

I. INTRODUCTION

Modern time-resolved nonlinear optical spectroscopic tech-
niques have expanded our understanding of the photophysics of
molecular assemblies.1–5 Two-dimensional (2D) electronic spec-
troscopy, the material response after interacting with three fem-
tosecond laser pulses, is a particularly powerful probe of molecular
excitons: 2D spectra provide information about exciton–exciton
interactions, dephasing, and relaxation processes.6–12 Nevertheless,
spectral congestion—even at low temperatures—makes theoretical
simulations indispensable for deciphering the dynamics encoded in
the 2D spectra.

The key quantity in the simulation of 2D spectra is the third-
order optically induced polarization, which is related to third-order
nonlinear response functions.2 A common theoretical framework
for simulating the third-order polarization of molecular aggregates
is based on open-quantum system approaches, which propagate
the reduced density matrix of the electronic system along different

Liouville pathways to obtain nonlinear response functions.1,2 Of
these approaches, those based on the Redfield or the modified Red-
field equations are among the most popular;13,14 their applicability,
however, is restricted to the case of weak system–bath couplings and
the Markovian approximation for the bath. Alternatively, the hier-
archy equation of motion (HEOM)15,16 and the quasiadiabatic path
integral (QUAPI)17,18 provide numerically exact descriptions of the
non-perturbative and non-Markovian dynamics. However, while
both methods have been widely used to simulate exciton dynamics
and 2D spectra of molecular assemblies,19–27 they become numeri-
cally expensive for strong system–bath couplings, low temperatures,
and large numbers of pigments.

An alternative to density matrix based methods is the
non-Markovian quantum state diffusion (NMQSD) formalism, in
which stochastic wavefunctions are propagated in the system
Hilbert space and the density matrix is obtained from an aver-
age of these wavefunctions.28,29 Over the years, several approaches
have been developed to efficiently solve the NMQSD equation
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numerically,30–34 so that simulations of excitation transport in
large molecular aggregates containing thousands of pigments are
now tractable. In these propagation schemes, importance sam-
pling via the nonlinear NMQSD equations are essential for efficient
convergence with respect to the number of trajectories. Within
NMQSD, it is possible to obtain 2D spectra directly by includ-
ing the femtosecond-pulses explicitly in the time-evolution and
extracting the desired signal via phase-cycling, but the convergence
with respect to the number of trajectories is slow compared to the
calculation of expectation values.35

To overcome this problem, we develop in the present work
an NMQSD equation in which the response functions are obtained
directly from a perturbative expansion with respect to interactions
with the laser field. The crucial point of the scheme is to use the
NMQSD formalism to propagate the combined ket and bra states
of the density matrix in a doubled electronic Hilbert space, but hav-
ing the same noise. Importance sampling via the nonlinear NMQSD
equation introduces a coupling between the propagation of the bra
and ket contributions. We refer to NMQSD propagation in the dou-
bled electronic Hilbert space as dyadic NMQSD, consistent with
our previous treatment of linear absorption.36 Here, we solve the
general dyadic NMQSD using a numerically efficient representa-
tion known as the hierarchy of pure states (HOPS). Dyadic HOPS
exhibits fast convergence with respect to the number of stochastic
trajectories and treats singly and doubly excited excitonic states in a
unified manner, which is essential to account for ground state bleach
(GSB), stimulated emission (SE), and excited state absorption (ESA)
contributions to 2D spectra of molecular aggregates.

This paper is organized as follows: In Sec. II, we introduce the
details of the molecular system, its interaction with electromagnetic
pulses, and the general form of the response functions. In Sec. III,
we develop our method to calculate the response function using
the NMQSD approach. We particularly emphasize the ability to use
the nonlinear NMQSD equation that ensures suitable convergence
with respect to trajectories. In Sec. IV, we perform numerical cal-
culation and demonstrate that with only 1000 trajectories, spectra
are already well-converged and discuss convergence trends in detail.
Finally, we conclude in Sec. V with a summary and a brief out-
look. In Appendix A, we connect the first order (linear response)
of the present formalism to our previous calculations.36 In the
supplementary material, we provide further details on the conver-
gence with respect to the number of trajectories and demonstrate the
convergence problems associated with the linear NMQSD equation
that are resolved using our method.

II. MOLECULAR SYSTEM, INTERACTION WITH LASER
PULSES, AND THE QUANTITIES OF INTEREST
A. Hamiltonian

We consider a molecular aggregate composed of N interacting
molecules, where each molecule is described by two electronic levels:
the electronic ground state �gn� and the electronic excited state �en�,
n = 1, . . . , N. The electronic Hamiltonian Ĥex can then be written as

Ĥex =�
n

�nσ̂†
nσ̂n +�

n
�
m≠n

Vnmσ̂†
nσ̂m, (1)

where �n is the energy required to excite the nth molecule,
Vnm is the electronic coupling between excited molecules n

and m, and σ̂n = �gn��en�. In the case of 2D spectroscopy, we
need the common ground state (�g� =∏N

n=1�gn�), singly excited
states (�n� = �en�∏m≠n�gm� = σ̂†

n�g�), and doubly excited states
(�nm� = �en��em�∏k≠n,m�gk� = σ̂†

nσ̂†
m�g�, n < m) of the molecular

aggregate. As is commonly done for molecular aggregates, the
Hamiltonian given by Eq. (1) does not couple states with different
number of electronic excitations.

