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Thelife history strategies of soil microbes determine their metabolic

potential and their response to environmental changes. Yet these strategies
remain poorly understood. Here we use shotgun metagenomes from
terrestrial biomes to characterize overarching covariations of the genomic
traits that capture dominant life history strategies in bacterial communities.
The emerging patterns show a triangle of life history strategies shaped by
two trait dimensions, supporting previous theoretical and isolate-based
studies. The first dimension ranges from streamlined genomes with simple
metabolisms to larger genomes and expanded metabolic capacities.

As metabolic capacities expand, bacterial communities increasingly
differentiate along a second dimension that reflects atrade-offbetween
increasing capacities for environmental responsiveness or for nutrient
recycling. Random forest analyses show that soil pH, C:N ratio and
precipitation patterns together drive the dominant life history strategy

of soil bacterial communities and their biogeographic distribution. Our
findings provide a trait-based framework to compare life history strategies

of soil bacteria.

Bacteriaimpact carbon (C) and nutrient cycling on a globalscale'. Soil
bacterial communities containenormous, functionally uncharacterized
geneticdiversity>*, which hinders progress in predicting soil microbial
responses to global change**. One approach to describing functional
biodiversity is collapsing its complexity into one or more dimensions
that capture the dominant associations and trade-offs between traits® .
This multivariate trait space, or life history strategy scheme, provides
aframework to compare broad organismal strategies®*'°,

While the trait dimensions shaping plant life history strategies
are now well established®, trait associations for soil microorganisms

remain less clear. Initially, studies applied the ‘competitor’, ‘stress
tolerant” and ‘ruderal’ (CSR) strategies proposed for plants’ to soil
bacteria"". This scheme emphasizes trade-offs often observed between
traits related to maximizing resource capture (competitor, C), persist-
ingunder low resource and stressful condition (stress tolerant,S) and
responding rapidly to exploit growing window between disturbances
(ruderals, R)". Building on the CSR scheme, Malik et al. emphasized
differences between microbial yield (Y), resource acquisition (A) and
stress tolerance (S) traits as important for soil carbon cycling'?. While
these theoretical papers provide valuable hypotheses on which traits
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Fig.1| Global trait dimensions of soil bacteria metagenomes. Variable
contributions to the MCOA summarizing inacommon structure (MCOA
dimensions1and2) theinformation shared by 5 CAT databases (Life history
trait, CAZy, eggNOG, SEED and KEGG). Only the most important variables with

significant correlation (P < 0.001) with each dimension are reported in this
figure. a,b, Variable contributions to MCOA dimensions 1and 2, respectively. Bar
coloursindicate the direction of the associations between the variable and the
MCOA dimensions.

are probably central to soil microbial adaptation, no clear consensus
has emerged on the trait dimensions that shape life history strate-
gies of soil bacteria''? (Extended Data Table 1). Recently, bacterial
cultures isolated from diverse habitats were analysed for genomic

and phenotypic traits”. This analysis revealed a primary dimension
associated with metabolic versatility that was highly correlated
with genome size. A secondary dimension separated differences in
maximum growth rate and was correlated with variationin ribosomal
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gene copy number. However, there is a lot of variation in how well
bacterial cultures represent in situ community biodiversity” ™. Thus, it
remains to be tested whether the life history strategies of soil bacterial
communities match either the theoretical or culture-based predictions
of key trait dimensions.

One advantage of studying the traits of microorganisms vs those
of larger organisms is the ease with which collections of their traits
can be measured at the community level. Community aggregated
traits (CATs)'® represent the average functional profile of the com-
munity emerging from the combination of organisms’ traits and
community composition (similar to the idea of community-weighted
means of traits proposed for plants)'”?°, Hence, it is important
to note that while suggestive, such CAT patterns do not directly
inform on within-organism trade-offs. Nevertheless, CATs described
using metagenomic sequences offer a way to characterize shifts in
organismal strategies dominating bacterial communities in situ (for
example, refs. 21,22) and thus offer an approach to test theoretical
life history strategy schemes to in situ microbial communities. In
addition, information on the dominant strategy in a bacterial com-
munity might be used to predict the response of this key group to
environmental changes for global biogeochemical cycles*"®. Elucidat-
ingthe trait dimensions that shape the dominant life history strategies
of soil bacteria would thus provide a framework for comparing soil
bacterial communities and developing generic predictions in soil
microbial ecology™.

In this study, we used a global dataset of soil metagenomic
sequences from major biomes to quantify key trait dimensions of
soil bacterial communities. We thenidentified primary environmental
factors partitioning the trait dimensions and projected global
biogeography. Finally, we compared the emergent life history
strategies with theoretical and culture-based predictions.

Results

The trait dimensions of soil bacterial communities

Using a multitable co-inertia analysis (MCOA), we found that two
dimensions captured half of the overall variation in metagenomic
community aggregated traits (CATs). MCOA1 and MCOA2 captured
29% and 21% of metagenomic trait variation (Fig. 1 and Extended
Data Fig. 1), while MCOA 3 and MCOA4 explained 16% and 10%
of this variation, respectively (Extended Data Figs. 1 and 2). The
MCOA revealed the most important associations between traits
(Figs.1and 2), including traits previously associated with life history
strategies (Figs.1-3).

