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Highlights

* Machine learning models are developed for sound-based boiling heat flux
prediction.

» Two feature extraction and three regression algorithms are tested and
compared.

 The FFT-GPR model yields a MAPE of 4.5% and an R? score of 0.999.
* The temporal sequence length plays a critical role in heat flux prediction.

* Low-frequency acoustic emissions (<512Hz) are important for the predictions.

Abstract

Monitoring two-phase cooling systems is crucial to avoid thermal runaways and device failures.
Nonintrusive monitoring methods using remote sensing, e.g., optical and acoustic sensors are desired to
avoid interfering with bubble dynamics and ease replacement. Compared to image-based technologies,
sound-based sensors are cheaper and do not require the same environment as cameras. Acoustic signals



during pool boiling have been used to identify boiling states, but acoustic-based quantitative predictions
have been challenging. The present work presents a machine learning framework to determine the heat flux
during pool boiling using acoustic signals captured through a hydrophone. This framework investigates and
compares the performance and computational cost of six machine learning models by coupling two feature
extraction algorithms (fast Fourier transform and convolution) and three different regressors (multilayer
perceptron, random forest, and Gaussian process regression). The fast Fourier transform-Gaussian process
regression model is found to be the most promising with high accuracy and the lowest computational cost.
A parametric study is performed to investigate the effect of the temporal length and sampling rates on the
model predictions. It is found that the model’s performance is improved with increasing temporal lengths of
the acoustic sequences for all sampling rates. Acoustic features below 512Hz are found to be most
significant for heat flux predictions. For sampling rates beyond 512Hz, the model performance is dictated by
the temporal length of the acoustic sequences.
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Introduction

The rapid growth of electronic power output necessitates improved thermal management systems. Heat
dissipation performance is essential to keep up with high power density applications, such as the
subsystems within electric vehicles [1] or data centers [2]. Nucleate boiling heat transfer accommodates this
pursuit while maintaining a relatively low superheat by taking advantage of the high latent heat of the
working fluid and efficient vapor removal. Nevertheless, nucleate boiling is bounded by a practical limit
known as the critical heat flux (CHF), beyond which the heat transfer mode changes to an unstable and far
less efficient transition boiling regime [3]. A large fraction of the heater surface will be covered by a vapor
film, causing significant heat transfer coefficient deterioration and potential device failures. It is thus critical
to monitor and regulate the heat flux in boiling-based thermal management systems.

A variety of heat flux quantification methods have been implemented during pool boiling, including the
Joule effect method, the gradient method, and the transverse thermoelectric effect method, among others
[4]. The Joule effect method directly calculates the heat flux using the electrical voltage and current applied
to the heating element and applies to systems with a large boiling surface area to total surface area ratio,



e.g., boiling systems using thin-film heaters (ITO, titanium, and gold) [5], [6], [7]. Nevertheless, this method
may be subject to large errors for non-uniform heating due to heat loss by spreading in the heater [7]. The
electrical power input is more commonly used as a reference to estimate the heat loss rather than directly
calculate the boiling heat flux. The gradient method measures the temperature difference across a layer of
material with known thermal conductivity (k) and thickness to determine the temperature gradient at the
boiling surface (VT) and calculate the heat flux using Fourier’s law (q=-kVT) [8], [9], [10]. A linear
temperature profile will be obtained under steady-state conditions, which ensures accurate heat flux
measurements with high sensitivities. Under transient conditions, inverse modeling of heat conduction
with multiple temperature sensors will be required to account for the temporal and spatial nonlinearities
[11]. The transverse thermoelectric effect method leverages materials with anisotropic thermal
conductivity, electrical resistance, and thermoelectric coefficient to generate electric fields with a transverse
component when heat passes through the principal axes of the materials [12]. This approach allows for
ultra-fast response and is thus suitable for transient heat flux measurements. Nevertheless, both the
gradient method and the transverse thermoelectric effect method are implemented as contact, surface-
mounted sensors, which can be intrusive to boiling and may bring in challenges with sensor replacements.
On the contrary, remote sensing technologies (e.g., optical sensing and acoustic sensing) are more promising
for robust, non-intrusive heat flux quantification during boiling.

Visualization-based predictions of heat flux and other thermal properties have been explored for decades.
Traditional boiling image analysis is focused on extracting physical parameters from boiling images, such as
bubble diameter, bubble count, and departure frequency, and correlating these parameters with boiling
thermal properties [13]. While this approach has contributed to advancing the fundamental understanding
of bubble dynamics during boiling, it hasn’t been demonstrated for reliable heat flux quantification due to
the large fluctuations and uncertainties of the extracted parameters. Recent advances in machine learning
have enabled accurate and reliable visualization-based boiling state classification [14], [15], [16], physics
extraction [17], [18], as well as heat flux quantification [19], [20], [21]. Hobold et al. developed two machine
learning models for heat flux quantification using boiling images, namely, i) convolutional neural networks
(CNN), and ii) combined principal component analysis (PCA) and multilayer perceptron (MLP) [19]. Suh et
al. developed a hybrid model for boiling heat flux prediction by concatenating the output from a CNN model
trained on boiling images and an MLP model trained on bubble size and count extracted from boiling
images and the hybrid model showed reduced error compared to the standalone CNN and MLP models [21].
Despite their success, visualization-based heat flux measurements are subject to two major challenges,
which prevent their implementation in industrial product lines. First of all, optical imaging requires a line of
sight to be constructed with proper illumination, transparent walls, etc. This is generally impractical in
many thermal management systems. Moreover, data storage and transmission of images also bring
challenges for real-time data analysis, especially when sampled at higher frequencies.