For each molecule, there are additional interactions with inter-
nal and external nuclear degrees of freedom. In many cases of inter-
est, these interactions can be modeled by (infinite) sets of bosonic
modes that couple linearly to the excitonic states. We denote these
modes as environment or bath. In this work, we assume that each
molecule has its own set of bath modes so that the Hamiltonian of
the bath can be written as

ĤB = N�
n=1
�

λ

�hωnλb̂†
nλb̂nλ. (2)

Here, b̂nλ (b̂†
nλ) is the annihilation (creation) operator of λth bath

mode of molecule n with frequency ωnλ. The bath modes couple
locally to their respective molecule. The interaction Hamiltonian is
then written as

Ĥint = − N�
n=1

L̂n�
λ

κnλ(b̂†
nλ + b̂nλ), (3)

where the coupling operator L̂n acts in the system Hilbert space and
is given by

L̂n = σ̂†
nσ̂n (4)

and κnλ is the exciton–bath coupling strength of the mode λ for
molecule n. We write the complete matter Hamiltonian as

Ĥ = Ĥex + ĤB + Ĥint. (5)

The detailed derivation of this Hamiltonian can be found in
Refs. 2, 3, and 37.

Initially, there are no electronic excitations in the system
and the environment is in thermal equilibrium. Since �g�L̂n�g� = 0,
there is no initial interaction between electronic and environmental
degrees of freedom and we can write the initial state as

ρ̂ini = �g��g�⊗ ρ̂env, with ρ̂env = e−Ĥ env�Tr[e−Ĥ env]. (6)

It is convenient to introduce the bath spectral density of molecule n,
Jn(ω) = ∑λ �κnλ�2δ(ω − ωnλ), which is related to the bath-correlation
function αn(t) by

αn(t) = � ∞
0

dωJn(ω)�coth�βω
2
� cos(ωt) − i sin(ωt)�, (7)

with the inverse temperature β.

B. Interaction with laser field
In a 2D spectroscopy experiment, the system interacts with

three laser pulses at controlled inter-pulse delay times. The
field–matter interaction Hamiltonian ĤF(t) is defined as2

ĤF(t) = −�̂ ⋅ E(r, t), (8)
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where �̂ is the total transition dipole operator given by

�̂ = N�
n=1

�n(σ̂n + σ̂†
n) (9)

and �n the transition dipole moment of molecule n, taken to be real.
Note that by writing the dipole operator in terms of local excita-
tion creation and annihilation operators, it connects states that differ
by one in the number of electronic excitations and we include an
arbitrary numbers of excitations in the Hamiltonian.

The electric field is given by

E(r, t) = 3�
a=1

eaEa(t − ta)eika ⋅r−iωa(t−ta) +H.c., (10)

with ea, ka, ωa, Ea(t), and ta denoting the polarization unit vector,
the wave vector, the carrier frequency, the envelope, and the central
time of the ath pulse, respectively. In general, there can also exist a
different number of pulses.

We can write the total Hamiltonian Ĥtot as

Ĥtot = Ĥ + ĤF(t), (11)

with Ĥ given in Eq. (5).

C. Response functions
In this section, we present a general notation for nonlinear

optical response functions that provide a clear connection to the
NMQSD formalism. Here, we use a general notation that is appro-
priate for arbitrary orders of perturbation theory. In Sec. IV, we
focus on 2D spectroscopy.

1. Perturbation theory for the full density matrix
In the following, we denote the time-evolution operator of the

system without the electromagnetic field as

Û(τ) = Ûτ = e−iĤ τ , (12)

where Ĥ is given in Eq. (5). We also introduce the abbreviation

V̂j = ĤF(tj) (13)

for the interaction with field at time tj.
We are interested in correlation functions (that we loosely call

response functions) that depend on the order of interactions with
the electric field. We use a condensed notation to track the generic
correlation functions of the form

R

���������

τ1, . . . , τM

vK
1 , . . . , vK

M

vB
1 , . . . , vB

M

���������
= Tr

�������������
F̂ ρ̂ (M)

���������

τ1, . . . , τM

vK
1 , . . . , vK

M

vB
1 , . . . , vB

M

���������

�������������
, (14)

where the expectation value of an observable F̂, in our case the
polarization �, is calculated with respect to a density matrix that is
obtained in Mth order of perturbation theory. In Eq. (14), the para-
meters in the rectangular brackets track the order of interactions
influencing the ket (row 2) vs bra (row 3) time-evolution associated
with a particular time correlation function. The first row contains

the intervals τi = ti+1 − ti between interaction at time ti and the fol-
lowing interaction. The last interval τM contains the final time t of
the evolution, i.e., τM = t − tM . The sequence of operators in the sec-
ond and third rows identify the operators acting on the bra and ket
side (respectively) at each interaction time and thereby define a spe-
cific response function. The Mth order density matrix is recursively
defined by