Average genome size had the highest contribution to MCOA1
(Fig. 1a) with an R? of 0.64 for the positive correlation between
average genome size and MCOAL1 (Extended Data Fig. 3a). Mapping
coverage decreased along this dimension (Extended Data Fig.4). The
lower end of this dimension was characterized by bacterial communi-
ties with higher relative abundance of genes for primary metabolism
(that is, essential process for survival and growth) and C acquisition
machinery (Fig.1). Inthese communities, carbon acquisition enzymes
involvedindepolymerization of oligosaccharides were favoured over
enzymestargeting polysaccharides. This oligosaccharide-degradation
enzyme class was dominated by the beta-glucosidases GH1, GH2 and
GH3 CAZy families. Finally, chaperones were overrepresented. Thus,
the lower end of MCOA1was defined by communities withastreamlined
metabolism (Fig. 2).

The upper end of MCOAL1 defined bacterial communities with a
large genome and more complex metabolism and resource acquisition
strategies (Figs.1and 2). The enriched genes allowed for degradation
of complex polysaccharides from fungi, animals and plant lignin.
There was also overrepresentation of genes for direct plant pathogenic
interactions and negative interactions with other microorganisms.
Finally, communities carried a higher proportion of genes encoding
for exopolysaccharides (EPS) production, dormancy and sporulation,

membrane and DNA repair (Figs.1and 2). These functions were gener-
ally present in lower relative abundance in communities with small
genomes at the opposite end of MCOAL. Thus, the first trait dimen-
sion captured functional variation associated with genome size and
expanded ‘metabolic capacities’ (Fig. 2).

Bacterial communities differentiated along a second dimension
(MCOA2) but only when they increased their ‘metabolic capacities’
along the first trait dimension (MCOALI), shaping a triangle (Fig. 2).
This distributionindicated that bacterial communities with low ‘meta-
bolic capacities’and small average genome size are constrained along
the second dimension. MCOA2 separated communities according
to genomic traits for ‘environmental responsiveness’ and ‘nutrient
recycling’ (Fig. 2). Communities associated with the lower end of
MCOA2 were enriched in mineral and organic N and P assimilation
genes (Figs. 1 and 2). Furthermore, there were also higher relative
frequencies of genes encoding for bacterial necromass degradation
including peptidoglycan. Communities at the upper end of MCOA2
were defined by an ability to respond to acomplex set of environmental
cues. This was manifested by anincreased presence of genes encoding
for activity regulation, resistance to environmental stress, foraging
of beneficial conditions, fast growth (rrn copy), and building and
repairing the cellmembrane (Figs.1and 2). The communities were also
enriched in genes encoding for carbohydrates metabolism of simple
substrates such as starch, glycogen and oligosaccharides. Thus, the
second trait dimension captured agradientin average environmental
responsiveness that was positively associated with specialization
in simple carbon substrate metabolism and negatively associated
with nutrient assimilation and recycling capacities (Fig. 2).

Drivers of trait dimensions
Using random forest analyses, we next found that common soil envi-
ronmental factors distributed the soil bacterial community along
global trait dimensions. Random forest models based on soil pH, pre-
cipitation and C:N ratio could predict most of the variation in MCOA1
and MCOA2, with an R? of 0.80 and 0.58, respectively (Extended Data
Fig.5).Mean decreasein mean square error (%MSE) and R? calculated on
the basis of a10-fold cross-validation of the random forests indicated
that soil pH and annual precipitation are the mostimportant predictors
for both MCOA1 and MCOA2. However, the two dimensions showed
differentresponse patterns to these variables, with MCOA1 decreasing
with soil pH butincreasing with annual precipitation whereas MCOA2
decreased withboth soil pH and annual precipitation, leading to unique
positions along MCOA1 and MCOA2 depending on the combination
of pH and annual precipitation (Figs. 3 and 4). MCOAl and MCOA2
were also driven by precipitation seasonality, whereas soil C:N ratio
controls only MCOAL (Figs. 3 and 4, and Extended Data Fig. 5). Next,
we projected the global variation in the trait dimensions using these
random forests (Fig. 4b,d) and global soil and climate databases. It is
worth noting that this broad spatial resolution map, using averaged
conditions across large spatial units, showed high consistency with
values observed locally in our samples (Extended Data Fig. 6). Thus,
theidentified trait dimensions showed a clear global biogeography.
The first trait dimension (MCOA1) mainly separated arid
alkalineregionsfrommoreacidicand wet ones. More precisely, bacterial
communities characterized by a small genome size (that is, low
MCOALI1 value) were enriched under neutral to alkaline pH, low C:N
ratio, low annual precipitation but high precipitation seasonality
(Fig. 4a). Conversely, communities with larger genome sizes (high
MCOA1 value) were found in more acidic soils as well as soil with higher
C:Nratio and climate with elevated stable precipitation (Fig.4a). Glob-
ally, these environmental controls predicted low MCOA1 coordinates
(<-1) under arid and semi-arid climates at tropical and subtropical lati-
tudes as well asin the steppe zones of central Asiaand North America
(Fig.4b). Conversely, high MCOA1 coordinates (>1) were seenin equa-
torial forests as well as some temperate zones in northern Europe,
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Fig.2| The globallife history strategies of soil bacterial communities.
Two-dimensional trait space from a MCOA depicting trait associations across
soil bacterial communities, with traits inferred from enriched genes in bacteria
metagenomes. Dots represent the positions of the 128 bacterial communities

used in this study along these two dimensions. In the trait lists, letters in brackets
represent how CSR (competitor, stress tolerant, ruderal) and YAS (highyyield,
resource acquisition, stress tolerance) strategies have been associated with these
traits in previous theoretical works (Extended Data Table 1).

