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Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the
burden of this common disease. Skin lesion segmentation from images is an important step toward achieving
this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors
(e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation
a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin
lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based
segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets,
preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation
aspects (data annotation requirements and segmentation performance). We discuss these dimensions both
from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices
have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we

summarize all examined works in a comprehensive table as well as an interactive table available online'.

1. Introduction

Segmentation is a challenging and critical operation in the au-
tomated skin lesion analysis workflow. Rule-based skin lesion diag-
nostic systems, popular in the clinical setting, rely on an accurate
lesion segmentation for the estimation of diagnostic criteria such as
asymmetry, border irregularity, and lesion size, as needed for im-
plementing the ABCD algorithm (Asymmetry, Border, Color, Diame-
ter of lesions) (Friedman et al., 1985; Nachbar et al., 1994) and its
derivatives: ABCDE (ABCD plus Evolution of lesions) (Abbasi et al.,
2004) and ABCDEF (ABCDE plus the “ugly duckling” sign) (Jensen
and Elewski, 2015). By contrast, in machine learning-based diagnostic
systems, restricting the areas within an image, thereby focusing the
model on the interior of the lesion, can improve the robustness of the
classification. For example, recent studies have shown the utility of
segmentation in improving the deep learning (DL)-based classification
performance for certain diagnostic categories by regularizing attention
maps (Yan et al., 2019), allowing the cropping of lesion images (Yu
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et al., 2017a; Mahbod et al., 2020; Liu et al., 2020; Singh et al., 2023),
tracking the evolution of lesions (Navarro et al., 2018) and the removal
of imaging artifacts (Maron et al., 2021a; Bissoto et al., 2022). In a DL-
based skin lesion classification framework, presenting the delineated
skin lesion to the user can also help with interpreting the DL black
box (Jaworek-Korjakowska et al., 2021), and thus may either instill
trust, or raise suspicion, in computer-aided diagnosis (CAD) systems
for skin cancer.

Lesion detection and segmentation are also useful as preprocessing
steps when analyzing wide-field images with multiple lesions (Birken-
feld et al., 2020). Additionally, radiation therapy and image-guided
human or robotic surgical lesion excision require localization and
delineation of lesions (American Cancer Society, 2023). Ensuring fair
diagnosis that is unbiased to minority groups, a pressing issue with
the deployment of these models and the trust therein, requires the
estimation of lesion-free skin tone, which in turn also relies upon the
delineation of skin lesions (Kinyanjui et al., 2020). However, despite
the importance of lesion segmentation, manual delineation of skin
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lesions remains a laborious task that suffers from significant inter-
and intra-observer variability and consequently, a fast, reliable, and
automated segmentation algorithm is needed.

Skin cancer and its associated expenses, $8.1 billion annually in
U.S. (Guy et al., 2015), have grown into a major public health issue
in the past decades. In the USA alone, 97,610 new cases of melanoma
are expected in 2023 (Siegel et al., 2023). Broadly speaking, there are
two types of skin cancer: melanomas and non-melanomas, the former
making up just 1% of the cases, but the majority of the deaths due
to its aggressiveness. Early diagnosis is critical for a good prognosis:
melanoma can be cured with a simple outpatient surgery if detected
early, but its five-year survival rate drops from over 99% to 32% if it
is diagnosed at an advanced stage (American Cancer Society, 2023).

Two imaging modalities are commonly employed in automated skin
lesion analysis (Daneshjou et al., 2022): dermoscopic (microscopic)
images and clinical (macroscopic) images. While dermoscopic images
allow the inspection of lesion properties that are invisible to the naked
eye, they are not always accessible even to dermatologists (Engasser
and Warshaw, 2010). On the other hand, clinical images acquired
using conventional cameras are easily accessible but suffer from lower
quality. Dermoscopy is a non-invasive skin imaging technique that
aids in the diagnosis of skin lesions by allowing dermatologists to
visualize sub-surface structures (Kittler et al., 2002). However, even
with dermoscopy, diagnostic accuracy can vary widely, ranging from
24% to 77%, depending on the clinician’s level of expertise (Tran
et al., 2005). Moreover, dermoscopy may actually lower the diagnostic
accuracy in the hands of inexperienced dermatologists (Binder et al.,
1995). Therefore, to minimize the diagnostic errors that result from
the difficulty and the subjectivity of visual interpretation and to reduce
the burden of skin diseases and limited access to dermatologists, the
development of CAD systems is crucial.

Segmentation is the partitioning of an image into meaningful re-
gions. Semantic segmentation, in particular, assigns appropriate class
labels to each region. For skin lesions, the task is almost always
binary, separating the lesion from the surrounding skin. Automated skin
lesion segmentation is hindered by illumination and contrast issues,
intrinsic inter-class similarities and intra-class variability, occlusions,
artifacts, and the diversity of imaging tools used. The lack of large
datasets with ground-truth segmentation masks generated by experts
compounds the problem, impeding both the training of models and
their reliable evaluation. Skin lesion images are occluded by natural
artifacts such as hair (Fig. 1(a)), blood vessels (Fig. 1(b)), and artificial
ones such as surgical marker annotations (Fig. 1(c)), lens artifacts (dark
corners) (Fig. 1(d)), and air bubbles (Fig. 1(e)). Intrinsic factors such
as lesion size and shape variation (Figs. 1(f) and 1(g)), different skin
colors (Fig. 1(h)), low contrast (Fig. 1(i)), and ambiguous boundaries
(Fig. 1(h)) complicate the automated segmentation of skin lesions.

Before the deep learning revolution, segmentation was based on
classical image processing and machine learning techniques such as
adaptive thresholding (Green et al., 1994; Celebi et al., 2013), active
contours (Erkol et al., 2005), region growing (Iyatomi et al., 2006;
Celebi et al., 2007a), unsupervised clustering (Goémez et al., 2007), and
support vector machines (Zortea et al., 2011). These approaches depend
on hand-crafted features, which are difficult to engineer and often limit
invariance and discriminative power from the outset. As a result, such
conventional segmentation algorithms do not always perform well on
larger and more complex datasets. In contrast, DL integrates feature
extraction and task-specific decision seamlessly, and does not just cope
with, but actually requires larger datasets.

Survey of surveys. Celebi et al. (2009b) reviewed 18 skin lesion seg-
mentation algorithms for dermoscopic images, published between 1998
and 2008, with their required preprocessing and postprocessing steps.
Celebi et al. (2015b) later extended their work with 32 additional
algorithms published between 2009 and 2014, discussing performance
evaluation and computational requirements of each approach, and sug-
gesting guidelines for future works. Both surveys appeared before DL
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was widely adopted for skin lesion segmentation, but cover all the im-
portant works based on classical image processing and machine learn-
ing. Adegun and Viriri (2020a) reviewed the literature on DL-based skin
image analysis, with an emphasis on the best-performing algorithms
in the ISIC (International Skin Imaging Collaboration) Skin Image
Analysis Challenges 2018 (Codella et al., 2019) and 2019 (Tschandl
et al., 2018; Codella et al., 2018; Combalia et al., 2019). However, since
their review focused on the ISIC Challenges 2018 and 2019, it is more
general as it covers both lesion classification and segmentation. Con-
sequently, the number of papers surveyed for skin lesion segmentation
by Adegun and Viriri (2020a) is almost an order of magnitude smaller
than that in this review.

Main contributions. No existing survey approaches the present work
in breadth or depth, as we cross-examine 177 research papers that
deal with the automated segmentation of skin lesions in clinical and
dermoscopic images. We analyze the works along several dimensions,
including input data (datasets, preprocessing, and synthetic data gener-
ation), model design (architecture, modules, and losses), and evaluation
(data annotation and evaluation metrics). We discuss these dimensions
both from the viewpoint of select seminal works, and from a system-
atic viewpoint, examining how those choices have influenced current
trends, and how their limitations should be addressed. We summarize
all examined works in a comprehensive table to facilitate comparisons.

Search strategy. We searched DBLP and Arxiv Sanity Preserver for all
scholarly publications: peer-reviewed journal papers, papers published
in the proceedings of conferences or workshops, and non-peer-reviewed
preprints from 2014 to 2022. The DBLP search query was (conv* |
trans* | deep | neural | learn*) (skin | derm*) (seg-
ment* | delineat* | extract* | localiz*), thus restricting
our search to DL-based works involving skin and segmentation. We
use DBLP for our literature search because (a) it allows for customized
search queries and lists, and (b) we did not find any relevant pub-
lications on other platforms (Google Scholar and PubMed) that were
not indexed by DBLP. For unpublished preprints, we also searched on
Arxiv Sanity Preserver using a similar query. * We filtered our search
results to remove false positives (31 papers) and included only papers
related to skin lesion segmentation. We excluded papers that focused on
general skin segmentation and general skin conditions (e.g., psoriasis,
acne, or certain sub-types of skin lesions). We also included unpub-
lished preprints from arXiv, which (a) passed minimum quality checks
levels and (b) had at least 10 citations, and excluded those that were
clearly of low quality. In particular, papers that had one or more of
the following were excluded from this survey: (a) missing quantitative
results, (b) missing important sections such as Abstract or Methods,
(c) conspicuously poor writing quality, and (d) no methodological
contribution. This led to the filtering out of papers of visibly low quality
((a—c) criteria above; 18 papers) and those with no methodological
contribution (20 papers).

The remaining text is organized as follows: in Section 2, we in-
troduce the publicly available datasets and discuss preprocessing and
synthetic data generation; in Section 3, we review the various net-
work architectures used in deep segmentation models and discuss how
deep models benefit from these networks. We also describe various
loss functions designed either for general use or specifically for skin
lesion segmentation. In Section 4, we detail segmentation evaluation
techniques and measures. Finally, in Section 5, we discuss the open
challenges in DL-based skin lesion segmentation and conclude our
survey. A visual overview of the structure of this survey is presented
in Fig. 2.

4 Arxiv Sanity Preserver: https://www.arxiv-sanity-lite.com/search?q=
segmentation+skin+melanoma-+deep-+learning+convolution+transformer.
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(a) Hairs

(d) Irregular border and black frame

(g) Very large lesion

(b) Blood vessels

(h) Fuzzy border and variegated coloring
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(c) Surgical marking

(f) Very small lesion

(i) Low contrast and color calibration chart

Fig. 1. Factors that complicate dermoscopy image segmentation.
Image source: ISIC 2016 dataset (Gutman et al., 2016).

2. Input data

Obtaining data in sufficient quantity and quality is often a sig-
nificant obstacle to developing effective segmentation models. State-
of-the-art segmentation models have a huge number of adjustable
parameters that allow them to generalize well, provided they are
trained on massive labeled datasets (Sun et al., 2017; Buslaev et al.,
2020). Unfortunately, skin lesion datasets—like most medical image
datasets (Asgari Taghanaki et al., 2021)—tend to be small (Curiel-
Lewandrowski et al., 2019) due to issues such as copyright, patient
privacy, acquisition and annotation cost, standardization, and scarcity
of many pathologies of interest. The two most common modalities used
in the training of skin lesion segmentation models are clinical images,
which are close-ups of the lesions acquired using conventional cam-
eras, and dermoscopic images, which are acquired using dermoscopy, a
non-invasive skin imaging through optical magnification, and either lig-
uid immersion and low angle-of-incidence lighting, or cross-polarized
lighting. Dermoscopy eliminates skin surface reflections (Kittler et al.,
2002), reveals subsurface skin structures, and allows the identification
of dozens of morphological features such as atypical pigment networks,
dots/globules, streaks, blue-white areas, and blotches (Menzies et al.,
2003).

Annotation is often the greatest barrier for increasing the amount
of data. Objective evaluation of segmentation often requires laborious

region-based annotation, in which an expert manually outlines the region
where the lesion (or a clinical feature) appears in the image. By
contrast, textual annotation may involve diagnosis (e.g., melanoma, car-
cinoma, benign nevi), presence/absence/score of dermoscopic features
(e.g., pigment networks, blue-white areas, streaks, globules), diagnostic
strategy (e.g., pattern analysis, ABCD rule, 7-point checklist, 3-point
checklist), clinical metadata (e.g., sex, age, anatomic site, familial
history), and other details (e.g., timestamp, camera model) (Caffery
et al., 2018). We extensively discuss the image annotation issue in
Section 4.1.

2.1. Datasets

The availability of larger, more diverse, and better-annotated
datasets is one of the main driving factors for the advances in skin
image analysis in the past decade (Marchetti et al., 2018; Celebi et al.,
2019). Works in skin image analysis date back to the 1980s (Vanker
and Van Stoecker, 1984; Dhawan et al., 1984), but until the mid-2000s,
these works used small, private datasets, containing a few hundred
images.

The Interactive Atlas of Dermoscopy (sometimes called the Edra Atlas,
in reference to the publisher) by Argenziano et al. (2000) included a
CD-ROM with 1039 dermoscopy images (26% melanomas, 4% carci-
nomas, 70% nevi) of 1024 x 683 pixels, acquired by three European
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Fig. 2. An overview of the various components of this review. We structure the review based on the different elements of a DL-based segmentation pipeline and conclude it with

discussions on future potential research directions.

university hospitals (University of Graz, Austria, University of Naples,
Italy, and University of Florence, Italy). The works of Celebi et al.
(2007b, 2008) popularized the dataset in the dermoscopy image anal-
ysis community, where it became a de facto evaluation standard for
almost a decade, until the much larger ISIC Archive datasets (see
below) became available. Recently, Kawahara et al. (2019) placed this
valuable dataset, along with additional textual annotations based on the
7-point checklist, in public domain under the name derm7/pt. Shortly
after the publication of the Interactive Atlas of Dermoscopy, Menzies
et al. (2003) published An Atlas of Surface Microscopy of Pigmented
Skin Lesions: Dermoscopy, with a CD-ROM containing 217 dermoscopic
images (39% melanomas, 7% carcinomas, 54% nevi) of 712 x 454
pixels, acquired at the Sydney Melanoma Unit, Australia.

The PH? dataset, released by Mendonca et al. (2013) and detailed
by Mendonca et al. (2015), was the first public dataset to provide
region-based annotations with segmentation masks, and masks for
the clinically significant colors (white, red, light brown, dark brown,
blue-gray, and black) present in the images. The dataset contains 200
dermoscopic images (20% melanomas, 40% atypical nevi, and 40%
common nevi) of 768 x 560 pixels, acquired at the Hospital Pedro
Hispano, Portugal. The Edinburgh DermoFit Image Library (Ballerini
et al., 2013) also provides region-based annotations for 1300 clinical
images (10 diagnostic categories including melanomas, seborrhoeic
keratosis, and basal cell carcinoma) of sizes ranging from 177 x 189 to
2176 x 2549 pixels. The images were acquired with a Canon EOS 350D
SLR camera, in controlled lighting and at a consistent distance from the
lesions, resulting in a level of quality atypical for clinical images.