ρ̂ ( j)
���������

τ1, . . . , τj

vK
1 , . . . , vK

j

vB
1 , . . . , vB

j

���������
= Û(τj) v̂K

j ρ̂ (j−1)
���������

τ1, . . . , τj−1

vK
1 , . . . , vK

j−1

vB
1 , . . . , vB

j−1

���������
�v̂ B

j �†Û †(τj)
(15)

and

ρ̂ (0) = �ϕini��ϕini�⊗ ρenv. (16)

In Eq. (15), the operators vK
j act always on the ket side and the oper-

ators vB
j always on the bra side of ρ̂. An important constraint is that

for each pair vK
j , vB

j , with the same index j, one of the corresponding
operators is the unit operator (which we denote by 1). Note that for
better readability, we will sometimes omit the “operator hats” on the
operators vK�B

j , as it has already been done above. Explicitly, we have

vK
j = V̂j,
vB

j = 1,
or

vK
j = 1,

vB
j = V̂j.

(17)

In the following, we introduce a shorthand notation where we
abridge

ρ̂ (M) = ρ̂ (M)
���������

τ1, . . . , τM

vK
1 , . . . , vK

M

vB
1 , . . . , vB

M

���������
, (18)

by omitting all arguments when it is clear which correlation func-
tion is being considered or when we consider generic correlation
functions.

III. CALCULATION OF THE NONLINEAR
RESPONSE FUNCTION USING NMQSD
A. The NMQSD formalism

For the open-quantum system model as given in Sec. II A, the
expectation value of any system operator F̂ can be obtained as28,29

�F̂(t)� ≡ Tr[F̂ρ̂(t)] =M��ϕ(t, z∗)�F̂�ϕ(t, z∗)��ϕ(t, z∗)�ϕ(t, z∗)� �, (19)

where M[⋅ ⋅ ⋅ ] denotes ensemble average over stochastic wavefunc-
tion �ϕ(t, z∗)� obtained by the normalizable (nonlinear) NMQSD
equation,28,29

@t �ϕ(t, z∗)� = − iĤex�ϕ(t, z∗)�
+�

n
L̂n ζn(t, z)�ϕ(t, z∗)�

−�
n
�L̂†

n − �L̂†
n�t�� t

0
ds αn(t − s)δ�ϕ(t, z∗)�

δz∗s,n , (20)
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where z comprises a set of complex Gaussian stochastic pro-
cesses z∗t,n with mean M[zt,n] = 0 and correlations M[zt,nzs,m]= 0 and M[zt,nz∗s,m] = αn(t − s)δnm. Here, αn(t) is the correla-
tion function of the environment, defined in Eq. (7). These
processes enter via ζn(t, z) = z∗t,n + ∫ t

0 ds α∗n(t − s)�L̂†
n�s, where the

expectation values �⋅�t are calculated using the normalized state�ϕ(t, z∗)����ϕ(t, z∗)�ϕ(t, z∗)�.
For completeness, we mention that besides the nonlinear

NMQSD equation (20), there exists also a linear NMQSD formu-
lation where the nonlinear terms �L̂†

n� are dropped in Eq. (20)
and in ζn(t, z) and expectation values are calculated as �F̂�(t)=M[�ϕ(t, z∗)�F̂�ϕ(t, z∗)�]. However, the linear NMQSD equation
converges slowly with the number of trajectories except for the case
of weak system environment coupling or very short propagation
times.

B. Reformulation of the response function equations
Our aim is now to formulate the response function in a way that

can be used together with the above nonlinear NMQSD equation. To
focus on the main aspects of our treatment, we discuss first the ini-
tial state ρ̂ (0) = �ϕini��ϕini�⊗ �0��0�, where the environment is in its
ground state. In Subsection III D, we briefly comment on different,
possibly mixed, states of the environment, with particular attention
to the case of a thermal initial state.

We introduce �ΦB(t)� and �ΦK(t)�, which represent the evolu-
tion of the bra and ket contributions, respectively. We can then write
the Mth-order density matrix as

ρ̂ (M)(t) = �ΦK(t)��ΦB(t)�, (21)

where

�ΦB(t)� = (e−iĤ τM v̂B
M) ⋅ ⋅ ⋅ (e−iĤ τ1 v̂B

1)�ϕini��0�, (22)

�ΦK(t)� = (e−iĤ τM v̂K
M) ⋅ ⋅ ⋅ (e−iĤ τ1 v̂K

1 )�ϕini��0�, (23)

and the last interval τM = t − tM contains the time t. In this
notation, the response function R(t), an abbreviation for R(t)= R(M)(τ1, . . . , τM), becomes