Western Canada, New Zealand and south Chile. Steep MCOAlgradients
were estimated to occur inregions separating arid and wet zones, and
medium coordinates (-1 < MCOA dimension 1<1) also covered most
of temperate and high latitudinal regions (Fig. 4b).

The second trait dimension (MCOA2) separated regions with high
but stable precipitation from places with more seasonal climate and
extremely acidic soils. The lower end of MCOA2 covered most high
precipitation regions (>2,500 mm) including equatorial zones of South
America and Asia, and wet Europe and North American temperate
zones. Medium-high coordinates (0 < MCOA2 <1) covered most of
the globe, characterizing all tropical-dry, semi-arid and subarctic
regions. The projection of this dimension (Fig. 4d) predicts very high
coordinates (MCOA2 >1) under limited regions of subtropical and
high latitudes combining low annual precipitation (<1,000 mm) and
very acidic pH (<4).

Finally, we found that trait differences (defined on the basis of
Euclidian distances along the two first dimensions of the MCOA)
were significantly correlated with Unifrac phylogenetic distances
(R?=0.32, Extended Data Fig. 7). Communities with average genome
size below their median values depicted a correlation between trait and
phylogenetic distances that is significantly steeper (slope difference:

P=0.00116) and tighter (R? = 0.46) than that of communities with
larger genomes (R? = 0.15, Extended Data Fig. 7).

Discussion

Our study describes two dominant dimensions of community aggre-
gated traits variation across soil bacterial communities (Figs.2 and 3).
In this trait space, communities are constrained in a triangle of three
opposing life history strategies: low metabolic capacities; metabolic
capacities expanded for environmental responsiveness; metabolic
capacities expanded for nutrient recycling. These life history strategies
incorporate traits previously identified as CSR strategies'"* (Extended
Data Table 1). Moreover, these fit into a triangle, similar to the origi-
nal CSR model”** (Figs. 2 and 3), which suggests that the constraints
on bacterial strategies might scale up to community level. Also con-
sistent with CSR theory, both trait dimensions of our study capture
competitor traits that trade-off with traits of the other strategies.
However, while one strategy generally dominates the traits of each
end of the trait dimensions, our aggregated profiles often combine
traits that had been associated with different strategies. In particular,
one or more stress tolerance traits are part of all profiles (Figs. 2 and
3). We hypothesize that these combinations indicate either that the
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Fig.3|Hypothesized role of C, R and S traits in shaping the life history strategy observed at the community level and associated environmental gradients.
Details of CSR traits association are provided in Figs.1and 2. S, S’ and S” show that different S traits are associated with each dimension and detailed in Figs. 1and 2.

communities are composed of taxa with different strategies or that the
majority of bacterialiving in soil need stress tolerance traits to survive
inthis challenging environment.

Bacteria with streamlined metabolism dominate the low end of the
‘metabolic capacity’ dimension. The genomic traits of these bacterial
communities with small average genome size have only few matches
with previous description of stress tolerance strategy (Extended Data
Table 1)""'2. However, the clear association to arid biomes that we
observed suggests that the streamlined bacteria are associated with
stresstolerance strategy. This is consistent with recent studies showing
thatgenome streamlining can play arolein adaptation to environmen-
tal stressful conditions (for example, refs. 24,25). In particular, ref. 24
used ajoint species distribution model to show that soil bacteria with
small genomes are selected under arid environments, as seen here.
Moreover, these streamlined communities were associated with some
low environmental constraints on resource acquisition (low soil C:N
ratio and pH near neutrality as observed in ref. 26) that might also
reduce fitness benefits for gaining new capabilities”. Thus, genome
streamlining and associated change in gene frequency might be central
insoil bacteriastress tolerance, especially in arid biomes.

Cellswith larger genomes and amore complex metabolism domi-
nate the other end of the ‘metabolic capacity’ dimension. The associ-
ated variationin the functional gene frequency that we observedis also
consistent with previous studies reporting that genome expansion
in free-living bacteria is driven by gene additions encoding for new
metabolic capabilities or regulation'***, Large genomes, high catabolic
diversity and antibiotic resistance genes observed for this life history
strategy were previously attributed to acompetitor strategy (Extended
DataTable1)"". This supports the idea that complex substrates acquisi-
tionis akey trait of competitors as suggested by Malik et al.”>. Consist-
ent with competitor traits, these attributes are favoured under stable
and wet climates, reducing the benefits of desiccation stress traits and
possibly leading to intense resource competition’. We also detected an
enrichment in traits associated with sporulation and exopolysaccha-
rides production, two traits often associated with stress tolerance or
ruderality (Extended Data Table 1) that might also improve tolerance to

antimicrobial compounds or nutritional constraints for such competi-
tor profile”*°. Together, the first trait dimension appears to representa
gradient from stress tolerant communities with small genomes to com-
munities dominated by bacteriawithincreased ‘metabolic capacities’
associated with other strategies, especially competitors.

