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Life history strategies of soil bacterial 
communities across global terrestrial 
biomes

Gabin Piton    1,2  , Steven D. Allison    1,3, Mohammad Bahram4,5, 
Falk Hildebrand6,7, Jennifer B. H. Martiny    3, Kathleen K. Treseder3 & 
Adam C. Martiny    1,3

The life history strategies of soil microbes determine their metabolic 
potential and their response to environmental changes. Yet these strategies 
remain poorly understood. Here we use shotgun metagenomes from 
terrestrial biomes to characterize overarching covariations of the genomic 
traits that capture dominant life history strategies in bacterial communities. 
The emerging patterns show a triangle of life history strategies shaped by 
two trait dimensions, supporting previous theoretical and isolate-based 
studies. The first dimension ranges from streamlined genomes with simple 
metabolisms to larger genomes and expanded metabolic capacities. 
As metabolic capacities expand, bacterial communities increasingly 
differentiate along a second dimension that reflects a trade-off between 
increasing capacities for environmental responsiveness or for nutrient 
recycling. Random forest analyses show that soil pH, C:N ratio and 
precipitation patterns together drive the dominant life history strategy 
of soil bacterial communities and their biogeographic distribution. Our 
findings provide a trait-based framework to compare life history strategies 
of soil bacteria.

Bacteria impact carbon (C) and nutrient cycling on a global scale1. Soil 
bacterial communities contain enormous, functionally uncharacterized 
genetic diversity2,3, which hinders progress in predicting soil microbial 
responses to global change4,5. One approach to describing functional 
biodiversity is collapsing its complexity into one or more dimensions 
that capture the dominant associations and trade-offs between traits6–10. 
This multivariate trait space, or life history strategy scheme, provides 
a framework to compare broad organismal strategies6,8,10.

While the trait dimensions shaping plant life history strategies  
are now well established6, trait associations for soil microorganisms 

remain less clear. Initially, studies applied the ‘competitor’, ‘stress 
tolerant’ and ‘ruderal’ (CSR) strategies proposed for plants7 to soil 
bacteria1,11. This scheme emphasizes trade-offs often observed between 
traits related to maximizing resource capture (competitor, C), persist-
ing under low resource and stressful condition (stress tolerant, S) and 
responding rapidly to exploit growing window between disturbances 
(ruderals, R)1,7. Building on the CSR scheme, Malik et al. emphasized 
differences between microbial yield (Y), resource acquisition (A) and 
stress tolerance (S) traits as important for soil carbon cycling12. While 
these theoretical papers provide valuable hypotheses on which traits 
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and phenotypic traits13. This analysis revealed a primary dimension 
associated with metabolic versatility that was highly correlated  
with genome size. A secondary dimension separated differences in 
maximum growth rate and was correlated with variation in ribosomal 

are probably central to soil microbial adaptation, no clear consensus 
has emerged on the trait dimensions that shape life history strate-
gies of soil bacteria1,11,12 (Extended Data Table 1). Recently, bacterial 
cultures isolated from diverse habitats were analysed for genomic 
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Fig. 1 | Global trait dimensions of soil bacteria metagenomes. Variable 
contributions to the MCOA summarizing in a common structure (MCOA 
dimensions 1 and 2) the information shared by 5 CAT databases (Life history 
trait, CAZy, eggNOG, SEED and KEGG). Only the most important variables with 

significant correlation (P < 0.001) with each dimension are reported in this 
figure. a,b, Variable contributions to MCOA dimensions 1 and 2, respectively. Bar 
colours indicate the direction of the associations between the variable and the 
MCOA dimensions.
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gene copy number14. However, there is a lot of variation in how well 
bacterial cultures represent in situ community biodiversity15–17. Thus, it 
remains to be tested whether the life history strategies of soil bacterial 
communities match either the theoretical or culture-based predictions 
of key trait dimensions.

One advantage of studying the traits of microorganisms vs those 
of larger organisms is the ease with which collections of their traits 
can be measured at the community level. Community aggregated 
traits (CATs)18 represent the average functional profile of the com-
munity emerging from the combination of organisms’ traits and 
community composition (similar to the idea of community-weighted 
means of traits proposed for plants)19,20. Hence, it is important 
to note that while suggestive, such CAT patterns do not directly 
inform on within-organism trade-offs. Nevertheless, CATs described  
using metagenomic sequences offer a way to characterize shifts in 
organismal strategies dominating bacterial communities in situ (for 
example, refs. 21,22) and thus offer an approach to test theoretical 
life history strategy schemes to in situ microbial communities. In 
addition, information on the dominant strategy in a bacterial com-
munity might be used to predict the response of this key group to 
environmental changes for global biogeochemical cycles4,18. Elucidat-
ing the trait dimensions that shape the dominant life history strategies 
of soil bacteria would thus provide a framework for comparing soil  
bacterial communities and developing generic predictions in soil 
microbial ecology14.