R(t) = Tr{F̂�ΦK(t)��ΦB(t)�} (24)

= �ΦB(t)�F̂�ΦK(t)�. (25)

Both �ΦB(t)� and �ΦK(t)� can be expanded with respect to
Bargmann coherent states38 of the bath,

�ΦB�K(t)� = � dM(z)�z��z�ΦB�K(t)� = � dM(z)�z��ϕB�K(t, z∗)�,
(26)

where �ϕB�K(t, z∗)� are states in the “system” Hilbert space only and

dM(z) = Πnλ d2znλ
e−�znλ �2

π . Inserting this expansion into Eq. (25),

R(t) = � dM(z)� dM(z′)�z�z′��ϕB(t, z∗)�F̂�ϕK(t, z′∗)�, (27)

and using the “reproducing property” of coherent states, we obtain
the important result

R(t) = � dM(z)�ϕB(t, z∗)�F̂�ϕK(t, z∗)�, (28)

where the bra and the ket now evolve with the same coherent
states z.

Introducing a state

�ψ̃(t, z∗)� = ���
�ϕB(t, z∗)�
�ϕK(t, z∗)�

��� (29)

in a doubled “system” Hilbert space, we can write

R(t) = � dM(z)�ψ̃(t, z∗)�F̃�ψ̃(t, z∗)�, (30)

with F̃ = �0 F̂

0 0
�. These formulas are the starting point for the dyadic

NMQSD approach similar to the doubling used for the case of a
quantum state diffusion unravelling of Lindblad equations.39

C. Dyadic NMQSD
The dyadic NMQSD equations use the construction of the

response functions in the doubled “system” Hilbert space to time-
evolve the combined bra and ket states. We can introduce a state�Ψ̃(t)� that lives in the Hilbert space (HS ⊗HS)⊗HB (note that the
“bath” Hilbert space is not doubled) and obeys

�ψ̃(t, z∗)� = � dM(z)�z��z�Ψ̃(t)�, (31)

where the left-hand side is the state introduced in Eq. (29). For the
corresponding time-evolution, we can write

�Ψ̃(t)� = Ũ(τM)ṼM ⋅ ⋅ ⋅ Ũ(τ1)Ṽ1�Ψ̃(0)�, (32)

with an initial state

�Ψ̃(0)� = ���
�ϕini�
�ϕini�
���⊗ �0�, (33)

a time-evolution operator

Ũ(τ) = e−iH̃ τ , (34)

and a Hamiltonian

H̃ = H̃S + ĤB +�
n

L̃n�
λ

κnλ(b̂†
nλ + b̂nλ), (35)

where the κnλ are the same as in Eq. (3),

H̃S = ���
ĤS 0

0 ĤS

���, Ṽj = ���
v̂B

j 0

0 v̂K
j

���, and L̃n = ���
L̂n 0

0 L̂n

���. (36)

The response function [Eq. (30)] is then evaluated as an average over
trajectories that obey the nonlinear NMQSD equation [Eq. (20)] in
the doubled system Hilbert space. There are many formally equiv-
alent dyadic NMQSD propagation schemes; we will discuss one
explicit propagation scheme in Sec. III E, below.

While the bra and ket states are not directly coupled within
the dyadic nonlinear NMQSD equations, they both contribute to
the norm of the dyadic wavefunction and cannot be propagated
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independently. For example, note that the expectation values �L̃†
n�t ,

appearing in Eq. (20), are calculated using the dyadic wavefunction
in the doubled system Hilbert space, where

�L̃†
n�t = �ψ̃(t, z∗)�̃L†

n�ψ̃(t, z∗)�
�ψ̃(t, z∗)�ψ̃(t, z∗)� (37)

= �ϕK(t, z∗)�L̂†
n�ϕK(t, z∗)� + �ϕB(t, z∗)�L̂†

n�ϕB(t, z∗)�
�ϕK(t, z∗)�2 + �ϕB(t, z∗)�2 (38)

and

�ϕ(t, z∗)�2 = �ϕ(t, z∗)�ϕ(t, z∗)�. (39)

We note that for the linear dyadic NMQSD equation, the
bra and ket states are not coupled; however, these equations show
poor convergence in parameter regimes beyond weak system–bath
coupling.

D. Comment on different initial states
and finite temperature

The derivation above has been done assuming the environment
initially in its ground state (�0��0�). The “thermofield” approach40

is a well-known method for mapping the dynamics of a finite tem-
perature environment onto a formally enlarged environment in its
ground state. Already in early works, the thermofield technique has
been applied to NMQSD (see Appendix C of Ref. 29), and in Ref. 41,
the thermofield approach is discussed in detail for the case of molec-
ular aggregates. For Hermitian coupling operators Ln = L†

n, such as
we have here, this approach leads to the NMQSD equation (20),
where the initial thermal state is encoded in the temperature depen-
dent bath-correlation function given by Eq. (7). A non-Hermitian
coupling operator Ln introduces independent noise processes for
Ln and L†

n with different correlation functions.29,41 Recent devel-
opments include alternatives to the thermofield approach, such as
the P-representation of the thermal state42 that introduces a second
noise term associated with the system Hamiltonian.