When average genome size increases, bacterial communities
differentiate along the second dimension with opposing profiles
of increased capacities for either ‘environmental responsiveness’
or ‘nutrient recycling’. At the high end of this dimension, commu-
nities with high ‘environmental responsiveness’ shared numerous
genomic features tied to both the ruderal and stress tolerance strate-
gies (Extended Data Table1). These include traits to resist stress, sense
favourable environmental conditions, activate fast growth and for C
acquisition. The reduced and fluctuating precipitation patterns asso-
ciated with this profile are also consistent with original descriptions
of these strategies'’. At the opposite end of this second dimension,
bacteriaspecialized in ‘nutrient recycling’ show aresource acquisition
strategy with a high number of transporters and bacterial biomass
(peptidoglycan) recycling, and a higher investment towards nitrogen
and phosphorus metabolism compared with carbon metabolism.
Microbial mineralization activity and biomass turnover release nutri-
ents and necromass into soil, which this profile seems optimized to
recycle. Such traits might reflect astrategy that emphasizes resource
use efficiency and increased competitiveness for nutrients™" Further,
the environmental parameters associated with this life history strategy
(medium-low pH, high precipitation and low seasonality) are the most
favourable for resource acquisition®, biomass turnover and yield*>*,
reinforcing potential selection for competitor traits’. In summary, the
second trait dimension reflects communities withincreased metabolic
capacities associated with either acombination of stress tolerance and
ruderal traits that maximize their responsiveness or a reinforcement
of competitor traits that favour nutrient recycling.

Overall, our dimension of ‘metabolic capacities’ matches the
versatility dimension described in ref. 14 across cultured bacterial
taxa, with both studies supporting the notion that genome size plays
a central role in differentiating bacterial strategies. Our dimension
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Fig. 4| Environmental control and global-scale projection of bacterial
communities’ coordinates along MCOA dimensions1and 2. a,c, Random
forest partial dependence plots describing relationships between bacterial
communities’ coordinates along MCOA dimension 1(a) and 2 (¢) and their most
significant environmental predictors (Extended Data Fig. 5). b,d, Random forest
predictions for MCOA dimension 1 (b) and 2 (d) projected across the globe
using a broad resolution map of mean soil and climate conditions (1,600 x 1,200

1.0
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-1.0
-1.5

1.0
0.5

-0.5
-1.0
-1.5

pixel), with land out of the dataset range in grey. Colour bars represent the
predicted coordinates along MCOA dimension 1(b) and MCOA dimension 2
(d). SoilGrids v.2.0 was used for soil properties and Worldclim2 for climate
variables. Accuracy of the prediction was verified by 10-fold cross-validation
of the random forest (Extended Data Fig. 5) and by comparing the predicted
values of the broad resolution projection with local observations (Extended
DataFig. 6).
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opposing ‘environmental responsiveness’ and ‘nutrient recycling’ also
shows some consistencies with the second trait dimension described in
ref. 14 capturing a rate-yield trade-off, with rrn copy number as a
principal trait. Indeed, as discussed above, the traits of the ‘nutrient
recycling’ profile may favour growth yield, and high ‘environmental
responsiveness’is associated with higher rrn copy number. However,
these variationsin rrn copy numbers have only alimited importancein
the second trait dimension of our study, contrasting with the observa-
tions in ref. 14 for cultured bacteria from diverse habitats. This could
be explained by the constraint range of this trait in soil. Indeed, vari-
ation in average rrn copy number observed across communities in
our study is highly constrained (1to 1.5 copies, Extended Data Fig. 3).
These observations are consistent with a previous report stating that
most soil bacteria have less than 2 rrn copies, whereas bacteria from
other environments can have up to15 copies®*. Further, variationin the
average rrn copy number of whole communities will be more con-
strained than variation across individual isolates within the commu-
nity; indeed, some bacteria with more copies may be present in the
soil community, with their populations increasing during resource
flushes (for example, ref. 35). In the oligotrophic environment of the
soil, our results suggest that increased capacity to recycle resources
efficiently, sense favourable conditions and survive or escape stressful
ones represent more common adaptations for bacteria than growing
more rapidly. Investigating variation in these traits across taxa in soil
and their distribution within communities represents a challenging
but fascinating perspective to disentangle how trait dimensions across
taxa scale up to the community level. Overall, the life history strate-
gies of soil bacteria that we described using aggregated traits at the
community level show some important consistencies with life history
strategies described across bacterial taxa from various habitats, but
also highlights some specificities and challenges associated with the
soil environment.

Soil bacteria remain poorly characterized, with a limited num-
ber of reference genomes and gene functional characterization®®*.
Thisreduces annotation coverage of metagenomic data and can limit
analysis conclusions. In our study, the proportion of reads annotated
(between 5 and 15%, depending on the database) were in the range of
what is commonly obtained from soil metagenomes®®. Our usage of
stringent quality filtering criteria in the annotation? also reduced the
annotation coverage butincreased annotation confidence. Finally, the
proportion of unannotated readsisincreased by sequencingerror and
our usage of short-read sequencing technology and read-based profil-
ing (as opposed to assembly-based profiling with better annotation
but very limited representativity of the community). Our annotation
coverage alsoshowed a decrease with genomessizes, as reported across
taxa’>”’. However, unannotated genes probably belong to accessory
genes and not to core metabolism genes that are well represented in
current databases”. Thus, we can expect thatincreased annotation of
large genomes would have accentuated evidence for our conclusion
thatour first trait dimension captured anincrease in metabolic capaci-
ties. Overall, our trait dimensions are expected to capture at least the
functional variations associated with core metabolism and provide
some first elements about functional genes associated with expansion
of metabolic capacities.