The ISIC Archive contains the world’s largest curated repository of
dermoscopic images. ISIC, an international academia-industry partner-
ship sponsored by ISDIS (International Society for Digital Imaging of
the Skin), aims to “facilitate the application of digital skin imaging to
help reduce melanoma mortality” (ISIC, 2023). At the time of writing,
the archive contains more than 240,000 images, of which more than
71,000 are publicly available. These images were acquired in leading
worldwide clinical centers, using a variety of devices.

In addition to curating the datasets that collectively form the “ISIC
Archive”, ISIC has released standard archive subsets as part of its
Skin Lesion Analysis Towards Melanoma Detection Challenge, organized
annually since 2016. The 2016, 2017, and 2018 challenges comprised
segmentation, feature extraction, and classification tasks, while the
2019 and 2020 challenges featured only classification. Each subset
is associated with a challenge (year), one or more tasks, and has
two (training/test) or three (training/validation/test) splits. The ISIC
Challenge 2016 (Gutman et al., 2016) (ISIC 2016, for brevity) contains
1279 images split into 900 for training (19% melanomas, 81% nevi),
and 379 for testing (20% melanomas, 80% nevi). There is a large
variation in image size, ranging from 0.5 to 12 megapixels. All tasks
used the same images. The ISIC 2017 (Codella et al., 2018) dataset
more than doubled, with 2750 images split into 2000 for training
(18.7% melanomas, 12.7% seborrheic keratoses, 68.6% nevi), 150 for
validation (20% melanomas, 28% seborrheic keratoses, 52% nevi), and
600 for testing (19.5% melanomas, 15% seborrheic keratoses, 65.5%
nevi). Again, image size varied markedly, ranging from 0.5 to 29
megapixels, and all tasks used the same images.
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Table 1
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Public skin lesion datasets with lesion segmentation annotations. All the datasets contain RGB images of skin lesions.

Dataset Year Modality Size Training/validation/test Class distribution Additional info
DermQuest? (DermQuest, 2012 Clinical 137 - 61 non-melanomas Acquired with different cameras
2012) 76 melanomas under various lighting conditions
DermokFit (Ballerini et al., 2013 Clinical 1300 - 1224 non-melanomas Sizes ranging from 177 x 189 to
2013) 76 melanomas 2176 x 2549 pixels
Pedro Hispano Hospital 2013 Dermoscopy 200 - 160 benign nevi Sizes ranging from 553 x 763 to
(PH?) (Mendonca et al., 40 melanomas 577 x 769 pixels acquired at
2013) 20 x magnification
ISIC2016 (Gutman et al., 2016 Dermoscopy 1279 900/-/379 Training: Sizes ranging from 566 x 679 to
2016) 727 non-melanomas 2848 x 4288 pixels

173 melanomas

Test:

304 non-melanomas

75 melanomas
ISIC2017 (Codella et al., 2017 Dermoscopy 2750 2000/150/600 Training: Sizes ranging from 540 x 722 to
2018) 1626 non-melanomas 4499 x 6748 pixels

374 melanomas

Test:

483 non-melanomas

117 melanomas
ISIC2018 (Codella et al., 2018 Dermoscopy 3694 2594/100/1000 - Sizes ranging from 540 x 576 to
2019) 4499 x 6748 pixels
HAM10000 (Tschandl 2020 Dermoscopy 10,015 - 1113 non-melanomas All images of 600 x 450 pixels

et al., 2018, 2020; ViDIR
Dataverse, 2020)

8902 melanomas

aDermQuest was deactivated on December 31, 2019. However, 137 of its images are publicly available (Glaister, 2013).

ISIC 2018 provided, for the first time, separate datasets for the tasks,
with 2594 training (20% melanomas, 72% nevi, and 8% seborrheic
keratoses) and 100/1000 for validation/test images ranging from 0.5
to 29 megapixels, for the tasks of segmentation and feature extrac-
tion (Codella et al., 2019), and 10,015/1512 training/test images for
the classification task, all with 600 x 450 pixels. The training dataset
for classification was the HAM10000 dataset (Tschandl et al., 2018),
acquired over a period of 20 years at the Medical University of Vienna,
Austria and the private practice of Dr. Cliff Rosendahl, Australia. It
allowed a five-fold increase in training images in comparison to 2017
and comprised seven diagnostic categories: melanoma (11.1%), nevus
(66.9%), basal cell carcinoma (5.1%), actinic keratosis or Bowen’s
disease (3.3%), benign keratosis (solar lentigo, seborrheic keratosis, or
lichen planus-like keratosis, 11%), dermatofibroma (1.1%), and vascu-
lar lesion (1.4%). As a part of a 2020 study of human—computer collab-
oration for skin lesion diagnosis involving dermatologists and general
practitioners (Tschandl et al., 2020), the lesions in the HAM10000
dataset were segmented by a single dermatologist and consequently re-
leased publicly (ViDIR Dataverse, 2020), making this the single largest
publicly available skin lesion segmentation dataset (Table 1).

ISIC 2019 (Codella et al., 2018; Tschandl et al., 2018; Combalia
et al.,, 2019) contains 25,331 training images (18% melanomas, 51%
nevi, 13% basal cell carcinomas, 3.5% actinic keratoses, 10% benign
keratoses, 1% dermatofibromas, 1% vascular lesions, and 2.5% squa-
mous cell carcinomas) and 8238 test images (diagnostic distribution
unknown). The images range from 600 x 450 to 1024 x 1024 pixels.

ISIC 2020 (Rotemberg et al., 2021) contains 33,126 training images
(1.8% melanomas, 97.6% nevi, 0.4% seborrheic keratoses, 0.1% lentig-
ines simplex, 0.1% lichenoid keratoses, 0.02% solar lentigines, 0.003%
cafe-au-lait macules, 0.003% atypical melanocytic proliferations) and
10,982 test images (diagnostic distribution unknown), ranging from 0.5
to 24 megapixels. Multiple centers, distributed worldwide, contributed
to the dataset, including the Memorial Sloan Kettering Cancer Cen-
ter (USA), the Melanoma Institute, the Sydney Melanoma Diagnostic
Centre, and the University of Queensland (Australia), the Medical
University of Vienna (Austria), the University of Athens (Greece), and
the Hospital Clinic Barcelona (Spain). An important novelty in this
dataset is the presence of multiple lesions per patient, with the ex-
press motivation of exploiting intra- and inter-patient lesion patterns,

e.g., the so-called “ugly-ducklings”, lesions whose appearances are
atypical for a given patient, and which present an increased risk of
malignancy (Gachon et al., 2005).

There is, however, an overlap among these ISIC Challenge datasets.
Abhishek (2020) analyzed all the lesion segmentation datasets from the
ISIC Challenges (2016-2018) and found considerable overlap between
these 3 datasets, with as many as 1940 images shared between at least 2
datasets and 706 images shared between all 3 datasets. In a more recent
analysis of the ISIC Challenge datasets for the lesion diagnosis task from
2016 through 2020, Cassidy et al. (2022) found overlap between the
datasets as well as the presence of duplicates within the datasets. Using
a duplicate removal strategy, they curated a new set of 45,590 training
images (8.61% melanomas, 91.39% others) and 11,397 validation im-
ages (8.61% melanomas, 91.39% others), leading to a total of 56,987
images. Additionally, since the resulting dataset is highly imbalanced
(melanomas versus others in a ratio of 1 10.62), the authors also
curated a balanced dataset with 7848 training images (50% melanoma,
50% others) and 1962 validation images (50% melanoma, 50% others).

Table 1 shows a list of publicly available skin lesion datasets with
pixel-wise annotations, image modality, sample size, original split sizes,
and diagnostic distribution. Fig. 3 shows how frequently these datasets
appear in the literature. It is also worth noting that several other skin
lesion image datasets have not been described in our survey as they
do not provide the corresponding skin lesion segmentation annota-
tions. However, these datasets, including SD-198 (Sun et al., 2016),
MED-NODE (Giotis et al., 2015), derm7pt (Kawahara et al., 2019),
Interactive Dermatology Atlas (Usatine and Madden, 2013), Dermatol-
ogy Information System (DermlIS, 2012), DermWeb (Lui et al., 2009),
DermNet New Zealand (Oakley et al., 1995), may still be relevant for
skin lesion segmentation research (see Section 5).

Biases in computer vision datasets are a constant source of is-
sues (Torralba and Efros, 2011), which is compounded in medical
imaging due to the smaller number of samples, insufficient image
resolution, lack of geographical or ethnic diversity, or statistics unrep-
resentative of clinical practice. All existing skin lesion datasets suffer
to a certain extent from one or more of the aforementioned issues, to
which we add the specific issue of the availability and reliability of
annotations. For lesion classification, many samples lack the gold stan-
dard histopathological confirmation, and ground-truth segmentation,
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ISIC 2016
13.8%

ISIC 2017
39.4%

Fig. 3. The frequency of utilization of different skin lesion segmentation datasets in the surveyed studies. We found that 82 papers evaluated on more than 1 dataset, with 36
papers opting for cross-dataset evaluation (CDE in Table 3). ISIC datasets (ISIC 2016, ISIC 2017, ISIC 2018, and ISIC Archive) are used in the majority of papers, with 168 of
177 papers using at least one ISIC dataset and the ISIC 2017 dataset being the most popular (117 papers). The PH? dataset is the second most widely used (56 papers) following

ISIC datasets.

even when available, is inherently noisy (Section 4.2). The presence of
artifacts (Fig. 1) may lead to spurious correlations, an issue that Bissoto
et al. (2019) attempted to quantify for classification models.

2.2. Synthetic data generation

Data augmentation—synthesizing new samples from existing ones—
is commonly employed in the training of DL models. Augmented
data serve as a regularizer, increase the amount and diversity of
data (Shorten and Khoshgoftaar, 2019), induce desirable invariances
on the model, and alleviate class imbalance. Traditional data augmen-
tation applies simple geometric, photometric, and colorimetric trans-
formations on the samples, including mirroring, translation, scaling,
rotation, cropping, random region erasing, affine or elastic deforma-
tion, modifications of hue, saturation, brightness, and contrast. Usually,
several transformations are chosen at random and combined. Fig. 4
exemplifies the procedure, as applied to a dermoscopic image with
Albumentations (Buslaev et al., 2020), a state-of-the-art open-source
library for image augmentation.

As mentioned earlier, augmented training data induce invariance
on the models: random translations and croppings, for example, help
induce a translation-invariant model. This has implications for skin
lesion analysis, e.g., data augmentation for generic datasets (such as
ImageNet Deng et al., 2009) forgo vertical mirroring and large-angle ro-
tations, because natural scenes have a strong vertical anisotropy, while
skin lesion images are isotropic. In addition, augmented test data (test-
time augmentation) may also improve generalization by combining the
predictions of several augmented samples through, for example, aver-
age pooling or majority voting (Shorten and Khoshgoftaar, 2019). Perez
et al. (2018) have systematically evaluated the effect of several data
augmentation schemes for skin lesion classification, finding that the
use of both training and test augmentation is critical for performance,
surpassing, in some cases, increases of real data without augmen-
tation. Valle et al. (2020) found, in a very large-scale experiment,
that test-time augmentation was the second most influential factor for
classification performance, after training set size. No systematic study
of this kind exists for skin lesion segmentation.

Although traditional data augmentation is crucial for training DL
models, it falls short of providing samples that are both diverse and
plausible from the same distribution as real data. Thus, modern data

augmentation (Tajbakhsh et al., 2020) employs generative modeling,
learning the probability distribution of the real data, and sampling from
that distribution. Generative adversarial networks (GANSs) (Goodfellow
et al., 2020) are the most promising approach in this direction (Shorten
and Khoshgoftaar, 2019), especially for medical image analysis (Yi
et al., 2019; Kazeminia et al., 2020; Shamsolmoali et al., 2021). GANs
employ an adversarial training between a generator, which attempts
to generate realistic fake samples, and a discriminator, which attempts
to differentiate real samples from fake ones. When the procedure
converges, the generator output is surprisingly convincing, but GANs
are computationally expensive and difficult to train (Creswell et al.,
2018).

Synthetic generation of skin lesions has received some recent in-
terest, especially in the context of improving classification. Works can
be roughly divided into those that use GANs to create new images
from a Gaussian latent variable (Baur et al., 2018; Pollastri et al.,
2020; Abdelhalim et al., 2021), and those that implement GANs based
on image-to-image translation (Abhishek and Hamarneh, 2019; Bissoto
et al., 2018; Ding et al., 2021).

Noise-based GANs, such as DCGAN (Yu et al., 2017b), LAPGAN
(Denton et al., 2015), and PGAN (Karras et al., 2018), learn to decode
a Gaussian latent variable into an image that belongs to the training set
distribution. The main advantage of these techniques is the ability to
create more, and more diverse images, as, in principle, any sample from
a multivariate Gaussian distribution may become a different image. The
disadvantage is that the images tend to be of lower quality, and, in the
case of segmentation, one needs to generate plausible pairs of images
and segmentation masks.

Image-to-image translation GANs, such as pix2pix (Isola et al.,
2017) and pix2pixHD (Wang et al., 2018), learn to create new samples
from a semantic segmentation map. They have complementary advan-
tages and disadvantages. Because the procedure is deterministic (one
map creates one image), they have much less freedom in the number
of samples available, but the images tend to be of higher quality (or
more “plausible”). There is no need to generate separate segmentation
maps because the generated image is intrinsically compatible with the
input segmentation map.

The two seminal papers on GANs for skin lesions (Baur et al.,
2018; Bissoto et al., 2018) evaluate several models. Baur et al. (2018)
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Fig. 4. Various data augmentation transformations applied to a dermoscopic image (image source: ISIC 2016 dataset Gutman et al., 2016) using the Albumentations library (Buslaev

et al., 2020).

compare the noise-based DCGAN, LAPGAN, and PGAN for the gener-
ation of 256 x 256-pixel images using both qualitative and quantitative
criteria, finding that the PGAN gives considerably better results. They
further examine the PGAN against a panel of human judges, composed
by dermatologists and DL experts, in a “visual Turing test”, showing
that both had difficulties in distinguishing the fake images from the
true ones. Bissoto et al. (2018) adapt the PGAN to be class-conditioned
on diagnostic category, and the image-to-image pix2pixHD to employ
the semantic annotation provided by the feature extraction task of the
ISIC 2018 dataset (Table 1), comparing those to an unmodified DCGAN
on 256 x 256-pixel images, and finding the modified pix2pixHD to
be qualitatively better. They use the performance improvement on a
separate classification network as a quantitative metric, finding that
the use of samples from both PGAN and pix2pixHD leads to the best
improvements. They also showcase images of size up to 1024 x 1024
pixels generated by the pix2pixHD-derived model.