E. Summary of the numerical propagation scheme
In the present work, the response function is calculated in the

following way: We start with the system part of the initial state
Eq. (33), which lives in the doubled system Hilbert space and which
reads �ϕ̃ini� = (�ϕini�, �ϕini�)T . This state is not normalized. On this
state, we act with Ṽ1. We then propagate using the nonlinear (but
unnormalized) NMQSD during the time interval τ1. Then, we act
with the second interaction Ṽ2 and continue the propagation during
time interval τ2. We repeat this until the end of the last time inter-
val and then calculate the expectation value of F̃ for each individual
trajectory.

According to Eq. (19), we normalize each trajectory before tak-
ing the average. Here, some care is necessary. The normalization
should take care of the change of norm caused by the unnormalized
NMQSD propagation, but it includes in addition the norm changes
due to the interactions Ṽ1, . . . , ṼM . To keep these physically relevant
changes of the norm, we multiply by these norm changes. The details
are as follows: Let us denote the state (in doubled system Hilbert

space) before the jth interaction by ψ̃(tj, z∗), where tj is the time of
the jth interaction. We define

I j = �Ṽjψ̃(tj, z∗)�2

�ψ̃(tj+1, z∗)�2 . (40)

We then have for the “response function”

R(M)(z) = ��
M�

j=1
I j
�
��ψ̃(t, z∗)�F̃�ψ̃(t, z∗)�, (41)

and we obtain the final result by averaging over trajectories,

R(M) =Mz�R(M)(z)�. (42)

We summarize this procedure in Fig. 1(b). We could have also used
the normalized nonlinear NMQSD equation, with an appropriate
change to the normalization factors at the end.

F. HOPS for solving the NMQSD propagation
The NMQSD equation Eq. (20) is not particularly suitable for

a direct numerical implementation because of the functional deriva-
tive with respect to the stochastic processes. Numerically convenient

FIG. 1. (a) Sketch of the time sequence of the interaction with three short laser
pulses, centered at times t1, t2, and t3. In the present work, we focus on the impul-
sive limit, where the pulses are described by δ-functions. After the third pulse,
a specific signal is detected at time tS. The resulting expressions can be readily
applied also to pulses with finite width.2 Time intervals between two successive
pulses are labeled by τj and indexed according to the index of the first of the
two pulses. (b) Symbolic representation of the calculation of the response function
according to the formalism of Sec. III B.
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schemes can be derived when the bath-correlation function αn(t) is
expanded as a finite sum of exponentials,

αn(t) ≈ Nmodes�
j=1

pnje−wnjt , (43)

with wnj = γnj + i�nj. In many applications of practical interest, the
required number of “modes” (Nmodes) is small. For the interpreta-
tion of such modes, see, for example, Refs. 37 and 43. A powerful,
but approximate, scheme that is based on Eq. (43) is the so-called
“zeroth order functional expansion,” ZOFE.30,31 In the present work,
we employ the numerically exact hierarchy of pure states (HOPS),32

@t �ψ(k)(t, z∗)� =�−iĤex − k ⋅w +�
n

L̂n ζn(t, z)��ψ(k)(t, z∗)�
+�

n
L̂n�

j
knjpnj�ψ(k−enj)(t, z∗)�

−�
n
�L̂†

n − �L̂†
n�t��

j
�ψ(k+enj)(t, z∗)�. (44)

Here, w = {w1,1, . . . , wN,J} and k = {k1,1, . . . , kN,J} with non-
negative integers knj. The vector enj = {0, . . . , 1, . . . , 0} is one at the(n, j)th position and is zero otherwise. The relevant contribution
to perform calculations of expectation values is the zeroth order
element, i.e.,

�ϕ(t, z∗)� = �ψ(0)(t, z∗)�. (45)

The HOPS consists of an infinite set of coupled equations,
which must be truncated at a finite hierarchy for numerical calcula-
tions. In this work, we use a simple triangular truncation condition
for the hierarchy: �k� ≤ K. More advanced truncation schemes are
discussed in Ref. 44. It is also possible to use an adaptive algorithm
to reduce the size of the hierarchy33 or use a matrix product state
representation.34

IV. EXAMPLE CALCULATIONS
One reason for developing the present perturbative approach

is the large number of trajectories required to converge the non-
perturbative approach of Ref. 35. Therefore, in the following exem-
plary calculations, we focus in particular on the convergence with
respect to the number of trajectories.