We showed that communities with similar life history strategies
tend tobe phylogenetically closer, supporting a certain phylogenetic
conservatism of the genomic traits shaping life history strategies™.
However, this relationship weakens as genome size and metabolic
capacities expand (Extended DataFig. 7). This suggests that metabolic
expansion during different evolutionary histories can converge to
similarlife history strategy*’. Hence, phylogenetic distance becomes a
poorer predictor of difference inlife history strategies for soil bacterial
communities with large genomes.

The biogeography of dominantlife history strategiesin soil bacte-
rial communities is mainly driven by the combinations of soil pH and

precipitation patterns across the globe. These environmental factors
impactstress and competition intensity for soil bacteria, either through
direct effect on their physiology and interaction** or indirectly
through their modification of abiotic (for example, solubilization of
toxicions AI*") and biotic (for example, plant and fungal communities)
characteristics of the ecosystem***¢. The environmental distribution
of life history strategies suggests that bacteria expand their metabolic
capacities to deal with conditions associated with increasing soil acidity
and annual precipitation until a certain level (Fig. 3). Then, expansion of
‘metabolic capacities’increases either ‘environmental responsiveness’
to survive under more extreme pH and fluctuating precipitation or
‘nutrient recycling’ to be competitive under higher precipitationlevels.
These global effects of pH and precipitation are consistent with previ-
ous studies of soil bacteria biogeography>***” and provide some new
information on the traits associated with these environmental factors.

Our global projection (Fig. 3b,d) aims at giving a picture of the
general biogeographic patternsin the functional profiles of soil bacte-
rial communities. However, it is important to note that transposition
of our trait dimensions at local scale will need further investigation.
Values predicted for these broad resolution maps can be dissociated
fromthelocalsituationifits conditions highly differ from the regional
mean (Extended DataFig. 6) and should be used with caution. Despite
outstanding issues that remain open, our study demonstrates how
metagenomic approaches can provide substantial advance in our
understanding of microbial community functioning. Altogether, our
results suggest that land use and climate changes impacting soil pH
and precipitation gradients at biogeographic scale might be central
in shaping future functional potential of soil bacterial communities
and thus global biogeochemical cycles.

Methods

Soil sampling and characteristics

We analysed a global dataset of 128 metagenomes each from unique
soil samples distributed across continents and latitude (Extended
Data Fig. 8)>. We selected this dataset for our analysis because of its
coverage and its use of a highly standardized protocol that: (1) sam-
pled topsoilsinspatiallyindependent sites across the globe selected
torepresentall of the mostimportant vegetation types; (2) analysed
soil chemistry and metagenomes? Allsamples were processed using
similar standardized protocols for their chemistry (carbon, nitro-
gen, phosphorus content and pH,;,,) and metagenome (see ref. 2 for
protocol details). We checked the global environmental coverage
by comparing variation of the main environmental variables (mean
annual temperature (MAT), mean annual precipitation (MAP), soil pH
and net primary productivity (NPP)) in our dataset with global vari-
ation from the Atlas of the Biosphere (https://sage.nelson.wisc.edu/
data-and-models/atlas-of-the-biosphere/). This showed an almost
complete global coverage, with only extreme MAT at very high latitude
(below -11.33 °C) and in Sahelian Africa (above MAT 27.97 °C) as well
asvery high pH (higher than 7.76) characterizing some parts of North
Africa, West Asia and Himalaya missingin our dataset (Extended Data
Fig.8).Asfar as we know, when we conducted this analysis, this dataset
was the only one available with such precise characterization of the
soil environment done on the same sample as that used for shotgun
metagenomic analysis, making this dataset the most robust for our
objective of assessing environmental drivers of metagenomic profiles.
Nevertheless, potential to extend environmental range by adding
all (excluding agricultural and contaminated) soil metagenomes
available (accession date 28 January 2021) from the main sequence
repositories MG-RAST*® and IMG:M*’ was also tested. This indicated
that adding these data would not have extended environmental range
(except for a few samples from very cold sites with mean annual
temperature lower than —11.5 °C available on MG-RAST) and would
have greatly decreased precision of soil properties characterization
(Extended DataFig.9).
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Metagenomic and amplicon sequencing data

DNA extraction, sequencing (Illumina with RTAv.1.18.54 and bcl2fastq
v.1.8.4), trimming and mapping approaches are detailed inref. 2. In
this study, four community aggregated trait databases were built,
corresponding to metagenomic reads mapping on different functional
annotation systems in ref. 2. An additional database was made for
this study with genomic traits previously associated with bacterial
life history strategies (see details below). Data from 16S rRNA gene
amplicon sequencing were also used to characterize phylogenetic
distances between bacterial communities using the Unifrac metric®.

Bacterial community aggregated trait calculation

Ref. > mapped reads to the functional databases KEGG, eggNOG and
CAZy. Data were aggregated at the (1) pathway (KEGG), (2) func-
tional categories (eggNOG) levels, (3) SEED functional modules and
(4) glycolysis hydrolases (GH) and auxiliary activities (AA) gene families
from CAZy"'. All read mapping was done competitively against both
prokaryotic and eukaryotic functional databases and best bit scorein
the alignment, and the taxonomic annotation was used to retrieve only
reads annotated as bacteria.