In this study, we used a global dataset of soil metagenomic 
sequences from major biomes to quantify key trait dimensions of  
soil bacterial communities. We then identified primary environmental  
factors partitioning the trait dimensions and projected global  
biogeography. Finally, we compared the emergent life history  
strategies with theoretical and culture-based predictions.

Results
The trait dimensions of soil bacterial communities
Using a multitable co-inertia analysis (MCOA), we found that two  
dimensions captured half of the overall variation in metagenomic  
community aggregated traits (CATs). MCOA1 and MCOA2 captured 
29% and 21% of metagenomic trait variation (Fig. 1 and Extended  
Data Fig. 1), while MCOA 3 and MCOA4 explained 16% and 10%  
of this variation, respectively (Extended Data Figs. 1 and 2). The  
MCOA revealed the most important associations between traits  
(Figs. 1 and 2), including traits previously associated with life history 
strategies (Figs. 1–3).

Average genome size had the highest contribution to MCOA1  
(Fig. 1a) with an R² of 0.64 for the positive correlation between  
average genome size and MCOA1 (Extended Data Fig. 3a). Mapping 
coverage decreased along this dimension (Extended Data Fig. 4). The 
lower end of this dimension was characterized by bacterial communi-
ties with higher relative abundance of genes for primary metabolism 
(that is, essential process for survival and growth) and C acquisition 
machinery (Fig. 1). In these communities, carbon acquisition enzymes 
involved in depolymerization of oligosaccharides were favoured over 
enzymes targeting polysaccharides. This oligosaccharide-degradation 
enzyme class was dominated by the beta-glucosidases GH1, GH2 and 
GH3 CAZy families. Finally, chaperones were overrepresented. Thus, 
the lower end of MCOA1 was defined by communities with a streamlined 
metabolism (Fig. 2).

The upper end of MCOA1 defined bacterial communities with a 
large genome and more complex metabolism and resource acquisition 
strategies (Figs. 1 and 2). The enriched genes allowed for degradation 
of complex polysaccharides from fungi, animals and plant lignin. 
There was also overrepresentation of genes for direct plant pathogenic 
interactions and negative interactions with other microorganisms. 
Finally, communities carried a higher proportion of genes encoding 
for exopolysaccharides (EPS) production, dormancy and sporulation, 

membrane and DNA repair (Figs. 1 and 2). These functions were gener-
ally present in lower relative abundance in communities with small 
genomes at the opposite end of MCOA1. Thus, the first trait dimen-
sion captured functional variation associated with genome size and 
expanded ‘metabolic capacities’ (Fig. 2).

Bacterial communities differentiated along a second dimension 
(MCOA2) but only when they increased their ‘metabolic capacities’ 
along the first trait dimension (MCOA1), shaping a triangle (Fig. 2). 
This distribution indicated that bacterial communities with low ‘meta-
bolic capacities’ and small average genome size are constrained along 
the second dimension. MCOA2 separated communities according  
to genomic traits for ‘environmental responsiveness’ and ‘nutrient  
recycling’ (Fig. 2). Communities associated with the lower end of 
MCOA2 were enriched in mineral and organic N and P assimilation 
genes (Figs. 1 and 2). Furthermore, there were also higher relative 
frequencies of genes encoding for bacterial necromass degradation 
including peptidoglycan. Communities at the upper end of MCOA2 
were defined by an ability to respond to a complex set of environmental 
cues. This was manifested by an increased presence of genes encoding 
for activity regulation, resistance to environmental stress, foraging  
of beneficial conditions, fast growth (rrn copy), and building and 
repairing the cell membrane (Figs. 1 and 2). The communities were also 
enriched in genes encoding for carbohydrates metabolism of simple 
substrates such as starch, glycogen and oligosaccharides. Thus, the 
second trait dimension captured a gradient in average environmental  
responsiveness that was positively associated with specialization  
in simple carbon substrate metabolism and negatively associated  
with nutrient assimilation and recycling capacities (Fig. 2).