A. Model system
Here, we perform calculations for a dimer (N = 2) consisting

of identical monomers (i.e., �n = �) with parallel transition dipoles(�n = �). For the bath-correlation functions, we choose a single
exponential given by

αn(t) = α(t) = pe−i�t−γt , t ≥ 0, (46)

with γ = 0.25 and the vibrational frequency � as the unit of energy.
Then, Eq. (46) can be interpreted as a weakly damped vibrational
mode at zero temperature,37 which requires a non-Markovian treat-
ment. Below, we consider two values for the coupling strength that
lead to qualitatively different 2D spectra: the intermediate coupling
case and the strong coupling case (p = 0.5 and 1.8, respectively, in

units of �2). For the interaction between the monomers, we use
V = 0.3. We note that the linear HOPS equation has severe con-
vergence problems (see Sec. II of the supplementary material), as
expected for our parameter regime.

B. The various 2D spectra
In the following, we consider the third-order response func-

tions that contribute to 2D electronic spectroscopy. For the three
time intervals, we adopt the commonly used notation

τ1 ≡ τ, τ2 ≡ T, τ3 ≡ t. (47)

We present plots for the ground state bleaching (GSB), stimulated
emission (SE), and excited state absorption (ESA) signals as follows:

SGSB(ωτ , T, ωt) = S(−)3 (ωτ , T, ωt) + S(+)4 (ωτ , T, ωt),
SSE(ωτ , T, ωt) = S(−)2 (ωτ , T, ωt) + S(+)1 (ωτ , T, ωt),

SESA(ωτ , T, ωt) = −�S(−)5 (ωτ , T, ωt) + S(+)6 (ωτ , T, ωt)�,
(48)

with

S(±)` (ωτ , T, ωt) = Re� ∞
0
� ∞

0
dtdτ r`(τ, T, t)e±iωτ τeiωt t. (49)

These expressions emerge after applying the rotating wave approxi-
mation and phase matching conditions.1,2 The functions r` appear-
ing in Eq. (49) are specific response functions that are evaluated
for F = e ⋅ �̂− and contain non-Hermitian interaction operators
V̂±j = −�̂±E±j , where

�̂+ =�
n
��nσ̂†

n, �̂− =�
n
��nσ̂n, (50)

E+j = ej, E−j = e∗j . (51)

In Table I, we summarize the operators that enter into the calcu-
lation of the response functions r1 to r6. We take all fields to be
identical and polarized parallel to the transition dipole moments of
the molecules.

C. Calculations
In Fig. 2, we present the intermediate coupling case, p = 0.5.

Figure 2(a) shows in the upper row, the GSB, SE, and ESA spectra
obtained for T = 0 using Ntraj = 1000 trajectories. We compare our

TABLE I. The operators used in the calculation of the response functions r1, . . ., r6.
Here, V̂±j = −�̂±E±j , with �̂± and E±j given in Eqs. (50) and (51).

vK
1 vB

1 vK
2 vB

2 vK
3 vB

3

r1 V̂+1 1 1 V̂+2 1 V̂−3
r2 1 V̂+1 V̂+2 1 1 V̂−3
r3 1 V̂+1 1 V̂−2 V̂+3 1
r4 V̂+1 1 V̂−2 1 V̂+3 1
r5 1 V̂+1 V̂+2 1 V̂+3 1
r6 V̂+1 1 1 V̂+2 V̂+3 1
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FIG. 2. Two-dimensional spectra and their convergence properties for a dimer with two identical monomers and intermediate system–bath coupling (p = 0.5). The other
parameters are γ = 0.25 and V = 0.3, where the energies are in units of �. For p = 0.5, the truncation conditions for HOPS are K = 10 for the GSB and SE and they are
K = 11 for the ESA. (a) GSB, SE, and ESA spectra at waiting time T = 0. Upper row: HOPS calculations with Ntraj = 1000 trajectories. Second row: HEOM calculations as
reference. Third row: point-wise difference SHOPS(ωτ , ωt) − SHEOM(ωτ , ωt) between the HOPS and the HEOM spectra. Note that for convenience, we have normalized
all spectra to the maximal value a = max[S(ωτ , ωt)], which is indicated in each panel. This allows us to use a common colorbar for all plots and to quickly assess the
maximal error. (b) Convergence with the number of trajectories for different waiting times T . In each panel, the error measure, defined in Appendix B, is shown as function
of number of trajectories. The crosses are the numerical data obtained from a bootstrapping procedure (described in Appendix B) and the solid lines are curves that follow
a 1��Ntraj scaling. GSB: brown, SE: orange, ESA: blue.

FIG. 3. Same as Fig. 2 but for the strong system–bath coupling regime (p = 1.8). The truncation conditions for HOPS are K = 15 for the GSB and SE and K = 20 for the
ESA.
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HOPS spectra to reference calculations, performed with the HEOM
method15,16 [Fig. 2(a), middle row]. We see that the HOPS spectra
reproduce the relevant features from HEOM. To see in detail the
deviations of the HOPS spectra from the HEOM ones, we show the
point-wise difference between the HOPS spectrum and the refer-
ence HEOM spectrum [Fig. 2(a), bottom row]. From this, one sees
that the maximal differences are around 10% of the peak signal. For
GSB and ESA, the fluctuations are spread around a large region in
the vicinity of the signal. For the SE spectrum, the fluctuations are
largest along the diagonal. We note that the shown HOPS spec-
tra and, therefore, the difference plots also depend on the specific
realization of the Ntraj trajectories.