We used output datafrom these four annotation processes to pro-
vide complementary classification of functional genes (for example,
eggNOG categoriesinclude motility, cell envelopes and defence which
arenotincludedin SEED, whereas SEED classes include dormancy and
sporulation, stress response, virulence, carbon, nitrogen and phos-
phorus metabolism which are notincluded in eggNOG). The eggNOG
annotation also differed from KEGG and SEED in the construction of
orthologous groups, with eggNOG using non-supervised construction
increasing coverage, whereas KEGG used supervised construction
increasing annotation robustness. To obtain a more precise picture
of Cacquisition strategy, the CAZy annotated reads abundances were
aggregated onthe basis of their targeted substrates (cellulose, chitin,
glucan, lignin, peptidoglycan, starch/glycogen, xylan, other animal
polysaccharides, other plant polysaccharides, oligosaccharides)
using a curated database (Supplementary Table 1) based on previous
works®***, After mapping, the relative abundance of each gene (or
aggregated group of genes) was normalized by the total number of
bacteria reads annotated for this sample on the same database. Such
normalization corrects for variation between samples in the quantity
of annotated reads and avoids biases induced by contamination and
sequencing error®, The obtained relative abundances inform on the
relativeimportance of agene (or gene group) compared to all the other
annotated functions.

Life history trait calculation

Anadditional database was built with genomic traits previously associ-
ated with bacteria life history strategies (Extended Data Table 1). For
this database, nine life history traits were calculated. Seven traits were
calculated by summing the relative abundances of genes associated
with Sigma factor®, exopolysaccharides®, chaperons'>*®, chemotaxis
and osmolytes'>**~°* antibiotic resistance’ or carbohydrates degra-
dation enzymes (CAZyme). In addition, average genome size was
calculated using MicrobeCensus® and rrn copy number using the
method described inref. 64. All sequences were used as input for aver-
age genome size and rrn copy number, after verifying that eukaryotic
sequences were negligible (less than 2% of annotated reads for all
databases verified for all samples) and therefore, that the samples
mostly captured bacteria.

Statistical analysis

To identify the multivariate axes that best explain the global-scale
variation in metagenomic community aggregated traits of soil bacte-
ria, we used a MCOA, an exploratory analysis that leverages together
the information from the 5 databases (Life history traits, eggNOG
categories, SEED modules, KEGG pathway, CAZy types). This method

identifies co-relationships between the different databases and uses a
covariance optimization criterion to summarize inacommonstructure
the information shared by multiple multivariate (for example, omic)
tables®%, All variables (CATs) were log transformed (log X + 1) before
the analysis to improve normality®, and standardized to a mean of
zero and a variance of 1. The R package ade4 was used for the MCOA
analysis®®.

Sample coordinates on the first and second dimension of the
MCOA were extracted and used as latent variables representing
bacterial community positions in the global trait space. Random
forest models were then used to identify predictors of these coordi-
nates among potential environmental drivers, which were the soil
properties measured on the same sample used for metagenome
analysis (see Soil sampling and characteristics) and climatic vari-
ables extracted from Worldclim2: BIO1, annual mean temperature;
BIO4, temperature seasonality (standard deviation); BIO12, annual
precipitation; and BIO15, precipitation seasonality (standard devia-
tion). First, we verified that all selected environmental drivers had
spearman correlation coefficients lower than 0.7 to mitigate col-
linearity problems as recommended in ref. 69. Second, a variable
selection process was carried out using the method implemented in
the VSURF R package’. The number of predictors randomly tested
ateach node of the random forest tree (mtry) was optimized on the
basis of randomForest’s tuneRF algorithm and the number of trees
setto1,000. Third, the random forest models selected following the
VSURF selection process were trained using 10-fold cross-validation
(100 repetitions) implemented in the caret package”, and model
performance was assessed on the basis of root mean square error and
R Finally, random forest predictive models were used to project a
broad resolution map of trait dimension global biogeography, using
environmental maps (1,600 x 1,200 pixels) as predictors. For this pro-
jection, we used the latest map (June 2022) released by ISRIC’s World
Soil Information Service (https://files.isric.org/soilgrids/latest/
data_aggregated/) based on SoilGrids v.2.0 (ref. 72). Worldclim2
(https://www.worldclim.org/) was used for climatic variables. The
raster R package was used for the spatial predication and projection.
To validate the relevance of this broad resolution map in represent-
ing average local values, we tested the correlation between local
observations and the predicted value of the cell in which the local
observation was done.

Finally, we tested the relationship between phylogenetic
composition of the bacterial communities and their positions in
the MCOA trait space using linear correlation between Euclidean
distances along the first two dimensions of the MCOA and
Unifrac phylogenetic distance. The influence of average genome size
on this relationship was then assessed by comparing the correlation
coefficients for communities below and above the median average
genome ssize in the dataset.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The five CAT databases used to build the trait dimensions and the
associated environmental variables are available on the Figshare
repository at https://doi.org/10.6084/m9.figshare.22620025. All the
original sequences are available in the European Bioinformatics Insti-
tute Sequence Read Archive database: soil metagenomes, accession
numbers PRJEB18701 (ERP020652); 16S metabarcoding sequences,
accession numbers PRJEB19856 (ERP021922).

Code availability
Accessto the code used in the analyses done for this research is avail-
able by request to the corresponding author.
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Extended Data Fig. 1| Stress plot representing the % of variation of the global dataset captured by each dimension of the MCOA.