Drivers of trait dimensions
Using random forest analyses, we next found that common soil envi-
ronmental factors distributed the soil bacterial community along 
global trait dimensions. Random forest models based on soil pH, pre-
cipitation and C:N ratio could predict most of the variation in MCOA1 
and MCOA2, with an R² of 0.80 and 0.58, respectively (Extended Data  
Fig. 5). Mean decrease in mean square error (%MSE) and R2 calculated on 
the basis of a 10-fold cross-validation of the random forests indicated 
that soil pH and annual precipitation are the most important predictors 
for both MCOA1 and MCOA2. However, the two dimensions showed 
different response patterns to these variables, with MCOA1 decreasing 
with soil pH but increasing with annual precipitation whereas MCOA2 
decreased with both soil pH and annual precipitation, leading to unique 
positions along MCOA1 and MCOA2 depending on the combination 
of pH and annual precipitation (Figs. 3 and 4). MCOA1 and MCOA2 
were also driven by precipitation seasonality, whereas soil C:N ratio 
controls only MCOA1 (Figs. 3 and 4, and Extended Data Fig. 5). Next, 
we projected the global variation in the trait dimensions using these 
random forests (Fig. 4b,d) and global soil and climate databases. It is 
worth noting that this broad spatial resolution map, using averaged 
conditions across large spatial units, showed high consistency with 
values observed locally in our samples (Extended Data Fig. 6). Thus, 
the identified trait dimensions showed a clear global biogeography.

The first trait dimension (MCOA1) mainly separated arid  
alkaline regions from more acidic and wet ones. More precisely, bacterial  
communities characterized by a small genome size (that is, low 
MCOA1 value) were enriched under neutral to alkaline pH, low C:N 
ratio, low annual precipitation but high precipitation seasonality  
(Fig. 4a). Conversely, communities with larger genome sizes (high 
MCOA1 value) were found in more acidic soils as well as soil with higher 
C:N ratio and climate with elevated stable precipitation (Fig. 4a). Glob-
ally, these environmental controls predicted low MCOA1 coordinates 
(<−1) under arid and semi-arid climates at tropical and subtropical lati-
tudes as well as in the steppe zones of central Asia and North America 
(Fig. 4b). Conversely, high MCOA1 coordinates (>1) were seen in equa-
torial forests as well as some temperate zones in northern Europe, 
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Western Canada, New Zealand and south Chile. Steep MCOA1 gradients 
were estimated to occur in regions separating arid and wet zones, and 
medium coordinates (−1 < MCOA dimension 1 < 1) also covered most 
of temperate and high latitudinal regions (Fig. 4b).

The second trait dimension (MCOA2) separated regions with high 
but stable precipitation from places with more seasonal climate and 
extremely acidic soils. The lower end of MCOA2 covered most high 
precipitation regions (>2,500 mm) including equatorial zones of South 
America and Asia, and wet Europe and North American temperate 
zones. Medium-high coordinates (0 < MCOA2 < 1) covered most of 
the globe, characterizing all tropical-dry, semi-arid and subarctic 
regions. The projection of this dimension (Fig. 4d) predicts very high 
coordinates (MCOA2 > 1) under limited regions of subtropical and 
high latitudes combining low annual precipitation (<1,000 mm) and 
very acidic pH (<4).

Finally, we found that trait differences (defined on the basis of 
Euclidian distances along the two first dimensions of the MCOA) 
were significantly correlated with Unifrac phylogenetic distances 
(R² = 0.32, Extended Data Fig. 7). Communities with average genome 
size below their median values depicted a correlation between trait and 
phylogenetic distances that is significantly steeper (slope difference: 

P = 0.00116) and tighter (R² = 0.46) than that of communities with 
larger genomes (R² = 0.15, Extended Data Fig. 7).

Discussion
Our study describes two dominant dimensions of community aggre-
gated traits variation across soil bacterial communities (Figs. 2 and 3). 
In this trait space, communities are constrained in a triangle of three 
opposing life history strategies: low metabolic capacities; metabolic 
capacities expanded for environmental responsiveness; metabolic 
capacities expanded for nutrient recycling. These life history strategies 
incorporate traits previously identified as CSR strategies1,11,12 (Extended 
Data Table 1). Moreover, these fit into a triangle, similar to the origi-
nal CSR model7,23 (Figs. 2 and 3), which suggests that the constraints  
on bacterial strategies might scale up to community level. Also con-
sistent with CSR theory, both trait dimensions of our study capture 
competitor traits that trade-off with traits of the other strategies. 
However, while one strategy generally dominates the traits of each 
end of the trait dimensions, our aggregated profiles often combine 
traits that had been associated with different strategies. In particular, 
one or more stress tolerance traits are part of all profiles (Figs. 2 and 
3). We hypothesize that these combinations indicate either that the 
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used in this study along these two dimensions. In the trait lists, letters in brackets 
represent how CSR (competitor, stress tolerant, ruderal) and YAS (high yield, 
resource acquisition, stress tolerance) strategies have been associated with these 
traits in previous theoretical works (Extended Data Table 1).
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communities are composed of taxa with different strategies or that the 
majority of bacteria living in soil need stress tolerance traits to survive 
in this challenging environment.