Pollastri et al. (2020) extended DCGAN and LAPGAN architectures
to generate the segmentation masks (in the pairwise scheme explained
above), making their work the only noise-based GANs usable for
segmentation to date. Bi et al. (2019a) introduced stacked adversarial
learning to GANSs to learn class-specific skin lesion image generators
given the ground-truth segmentations. Abhishek and Hamarneh (2019)
employ pix2pix to translate a binary segmentation mask into a der-
moscopic image and use the generated image-mask pairs to augment
skin lesion segmentation training datasets, improving segmentation
performance.

Ding et al. (2021) feed a segmentation mask and an instance mask
to a conditional GAN generator, where the instance mask states the
diagnostic category to be synthesized. In both cases, the discriminator
receives different resolutions of the generated image and is required
to make a decision for each of them. Abdelhalim et al. (2021) is a
recent work that also conditions PGAN on the class label and uses the
generated outputs to augment a melanoma diagnosis dataset.

Recently, Bissoto et al. (2021) cast doubt on the power of GAN-
synthesized data augmentation to reliably improve skin lesion clas-
sification. Their evaluation, which included four GAN models, four
datasets, and several augmentation scenarios, showed improvement

only in a severe cross-modality scenario (training on dermoscopic and
testing on clinical images). To the best of our knowledge, no corre-
sponding systematic evaluation exists for skin lesion segmentation.

2.3. Supervised, semi-supervised, weakly supervised, self-supervised learn-
ing

Although supervised DL has achieved outstanding performance in
various medical image analysis applications, its dependency on high-
quality annotations limits its applicability, as well as its generalizability
to unseen, out-of-distribution data. Semi-supervised techniques attempt
to learn from both labeled and unlabeled samples. Weakly supervised
techniques attempt to exploit partial annotations like image-level labels
or bounding boxes, often in conjunction with a subset of pixel-level
fully-annotated samples.

Since pixel-level annotation of skin lesion images is costly, there
is a trade-off between annotation precision and efficiency. In practice,
the annotations are intrinsically noisy, which can be modeled explicitly
to avoid over-fitting. (We discuss the issue of annotation variability
in Section 4.2.) To deal with label noise, Mirikharaji et al. (2019)
learn a model robust to annotation noise, making use of a large set
of unreliable annotations and a small set of perfect clean annotations.
They propose to learn a spatially adaptive weight map corresponding
to each training data, assigning different weights to noisy and clean
pixel-level annotations while training the deep model. To remove the
dependency on having a set of perfectly clean annotations, Redekop
and Chernyavskiy (2021) propose to alter noisy ground-truth masks
during training by considering the quantification of aleatoric uncer-
tainty (Der Kiureghian and Ditlevsen, 2009; Gal, 2016; Depeweg et al.,
2018; Kwon et al., 2020) to obtain a map of regions of high and low
uncertainty. Pixels of ground-truth masks in highly uncertain regions
are flipped, progressively increasing the model’s robustness to label
noise. Ribeiro et al. (2020) deal with noise by discarding inconsistent
samples and annotation detail during training time, showing that the
model generalizes better even when detailed annotations are required
in test time.
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Fig. 5. A breakdown of different levels of supervision used in the 177 surveyed works. Fully supervised models continue to make up the majority of the literature (163 papers),
with semi-supervised and weakly supervised methods appearing in only 9 papers. Self-supervision in skin lesion segmentation is fairly new, with all the 5 papers appearing from

2020 onwards.

When there is a labeled dataset, even if the number of labeled sam-
ples is far less than that of unlabeled samples, semi- and self-supervision
techniques can be applied. Li et al. (2021c) propose a semi-supervised
approach, using a transformation-consistent self-ensemble to leverage
unlabeled data and to regularize the model. They minimize the dif-
ference between the network predictions of different transformations
(random perturbations, flipping, and rotation) applied to the input
image and the transformation of the model prediction for the input
image. Self-supervision attempts to exploit intrinsic labels by solving
proxy tasks, enabling the use of a large, unlabeled corpus of data to
pretrain a model before fine-tuning it on the target task. An example
is to artificially apply random rotations in the input images, and train
the model to predict the exact degree of rotation (Gidaris et al., 2018).
Note that the degree of rotation of each image is known, since it was
artificially applied, and thus, can be used as a label during training.
Similarly, for skin lesion segmentation, Li et al. (2020b) propose to
exploit the color distribution information, the proxy task being to
predict values from blue and red color channels while having the green
one as input. They also include a task to estimate the red and blue color
distributions to improve the model’s ability to extract global features.
After the pretraining, they use a smaller set of labeled data to fine-tune
the model.

2.4. Image preprocessing

Preprocessing may facilitate the segmentation of skin lesion images.
Typical preprocessing operations include:

» Downsampling: Dermoscopy is typically a high-resolution tech-
nique, resulting in large image sizes, while many convolutional
neural network (CNN) architectures, e.g., LeNet, AlexNet, VGG,
GoogLeNet, ResNet, etc., require fixed-size input images, usually
224 x 224 or 299 x 299 pixels, and even those CNNs that can
handle arbitrary-sized images (e.g., fully-convolutional networks
(FCNs)) may benefit from downsampling for computational rea-
sons. Downsampling is common in the skin lesion segmentation
literature (Codella et al., 2017; Yu et al., 2017a; Yuan et al., 2017;
Al-Masni et al., 2018; Zhang et al., 2019b; Pollastri et al., 2020).
Color space transformations: RGB images are expected by most
models, but some works (Codella et al., 2017; Al-Masni et al.,
2018; Yuan and Lo, 2019; Pollastri et al., 2020; Pour and Seker,

2020) employ alternative color spaces (Busin et al., 2008), such
as CIELAB, CIELUV, and HSV. Often, one or more channels
of the transformed space are combined with the RGB chan-
nels for reasons including, but not limited to, increasing the
class separability, decoupling luminance and chromaticity, ensur-
ing (approximate) perceptual uniformity, achieving invariance to
illumination or viewpoint, and eliminating highlights.
Additional inputs: In addition to color space transformations,
recent works incorporate more focused and domain-specific in-
puts to the segmentation models, such as Fourier domain rep-
resentation using the discrete Fourier transform (Tang et al.,
2021b) and inputs based on the physics of skin illumination and
imaging (Abhishek et al., 2020).

Contrast enhancement: Insufficient contrast (Fig. 1(i)) is a prime
reason for segmentation failures (Bogo et al., 2015), leading some
works (Saba et al., 2019; Schaefer et al., 2011) to enhance the
image contrast prior to segmentation.

Color normalization: Varying illumination
(Barata et al., 2015a,b) may lead to inconsistencies in skin lesion
segmentation. This problem can be addressed by color normaliza-
tion (Goyal et al., 2019b).

Artifact removal: Dermoscopic images often present artifacts,
among which hair (Fig. 1(g)) is the most distracting (Abbas et al.,
2011), leading some studies (Unver and Ayan, 2019; Zafar et al.,
2020; Li et al., 2021b) to remove it prior to segmentation.

Classical machine learning models (e.g., nearest neighbors, decision
trees, support vector machines Celebi et al., 2007b, 2008; Iyatomi
et al., 2008; Barata et al., 2014; Shimizu et al., 2015), which rely on
hand-crafted features (Barata et al., 2019), tend to benefit more from
preprocessing than DL models, which, when properly trained, can learn
from the data how to bypass input issues (Celebi et al., 2015a; Valle
et al., 2020). However, preprocessing may still be helpful when dealing
with small or noisy datasets.

3. Model design and training

Multi-layer perceptrons (MLPs) for pixel-level classification (Gish
and Blanz, 1989; Katz and Merickel, 1989) appeared soon after the pub-
lication of the seminal backpropagation paper (Rumelhart et al., 1986),
but these shallow feed-forward networks had many drawbacks (LeCun
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et al.,, 1998), including an excessive number of parameters, lack of
invariance, and disregard for the inherent structure present in images.

CNNs are deep feedforward neural networks designed to extract
progressively more abstract features from multidimensional signals (1-
D signals, 2-D images, 3-D video, etc.) (LeCun et al., 2015). Therefore,
in addition to addressing the aforementioned problems of MLPs, CNNs
automate feature engineering (Bengio et al., 2013), that is, the design
of algorithms that can transform raw signal values to discriminative
features. Another advantage of CNNs over traditional machine learning
classifiers is that they require minimal preprocessing of the input data.
Due to their significant advantages, CNNs have become the method
of choice in many medical image analysis applications over the past
decade (Litjens et al., 2017). The key enablers in this deep learning
revolution were: (i) the availability of massive data sets; (ii) the avail-
ability of powerful and inexpensive graphics processing units; (iii) the
development of better network architectures, learning algorithms, and
regularization techniques; and (iv) the development of open-source
deep learning frameworks.

Semantic segmentation may be understood as the attempt to answer
the parallel and complementary questions “what” and “where” in a
given image. The former is better answered by translation-invariant
global features, while the latter requires well-localized features, posing
a challenge to deep models. CNNs for pixel-level classification first
appeared in the mid-2000s (Ning et al., 2005), but their use accelerated
after the seminal paper on FCNs by Long et al. (2015), which, along
with U-Net (Ronneberger et al., 2015), have become the basis for many
state-of-the-art segmentation models. In contrast to classification CNNs
(e.g., LeNet, AlexNet, VGG, GoogLeNet, ResNet), FCNs easily cope with
arbitrary-sized input images.

3.1. Architecture

An ideal skin lesion segmentation algorithm is accurate, compu-
tationally inexpensive, invariant to noise and input transformations,
requires little training data and is easy to implement and train. Unfortu-
nately, no algorithm has, so far, been able to achieve these conflicting
goals. DL-based segmentation tends towards accuracy and invariance
at the cost of computation and training data. Ease of implementation is
debatable: on the one hand, the algorithms often forgo cumbersome
preprocessing, postprocessing, and feature engineering steps. On the
other hand, tuning and optimizing them is often a painstaking task.

As shown in Fig. 6, we have classified the existing literature into
single-network models, multiple-network models, hybrid-feature mod-
els, and Transformer models. The first and second groups are somewhat
self-descriptive, but notice that the latter is further divided into en-
sembles of models, multi-task methods (often performing simultaneous
classification and segmentation), and GANs. Hybrid-feature models
combine DL with hand-crafted features. Transformer models, as the
name suggests, employ Transformers either with or without CNNs for
segmentation, and have started being used for skin lesion segmentation
only recently. We classified works according to their most relevant
feature, but the architectural improvements discussed in Section 3.1.1
also appear in the models listed in the other sections. In Fig. 7, we
show how frequently different architectural modules appear in the
177 surveyed works, grouped by our taxonomy of model architectures
(Fig. 6).

Table 3 summarizes all the 177 surveyed works in this review, with
the following attributes for each work: type of publication, datasets,
architectural modules, loss functions, and augmentations used, reported
Jaccard index, whether the paper performed cross-dataset evaluation
(CDE) and postprocessing (PP), and whether the corresponding code
was released publicly. For papers that reported segmentation results
on more than 1 dataset, we list all of them and list the performance on
only one dataset, formatting that particular dataset in bold. Since ISIC
2017 is the most popular dataset (Fig. 3), wherever reported, we note
the performance (Jaccard index) on ISIC 2017. For papers that do not
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report the Jaccard index and instead report the Dice score, we compute
the former based on the latter and report this computed score denoted
by an asterisk. Cross-dataset evaluation (CDE) refers to when a paper
trained model(s) on one dataset but evaluated on another.

3.1.1. Single network models

The approaches in this section employ a single DL model, usually
an FCN, following an encoder-decoder structure, where the encoder
extracts increasingly abstract features, and the decoder outputs the seg-
mentation mask. In this section, we discuss these architectural choices
for designing deep models for skin lesion segmentation.

Earlier DL-based skin lesion segmentation works adopted either
FCN (Long et al.,, 2015) or U-Net (Ronneberger et al., 2015). FCN
originally comprised a backbone of VGG16 (Simonyan and Zisserman,
2014) CNN layers in the encoder and a single deconvolution layer in
the encoder. The original paper proposes three versions, two with skip
connections (FCN-8 and FCN-16), and one without them (FCN-32).
U-Net (Ronneberger et al., 2015), originally proposed for segmenting
electron microscopy images, was rapidly adopted in the medical image
segmentation literature. As its name suggests, it is a U-shaped model,
with an encoder stacking convolutional layers that double in size
filterwise, intercalated by pooling layers, and a symmetric decoder with
pooling layers replaced by up-convolutions. Skip connections between
corresponding encoder—decoder blocks improve the flow of information
between layers, preserving low-level features lost during pooling and
producing detailed segmentation boundaries.

U-Net frequently appears in the skin lesion segmentation literature
both in its original form (Codella et al., 2017; Pollastri et al., 2020;
Ramani and Ranjani, 2019) and modified forms (Tang et al., 2019a;
Alom et al., 2019; Hasan et al., 2020), discussed below. Some works
introduce their own models (Yuan et al., 2017; Al-Masni et al., 2018).

3.1.1.1. Shortcut connections. Connections between early and late lay-
ers in FCNs have been widely explored to improve both the forward
and backward (gradient) information flow in the models, facilitating
the training. The three most popular types of connections are described
below.

Residual connections: Creating non-linear blocks that add their un-
modified inputs to their outputs (He et al., 2016) alleviates gradient
degradation in very deep networks. It provides a direct path for the
gradient to flow through to the early layers of the network, while
still allowing for very deep models. The technique appears often in
skin lesion segmentation, in the implementation of the encoder (Sarker
et al., 2018; Baghersalimi et al., 2019; Yu et al., 2017a) or both encoder
and decoder (He et al., 2017; Venkatesh et al., 2018; Li et al., 2018a;
Tu et al., 2019; Zhang et al., 2019a; He et al., 2018; Xue et al., 2018).
Residual connections have also appeared in recurrent units (Alom et al.,
2019, 2020), dense blocks (Song et al., 2019), chained pooling (He
et al.,, 2017; Li et al., 2018a; He et al., 2018), and 1-D factorized
convolutions (Singh et al., 2019).