% of variation

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article https://doi.org/10.1038/s41564-023-01465-0

U-Membrane trafficking 4 -
Lipopolysaccharide metabolism 4
Chemotaxis
emotaxis N-Motility 4 -
':‘:; J-Translation & ribosomes - Ribosome 1 -
z 8
% C acquisition enz 1 %) M-Cell wall/membrane/envelope - .
= 2 Aminoacyl tRNA 1
%) P-Inorganic ions transport & metabolism -
. K-Transcription 4 | Other carbohydrate metabolism 4 -
sigma factor -
C-Energy production & conversion q I
—T T DNA polymerase
0.2 -0.1 00 0.1 0.1 0.0 0.1 [0}
Contribution to MCOA3 Contribution to MCOA3 8
4
Mineral and organic ion transport system -
Xen -
Biosynthesis of secondary metabolites q
Cellulose
> Chitin 7 - a Central carbohydrate metabolism
’:(‘ ﬁ Carbohydrates 1
Oligosaccharides - .
Proteasome
Peptidoglycan .
Starch/Glycogen - | Sugar metabolism
T T T T T T T
02 -01 00 01 02 -0.09 -0.08 -0.03 0.00 -0.04 0.00 0.04
Contribution to MCOA3 Contribution to MCOA3 Contribution to MCOA3
Extended Data Fig. 2| Variable contributions to the third trait dimension (CAT) databases (Genomic trait, CAZy, eggNOG, SEED and KEGG). Only the most
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common structure the information shared by 5 community aggregated trait arereported in this figure.
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map cell (Fig. 4) corresponding to where the local observations have been done.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article https://doi.org/10.1038/s41564-023-01465-0

=-17+537x,R*=0.32, p<2e-16,
© e

Q

All samples

EN
1

Functional distance (MCOA)
N

@
0 -
04 0.5 0.6 0.7 0.8 0.9
b Phylogenetic distance (Unifrac)
' C.
— 2 _
=-2.03+544x, R"=0.46, p<2e-16 y=-0981+4.41x, R2= 015, p <2e66
Average genome size < 6.82Mb (Median)

2 —~

(@) 44 g e

Q &)

= =

3 g

= c

3 ©

2 k]

© S

© 24 © 24

S S

= 2

T i

04 0-
0.4 05 06 0.7 08 0.9 0.4 05 06 0.7 0.8 0.9
Phylogenetic distance (Unifrac) Phylogenetic distance (Unifrac)

Extended DataFig. 7 | Correlation between phylogenetic distance (Unifrac (a) and restricted to samples with average genome size below (b) and above
metric) and functional distance (Euclidian distance in MCOA space using (c) its median value in the dataset. The P value indicates the significance of the
coordinates of the two principal dimensions). Correlation for all samples regression slope obtained using a t-test.

Nature Microbiology


http://www.nature.com/naturemicrobiology

Article https://doi.org/10.1038/s41564-023-01465-0

d.

biome

Arctic_tundra

Boreal_forests
Dry_tropical_forests
Grasslands_and_shrublands
Mediterrean

Moist_tropical_forests

Latitude

Savannas
Southern_temperate_forests
Temperate_coniferous_forests

Temperate_deciduous_forests

>DeDPOPOODPO

Tropical_montane_forests

Longitude

b. Global range Global range Global range Global range

d

I - g
_LM$;|

T
T a s 0.0 oS 1.0 1.5 =30 Sl 10 30 a B0 1000 P

_]-J oo

I T T

]:L- __l:._.l._.x
—

00 05 10 15
—

il

00

Dangity
02
1
Deargity

0.000 0015 0030

Dargty
0.000 0003 0006

oH NPP (kg-Cambon'm year) MAT ["C) MAPF (memiyaar)

Dataset range Dataset range Dataset range

20

J

030

7 | WF

00045

Dansity

Dansity
1.0

Dansity
0.1s
S -

I S |
000 002 004
| |
- .

Density

= = i
= = F = 1 1 T 71 T g )
a 0.0 05 1.0 1.5 -3 -10 L] 0 = T
L] 500 1000 2000
pH NPP (kg-Carbonim?fyear) BMAT ("C)
MAP (mmfyear)
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and the environmental coverage of dataset (n = 128) used in this study (c).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9| Environmental coverage comparison between the Temperature, AP=Annual Precipitation. Boxplot elements: Center line=median;
database used in this study from Barham et al.” and databases from the box limits=upper and lower quartiles; whiskers = 1.5x interquartile range;
main metagenomes repositories (MG-RAST and IMG:M). N corresponds to points=outliers.

the number of metagenomes available in each database. MAT=Mean Annual
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Extended Data Table 1] Life history traits used in this study

Life history traits Associated metagenomic community aggregated traits used in this study CSR [1] CSR [2] YAS [3]

[Amino acid, fatty acid and

nucleotide synthesis [3] > eggNOG category, KEGG pathway and SEED modules associated with amino acid, lipid and nucleotide metabolism Y
Chaperons [3] > Chaperons genes : GroEL (COG0459), dnaK (COG0443) and dnal (COG0484) (Malik et al. 2020, Finn et al. 2020) S
Siderophores [1,3] > KEGG pathway "Metallic cation iron siderophore and vitamin B12 transport system " © A