Bacteria with streamlined metabolism dominate the low end of the 
‘metabolic capacity’ dimension. The genomic traits of these bacterial 
communities with small average genome size have only few matches 
with previous description of stress tolerance strategy (Extended Data 
Table 1)1,11,12. However, the clear association to arid biomes that we 
observed suggests that the streamlined bacteria are associated with 
stress tolerance strategy. This is consistent with recent studies showing 
that genome streamlining can play a role in adaptation to environmen-
tal stressful conditions (for example, refs. 24,25). In particular, ref. 24 
used a joint species distribution model to show that soil bacteria with 
small genomes are selected under arid environments, as seen here. 
Moreover, these streamlined communities were associated with some 
low environmental constraints on resource acquisition (low soil C:N 
ratio and pH near neutrality as observed in ref. 26) that might also 
reduce fitness benefits for gaining new capabilities27. Thus, genome 
streamlining and associated change in gene frequency might be central 
in soil bacteria stress tolerance, especially in arid biomes.

Cells with larger genomes and a more complex metabolism domi-
nate the other end of the ‘metabolic capacity’ dimension. The associ-
ated variation in the functional gene frequency that we observed is also 
consistent with previous studies reporting that genome expansion 
in free-living bacteria is driven by gene additions encoding for new 
metabolic capabilities or regulation14,28. Large genomes, high catabolic 
diversity and antibiotic resistance genes observed for this life history 
strategy were previously attributed to a competitor strategy (Extended 
Data Table 1)1,11. This supports the idea that complex substrates acquisi-
tion is a key trait of competitors as suggested by Malik et al.12. Consist-
ent with competitor traits, these attributes are favoured under stable 
and wet climates, reducing the benefits of desiccation stress traits and 
possibly leading to intense resource competition7. We also detected an 
enrichment in traits associated with sporulation and exopolysaccha-
rides production, two traits often associated with stress tolerance or 
ruderality (Extended Data Table 1) that might also improve tolerance to 

antimicrobial compounds or nutritional constraints for such competi-
tor profile29,30. Together, the first trait dimension appears to represent a 
gradient from stress tolerant communities with small genomes to com-
munities dominated by bacteria with increased ‘metabolic capacities’ 
associated with other strategies, especially competitors.

When average genome size increases, bacterial communities 
differentiate along the second dimension with opposing profiles 
of increased capacities for either ‘environmental responsiveness’ 
or ‘nutrient recycling’. At the high end of this dimension, commu-
nities with high ‘environmental responsiveness’ shared numerous 
genomic features tied to both the ruderal and stress tolerance strate-
gies (Extended Data Table 1). These include traits to resist stress, sense 
favourable environmental conditions, activate fast growth and for C 
acquisition. The reduced and fluctuating precipitation patterns asso-
ciated with this profile are also consistent with original descriptions 
of these strategies1,7. At the opposite end of this second dimension, 
bacteria specialized in ‘nutrient recycling’ show a resource acquisition 
strategy with a high number of transporters and bacterial biomass 
(peptidoglycan) recycling, and a higher investment towards nitrogen 
and phosphorus metabolism compared with carbon metabolism. 
Microbial mineralization activity and biomass turnover release nutri-
ents and necromass into soil, which this profile seems optimized to 
recycle. Such traits might reflect a strategy that emphasizes resource 
use efficiency and increased competitiveness for nutrients11,12. Further, 
the environmental parameters associated with this life history strategy 
(medium-low pH, high precipitation and low seasonality) are the most 
favourable for resource acquisition31, biomass turnover and yield32,33, 
reinforcing potential selection for competitor traits7. In summary, the 
second trait dimension reflects communities with increased metabolic 
capacities associated with either a combination of stress tolerance and 
ruderal traits that maximize their responsiveness or a reinforcement 
of competitor traits that favour nutrient recycling.