Compared to optical imaging, acoustic sensing is a light, low-cost, and easy-to-implement alternative. A
variety of acoustic sensors have been leveraged in boiling studies, including acoustic emission (AE) sensors
[22], [23], [24], [25], [26], hydrophones [27], [28], [29], [30], [31], and condenser microphones [32], [33],
[34], [35], [36], [37]. AE sensors detect stress waves in solid materials and have been widely used in
monitoring the mechanical properties of materials and structures. Hydrophones are immersed in the liquid
pool and thus have a unique advantage in boiling studies by being placed as close to the boiler surface as
possible. Condenser microphones provide remote measurements but also have greater noise which



necessitates implementing microphone arrays for localizing the sources of sounds [38]. Existing boiling
studies have used the raw signals from the acoustic sensors (sound pressure level) as well as frequency-
domain analysis, including the probability density functions (PDF), power spectral density (PSD), auto-
power spectral density, spectrogram, and discrete wavelet transform (DWT) to correlate acoustic signals
with boiling characteristics. For example, Alhashan et al. used a pool boiling set-up with two acoustic
emission sensors and correlated the acoustic emission energy, RMS, amplitude, etc. to the fluid viscosity and
the bubble diameter [24]. Baek et al. monitored water boiling using an AE sensor and observed a
quantitative relationship between AE parameters and the boiling heat flux. The AE hit number (i.e., the
number of sound pressure levels beyond a preset threshold) is shown to increase with boiling heat flux [25].
Nishant et al. performed pool boiling experiments at different subcooling with synchronized optical-
acoustic-thermal sensing and showed a sharp increase in the intensity of the audio signals at CHF [31].
Recent advances in machine-learning-aided signal processing have also led to progress in acoustic sensing.
Acoustic sensing has been integrated with machine learning for a wide range of applications, including the
classification of kinking and twinning behavior of alloys under compression tests [39], detection of valve
conditions (cavitation, whistling, rattling) in heating systems [40], anomaly detection in a sliding bearing
system [41], guitar effects recognition [42], and monitoring of gas-liquid mixing [43]. For acoustic sensing
in boiling, Sinha et al. developed a CNN model to classify boiling regimes using acoustic signals from a
hydrophone in the pool [29]. Similar to CNN models for speech and music classification, Sinha et al.’s model
converted sound pressure levels from the hydrophone to spectrograms before feeding them to the
convolutional layer. Ueki and Ara developed an MLP model to classify boiling regimes directly using sound
pressure levels from a hydrophone with different levels of added noise [28]. They found that the heater
surface shape impacts the acoustic signals and that it is possible to extract features representing the
transition state from boiling sound frequencies. Although the integration of acoustic sensing and machine
learning has led to encouraging progress in boiling studies, its implementation is still limited to qualitative
analysis. To the best of the authors’ knowledge, quantitative predictions of heat flux during boiling have
been not demonstrated using acoustic sensing, owing to measurement noises and a lack of understanding of
the relationship between thermal and acoustic signals.

In this paper, we have developed a machine learning framework for real-time heat flux quantification using
acoustic signals. This framework combines acoustic sequence sampling with two feature extraction
algorithms and three regressors to generate six machine learning models for boiling heat flux
quantification. These models are trained and tested on acoustic signals captured using a hydrophone
immersed in a boiling pool. The prediction accuracy and computational time of these models are compared.
A subsequent parametric study is performed to examine the effect of the sequence length and sampling rate
on the prediction accuracy. In addition, we have analyzed the differences in the acoustic signals in boiling
regimes before and after CHF under the same heat flux.

Section snippets

Pool boiling experiments

All the data used in training and testing were obtained from pool boiling tests of deionized water on a
polished copper surface. As shown in Fig. 1, the experimental facility consists of a 1cm by 1cm copper block



submerged in deionized water pre-heated to the saturation point. A hydrophone with a built-in
preamplifier (High Tech HTI-96-Min) is submerged in the liquid pool near the copper block and is connected
to an NI DAQ system (chassis: cDAQ-9178; module: NI 9230) for data acquisition....

Comparison of quantification error and computational time

The six heat flux prediction models under the developed framework are tested on a set of DS-1 data unseen
during training in Fig. 5. Fig. 5a, 5b, and 5c¢ represent the testing results of FFT-MLP, FFT-RFR, FFT-GPR
models, and Fig. 5d, 5e, and 5f represent CNN-MLP, CNN-RFR, and CNN-GPR models. The blue and orange
data points represent data in the nucleate boiling and transition boiling regimes, respectively. Ideally, every
predicted point would equal the true point such that the data would all lie ...

Conclusion

A machine learning model framework is developed for boiling heat flux quantification using acoustic
signals. This framework explores and compares six model architectures generated from a combination of
two different feature extraction methods (i.e., FFT and CNN) and three different regressors (i.e., MLP, RFR,
and GPR). It was found that FFT-GPR and CNN-RFR yield the highest performance with MAPE much lower
and R? scores higher than other models. Despite similar prediction accuracy, FFT-GPR has...
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