Oligosaccharides degradation
enzymes

> Genes associated with Oligosaccharides degradation among other GH and AA genes

Carbohydrate central metabolism

3] > KEGG pathway "Central_carbohydrate_metabolism" Y
F

> eggNOG categories : F-Nucleotide transport and metabolism, J-Translation and ribosomes, D-Cell cycling, E-Amino
acid transport and metabolism, H-Coenzyme transport and metabolism and A-RNA processing and modification, SEED
Primary metabolism modules : DNA and protein metabolisms. KEGG pathways: Purine, Cysteine, Methionine, Arginine, Proline and Lysine
metabolism, Proteosome, cofactors and vitamins metabolisms and Ribosome, Aminoacyl tRNA, RNA and DNA
polymerase and Nucleotide sugars

Genome size [1,2] > Average genome size (Nayfach and Pollard 2015) © R

Complex polymers degradation

> Genes associated with Lignin degradation among other GH and AA genes A
enzymes [3]

Fungal biomass degradation
enzymes

> Genes associated with Chitin and Glucan degradation among other GH and AA genes

Antibiotic [1,2] > Antibiotic Resistance Genes C C

Pathogenic interactions with plants > SEED module : Virulence

Sporulation [1,2] > SEED module "Dormancy_and_Sporulation" R S
EPS [1,2,3] > EPS genes : WcaB (COG1596), WcaF (COG0110), Wza (COG1596), KpsE and RkpR(COG3524) and wcaK(COG2327) s s S
e (Cania et al. 2020)
Membrane synthesis and repair [3] >.evggNOGvcategories : L—R.eplication, r.ecombination & repairs, M-Cell wall, membrane and envelope, KEGG pathways : S
Lipid and lipopolysaccharide metabolism
rRNA gene copies [1,2] > Average rRNA copy number (Pereira-Flores et al. 2019) R ©
Motility [2,3] > eggNOG category : "N-Motility" R A

chemotaxis [2,3] > Genes associated with chemotaxis : CheA ( COG0643), CheY (COG0784), CheW (COG0835), CheB (COG2201), CheX R A
! (COG1406), CheD(COG1871), Methyl-accepting chemotaxis proteins (COG0840, COG1352)

Si factor [3] > o factor genes : oD, 6S and oH (COG0568), oF and 0B (COG1191), oN (COG1508) and extracytoplasmic function o s
igma factor
B factors (COG1595) (Chavez et al. 2020)

> Genes associated with Trehalose and glycine betaine (Malik et al. 2020, Sharma et al. 2020, Suriaty Yaakop et al.

Osmolytes [3] S
2016, Bochet al. 1996, Wargo et al. 2013)
Exoenzymes (All) [2,3] > GH and AA genes in global metabolism S A
|Bacterial bi degradati
acterial biomass degradation > Genes associated with Peptidoglycan degradation
enzyme
Uptake system [2,3] > KEGG pathway and SEED modules associated with transport systems S A

Traits were selected on the basis of their previous association with CSR (‘Competitor’, ‘Stress tolerant’, and ‘Ruderal’) strategies by Fierer. ' [1] or Krause et al." [2] or YAS strategies
(‘Yield’,Resource acquisition’, and ‘Stress tolerant’) by Malik et al. [3]”. Cells associated with CSR and YAS have been greyed based on the strategy to facilitate comparisons between
references. Same gray has been used for C and A, and for R and Y strategies as they have some important theoretical linkages'.
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In this study we used the metagenomics and environmental data of 128 soils distributed across continents, previously collected by
Bahram et al. (2018). We selected this dataset for our analysis because of its important geographical and environmental coverage
(see Extended Data Figure 8 of our study) and its use of a highly standardized protocol: 1) to sample top-soils in spatially independent
sites across the globe selected to represent all the most important vegetation types; 2) to analyze their chemistry and their
metagenomes. Nevertheless, potential to extend environmental range by adding all natural (Agricultural and contaminated soil
excluded) soil metagenomes available (accession date January 28 2021) from the main sequence repositories MG-RAST and IMG:M
was also tested (See. Extended Data Figure 9 of our study). This indicated that adding these data would not have extended
environmental range and would have greatly decreased precision of soil properties characterization. In the metagenomics analysis,
we focus on sequences assigned to bacteria as this group dominates soil metagenomes.
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The 128 samples used in this study was selected as representative sites for different biomes and latitudes among 1450 sites
worldwide, with these 128 samples covering most of the environmental range worldwide (see Supplementary Figure 8 of our study).
These samples were also selected to minimize spatial autocorrelation (see Bahram et al. 2018 for details). Sample size of this study
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chemistry were available (n=128). This sample size is comparable with other global analyzes of soil microbial communities and was
thus considered as sufficient.
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Sciences respectively. Analyzes presented in this study were done by Gabin Piton at the University of California Irvine based on data
shared by Bahram et al., and additional metagenomics output obtained by reprocessing sequences from European Bioinformatics
Institute-Sequence Read Archive.

Timing and spatial scale  Data collection timing is detailed in the initial study of Bahram et al. 2018. Samples were collected between 2011-2016 depending
on the availability of collaborators to the Bahram et al. 2018 study with no specific season preselected.

Data exclusions All samples from Bahram et al. 2018 for which both metagenomes and soil chemistry were available were used, no sample were
excluded.
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Randomization No randomization was necessary as all analyzes were correlative and sampling was design to have spatially independant
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