Overall, our dimension of ‘metabolic capacities’ matches the 
versatility dimension described in ref. 14 across cultured bacterial 
taxa, with both studies supporting the notion that genome size plays 
a central role in differentiating bacterial strategies. Our dimension 
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opposing ‘environmental responsiveness’ and ‘nutrient recycling’ also 
shows some consistencies with the second trait dimension described in  
ref. 14 capturing a rate–yield trade-off, with rrn copy number as a  
principal trait. Indeed, as discussed above, the traits of the ‘nutrient 
recycling’ profile may favour growth yield, and high ‘environmental 
responsiveness’ is associated with higher rrn copy number. However, 
these variations in rrn copy numbers have only a limited importance in 
the second trait dimension of our study, contrasting with the observa-
tions in ref. 14 for cultured bacteria from diverse habitats. This could 
be explained by the constraint range of this trait in soil. Indeed, vari-
ation in average rrn copy number observed across communities in 
our study is highly constrained (1 to 1.5 copies, Extended Data Fig. 3). 
These observations are consistent with a previous report stating that 
most soil bacteria have less than 2 rrn copies, whereas bacteria from 
other environments can have up to 15 copies34. Further, variation in the  
average rrn copy number of whole communities will be more con-
strained than variation across individual isolates within the commu-
nity; indeed, some bacteria with more copies may be present in the 
soil community, with their populations increasing during resource 
flushes (for example, ref. 35). In the oligotrophic environment of the 
soil, our results suggest that increased capacity to recycle resources 
efficiently, sense favourable conditions and survive or escape stressful 
ones represent more common adaptations for bacteria than growing 
more rapidly. Investigating variation in these traits across taxa in soil 
and their distribution within communities represents a challenging 
but fascinating perspective to disentangle how trait dimensions across 
taxa scale up to the community level. Overall, the life history strate-
gies of soil bacteria that we described using aggregated traits at the 
community level show some important consistencies with life history 
strategies described across bacterial taxa from various habitats, but 
also highlights some specificities and challenges associated with the 
soil environment.

Soil bacteria remain poorly characterized, with a limited num-
ber of reference genomes and gene functional characterization36,37. 
This reduces annotation coverage of metagenomic data and can limit 
analysis conclusions. In our study, the proportion of reads annotated 
(between 5 and 15%, depending on the database) were in the range of 
what is commonly obtained from soil metagenomes38. Our usage of 
stringent quality filtering criteria in the annotation2 also reduced the 
annotation coverage but increased annotation confidence. Finally, the 
proportion of unannotated reads is increased by sequencing error and 
our usage of short-read sequencing technology and read-based profil-
ing (as opposed to assembly-based profiling with better annotation 
but very limited representativity of the community). Our annotation 
coverage also showed a decrease with genome sizes, as reported across 
taxa36,37. However, unannotated genes probably belong to accessory 
genes and not to core metabolism genes that are well represented in 
current databases37. Thus, we can expect that increased annotation of 
large genomes would have accentuated evidence for our conclusion 
that our first trait dimension captured an increase in metabolic capaci-
ties. Overall, our trait dimensions are expected to capture at least the 
functional variations associated with core metabolism and provide 
some first elements about functional genes associated with expansion 
of metabolic capacities.

We showed that communities with similar life history strategies 
tend to be phylogenetically closer, supporting a certain phylogenetic 
conservatism of the genomic traits shaping life history strategies39. 
However, this relationship weakens as genome size and metabolic 
capacities expand (Extended Data Fig. 7). This suggests that metabolic 
expansion during different evolutionary histories can converge to 
similar life history strategy40. Hence, phylogenetic distance becomes a 
poorer predictor of difference in life history strategies for soil bacterial 
communities with large genomes.

The biogeography of dominant life history strategies in soil bacte-
rial communities is mainly driven by the combinations of soil pH and 

precipitation patterns across the globe. These environmental factors 
impact stress and competition intensity for soil bacteria, either through 
direct effect on their physiology and interaction41–43 or indirectly 
through their modification of abiotic (for example, solubilization of 
toxic ions Al3+) and biotic (for example, plant and fungal communities) 
characteristics of the ecosystem44–46. The environmental distribution 
of life history strategies suggests that bacteria expand their metabolic 
capacities to deal with conditions associated with increasing soil acidity 
and annual precipitation until a certain level (Fig. 3). Then, expansion of 
‘metabolic capacities’ increases either ‘environmental responsiveness’ 
to survive under more extreme pH and fluctuating precipitation or 
‘nutrient recycling’ to be competitive under higher precipitation levels. 
These global effects of pH and precipitation are consistent with previ-
ous studies of soil bacteria biogeography3,26,47 and provide some new 
information on the traits associated with these environmental factors.