Skip connections appear in encoder-decoder architectures, connecting
high-resolution features from the encoder’s contracting path to the
semantic features on the decoder’s expanding path (Ronneberger et al.,
2015). These connections help preserve localization, especially near re-
gion boundaries, and combine multi-scale features, resulting in sharper
boundaries in the predicted segmentation. Skip connections are very
popular in skin lesion segmentation because they are effective and easy
to implement (Zhang et al., 2019a; Baghersalimi et al., 2019; Song
et al., 2019; Wei et al., 2019; Venkatesh et al., 2018; Azad et al., 2019;
He et al., 2017; Alom et al., 2019; Sarker et al., 2018; Zeng and Zheng,
2018; Li et al., 2018a; Tu et al., 2019; Yu et al., 2017a; Singh et al.,
2019; He et al., 2018; Xue et al., 2018; Alom et al., 2020; Vesal et al.,
2018b; Liu et al., 2019b).

Dense connections expand the convolutional layers by connecting each
layer to all its subsequent layers, concatenating their features (Huang
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Fig. 6. Taxonomy of DL-based skin lesion segmentation model architectures.
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Fig. 7. The frequency of utilization of different architectural modules in the surveyed studies. Shortcut connections, particularly, skip connections (112 papers) and residual
connections (70 papers) are the two most frequent components in DL-based skin lesion segmentation models. Attention mechanisms learn dependencies between elements in
sequences, either spatially or channel-wise, and are therefore used by several encoder—decoder-style segmentation models (41 papers). Dilated convolutions help expand the
receptive field of CNN-models without any additional parameters, which is why they are the most popular variant of convolution in the surveyed studies (35 papers). Finally,
papers using Transformers (12 papers) started appearing from 2021 onwards and are on the rise.

et al., 2017). Iterative reuse of features in dense connections maximizes
information flow forward and backward. Similar to deep supervision
(Section 3.2.5), the gradient is propagated backwards directly through
all previous layers. Several works (Zeng and Zheng, 2018; Song et al.,
2019; Li et al., 2021c; Tu et al., 2019; Vesal et al., 2018b) integrated
dense blocks in both the encoder and the decoder. Baghersalimi et al.
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(2019), Hasan et al. (2020) and Wei et al. (2019) used multiple dense
blocks iteratively in only the encoder, while Li et al. (2018a) proposed
dense deconvolutional blocks to reuse features from the previous lay-
ers. Azad et al. (2019) encoded densely connected convolutions into
the bottleneck of their encoder—decoder to obtain better features.
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3.1.1.2. Convolutional modules. As mentioned earlier, convolution not
only provides a structural advantage, respecting the local connectivity
structure of images in the output futures, but also dramatically im-
proves parameter sharing since the parameters of a relatively small
convolutional kernel are shared by all patches of a large image. Convo-
lution is a critical element of deep segmentation models. In this section,
we discuss some new convolution variants, which have enhanced and
diversified this operation, appearing in the skin lesion segmentation
literature.

Dilated convolution: In contrast to requiring full-resolution outputs in
dense prediction networks, pooling and striding operations have been
adopted in deep convolutional neural networks (DCNNs) to increase
the receptive field and diminish the spatial resolution of feature maps.
Dilated or atrous convolutions are designed specifically for the semantic
segmentation task to exponentially expand the receptive fields while
keeping the number of parameters constant (Yu and Koltun, 2016).
Dilated convolutions are convolutional modules with upsampled filters
containing zeros between consecutive filter values. Sarker et al. (2018)
and Jiang et al. (2019) utilized dilated residual blocks in the encoder to
control the image field-of-view explicitly and incorporated multi-scale
contextual information into the segmentation network. SkinNet (Vesal
et al., 2018b) used dilated convolutions at the lower level of the
network to enlarge the field-of-view and capture non-local informa-
tion. Liu et al. (2019b) introduced dilated convolutions to the U-Net
architecture, significantly improving the segmentation performance.
Furthermore, different versions of the DeepLab architecture (Chen
et al, 2017a,b, 2018a), which replace standard convolutions with
dilated ones, have been used in skin lesion segmentation (Goyal et al.,
2019a,b; Cui et al., 2019; Chen et al., 2018b; Canalini et al., 2019).

Separable convolution: Separable convolution or depth-wise separable
convolution (Chollet, 2017) is a spatial convolution operation that
convolves each input channel with its corresponding kernel. This is
followed by a 1 x 1 standard convolution to capture the channel-
wise dependencies in the output of depth-wise convolution. Depth-wise
convolutions are designed to reduce the number of parameters and the
computation of standard convolutions while maintaining the accuracy.
DSNet (Hasan et al., 2020) and separable-Unet (Tang et al., 2019a)
utilized depth-wise separable convolutions in the model to have a
lightweight network with a reduced number of parameters. Adopted
from the DeepLab architecture, Goyal et al. (2019b), Cui et al. (2019)
and, Canalini et al. (2019) incorporated depth-wise separable convolu-
tions in conjunction with dilated convolution to improve the speed and
accuracy of dense predictions.

Global convolution: State-of-the-art segmentation models remove
densely connected and global pooling layers to preserve spatial in-
formation required for full-resolution output recovery. As a result, by
keeping high-resolution feature maps, segmentation models become
more suitable for localization and, in contrast, less suitable for per-
pixel classification, which needs transformation invariant features. To
increase the connectivity between feature maps and classifiers, large
convolutional kernels should be adopted. However, such kernels have
a large number of parameters, which renders them computationally
expensive. To tackle this, global convolutional network (GCN) modules
adopt a combination of symmetric parallel convolutions in the form
of ] xk+kx1and kx1+1xk to cover a k X k area of feature
maps (Peng et al., 2017b). SeGAN (Xue et al., 2018) employed GCN
modules with large kernels in the generator’s decoder to reconstruct
segmentation masks and in the discriminator architecture to optimally
capture a larger receptive field.

Factorized convolution: Factorized convolutions (Wang et al., 2017) are
designed to reduce the number of convolution filter parameters as well
as the computation time through kernel decomposition when a high-
dimensional kernel is substituted with a sequence of lower-dimensional
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convolutions. Additionally, by adding non-linearity between the com-
posited kernels, the network’s capacity may improve. FCA-Net (Singh
et al., 2019) and MobileGAN (Sarker et al., 2019) utilized residual 1-D
factorized convolutions (a sequence of kx 1 and 1xk convolutions with
ReLU non-linearity) in their segmentation architecture.

3.1.1.3. Multi-scale modules. In FCNs, taking semantic context into ac-
count when assigning per-pixel labels leads to a more accurate predic-
tion (Long et al., 2015). Exploiting multi-scale contextual information,
effectively combining them as well as encoding them in deep semantic
segmentation have been widely explored.

Image Pyramid: RefineNet (He et al., 2017) and its extension (He et al.,
2018), MSFCDN (Zeng and Zheng, 2018), FCA-Net (Singh et al.,
2019), and Abraham and Khan (2019) fed a pyramid of multi-resolution
skin lesion images as input to their deep segmentation network to
extract multi-scale discriminative features. RefineNet (He et al., 2017,
2018), Factorized channel attention network (FCA-Net Singh et al.,
2019) and Abraham and Khan (2019) applied convolutional blocks
to different image resolutions in parallel to generate features which
are then up-sampled in order to fuse multi-scale feature maps. Multi-
scale fully convolutional DenseNets (MSFCDN Zeng and Zheng, 2018)
gradually integrated multi-scale features extracted from the image
pyramid into the encoder’s down-sampling path. Also, Jafari et al.
(2016, 2017) extracted multi-scale patches from clinical images to
predict semantic labels and refine lesion boundaries by deploying local
and global information. While aggregating the feature maps computed
at various image scales improves the segmentation performance, it also
increases the computational cost of the network.

Parallel multi-scale convolutions: Alternatively, given a single image reso-
lution, multiple convolutional filters with different kernel sizes (Zhang
et al.,, 2019a; Wang et al., 2019a; Jahanifar et al., 2018) or multiple
dilated convolutions with different dilation rates (Goyal et al., 2019a,b;
Cui et al., 2019; Chen et al., 2018b; Canalini et al., 2019) can be
adopted in parallel paths to extract multi-scale contextual features from
images. DSM (Zhang et al., 2019a) integrated multi-scale convolutional
blocks into the skip connections of an encoder—decoder structure to
handle different lesion sizes. Wang et al. (2019a) utilized multi-scale
convolutional branches in the bottleneck of an encoder—-decoder ar-
chitecture, followed by attention modules to selectively aggregate the
extracted multi-scale features.

Pyramid pooling: Another way of incorporating multi-scale information
into deep segmentation models is to integrate a pyramid pooling (PP)
module in the network architecture (Zhao et al., 2017). PP fuses a
hierarchy of features extracted from different sub-regions by adopting
parallel pooling kernels of various sizes, followed by up-sampling and
concatenation to create the final feature maps. Sarker et al. (2018)
and Jahanifar et al. (2018) utilized PP in the decoder to benefit from
coarse-to-fine features extracted by different receptive fields from skin
lesion images.

Dilated convolutions and skip connections are two other types of
multi-scale information extraction techniques, which are explained in
Sections 3.1.1.2 and 3.1.1.1, respectively.

3.1.1.4. Attention modules. An explicit way to exploit contextual de-
pendencies in the pixel-wise labeling task is the self-attention mecha-
nism (Hu et al., 2018; Fu et al., 2019). Two types of attention modules
capture global dependencies in spatial and channel dimensions by inte-
grating features among all positions and channels, respectively. Wang
et al. (2019a) and Sarker et al. (2019) leveraged both spatial and
channel attention modules to recalibrate the feature maps by exam-
ining the feature similarity between pairs of positions or channels
and updating each feature value by a weighted sum of all other fea-
tures. Singh et al. (2019) utilized a channel attention block in the
proposed factorized channel attention (FCA) blocks, which was used
to investigate the correlation of different channel maps for extrac-
tion of relevant patterns. Inspired by attention U-Net (Oktay et al.,
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2018), multiple works (Abraham and Khan, 2019; Song et al., 2019;
Wei et al.,, 2019) integrated a spatial attention gate in an encoder—
decoder architecture to combine coarse semantic feature maps and fine
localization feature maps. Kaul et al. (2019) proposed FocusNet which
utilizes squeeze-and-excitation blocks into a hybrid encoder-decoder
architecture. Squeeze-and-excitation blocks model the channel-wise
interdependencies to re-weight feature maps and improve their rep-
resentation power. Experimental results demonstrate that attention
modules help the network focus on the lesions and suppress irrelevant
feature responses in the background.

3.1.1.5. Recurrent convolutional neural networks. Recurrent convolu-
tional neural networks (RCNN) integrate recurrent connections into
convolutional layers by evolving the recurrent input over time (Pin-
heiro and Collobert, 2014). Stacking recurrent convolutional layers
(RCL) on top of the convolutional layer feature extractors ensures
capturing spatial and contextual dependencies in images while limiting
the network capacity by sharing the same set of parameters in RCL
blocks. In the application of skin lesion segmentation, Attia et al. (2017)
utilized recurrent layers in the decoder to capture spatial dependen-
cies between deep-encoded features and recover segmentation maps
at the original resolution. V¥-Net (Alom et al., 2020), RU-Net, and
R2U-Net (Alom et al., 2019) incorporated RCL blocks into the FCN
architecture to accumulate features across time in a computationally
efficient way and boosted the skin lesion boundary detection. Azad
et al. (2019) deployed a non-linear combination of the encoder fea-
ture and decoder feature maps by adding a bi-convolutional LSTM
(BConvLSTM) in skip connections. BConvLSTM consists of two in-
dependent convolutional LSTM modules (ConvLSTMs) which process
the feature maps into two directions of backward and forward paths
and concatenate their outputs to obtain the final output. Modifications
to the traditional pooling layers were also proposed, using a dense
pooling strategy (Nasr-Esfahani et al., 2019).

3.1.2. Multiple network models

Motivations for models comprising more than one DL sub-model
are diverse, ranging from alleviating training noise and exploiting a
diversity of features learned by different models to exploring synergies
between multi-task learners. After examining the literature (Fig. 6),
we further classified the works in this section into standard ensembles
and multi-task models. We also discuss generative adversarial models,
which are intrinsically multi-network models, in a separate category.

3.1.2.1. Standard ensembles. Ensemble models are widely used in ma-
chine learning, motivated by the hope that the complementarity of
different models may lead to more stable combined predictions (Sagi
and Rokach, 2018). Ensemble performance is contingent on the quality
and diversity of the component models, which can be combined at the
feature level (early fusion) or the prediction level (late fusion). The
former combines the features extracted by the components and learns
a meta-model on them, while the latter pools or combines the models’
predictions with or without a meta-model.

All methods discussed in this section employ late fusion, except for
an approach loosely related to early fusion (Tang et al., 2019a), which
explores various learning-rate decay schemes, and builds a single model
by averaging the weights learned at different epochs to bypass poor
local minima during training. Since the weights correspond to features
learned by the convolution filters, this approach can be interpreted as
feature fusion.

Most works employ a single DL architecture with multiple training
routines, varying configurations more or less during training (Canalini
et al., 2019). The changes between component models may involve
network hyperparameters: number of filters per block and their size
(Codella et al., 2017); optimization and regularization hyperparame-
ters: learning rate, weight decay (Tan et al., 2019b); the training set:
multiple splits of a training set (Yuan et al., 2017; Yuan and Lo, 2019),
separate models per class (Bi et al., 2019b); preprocessing: different
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color spaces (Pollastri et al., 2020); different pretraining strategies to
initialize feature extractors (Canalini et al., 2019); or different ways to
initialize the network parameters (Cui et al., 2019). Test-time augmen-
tation may also be seen as a form of inference-time ensembling (Chen
et al., 2018b; Liu et al., 2019b; Jahanifar et al., 2018) that combines
the outputs of multiple augmented images to generate a more reliable
prediction.

Bi et al. (2019b) trained a separate DL model for each class, as
well as a separate classification model. For inference, the classification
model output is used to weight the outputs of the category-specific
segmentation networks. In contrast, Soudani and Barhoumi (2019)
trained a meta “recommender” model to dynamically choose, for each
input, a segmentation technique from the top five scorers in the ISIC
2017 challenge, although their proposition was validated on a very
small test set (10% of ISIC 2017 test set).

Several works also ensemble different model architectures for skin
lesion segmentation. Goyal et al. (2019b) investigate multiple fusion
approaches to avoid severe errors from individual models, comparing
the average-, maximum- and minimum-pooling of their outputs. A
common assumption is that the component models of the ensemble are
trained independently, but Bi et al. (2017b) cascaded the component
models, i.e., used the output of one model as the input of the next (in
association with the actual image input). Thus, each model attempts to
refine the segmentation obtained by the previous one. They consider
not only the final model output, but all the outputs in the cascade,
making the technique a legitimate ensemble.