To investigate in more detail the difference between the spec-
tra, we introduce a measure E for the integrated difference (details
are given in Appendix B). This measure of the difference for the
GSB, SE, and ESA [Fig. 2(a)] is given by E = 0.069, E = 0.076, and
E = 0.085, respectively. From this, we see that E � 0.08 corresponds
to fairly good agreement. Using this measure, we now investigate
convergence with respect to the number of trajectories. In a first
step, we construct the distribution of E for different realizations of
the Ntraj using bootstrapping and then estimate the mean value and
variance of the error (see Appendix B for details). In Fig. 2(b), we
plot the mean and standard deviation of the error with respect to the
number of trajectories. For each waiting time, the mean error follows
the expected 1��Ntraj scaling (shown as a solid line), which can be
clearly observed in the inset showing a double logarithmic scale. Fur-
thermore, the standard deviation also decreases as 1��Ntraj and has
values smaller than the mean error. Thus, the HOPS spectra associ-
ated with a large truncation depth of the hierarchy we have used here
converge to the HEOM result and the associated error is dominated
by statistical noise.

At waiting time T = 0, all three errors are comparable; upon
increasing the waiting time, the error of the GSB signal remains
essentially unchanged, while the error of the SE and ESA signal
increases. In general, the SE (orange) and ESA (blue) errors are very
similar and both are larger than the GSB error (brown). For the
shown waiting times T ≈ 4, the SE and ESA error curves also remain
largely unchanged and even decrease slightly. Details of the depen-
dence of the error as a function of waiting time T are given in Sec. I
of the supplementary material.

Figure 3 shows analogous results for the strong coupling case.
In particular, there is again the 1��Ntraj scaling of the error and the
error does not increase for waiting times T ≥ 2.

V. CONCLUSIONS
In the present study, we have developed a framework to sim-

ulate multidimensional electronic spectra of molecular aggregates
using the stochastic nonlinear formalism to directly calculate per-
turbative response functions of arbitrary order. Our approach calcu-
lates nonlinear response functions by propagating a pure state that
combines ket and bra states in a doubled electronic Hilbert space
subjected to a common noise, which corresponds to a dyadic equa-
tion. Importantly, our scheme enables us to use the nonlinear HOPS
equation, which we have shown has superior convergence proper-
ties for strong system–bath coupling, compared to the linear version.
The use of the nonlinear NMQSD and the appearance of a common
noise distinguishes our scheme, e.g., from that of Ref. 45, where the

2D signal is also calculated using a kind of dyadic HOPS equation.
In contrast to our pure state approach, there also exist stochastic
schemes where the time-evolution of the reduced density matrix
is calculated using dyadic propagation with correlated noise.46,47 It
would be interesting to see how response functions obtained from
the propagation scheme of Refs. 46 and 47 relate to the ones derived
in the present work.

Numerical simulations for a dimer system coupled to a struc-
tured environment demonstrate that our theory has favorable con-
vergence properties with respect to the number of stochastic trajec-
tories. It should be noted that the new formalism developed here
needs many fewer stochastic trajectories to obtain converged 2D
spectra when compared to those calculated by a non-perturbative
phase-cycling scheme.35 As compared to density matrix based meth-
ods, the nonlinear NMQSD method propagates vectors instead of
matrices, individual simulations with different noise trajectories are
trivially parallel, and it is consistent with adaptive basis33 and tensor
contraction34 approaches recently developed for HOPS. Our theory,
thus, offers a promising technique to simulate 2D spectra of large
molecular aggregates. This is especially the case for the description
of the excited state absorption contribution to 2D spectra where a
large number of doubly excited excitonic states are involved. Fur-
thermore, it is straightforward to account for the effect of the static
disorder induced by the inhomogeneity of the solvent environment
by simply sampling excitonic parameters from a certain distribution
for each stochastic trajectory. Our theory can be readily applied to
simulate higher-order response functions, for example, fifth-order
3D signals, which are a powerful tool to reveal multistep energy
transfer processes.48

SUPPLEMENTARY MATERIAL

In the supplementary material, we provide further details
on the convergence of the nonlinear HOPS with respect to the
number of trajectories and demonstrate the convergence prob-
lems associated with the linear HOPS that are resolved using our
method.
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APPENDIX A: LINEAR RESPONSE

It is instructive to also consider linear response within the
present formalism to elucidate the normalization with respect to the
state in doubled Hilbert space. The linear response function as it
appears in the calculation of absorption is defined as

R(1)(t) = Tr�(e∗ ⋅ �̂−)e−iĤt(e ⋅ �̂+)�g��g�ρ̂BeiĤt�. (A1)

1. Expression using the formalism of Sec. III
Within the dyadic NMQSD formalism, we write the linear

response function as

R(1)(t) =M�I1�ψ̃(t, z∗)�F̃�ψ̃(t, z∗)��, (A2)

where

F̃ = ���
0 (e∗ ⋅ �̂−)
0 0

���, I1 = �Ṽ1ψ̃(t1, z∗)�2

�ψ̃(t, z∗)�2 ,

Ṽ1 = ���
1 0

0 (e ⋅ �̂+)
���, and �ψ̃(t1, z∗)� = ���

�g�
�g�
���.