Our global projection (Fig. 3b,d) aims at giving a picture of the 
general biogeographic patterns in the functional profiles of soil bacte-
rial communities. However, it is important to note that transposition 
of our trait dimensions at local scale will need further investigation. 
Values predicted for these broad resolution maps can be dissociated 
from the local situation if its conditions highly differ from the regional 
mean (Extended Data Fig. 6) and should be used with caution. Despite 
outstanding issues that remain open, our study demonstrates how 
metagenomic approaches can provide substantial advance in our 
understanding of microbial community functioning. Altogether, our 
results suggest that land use and climate changes impacting soil pH 
and precipitation gradients at biogeographic scale might be central 
in shaping future functional potential of soil bacterial communities 
and thus global biogeochemical cycles.

Methods
Soil sampling and characteristics
We analysed a global dataset of 128 metagenomes each from unique 
soil samples distributed across continents and latitude (Extended 
Data Fig. 8)2. We selected this dataset for our analysis because of its 
coverage and its use of a highly standardized protocol that: (1) sam-
pled topsoils in spatially independent sites across the globe selected 
to represent all of the most important vegetation types; (2) analysed 
soil chemistry and metagenomes2. All samples were processed using 
similar standardized protocols for their chemistry (carbon, nitro-
gen, phosphorus content and pHH20) and metagenome (see ref. 2 for 
protocol details). We checked the global environmental coverage 
by comparing variation of the main environmental variables (mean 
annual temperature (MAT), mean annual precipitation (MAP), soil pH 
and net primary productivity (NPP)) in our dataset with global vari-
ation from the Atlas of the Biosphere (https://sage.nelson.wisc.edu/
data-and-models/atlas-of-the-biosphere/). This showed an almost 
complete global coverage, with only extreme MAT at very high latitude 
(below −11.33 °C) and in Sahelian Africa (above MAT 27.97 °C) as well 
as very high pH (higher than 7.76) characterizing some parts of North 
Africa, West Asia and Himalaya missing in our dataset (Extended Data 
Fig. 8). As far as we know, when we conducted this analysis, this dataset 
was the only one available with such precise characterization of the 
soil environment done on the same sample as that used for shotgun 
metagenomic analysis, making this dataset the most robust for our 
objective of assessing environmental drivers of metagenomic profiles. 
Nevertheless, potential to extend environmental range by adding 
all (excluding agricultural and contaminated) soil metagenomes 
available (accession date 28 January 2021) from the main sequence 
repositories MG-RAST48 and IMG:M49 was also tested. This indicated 
that adding these data would not have extended environmental range 
(except for a few samples from very cold sites with mean annual 
temperature lower than −11.5 °C available on MG-RAST) and would 
have greatly decreased precision of soil properties characterization 
(Extended Data Fig. 9).

http://www.nature.com/naturemicrobiology
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Metagenomic and amplicon sequencing data
DNA extraction, sequencing (Illumina with RTA v.1.18.54 and bcl2fastq 
v.1.8.4), trimming and mapping approaches are detailed in ref. 2. In 
this study, four community aggregated trait databases were built, 
corresponding to metagenomic reads mapping on different functional 
annotation systems in ref. 2. An additional database was made for  
this study with genomic traits previously associated with bacterial 
life history strategies (see details below). Data from 16S rRNA gene 
amplicon sequencing were also used to characterize phylogenetic 
distances between bacterial communities using the Unifrac metric50.

Bacterial community aggregated trait calculation
Ref. 2 mapped reads to the functional databases KEGG, eggNOG and 
CAZy. Data were aggregated at the (1) pathway (KEGG), (2) func-
tional categories (eggNOG) levels, (3) SEED functional modules and  
(4) glycolysis hydrolases (GH) and auxiliary activities (AA) gene families 
from CAZy51. All read mapping was done competitively against both 
prokaryotic and eukaryotic functional databases and best bit score in 
the alignment, and the taxonomic annotation was used to retrieve only 
reads annotated as bacteria.