3.1.2.2. Multi-task models. Multi-task models jointly address more than
one goal, in the hope that synergies among the tasks will improve
overall performance (Zhang and Yang, 2022). This can be particularly
helpful in medical image analysis, wherein aggregating tasks may
alleviate the issue of insufficient data or annotations. For skin lesions, a
few multi-task models exploiting segmentation and classification have
been proposed (Chen et al., 2018b; Li and Shen, 2018; Yang et al., 2018;
Xie et al., 2020b; Jin et al., 2021).

The synergy between tasks may appear when their models share
common relevant features. Li and Shen (2018) assume that all features
are shareable between the tasks, and train a single fully convolutional
residual network to assign class probabilities at the pixel level. They
aggregate the class probability maps to estimate both lesion region
and class by weighted averaging of probabilities for different classes
inside the lesion area. Yang et al. (2018) learn an end-to-end model
formed by a shared convolutional feature extractor followed by three
task-specific branches (one to segment skin lesions, one to classify
them as melanoma versus non-melanoma, and one to classify them as
seborrheic keratosis versus non-seborrheic keratosis.) Similarly, Chen
et al. (2018b) add a common feature extractor and separate task
heads, and introduce a learnable gate function that controls the flow of
information between the tasks to model the latent relationship between
two tasks.

Instead of using a single architecture for classification and segmen-
tation, Xie et al. (2020b) and Jin et al. (2021) use three CNNs in
sequence to perform a coarse segmentation, followed by classification
and, finally, a fine segmentation. Instead of shared features, these works
exploit sequential guidance, in which the output of each task improves
the learning of the next. While Xie et al. (2020b) feed the output of
each network to the next, assuming that the classification network is a
diagnostic category and a class activation map (Zhou et al., 2016), Jin
et al. (2021) introduce feature entanglement modules, which aggregate
features learned by different networks.

All multi-task models discussed so far have results suggesting com-
plementarity between classification and segmentation, but there is no
clear advantage among these models. The segmentation of dermoscopic
features (e.g., networks, globules, regression areas) combined with the
other tasks is a promising avenue of research, which could bridge
classification and segmentation, by fostering the extraction of features
that “see” the lesion as human specialists do.
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We do not consider in the hybrid group, two-stage models in which
segmentation is used as ancillary preprocessing to classification (Yu
et al., 2017a; Codella et al., 2017; Gonzalez-Diaz, 2018; Al-Masni et al.,
2020), since without mutual influence (sharing of losses or features) or
feedback between the two tasks, there is no opportunity for synergy.

Vesal et al. (2018a) stressed the importance of object localization
as an ancillary task for lesion delineation, in particular deploying
Faster-RCNN (Ren et al., 2015) to regress a bounding box to crop the
lesions before training a SkinNet segmentation model. While this two-
stage approach considerably improves the results, it is computationally
expensive (a fast non-DL-based bounding box detection algorithm was
proposed earlier by Celebi et al. (2009a)). Goyal et al. (2019a) em-
ployed ROI detection with a deep extreme cut to extract the extreme
points of lesions (leftmost, rightmost, topmost, bottommost pixels) and
feed them, in a new auxiliary channel, to a segmentation model.

3.1.2.3. Generative adversarial models. We discussed GANs for synthe-
sizing new samples, their main use in skin lesion analysis, in Sec-
tion 2.2. In this section, we are interested in GANs not for generat-
ing additional training samples, but for directly providing enhanced
segmentation models. Adversarial training encourages high-order con-
sistency in predicted segmentation by implicitly looking into the joint
distribution of class labels and ground-truth segmentation masks.

Peng et al. (2019), Tu et al. (2019), Lei et al. (2020), and Izadi
et al. (2018) use a U-Net-like generator that takes a dermoscopic
image as input, and outputs the corresponding segmentation, while
the discriminator is a traditional CNN which attempts to discriminate
pairs of image and generated segmentation from pairs of image and
ground-truth. The generator has to learn to correctly segment the lesion
in order to fool the discriminator. Jiang et al. (2019) use the same
scheme, with a dual discriminator. Lei et al. (2020) also employ a
second discriminator that takes as input only segmentations (unpaired
from input images).

Since the discriminator may trivially learn to recognize the gener-
ated masks due to the presence of continuous probabilities, instead of
the sharp discrete boundaries of the ground-truths, Wei et al. (2019)
and Tu et al. (2019) address this by pre-multiplying both the generated
and real segmentations with the (normalized) input images before
feeding them to the discriminator.

We discuss adversarial loss functions further in Section 3.2.8.

3.1.3. Hybrid feature models

Although the major strength of CNNs is their ability to learn mean-
ingful image features without human intervention, a few works tried
to combine the best of both worlds, with strategies ranging from
employing pre- or postprocessing to enforce prior knowledge to adding
hand-crafted features Providing the model with prior knowledge about
the expected shape of skin lesions—which is missing from CNNs—
may improve the performance. Mirikharaji and Hamarneh (2018) en-
code shape information into an additional regularization loss, which
penalizes segmentation maps that deviate from a star-shaped prior
(Section 3.2.6).

Conditional random fields (CRFs) use pixel-level color information
models to refine the segmentation masks output by the CNN. While
both Tschandl et al. (2019) and Adegun and Viriri (2020b) consider a
single CNN, Qiu et al. (2020) combine the outputs of multiple CNNs
into a single mask, before feeding it together with the input image to
the CRFs. Unver and Ayan (2019) use GrabCut (Rother et al., 2004)
to obtain the segmentation mask given the dermoscopy image and a
region proposal obtained by the YOLO (Redmon et al., 2016) network.
These methods regularize the CNN segmentation, which is mainly
based on textural patterns, with expected priors based on the color of
the pixels.

Works that combine hand-crafted features with CNNs follow two
distinct approaches. The first consists of pre-filtering the input images
to increase the contrast between the lesion and the surrounding skin.
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Techniques explored include local binary patterns (LBPs) (Ross-Howe
and Tizhoosh, 2018; Jayapriya and Jacob, 2020), wavelets (Ross-Howe
and Tizhoosh, 2018), Laplacian pyramids (Pour and Seker, 2020), and
Laplacian filtering (Saba et al., 2019). The second approach consists of
predicting an additional segmentation mask to combine with the one
generated by the CNN. Zhang et al. (2019b), for example, use LBPs to
consider the textural patterns of skin lesions and guide the networks
towards more refined segmentations. Bozorgtabar et al. (2017b) also
employ LBPs combined with pixel-level color information to divide the
dermoscopic image into superpixels, which are then scored as part of
the lesion or the background. The score mask is then combined with
the CNN output mask to compute the final segmentation mask. Despite
the limited number of works devoted to integrating deep features
with hand-crafted ones, the results so far indicate that this may be a
promising research direction.

3.1.4. Transformer models

Initially proposed for natural language processing (Vaswani et al.,
2017), Transformers have proliferated in the last couple of years in
other areas, including computer vision applications, especially with im-
provements made over the years for optimizing the computational cost
of self-attention (Parmar et al., 2018; Hu et al., 2019; Ramachandran
et al., 2019; Cordonnier et al., 2019; Zhao et al., 2020; Dosovitskiy
et al., 2020), and have consequently also been adapted for semantic
segmentation tasks (Ranftl et al.,, 2021; Strudel et al., 2021; Zheng
et al., 2021). For medical image segmentation, TransUNet (Chen et al.,
2021) was one of the first works to use Transformers along with CNNs
in the encoder of a U-Net-like encoder—decoder architecture, and Gulzar
and Khan (2022) showed that TransUNet outperforms several CNN-
only models for skin lesion segmentation. To reduce the computational
complexity involved with high-resolution medical images, Cao et al.
(2021) proposed the Swin-Unet architecture that uses self-attention
within shifted windows (Liu et al., 2021b). For a comprehensive review
of the literature of Transformers in general medical image analysis,
we refer the interested readers to the surveys by He et al. (2022)
and Shamshad et al. (2022).

Zhang et al. (2021b) propose TransFuse which parallelly com-
putes features from CNN and Transformer modules, with the former
capturing low-level spatial information and the latter responsible for
modeling global context, and these features are then combined using a
self-attention-based fusion module. Evaluation on the ISIC 2017 dataset
shows superior segmentation performance and faster convergence. The
multi-compound Transformer (Ji et al., 2021) leverages Transformer-
based self-attention and cross-attention modules between the encoder
and the decoder components of U-Net to learn rich features from
multi-scale CNN features. Wang et al. (2021a) incorporate boundary-
wise prior knowledge in segmentation models using a boundary-aware
Transformer (BAT) to deal with the ambiguous boundaries in skin
lesion images. More recently, Wu et al. (2022a) introduce a feature-
adaptive Transformer network (FAT-Net) that comprised of a dual
CNN-Transformer encoder, a light-weight trainable feature-adaptation
module, and a memory-efficient decoder using a squeeze-and-excitation
module. The resulting segmentation model is more accurate at seg-
menting skin lesions while also being faster (fewer parameters and
computation) than several CNN-only models.

3.2. Loss functions

A segmentation model f may be formalized as a function y = f,(x),
which maps an input image x to an estimated segmentation map J
parameterized by a (large) set of parameters 6. For skin lesions, § is
a binary mask separating the lesion from the surrounding skin. Given a
training set of images x; and their corresponding ground-truth masks y;
{(x;,y);i=1,..., N}, training a segmentation model consists of finding
the model parameters § that maximize the likelihood of observing those
data:

N

0* = arg max Z log P(y;|x;3 0), 1
o =l
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Fig. 8. The distribution of loss functions used by the surveyed works in DL-based skin lesion segmentation. Cross-entropy loss is the most popular loss function (96 papers),
followed by Dice (53 papers) and Jaccard (19 papers) losses. Of the 177 surveyed papers, 65 use a combination of losses, with CE + Dice (27 papers) and CE + Jaccard (11 papers)

being the most popular combinations.

which is performed indirectly, via the minimization of a loss function
between the estimated and the true segmentation masks:
N N
6" = argmin X LGy = arg min D Loy
i=1

()
i=1

The choice of the loss function is thus critical, as it encodes not only
the main optimization objective, but also much of the prior information
needed to guide the learning and constrain the search space. As can
been in Table 3, many skin lesion segmentation models employ a
combination of losses to enhance generalization (see Fig. 8).

3.2.1. Losses based on p-norms

Losses based on p-norms are the simplest ones, and comprise the
mean squared error (MSE) (for p = 2) and the mean absolute error
(MAE) (for p =1).

N

MSE(X.Y:0) == Y [Iy, = 3l @
i=1
N

MAE(X,Y;0) == D" lly, = 3,1I;. “
i=1

In GANSs, to regularize the segmentations produced by the genera-
tor, it is common to utilize hybrid losses containing MSE (¢, loss) (Peng
et al.,, 2019) or MAE (¢, loss) (Peng et al., 2019; Tu et al., 2019; Lei
et al., 2020). The MSE has also been used as a regularizer to match
attention and ground-truth maps (Xie et al., 2020a).

3.2.2. Cross-entropy loss
Semantic segmentation may be viewed as classification at the pixel

level, i.e., as assigning a class label to each pixel. From this perspec-
tive, minimizing the negative log-likelihoods of pixel-wise predictions
(i.e., maximizing their likelihood) may be achieved by minimizing a
cross-entropy loss £,,:

N
Lo(X,Y:0) ==Y y,log, +(1-y,)log(l —5,). 5,

i=1 peQ;

= P(y;, = 11 X(0); 0), )

where €; is the set of all image / pixels, P is the probability, x;, is pth
image pixel in ith image and, y,, € {0,1} and J;, € [0, 1] are respectively
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the true and the predicted labels of x;,. The cross-entropy loss appears
in the majority of deep skin lesion segmentation works, e.g., Song et al.
(2019), Singh et al. (2019), and Zhang et al. (2019a).

Since the gradient of the cross-entropy loss function is inversely
proportional to the predicted probabilities, hard-to-predict samples are
weighted more in the parameter update equations, leading to faster
convergence. A variant, the weighted cross-entropy loss, penalizes pix-
els and class labels differently. Nasr-Esfahani et al. (2019) used pixel
weights inversely proportional to their distance to lesion boundaries
to enforce sharper boundaries. Class weighting may also mitigate the
class imbalance, which, left uncorrected, tends to bias models towards
the background class, since lesions tend to occupy a relatively small
portion of images. Chen et al. (2018b), Goyal et al. (2019a), and Wang
et al. (2019b) apply such a correction, using class weights inversely
proportional to the class pixel frequency. Mirikharaji et al. (2019)
weighted the pixels according to annotation noise estimated using a
set of cleanly annotated data. All the aforementioned losses treat pixels
independently without enforcing spatial coherence, which motivates
their combination with other consistency-seeking losses.

3.2.3. Dice and Jaccard loss

The Dice score and the Jaccard index are two popular metrics for
segmentation evaluation (Section 4.3), measuring the overlap between
predicted segmentation and ground-truth. Models may employ differ-
entiable approximations of these metrics, known as soft Dice (He et al.,
2017; Kaul et al., 2019; He et al., 2018; Wang et al., 2019a) and soft
Jaccard (Venkatesh et al., 2018; Hasan et al., 2020; Sarker et al., 2019)
to optimize an objective directly related to the evaluation metric.

For two classes, these losses are defined as follows:

23 caVipdi
Lyree(X.Y10) =1~ % —ree v ®)
i=1 ZpEQ Yip + Yip
N Z s
YinYi
Lo X, Y30) = 1 - — v o7l %)

N i=1 Zpeg yip + j)ip - yipJ’}ip
Different variations of overlap-based loss functions address the class
imbalance problem in medical image segmentation tasks. The Tanimoto

distance loss, £,; is a modified Jaccard loss optimized in some mod-
els (Canalini et al., 2019; Baghersalimi et al., 2019; Yuan et al., 2017):

Zpeg yipﬁip
2 52 5 7
ZpEQ yip + yip - yipyip

N
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i=1

L,,(X,Y;6)=1-
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which is equivalent to the Jaccard loss when both y;, and j,, are binary.
The Tversky loss (Abraham and Khan, 2019), inspired by the Tver-

sky index, is another Jaccard variant that penalizes false positives and

false negatives differently to address the class imbalance problem:

N N
1 ZpEQ YipYip

L, (X, Y;6)=1- - — —,
N & ¥ caViphip +ayip(L=3,) + B = y;,)9;,
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where « and # tune the contributions of false negatives and false
positives with a + = 1.