This corresponds to the first-order response function with
v̂K

1 = e ⋅ �̂+, v̂B
1 = 1, and F̂ = e∗ ⋅ �̂−. The numerator of I1 simplifies

to �Ṽ1ψ̃(t1, z∗)�2 = 1 + �2
eff, with �2

eff = ∑n(e ⋅ �n)2. We calculate the
final state �ψ̃(t, z∗)�, defined in Eq. (29), following the prescription
in Sec. III E: After the interaction of the initial vector �ψ̃(t1, z∗)�with

the operator Ṽ1, the state becomes � �g�
(e ⋅ �̂+)�g��. During the subse-

quent time propagation (from t1 to t), the bra is in the ground state
and only acquires a phase, �ϕB(t)� = e−i�gt �g�. The ket contribution�ϕK(t)� = �ϕK(t, z∗)� can be obtained from propagating the initial
state (e ⋅ �̂+)�g� with the NMQDS equation in the single Hilbert
space, where the expectation values of L̂†

n at time s (�L̂†
n�s) are cal-

culated with respect to the norm �ψ̃(s, z∗)�2 = (�ϕK(s, z∗)�2 + 1) of
the state in the doubled Hilbert space,

�L̂†
n�s = �ϕK(s, z∗)�L̂†

n�ϕK(s, z∗)��(�ϕK(s, z∗)�2 + 1). (A3)

Finally, the response function can be written as

R(1)(t) =M� 1 + �2
eff�ϕK(t, z∗)�2 + 1

�eff�ψex�ϕK(t, z∗)��ei�g t , (A4)

where we have introduced �ψex� = 1
�eff

e ⋅ �̂+�g�, to make the connec-
tion to our previous result36 more obvious (see next subsection).

2. Relation to previous results
In a previous publication,36 we have derived an equation for

the perturbative calculation of the linear response function using
the nonlinear NMQSD equation. In that work, the starting point
was to treat the non-Hermitian operator (e ⋅ �̂+)�g��g�ρ̂B as “initial
state,” which is then decomposed into a sum of pure states that can
be propagated via NMQSD. In Ref. 36, the response was obtained
from

Rdecomp(t) = �2
effM

�ψex�χ(t, z∗)�
1
2(�χ(t, z∗)� + 1) ei�g t. (A5)

Moreover, here, the state �χ� is propagated in the excited Hilbert
space, but expectation values of L̂†

n are calculated using the nor-
malization with (�χ(t, z∗)� + 1). From this, one sees that the only
difference to the approach of Sec. III is that one starts the excited
state propagation of the ket with a different normalized state. The
change in initial condition leads to different trajectories even for the
same noise realization. Nevertheless, both methods result in equiv-
alent average response functions. Numerically, we have found that
for our examples, there is little difference in the convergence of the
two approaches.

To derive Eq. (A5) within our present formalism, we redefine
the response function (Sec. II C) by scaling V̂j → V̂j�mj, F̂ → F̂�m,
and R(M) → m (∏M

j mj)R(M). Using m = �eff and mj = �eff, we have
explicitly for the response function (A1), the expression

R(1)(t) = �2
eff Tr�(e∗ ⋅ �̂−)

�eff
e−iĤt (e ⋅ �̂+)

�eff
�g��g�ρ̂BeiĤt�. (A6)

We then use the same steps as in the previous subsection and arrive
at Eq. (A5).

APPENDIX B: THE ERROR MEASURE

To quantify the difference between different 2D spectra, we
introduce an error measure in the following way: First, we normalize
each spectrum according to

S(ωt , ωτ)→ S(ωt , ωτ)�S, (B1)

where

S = 1
��

ωmax

ωmin

dωt� ωmax

ωmin

dωτ �S(ωt , ωτ)�, (B2)

with � = 1. For two spectra S(1)(ωt , ωτ) and S(2)(ωt , ωτ), we then
introduce the difference

�S(ωt , ωτ) = S(1)(ωt , ωτ) − S(2)(ωt , ωτ). (B3)
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Finally, we define the integrated difference

E = � ωmax

ωmin

dωt� ωmax

ωmin

dωτ ��S(ωt , ωτ)�. (B4)

To obtain a detailed analysis of the statistical error due to a
finite number of trajectories shown in Figs. 2 and 3, we employ boot-
strapping.49 We first calculate 4 × 104 trajectories. For each value of
Ntraj, we then construct 500 ensembles by randomly choosing Ntraj

trajectories from the original 4 × 104 trajectories. For each ensemble,
we calculate the averaged integrated difference and finally obtain the
error as the mean of the integrated difference over the 500 ensembles.
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