We used output data from these four annotation processes to pro-
vide complementary classification of functional genes (for example, 
eggNOG categories include motility, cell envelopes and defence which 
are not included in SEED, whereas SEED classes include dormancy and 
sporulation, stress response, virulence, carbon, nitrogen and phos-
phorus metabolism which are not included in eggNOG). The eggNOG 
annotation also differed from KEGG and SEED in the construction of 
orthologous groups, with eggNOG using non-supervised construction 
increasing coverage, whereas KEGG used supervised construction 
increasing annotation robustness. To obtain a more precise picture 
of C acquisition strategy, the CAZy annotated reads abundances were 
aggregated on the basis of their targeted substrates (cellulose, chitin, 
glucan, lignin, peptidoglycan, starch/glycogen, xylan, other animal 
polysaccharides, other plant polysaccharides, oligosaccharides) 
using a curated database (Supplementary Table 1) based on previous 
works52–54. After mapping, the relative abundance of each gene (or 
aggregated group of genes) was normalized by the total number of 
bacteria reads annotated for this sample on the same database. Such 
normalization corrects for variation between samples in the quantity 
of annotated reads and avoids biases induced by contamination and 
sequencing error55. The obtained relative abundances inform on the 
relative importance of a gene (or gene group) compared to all the other 
annotated functions.

Life history trait calculation
An additional database was built with genomic traits previously associ-
ated with bacteria life history strategies (Extended Data Table 1). For 
this database, nine life history traits were calculated. Seven traits were 
calculated by summing the relative abundances of genes associated 
with Sigma factor56, exopolysaccharides57, chaperons12,58, chemotaxis 
and osmolytes12,59–62 antibiotic resistance2 or carbohydrates degra
dation enzymes (CAZyme). In addition, average genome size was 
calculated using MicrobeCensus63 and rrn copy number using the 
method described in ref. 64. All sequences were used as input for aver-
age genome size and rrn copy number, after verifying that eukaryotic 
sequences were negligible (less than 2% of annotated reads for all 
databases verified for all samples) and therefore, that the samples 
mostly captured bacteria.

Statistical analysis
To identify the multivariate axes that best explain the global-scale 
variation in metagenomic community aggregated traits of soil bacte-
ria, we used a MCOA, an exploratory analysis that leverages together 
the information from the 5 databases (Life history traits, eggNOG 
categories, SEED modules, KEGG pathway, CAZy types). This method 

identifies co-relationships between the different databases and uses a 
covariance optimization criterion to summarize in a common structure 
the information shared by multiple multivariate (for example, omic) 
tables65–67. All variables (CATs) were log transformed (log X + 1) before 
the analysis to improve normality67, and standardized to a mean of 
zero and a variance of 1. The R package ade4 was used for the MCOA 
analysis68.

Sample coordinates on the first and second dimension of the 
MCOA were extracted and used as latent variables representing  
bacterial community positions in the global trait space. Random  
forest models were then used to identify predictors of these coordi-
nates among potential environmental drivers, which were the soil 
properties measured on the same sample used for metagenome 
analysis (see Soil sampling and characteristics) and climatic vari-
ables extracted from Worldclim2: BIO1, annual mean temperature; 
BIO4, temperature seasonality (standard deviation); BIO12, annual 
precipitation; and BIO15, precipitation seasonality (standard devia-
tion). First, we verified that all selected environmental drivers had 
spearman correlation coefficients lower than 0.7 to mitigate col-
linearity problems as recommended in ref. 69. Second, a variable 
selection process was carried out using the method implemented in 
the VSURF R package70. The number of predictors randomly tested 
at each node of the random forest tree (mtry) was optimized on the 
basis of randomForest’s tuneRF algorithm and the number of trees 
set to 1,000. Third, the random forest models selected following the 
VSURF selection process were trained using 10-fold cross-validation 
(100 repetitions) implemented in the caret package71, and model 
performance was assessed on the basis of root mean square error and 
R2. Finally, random forest predictive models were used to project a 
broad resolution map of trait dimension global biogeography, using 
environmental maps (1,600 × 1,200 pixels) as predictors. For this pro-
jection, we used the latest map ( June 2022) released by ISRIC’s World 
Soil Information Service (https://files.isric.org/soilgrids/latest/ 
data_aggregated/) based on SoilGrids v.2.0 (ref. 72). Worldclim2 
(https://www.worldclim.org/) was used for climatic variables. The 
raster R package was used for the spatial predication and projection. 
To validate the relevance of this broad resolution map in represent-
ing average local values, we tested the correlation between local 
observations and the predicted value of the cell in which the local 
observation was done.

Finally, we tested the relationship between phylogenetic  
composition of the bacterial communities and their positions in  
the MCOA trait space using linear correlation between Euclidean  
distances along the first two dimensions of the MCOA and  
Unifrac phylogenetic distance. The influence of average genome size 
on this relationship was then assessed by comparing the correlation 
coefficients for communities below and above the median average 
genome size in the dataset.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The five CAT databases used to build the trait dimensions and the 
associated environmental variables are available on the Figshare 
repository at https://doi.org/10.6084/m9.figshare.22620025. All the 
original sequences are available in the European Bioinformatics Insti-
tute Sequence Read Archive database: soil metagenomes, accession 
numbers PRJEB18701 (ERP020652); 16S metabarcoding sequences, 
accession numbers PRJEB19856 (ERP021922).