Abraham and Khan (2019) combined the Tvserky and focal losses
(Lin et al., 2017), the latter encouraging the algorithm to focus on the
hard-to-predict pixels:

1

=c/

v

L (10)

where y controls the relative importance of the hard-to-predict samples.

3.2.4. Matthews correlation coefficient loss

Matthews correlation coefficient (MCC) loss is a metric-based loss
function based on the correlation between predicted and ground-truth
labels (Abhishek and Hamarneh, 2021). In contrast to the overlap-
based losses discussed in Section 3.2.3, MCC considers misclassifying
the background pixels by penalizing false negative labels, making it
more effective in the presence of skewed class distributions. MCC loss
is defined as:

~ Zpe!l Vip ZpEQ Yip
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where M; is the total number of pixels in the image i.

3.2.5. Deep supervision loss
In DL models, the loss may apply not only to the final decision layer,
but also to the intermediate hidden layers. The supervision of hidden
layers, known as deep supervision, guides the learning of intermedi-
ate features. Deep supervision also addresses the vanishing gradient
problem, leading to faster convergence and improves segmentation
performance by constraining the feature space. Deep supervision loss
appears in several skin lesion segmentation works (He et al., 2017;
Zeng and Zheng, 2018; Li et al., 2018a,b; He et al., 2018; Zhang et al.,
2019a; Tang et al., 2019b), where it is computed in multiple layers, at
different scales. The loss has the general form of a weighted summation
of multi-scale segmentation losses:
m
Lag(X,Y50)= Y 7, £,(X,Y;0), (13)
I=1
where m is the number of scales, £, is the loss at the /th scale, and 7,
adjusts the contribution of different losses.

3.2.6. Star-shape loss

In contrast to pixel-wise losses which act on pixels independently
and cannot enforce spatial constraints, the star-shape loss (Mirikharaji
and Hamarneh, 2018) aims to capture class label dependencies and
preserve the target object structure in the predicted segmentation
masks. Based upon prior knowledge about the shape of skin lesions, the
star-shape loss, L, penalizes discontinuous decisions in the estimated
output as follows:

N
LXK Y500= D N DLy, X1y, = il X 15 = Digls a4

i=1 pEQ qet,,
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where c is the lesion center, £, is the line segment connecting pixels
p and ¢ and, ¢ is any pixel lying on £,. This loss encourages all
pixels lying between p and g on #,, to be assigned the same estimator
whenever p and ¢ have the same ground-truth label. The result is a
radial spatial coherence from the lesion center.

3.2.7. End-point error loss

Many authors consider the lesion boundary the most challenging
region to segment. The end-point error loss (Sarker et al., 2018; Singh
et al., 2019) underscores borders by using the first derivative of the
segmentation masks instead of their raw values:

N
LoeXY:00= Y N AJGY, =02 + Gl = )2, 15)

i=1 peQ
where jz?p and fz}p are the directional first derivatives of the estimated
segmentation map in the x and y spatial directions, respectively and,
similarly, y?p and y}p for the ground-truth derivatives. Thus, this loss
function encourages the magnitude and orientation of edges of estima-
tion and ground-truth to match, thereby mitigating vague boundaries
in skin lesion segmentation.

3.2.8. Adversarial loss

Another way to add high-order class-label consistency is adversar-
ial training. Adversarial training may be employed along with tradi-
tional supervised training to distinguish estimated segmentation from
ground-truths using a discriminator. The optimization objective will
weight a pixel-wise loss £, matching prediction to ground-truth, and
an adversarial loss, as follows:

Logp(X,Y50,60,) = LJX,Y50) = AL (Y,1;60,) + L, (Y,0:0,6,)],  (16)

where 0, are the adversarial model parameters. The adversarial loss
employs a binary cross-entropy loss to encourage the segmentation
model to produce indistinguishable prediction maps from ground-truth
maps. The adversarial objective (Eq. (16)) is optimized in a mini-max
game by simultaneously minimizing it with respect to # and maximizing
it with respect to 6,.

Pixel-wise losses, such as cross-entropy (Izadi et al., 2018; Singh
et al., 2019; Jiang et al., 2019), soft Jaccard (Sarker et al., 2019; Tu
et al., 2019; Wei et al., 2019), end-point error (Tu et al., 2019; Singh
et al., 2019), MSE (Peng et al., 2019) and MAE (Sarker et al., 2019;
Singh et al., 2019; Jiang et al., 2019) losses have all been incorporated
in adversarial learning of skin lesion segmentation. In addition, Xue
et al. (2018) and Tu et al. (2019) presented a multi-scale adversarial
term to match a hierarchy of local and global contextual features in
the predicted maps and ground-truths. In particular, they minimize
the MAE of multi-scale features extracted from different layers of the
adversarial model.

3.2.9. Rank loss

Assuming that hard-to-predict pixels lead to larger prediction errors
while training the model, rank loss (Xie et al., 2020b) is proposed to
encourage learning more discriminative information for harder pixels.
The image pixels are ranked based on their prediction errors, and
the top K pixels with the largest prediction errors from the lesion
or background areas are selected. Let jzg and jzil, are respectively the
selected jth hard-to-predict pixel of background and /th hard-to-predict
pixel of lesion in the image i, we have:

N K K

Lo X, Y50)= D 3 max{0, 5,

i=1 j=11=1

— f/l.l, + margin}, a7
which encourages ,\7,.1, to be greater than y?j plus margin.

Similar to rank loss, narrowband suppression loss (Deng et al., 2020)
also adds a constraint between hard-to-predict pixels of background and
lesion. Different from rank loss, narrowband suppression loss collects
pixels in a narrowband along the ground-truth lesion boundary with
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radius r instead of all image pixels and then selects the top K pixels
with the largest prediction errors.

4. Evaluation

Evaluation is one of the main challenges for any image segmentation
task, skin lesions included (Celebi et al., 2015b). Segmentation evalua-
tion may be subjective or objective (Zhang et al., 2008), the former
involving the visual assessment of the results by a panel of human
experts, and the latter involving the comparison of the results with
ground-truth segmentations using quantitative evaluation metrics.

Subjective evaluation may provide a nuanced assessment of results,
but because experts must grade each batch of results, it is usually
too laborious to be applied, except in limited settings. In objective
assessment, experts are consulted once, to provide the ground-truth
segmentations, and that knowledge can then be reused indefinitely.
However, due to intra- and inter-annotator variations, it raises the
question of whether any individual ground-truth segmentation reflects
the ideal “true” segmentation, an issue we address in Section 4.2.
It also raises the issue of choosing one or more evaluation metrics
(Section 4.3).

4.1. Segmentation annotation

Obtaining ground-truth segmentations is paramount for the objec-
tive evaluation of segmentation algorithms. For synthetically generated
images (Section 2.2), ground-truth segmentations may be known by
construction, either by applying parallel transformations to the original
ground-truth masks in the case of traditional data augmentation, or
by training generative models to synthesize images paired with their
segmentation masks.

For images obtained from real patients, however, human experts
have to provide the ground-truth segmentations. Various workflows
have been proposed to reconcile the conflicting goals of ease of learn-
ing, speed, accuracy, and flexibility of annotation. On one end of the
spectrum, the expert traces the lesion by hand, on images of the skin
lesion printed on photographic paper, which are then scanned (Bogo
et al., 2015). The technique is easy to learn and fast, but the printing
and scanning procedure limits the accuracy, and the physical nature
of the annotations makes corrections burdensome. On the other end
of the spectrum, the annotation is performed on the computer, by a
semi-automated procedure (Codella et al., 2019), with an initial border
generated by a segmentation algorithm, which is then refined by the
expert using an annotation software, by adjusting the parameters of
the segmentation algorithm manually. This method is fast and easy to
correct, but there might be a learning curve, and its accuracy depends
on which algorithm is employed and how much the experts understand
it.

By far, the commonest annotation method in the literature is some-
where in the middle, with fully manual annotations performed on a
computer. The skin lesion image file may be opened either in a raster
graphics editor (e.g., GNU Image Manipulation Program (GIMP) or
Adobe Photoshop), or in a dedicated annotation software (Ferreira
et al., 2012), where the expert traces the borders of the lesion using
a mouse or stylus, with continuous freehand drawing, or with discrete
control points connecting line segments (resulting in a polygon Codella
et al., 2019) or smooth curve segments (e.g., cubic B-splines Celebi
et al., 2007a). This method provides a good compromise, being easy to
implement, fast, and accurate to perform, after an acceptable learning
period for the annotator.

4.2. Inter-annotator agreement
Formally, dataset ground-truths can be viewed as samples of an es-

timator of the true label, which can never be directly observed (Smyth
et al., 1995). This problem is often immaterial for classification, when
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annotation noise is small. However, in medical image segmentation,
ground-truths suffer from both biases (systematic deviations from the
“ideal”) and significant noise (Zijdenbos et al., 1994; Chalana and Kim,
1997; Guillod et al., 2002; Grau et al., 2004; Bogo et al., 2015; Lampert
et al., 2016), the latter appearing as inter-annotator (different experts)
and intra-annotator (same expert at different times) variability.

In the largest study of its kind to date, Fortina et al. (2012) mea-
sured the inter-annotator variability among 12 dermatologists with
varying levels of experience on a set of 77 dermoscopic images, showing
that the average pairwise XOR dissimilarity (Section 4.3) between
annotators was ~ 15%, and that in 10% of cases, this value was > 28%.
They found more agreement among more experienced dermatologists
than less experienced ones. Also, more experienced dermatologists tend
to outline tighter borders than less experienced ones. They suggest
that the level of agreement among experienced dermatologists could
serve as an upper bound for the accuracy achievable by a segmentation
algorithm, i.e., if even highly experienced dermatologists disagree on
how to classify 10% of an image, it might be unreasonable to expect
a segmentation algorithm to agree with more than 90% of any given
ground-truth on the same image (Fortina et al., 2012).

Due to the aforementioned variability issues, whenever possible,
skin lesion segmentation should be evaluated against multiple expert
ground-truths, a good algorithm being one that agrees with the ground-
truths at least as well as the expert agree among themselves (Chalana
and Kim, 1997). Due to the cost of annotation, however, algorithms are
often evaluated against a single ground-truth.

When multiple ground-truths are available, the critical issue is how
to employ them. Several approaches have been proposed:

* Preferring one of the annotations (e.g., the one by the most
experienced expert) and ignoring the others (Celebi et al., 2007a).
Measuring and reporting the results for each annotator sepa-
rately (Celebi et al., 2008), which might require non-trivial mul-
tivariate analyses if the aim is to rank the algorithms.
Measuring each automated segmentation against all correspond-
ing ground-truths and reporting the average result (Schaefer
et al., 2011).

Measuring each automated segmentation against an ensemble
ground-truth formed by combining the corresponding ground-
truths pixel-wise using a bitwise OR (Garnavi et al., 2011a;
Garnavi and Aldeen, 2011), bitwise AND (Garnavi et al., 2011b),
or a majority voting (Iyatomi et al., 2006, 2008; Norton et al.,
2012).

The ground-truth ensembling process can be generalized using a
thresholded probability map (Biancardi et al., 2010). First, all ground-
truths for a sample are averaged pixel-wise into a probability map. Then
the map is binarized, with the lesion corresponding to pixels greater
than or equal to a chosen threshold. The operations of OR, AND, and
majority voting, correspond, respectively to thresholds of 1/n, 1, and
(n—¢)/2n, with n being the number of ground-truths, and € being a small
positive constant. AND and OR correspond, respectively, to the tightest
and loosest possible contours, with other thresholds leading to inter-
mediate results. While the optimal threshold value is data-dependent,
large thresholds focus the evaluation on unambiguous regions, leading
to overly optimistic evaluations of segmentation quality (Smyth et al.,
1995; Lampert et al., 2016).

The abovementioned approaches fail to consider the differences of
experience or performance of the annotators (Warfield et al., 2004).
More elaborate ground-truth fusion alternatives include shape averag-
ing (Rohlfing and Maurer, 2006), border averaging (Chen and Parent,
1989; Chalana and Kim, 1997), binary label fusion algorithms such
as STAPLE (Warfield et al., 2004), TESD (Biancardi et al., 2010),
and SIMPLE (Langerak et al.,, 2010), as well as other more recent
algorithms (Peng and Li, 2013; Peng et al., 2016, 2017a).
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Fig. 9. Sample segmentation results demonstrating inter-annotator disagreements. Note
how annotator preferences can affect the manual segmentations, e.g., smooth lesion
borders (green), jagged lesion borders (black), oversegmented lesion (blue), etc.
Image source: Figure taken from Celebi et al. (2009c) with permission.

STAPLE (Simultaneous Truth And Performance Level Estimation)
has been very influential in medical image segmentation evaluation,
inspiring many variants. For each image and its ground-truth segmenta-
tions, STAPLE estimates a probabilistic true segmentation through the
optimal combination of individual ground-truths, weighting each one
by the estimated sensitivity and specificity of its annotator. STAPLE
may fail when there are only a few annotators or when their perfor-
mances vary too much (Langerak et al., 2010; Lampert et al., 2016),
a situation addressed by SIMPLE (Selective and Iterative Method for
Performance Level Estimation) (Langerak et al., 2010) by iteratively
discarding poor quality ground-truths.

Instead of attempting to fuse multiple ground-truths into a single
one before employing conventional evaluation metrics, the metrics
themselves may be modified to take into account annotation variabil-
ity. Celebi et al. (2009c) proposed the normalized probabilistic rand
index (NPRI) (Unnikrishnan et al., 2007), a generalization of the rand
index (Rand, 1971). It penalizes segmentation results more (less) in
regions where the ground-truths agree (disagree). Fig. 9 illustrates
the idea: ground-truths outlined by three experienced dermatologists
appear in red, green, and blue, while the automated result appears
in black. NPRI does not penalize the automated segmentation in the
upper part of the image, where the blue border seriously disagrees
with the other two (Celebi et al., 2009¢c). Despite its many desirable
qualities, NPRI has a subtle flaw: it is non-monotonic with the fraction
of misclassified pixels (Peserico and Silletti, 2010). Consequently, this
index might be unsuitable for comparing poor segmentation algorithms.

4.3. Evaluation metrics

We can frame the skin lesion segmentation problem as a binary
pixel-wise classification task, where the positive and negative classes
correspond to the lesion and the background skin, respectively. Suppose
that we have an input image and its corresponding segmentations: an
automated segmentation (AS) produced by a segmentation algorithm
and a manual segmentation (MS) outlined by a human expert. We can
formulate a number of quantitative segmentation evaluation measures
based on the concepts of true positive, false negative, false positive, and
true negative, whose definitions are given in Table 2. In this table,
actual and detected pixels refer to any given pixel in the MS and the
corresponding pixel in the AS, respectively.
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Table 2
Definitions of true positive, false negative, false positive, and true negative pixels in
the context of skin lesion segmentation.

Detected pixel

Lesion (+) Background (-)
Actual Lesion (+) True positive False negative
Pixel Background (-) False positive True negative

For a given pair of automated and manual segmentations, we can
construct a 2 x 2 confusion matrix (aka a contingency table Pearson,
1904; Miller and Nicely, 1955) C = ([f FN), where TP, FN, FP, and
TN denote the numbers of true positives, false negatives, false positives,
and true negatives, respectively. Clearly, we have N = TP+FN+FP+TN,
where N is the number of pixels in either image. Based on these
quantities, we can define a variety of scalar similarity measures to
quantify the accuracy of segmentation (Baldi et al., 2000; Japkowicz
and Shah, 2011; Taha and Hanbury, 2015):

Sensitivity (SE) and Specificity (SP) (Kahn, 1942; Yerushalmy,

1 ; Bi t al., 2021): SE = ————— P=——
947; Binney et al., 2021): S TP+FN&S TN"‘FPTP
« Precision (PR) and Recall (RE) (Kent et al., 1955): PR = TP+FP
&RE=_""__
TP+FN

TP+ TN
TP+FN+FP+TN
F-measure (F) (van Rijsbergen, 1979) =

Accuracy (AC) =
2|ASNMS|  2.PR-RE
|AS| + [MS| PR + RE

_ 2TP
= TPAFPEN
» G-mean (GM) (Kubat et al., 1998) = V/SE - SP
+ Balanced Accuracy (BA) (Chou and Fasman, 1978) = SE +SP
IASAMS| TP

Jaccard index (J) (Jaccard, 1901) =

[ASUMS| ~ TP+FN +FP
Matthews Correlation Coefficient (MCC) (Matthews, 1975) =
TP-TN—FP-FN

/(TP +FP)(TP + FN)(TN + FP)(TN + FN)

For each similarity measure, the higher the value, the better the
segmentation. Except for MCC, all of these measures have a unit range,
that is, [0,1]. The [-1,1] range of MCC can be mapped to [0,1] by
adding one to it and then dividing by two. Each of these unit-range
similarity measures can then be converted to a unit-range dissimilarity
measure by subtracting it from one. Note that there are also dissimi-
larity measures with no corresponding similarity formulation. A prime
example is the well-known XOR measure (Hance et al., 1996) defined
as follows:

IAS@MS| _ [(ASUMS) — (ASNMS)| _ FP+FN

XOR = = = .
IMS| IMS| TP+ FN

It is essential to notice that different evaluation measures capture
different aspects of a segmentation algorithm’s performance on a given
dataset, and thus there is no universally applicable evaluation mea-
sure (Japkowicz and Shah, 2011). This is why most studies employ
multiple evaluation measures in an effort to perform a comprehen-
sive performance evaluation. Such a strategy, however, complicates
algorithm comparisons, unless one algorithm completely dominates the
others with respect to all adopted evaluation measures.

Based on their observation that experts tend to avoid missing parts
of the lesion in their manual borders, Garnavi et al. (2011a) argue that
true positives have the highest importance in the segmentation of skin
lesion images. The authors also assert that false positives (background
pixels incorrectly identified as part of the lesion) are less important
than false negatives (lesion pixels incorrectly identified as part of the
background). Accordingly, they assign a weight of 1.5 to TP to signify
its overall importance. Furthermore, in measures that involve both
FN and FP (e.g., AC, F, and XOR), they assign a weight of 0.5 to
FP to emphasize its importance over FN. Using these weights, they

(18)
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Table 3

DL models for skin lesion segmentation. Performance measure reported is the Jaccard index computed on the dataset, shown in boldface. The score is asterisked if it is computed
based on the reported Dice index. The following abbreviations are used: Ref.: reference, Arch.: architecture, Seg.: segmentation, J: Jaccard index, CDE : cross-data evaluation. the
highlighted dataset and PP: postprocessing, con.: connection and conv.: convolution, CE: cross-entropy, WCE: weighted cross-entropy, DS: deep supervision, EPE: end point error,
¢\: ¢, norm, ¢,: ¢, norm and ADV: adversarial loss. Please see the corresponding sections for more details: Section 3.1 for model architectures, Section 3.2 for loss functions, and
Section 4 for model evaluation. An interactive version of this table is available online at https://github.com/sfu-mial/skin-lesion-segmentation-survey.

Ref. Venue Data Arch. Seg. loss J CDE  Augmentation PP code
modules
Jafari et al. (2016) Peer-reviewed Der- Image - - X - v X
conference mQuest pyramid
He et al. (2017) Peer-reviewed ISIC2016 residual con. Dice CE DS 75.80% X Rotation v X
conference ISIC2017 skip con.
image
pyramid
Bozorgtabar et al. (2017b) Peer-reviewed ISIC2016 - - 80.60% X Rotation X X
journal
Ramachandram and Taylor (2017) Peer-reviewed IS1C2017 - CE 79.20% X Rotation, flipping X X
journal color jittering
Yu et al. (2017a) Peer-reviewed 1SIC2016 skip con. - 82.90% X Rotation, translation X v
journal residual con. random noise
cropping
Bi et al. (2017b) Peer-reviewed ISIC2016 - CE 84.64% v Flipping, cropping v X
journal PH?
Jafari et al. (2017) Peer-reviewed Der- image - - X - v X
journal mQuest pyramid
Yuan et al. (2017) Peer-reviewed ISIC2016 - Tanimoto 84.7% v Flipping, rotation v X
journal PH? scaling, shifting
contrast norm.
Ramachandram and DeVries (2017) Non Peer-reviewed ISIC2017 dilated conv. CE 64.20% X Rotation flipping v X
technical report
Bozorgtabar et al. (2017a) Peer-reviewed IS1IC2016 - CE 82.90% X Rotations v X
conference
Bi et al. (2017a) Peer-reviewed ISIC2016 parallel m. s. - 86.36% X Crops, flipping v X
conference
Attia et al. (2017) Peer-reviewed ISIC2016 recurrent net. - 93.00% X - X X
conference
Deng et al. (2017) Peer-reviewed ISIC2016 parallel m. s. - 84.1% X - X X
conference
Mishra and Daescu (2017) Peer-reviewed 1SIC2017 skip con. Dice 84.2% X Rotation flipping v X
conference
Goyal et al. (2017) Peer-reviewed ISIC2017 - CE Dice - X - X X
conference
Vesal et al. (2018a) Peer-reviewed 1SIC2017 dilated conv. Dice 88.00% v - X X
conference PH? dense con.
skip con.
Venkatesh et al. (2018) Peer-reviewed ISIC2017 residual con. Jaccard 76.40% X Rotation, flipping v X
conference skip con. translation, scaling
Yang et al. (2018) Peer-reviewed ISIC2017 skip con. - 74.10% X Rotation, flipping X X
conference parallel m.s.
conv.
Sarker et al. (2018) Peer-reviewed ISIC2016 skip con. CE EPE 78.20% X Rotation, scaling X v
conference ISIC2017 residual con.
dilated conv.
pyramid
pooling
Al-Masni et al. (2018) Peer-reviewed ISIC2017 - CE 77.10% v Rotation X X
journal PH?
Li et al. (2018b) Peer-reviewed 1S1C2017 skip con. DS 77.23% X Flipping, rotation X v
conference residual con.

(continued on next page)
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Table 3 (continued).

Zeng and Zheng (2018) Peer-reviewed IS1C2017 dense con. CE ¢, DS 78.50% X Flipping, rotation v X
conference skip con.
image
pyramid
DeVries and Taylor (2018) Non Peer-reviewed 1S1C2017 skip con. CE 73.00% X Flipping, rotation X X
technical report
Izadi et al. (2018) Peer-reviewed DermoFit skip con. CE ADV 81.20% X Flipping, rotation X v
conference elastic deformation
Li et al. (2018a) Peer-reviewed ISIC2016 skip con. Jaccard DS 76.50% X - X X
journal ISIC2017 residual con.
dense con.
Mirikharaji and Hamarneh (2018) Peer-reviewed 1SIC2017 residual con. CE Star shape 77.30% X - X X
conference
Pollastri et al. (2018) Peer-reviewed IS1IC2017 - Jaccard ¢, 78.10% X GAN v X
conference
Vesal et al. (2018b) Abstract 1SIC2017 dilated conv. Dice 76.67% X Rotation, flipping, X X
dense con. translation, scaling,
skip con. color shift
Chen et al. (2018b) Peer-reviewed IS1IC2017 residual con. WCE 78.70% X Rotation, flipping v X
conference dilated conv. cropping, zooming
parallel m.s. Gaussian noise
conv.
Jahanifar et al. (2018) Non Peer-reviewed ISIC2016 skip con. Tanimoto 80.60% v Flipping, rotation v X
technical report 1SIC2017 pyramid zooming, translation
1S1IC2018 pooling shearing, color shift
parallel m.s. intensity scaling
conv. adding noises

contrast adjust.
sharpness adjust.
disturb illumination
hair occlusion

Mirikharaji et al. (2018) Peer-reviewed 1SIC2016 skip con. CE 83.30% X Flipping, rotation X X
conference
Bi et al. (2018) Non Peer-reviewed 1SIC2018 residual con. CE 83.12% X GAN X X
technical report
He et al. (2018) Peer-reviewed ISIC2016 skip con. CE Dice DS 76.10% X Rotation v X
journal ISIC2017 residual con.
image
pyramid
Xue et al. (2018) Peer-reviewed 1S1C2017 skip con. ¢, DS ADV 78.50% X Cropping color X X
conference residual con. jittering
global conv.
GAN
Ebenezer and Rajapakse (2018) Non Peer-reviewed ISIC 2018 skip con. Dice 75.6% X Rotation flipping v 4
technical report zooming
Goyal et al. (2019b) Peer-reviewed ISIC2017 dilated conv. - 79.34% v - v X
journal PH? parallel m.s.
conv.
separable
conv.
Azad et al. (2019) Peer-reviewed 1SIC2018 skip con. CE 74.00% X - X v
conference dense con.
recurrent
CNN
Alom et al. (2019) Peer-reviewed IS1C2017 skip con. CE 75.68% X - X X
journal residual con.
recurrent
CNN
Yuan and Lo (2019) Peer-reviewed 1S1IC2017 - Tanimoto 76.50% X Rotation, flipping v X
journal shifting, scaling
random normaliz.
Goyal et al. (2019a) Peer-reviewed ISIC2017 dilated conv. WCE 82.20% v - X X
conference PH? parallel m.s.
conv.

(continued on next page)
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Table 3 (continued).

Bi et al. (2019b) Peer-reviewed ISIC2016 skip con. CE 77.73% v Flipping, cropping v X
journal 1SIC2017 residual con.
PH?
Tschandl et al. (2019) Peer-reviewed 1S1C2017 skip con. CE Jaccard 76.80% X Flipping, rotation v X
journal
Li et al. (2021c¢) Peer-reviewed IS1IC2017 skip con. CE 7, 79.80% X Flipping, rotating v X
journal dense con. scaling
semi-
supervised
ensemble
Zhang et al. (2019b) Peer-reviewed 1SIC2016 skip con. CE 72.94% X - X X
journal ISIC2017
Baghersalimi et al. (2019) Peer-reviewed 1SIC2016 skip con. Tanimoto 78.30% v Flipping, cropping X X
journal 1SIC2017 residual con.
PH? dense con.
Jiang et al. (2019) Peer-reviewed 1S1C2017 residual con. ADV 7, 76.90% X Rotation, flipping X X
conference dilated conv.
GAN
Tang et al. (2019b) Peer-reviewed 1SIC2016 skip con. Tanimoto DS 85.34% X Rotation, flipping X X
conference
Bi et al. (2019a) Peer-reviewed 1SIC2017 residual con. CE 77.14% X GAN X X
conference
Abraham and Khan (2019) Peer-reviewed 1SIC2018 skip con. TV Focal 74.80% X - X v
conference image
pyramid
attention
Cui et al. (2019) Peer-reviewed ISIC2018 dilated conv. - 83.00% X - X X
conference parallel m.s.
conv.
separable
conv.
Song et al. (2019) Peer-reviewed 1S1C2017 skip con. CE Jaccard 76.50% X - X X
conference residual con.
dense con.
attention
mod.
Singh et al. (2019) Peer-reviewed ISIC2016 skip con. CE 7, EPE 78.65% X - X v
journal 1SIC2017 residual con.
ISIC2018 factorized
conv.
attention
mod. GAN
Tan et al. (2019b) Peer-reviewed 1SIC2017 dilated conv. Dice 62.29%* v - v X
journal DermoFit
PH?
Kaul et al. (2019) Peer-reviewed ISIC2017 skip con. Dice 75.60% X Channel shift X X
conference residual con.
attention
mod.
De Angelo et al. (2019) Peer-reviewed 1SIC2017 skip con. CE Dice 76.07% X Flipping, shifting v X
conference Private rotation color
jittering
Zhang et al. (2019a) Peer-reviewed ISIC2017 skip con. CE Dice DS 78.50% v Flipping, rotation v X
journal PH? residual con. whitening contrast
parallel m.s. enhance.
conv.
Soudani and Barhoumi (2019) Peer-reviewed 1S1IC2017 residual con. CE 78.60% X Rotation, flipping X X
journal
Mirikharaji et al. (2019) Peer-reviewed 1SIC2017 skip con. WCE 68.91%* X - X X
conference
Nasr-Esfahani et al. (2019) Peer-reviewed Der- dense con. WCE 85.20% X Rotation, flipping X X
journal mQuest cropping