Code availability
Access to the code used in the analyses done for this research is avail-
able by request to the corresponding author.
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Extended Data Fig. 1 | Stress plot representing the % of variation of the global dataset captured by each dimension of the MCOA.
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Extended Data Fig. 2 | Variable contributions to the third trait dimension 
of the multiple co-inertia analysis (MCOA). The MCOA summarizes in a 
common structure the information shared by 5 community aggregated trait 

(CAT) databases (Genomic trait, CAZy, eggNOG, SEED and KEGG). Only the most 
important variables with significant correlation (p < 0.001) with each dimension 
are reported in this figure.
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Extended Data Fig. 3 | Correlations between average genome size (a,b) or 
average rrn gene copy number (c,d) and the coordinates along dimensions 1 
and 2 of the MCOA. The P value indicates the significance of the regression slope 

obtained using a t-test. Shade represents the estimated 95% confidence interval. 
Color gradients follow MCOA dimensions and match with Figs. 1 and 3 in the  
main text.
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Extended Data Fig. 4 | Correlations between MCOA dimensions (MCOA1 and MCOA2) and mapping coverages on the 3 general databases (eggNOG, KEGG, 
SEED) used in this study. The P value indicates the significance of the regression slope obtained using a t-test.
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Extended Data Fig. 5 | Environmental drivers of the bacterial community trait dimensions. Environmental variable importances are represented as the mean 
decrease in mean square error (%MSE) and R squared in random forest models predicting MCOA Dimension 1 (a) and 2 (b). Bar colours indicate which end of the 
dimension (Figs. 1 and 3) is positively correlated with the variable.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-023-01465-0

MCOA1 MCOA 2
P=2.31e-15, R²=0.39P<2e-16, R²=0.45

Extended Data Fig. 6 | Correlations between local trait dimension 
observations and global spatial prediction. Correlations between local 
observations of bacterial community positions along the first and second trait 
dimensions from the MCOA (Figs. 1–2) and the predicted value of the global 
map cell (Fig. 4) corresponding to where the local observations have been done. 

Dashed line represents a 1:1 correlation. The P value indicates the significance of 
the regression slope obtained using a t-test. Shade represents the estimated 95% 
confidence interval. Color gradients follow MCOA dimension and match with 
Figs. 1,2 and 4 in the main text.
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Extended Data Fig. 7 | Correlation between phylogenetic distance (Unifrac 
metric) and functional distance (Euclidian distance in MCOA space using 
coordinates of the two principal dimensions). Correlation for all samples 

(a) and restricted to samples with average genome size below (b) and above 
(c) its median value in the dataset. The P value indicates the significance of the 
regression slope obtained using a t-test.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-023-01465-0

Extended Data Fig. 8 | Dataset distribution and environmental coverage. 
a. Sample localisations and associated biomes b, c. Comparison between 
global range of environmental variables from the Atlas of the Biosphere (b) 
and the environmental coverage of dataset (n = 128) used in this study (c). 

Boxplot elements: Center line=median; box limits=upper and lower quartiles; 
whiskers = 1.5x interquartile range; points=outliers. World map was done with 
rnaturalearth R package (https://github.com/ropensci/rnaturalearth).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Environmental coverage comparison between the 
database used in this study from Barham et al.2 and databases from the 
main metagenomes repositories (MG-RAST and IMG:M). N corresponds to 
the number of metagenomes available in each database. MAT=Mean Annual 

Temperature, AP=Annual Precipitation. Boxplot elements: Center line=median; 
box limits=upper and lower quartiles; whiskers = 1.5× interquartile range; 
points=outliers.
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Extended Data Table 1 | Life history traits used in this study

Traits were selected on the basis of their previous association with CSR (‘Competitor’, ‘Stress tolerant’, and ‘Ruderal’) strategies by Fierer. 1 [1] or Krause et al.11 [2] or YAS strategies 
(‘Yield’,‘Resource acquisition’, and ‘Stress tolerant’) by Malik et al. [3]12. Cells associated with CSR and YAS have been greyed based on the strategy to facilitate comparisons between 
references. Same gray has been used for C and A, and for R and Y strategies as they have some important theoretical linkages12.
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