(continued on next page)
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Wang et al. (2019a) Peer-reviewed ISIC2017 skip con. WDice 77.60% Copping, flipping
conference 1S1IC2018 residual con.
parallel m.s.
conv.
attention
mod.
Sarker et al. (2019) Non Peer-reviewed 1SIC2017 factorized CE Jaccard 77.98% Flipping gamma
technical report 1SIC2018 conv. Z,, ADV reconst. contrast
attention adjust.
mod. GAN
Tu et al. (2019) Peer-reviewed 1SIC2017 skip con. Jaccard EPE, 76.80% Flipping
journal PH? residual con. ¢, DS, ADV
dense con.
GAN
Wei et al. (2019) Peer-reviewed ISIC2016 skip con. Jaccard ¢, 80.45% Rotation, flipping
journal ISIC2017 residual con. ADV color jittering
PH? attention
mod. GAN
Unver and Ayan (2019) Peer-reviewed 1SIC2017 - 123 74.81% -
journal PH?
Al-masni et al. (2019) Peer-reviewed 1S1IC2017 - - 77.11% Rotation, flipping
conference
Canalini et al. (2019) Peer-reviewed 1S1IC2017 dilated conv. CE Tanimoto 85.00% Rotating, flipping
conference parallel m.s. shifting, shearing
conv. scaling color
separable jittering
conv.
Wang et al. (2019b) Peer-reviewed 1S1C2017 residual con. WCE 78.10% Flipping, scaling
conference
Alom et al. (2020) Peer-reviewed 1S1IC2018 skip con. CE 88.83% Flipping
conference residual con.
recurrent
CNN
Pollastri et al. (2020) Peer-reviewed 1S1IC2017 - Tanimoto 78.90% GAN flipping,
journal rotation shifting,
scaling color
jittering
Liu et al. (2019b) Peer-reviewed ISIC2017 skip con. CE 75.20% Scaling, cropping
conference dilated conv. rotation, flipping
image deformation
Abhishek and Hamarneh (2019) Peer-reviewed 1SIC2017 skip con. - 68.69%* Rotation, flipping
conference PH? GAN
Shahin et al. (2019) Peer-reviewed 1SIC2018 skip con. Generalized 73.8% Rotation flipping
conference image Dice zooming
pyramid
Adegun and Viriri (2019) Peer-reviewed ISIC2017 - Dice 83.0% Elastic
conference
Taghanaki et al. (2019) Peer-reviewed ISIC 2017 skip con. Dice ¢, SSIM 69.35%" Rotation flipping
conference gradient-based
perturbation
Saini et al. (2019) Peer-reviewed ISIC 2017 skip con. Dice 84.9% Rotation, flipping
conference ISIC 2018 multi-task shearing, stretch
PH2 crop, contrast
Wang et al. (2019¢) Peer-reviewed ISIC2016 skip con. WCE 81.47% Flipping, scaling
journal ISIC2017 residual con.
dilated conv.
Kamalakannan et al. (2019) Peer-reviewed ISIC skip con. CE - -
journal Archive
Hasan et al. (2020) Peer-reviewed IS1IC2017 skip con. CE Jaccard 77.50% Rotation, zooming
journal PH? dense con. shifting, flipping
separable
conv.
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Table 3 (continued).

Al Nazi and Abir (2020) Peer-reviewed ISIC2018 skip con. Dice 80.00% v Rotation, zooming X v
conference PH? flipping, elastic dist.
Gaussian dist.
histogram equal.
color jittering

Deng et al. (2020) Peer-reviewed 1SIC2017 dilated conv. Dice 83.9% v Rotation v X
conference PH? parallel m.s. Narrowband
conv. suppression
separable
conv. semi-
supervised
Xie et al. (2020b) Peer-reviewed 1SIC2017 dilated conv. Dice Rank 80.4% v Cropping, scaling X v
journal PH? parallel m.s. rotation, shearing
conv. shifting, zooming
separable whitening, flipping
conv.
Zhang et al. (2020a) Peer-reviewed SCD skip con. Kappa Loss 84.00%* X Rotation, shifting X v
conference 1SIC2016 shearing, zooming
1SIC2017 flipping
1SIC2018
Saha et al. (2020) Peer-reviewed 1S1C2017 skip con. CE 81.9% X Color jittering X X
conference ISIC2018 dense con. rotation flipping
translation
Henry et al. (2020) Peer-reviewed ISIC2018 skip con. - 78.04% X Color jittering X v
conference parallel m. s. rotation, cropping
conv. flipping, shift
attention
mod.
Jafari et al. (2020) Peer-reviewed ISIC2018 skip con. CE 75.5% X - X v
conference residual con.
dense con.
Li et al. (2020a) Peer-reviewed ISIC2018 skip con. CE Dice 75.5% X - X X
conference residual con.
ensemble
semi-
supervised
Guo et al. (2020) Peer-reviewed ISIC2018 skip con. Focal Jaccard 77.60% X - X v
conference dilated conv.
parallel m. s.
conv.
Li et al. (2020b) Peer-reviewed ISIC2018 skip con. MSE KLD 87.74%* X - X X
conference residual con.
self-
supervised
Jiang et al. (2020) Peer-reviewed ISIC2017 skip con. CE 73.35% X Flipping X X
journal PH? residual con.
attention
mod.
Qiu et al. (2020) Peer-reviewed ISIC2017 ensemble - 80.02% X Translation rotation v X
journal PH? shearing
Xie et al. (2020a) Peer-reviewed 1SIC2016 attention CE 78.3% X Rotation flipping X X
journal 1SIC2017 mod.
PH?
Zafar et al. (2020) Peer-reviewed ISIC2017 skip con. CE 77.2% X Rotation X X
journal PH? residual con.
Azad et al. (2020) Peer-reviewed ISIC 2017 dilated conv. - 96.98% X - X v
conference ISIC 2018 attention
PH2 mod.
Nathan and Kansal (2020) Non Peer-reviewed ISIC 2016 skip con. CE Dice 78.28% X Rotation, flipping X X
technical report ISIC 2017 residual con. shearing, zoom
ISIC 2018
PH2

(continued on next page)
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Table 3 (continued).

Mirikharaji et al. (2021) Peer-reviewed ISIC skip con. CE 72.11% X - X X
conference Archive residual con.
PH2 ensemble
DermoFit
Oztiirk and Ozkaya (2020) Peer-reviewed ISIC 2017 residual con. - 78.34% v - X X
journal PH2
Abhishek et al. (2020) Peer-reviewed ISIC 2017 skip con. Dice 75.70% v Rotation flipping X v
conference DermoFit
PH2
Kaymak et al. (2020) Peer-reviewed ISIC 2017 - - 72.5% X - X X
journal
Bagheri et al. (2020) Peer-reviewed 1S1C2017 dilated conv. - 79.05% v Rotation, flipping X X
journal Der- parallel m.s. brightness change
mQuest conv. resizing
separable
conv.
Jayapriya and Jacob (2020) Peer-reviewed ISIC2016 skip con. - 92.42% X - X X
journal parallel m.s.
conv.
Wang et al. (2020a) Non Peer-reviewed ISIC2016 residual con. CE Dice DS 80.30% v Flipping, rotation X X
technical report 1SIC2017 dilated conv. cropping
PH? attention
mod.
Wang et al. (2020b) Non Peer-reviewed 1SIC2018 attention Dice Focal 80.6% X Rotation flipping X X
technical report PH? mod. skip Tversky cropping
con. parallel
m.s. conv.
recurrent
CNN
Ribeiro et al. (2020) Peer-reviewed ISIC skip con. Soft Jaccard - v Gaussian noise color v v
conference Archive residual con. CE jittering
PH? dilated conv.
DermoFit
Zhu et al. (2020) Peer-reviewed ISIC2018 skip con. CE Dice 82.15% X Flipping X X
conference residual con.
dilated conv.
attention
mod.
Gu et al. (2020) Peer-reviewed ISIC 2018 residual con. Dice 85.32%* X Cropping, flipping X v
journal skip con. rotation
attention
mod.
Lei et al. (2020) Peer-reviewed ISIC 2017 skip con. CE 7, ADV 77.1% v Flipping, rotation X X
journal ISIC 2018 dense con.
dilated conv.
GAN
Andrade et al. (2020) Peer-reviewed DermoFit residual con. Dice 81.03% X Flipping, brightness X X
journal SMART- dilated conv. saturation, contrast,
SKINS GAN hue Gaussian hue
Wu et al. (2020) Peer-reviewed ISIC 2017 residual con. CE Dice 82.55% X Flipping, rotation X X
journal ISIC 2018 attention scaling, cropping
mod. sharpening, color
multi-scale distribution adj.,
noise
Arora et al. (2021) Peer-reviewed ISIC 2018 skip con. Dice Tversky 83% X Flipping v X
journal attention Focal Tversky
mod.
Jin et al. (2021) Peer-reviewed 1SIC2017 skip con. Dice Focal 80.00% X Flipping, rotation X v
journal 1SIC2018 residual con. affine trans. scaling,
attention cropping
mod.
Hasan et al. (2021) Peer-reviewed ISIC 2016 skip con. Dice CE 66.66%* X Flipping, rotation X X
journal ISIC 2017 residual con. shifting, zooming
separable intensity adjust.
conv.

(continued on next page)

23



Z. Mirikharaji et al. Medical Image Analysis 88 (2023) 102863

Table 3 (continued).

Kosgiker et al. (2021) Peer-reviewed ISIC 2017 - MSE CE 90.25% X - X X
journal PH?
Bagheri et al. (2021a) Peer-reviewed 1SIC2016 parallel m.s. Dice CE 85.04% v Rotation flipping X X
journal 1SIC2017 conv. dilated color jittering
1SIC2018 conv.
PH? Der-
mQuest
Saini et al. (2021) Peer-reviewed ISIC2017 pyramid Dice 85.00% v Rotation, shearing X X
conference 1SIC2018 pooling color jittering
PH? residual con.
skip con.
dilated conv.
attention
mod.
Tong et al. (2021) Peer-reviewed ISIC2016 skip con. CE 84.2% v Flipping X X
journal 1S1IC2017 attention
PH? mod.
Bagheri et al. (2021b) Peer-reviewed Der- ensemble CE Focal 86.53% v Rotation flipping v X
journal mQuest color jittering
ISIC2017
PH?
Ren et al. (2021) Peer-reviewed 1S1IC2017 dense con. Dice CE 76.92% X Flipping, rotation X X
journal dilated conv.
separable
conv.
attention
mod.
Liu et al. (2021a) Peer-reviewed 1SIC2017 residual con. WCE 79.46% X Flipping, cropping X X
journal dilated conv. rotation image
pyramid deformation
pooling
Khan et al. (2021) Peer-reviewed 1S1C2018 skip con. Dice 85.10% X - X v
journal image
pyramid
Redekop and Chernyavskiy (2021) Peer-reviewed IS1C2017 - - 68.77%" X - X X
conference
Kaul et al. (2021) Peer-reviewed 1SIC2018 skip con. CE Tversky 82.71% X - X v
conference residual con. adaptive
attention logarithmic
mod.
Abhishek and Hamarneh (2021) Peer-reviewed IS1C2017 skip con. MCC 75.18% X Flipping, rotation X v
conference PH?
DermoFit
Tang et al. (2021b) Peer-reviewed IS1C2018 skip con. CE 78.25% X - X X
journal
Xie et al. (2021) Peer-reviewed 1SIC2018 dilated conv. CE KL div. 82.37% X Scaling, rotation X X
conference semi- elastic
supervised transformation
Poudel and Lee (2021) Peer-reviewed 1SIC2017 skip con. CE 87.44% X Scaling, flipping X X
journal attention rotation Gaussian
mod. noise median blur
Sahin et al. (2021) Peer-reviewed 1SI1C2016 skip con. - 74.51% X Resize rotation v X
journal ISIC 2017 Gaussian reflection
process
Sarker et al. (2021) Peer-reviewed ISIC 2017 parallel m.s. ¢, Jaccard 81.98% X Flipping, contrast X X
journal ISIC 2018 conv. gamma
attention reconstruction
mod. GAN

(continued on next page)
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Table 3 (continued).

Wang et al. (2021b) Peer-reviewed ISIC 2016 residual con. CE 82.4% X Flipping, scaling X X
journal ISIC 2017 skip con. cropping
lesion-based
pooling
feature fusion
Sachin et al. (2021) book chapter ISIC 2018 residual con. - 75.96% X Flipping, scaling X X
skip con. color jittering
Wibowo et al. (2021) Peer-reviewed ISIC 2017 BConvLSTM Jaccard 80.25% X Distortion, blur v v
journal ISIC 2018 separable color jittering
PH2 conv. contrast gamma
residual con. sharpen
skip con.
Gudhe et al. (2021) Peer-reviewed ISIC 2018 dilated conv. CE 91% X Flipping, scaling X v
journal residual con. shearing, color
skip con. jittering Gaussian

blur Gaussian noise

Khouloud et al. (2021) Peer-reviewed ISIC 2016 Feature - 86.92%* X - X X
journal ISIC 2017 pyramid
ISIC 2018 residual con.
PH2 skip con.
attention
mod.
Gu et al. (2021) Peer-reviewed ISIC 2017 asymmetric DS 79.4% X Cropping, flipping X X
conference conv. skip rotation
con.
Zhao et al. (2021) Peer-reviewed ISIC 2018 pyramid CE Dice 86.84% X Cropping X X
journal pooling
attention
mod. residual
con. skip
con.
Tang et al. (2021a) Peer-reviewed ISIC 2016 attention Focal 80.7% X Copying X X
journal ISIC 2017 mod. residual
ISIC 2018 con. skip
con.
ensemble
pyramid
pooling
Zunair and Hamza (2021) Peer-reviewed ISIC 2018 sharpening CE 79.78% X - X v
journal kernel
residual con.
Li et al. (2021a) Peer-reviewed ISIC 2017 skip con. CE KL div. 71.12%* X - X v
conference
Zhang et al. (2021a) Peer-reviewed ISIC 2016 skip con. CE Dice 80.49% X Flipping, rotation X v
conference residual con. zooming, cropping
feature fusion
semi-
supervised
self-
supervised
Xu et al. (2021) Peer-reviewed ISIC 2018 Transformer Dice 89.6% X Flipping, rotation X X
conference multi-scale
Ahn et al. (2021) Peer-reviewed PH? self- CE Spatial 71.53%* X - X v
conference supervised loss
clustering Consistency
loss
Zhang et al. (2021b) Peer-reviewed ISIC 2017 skip con. CE Jaccard 79.5% X Rotation, flipping X v
conference feature fusion color jittering
Transformer

(continued on next page)
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Table 3 (continued).

Ji et al. (2021) Peer-reviewed ISIC 2018 skip con. CE Dice 82.4%* X Flipping X v
conference multi-scale
Transformer
Wang et al. (2021a) Peer-reviewed ISIC 2016 multi-scale CE Dice 84.3%* v Flipping, scaling X v
conference ISIC 2018 Transformer
PH?
Yang et al. (2021) Peer-reviewed ISIC 2018 skip con. CE Dice 94.0% X Rotation, flipping X X
journal PH? multi-scale cropping, HSC
feature fusion manipulation,

luminance and
contrast shift

Tao et al. (2021) Peer-reviewed ISIC 2017 skip con. - 78.85% X Rotation X X
journal PH? dense con.
attention
mod.

multi-scale

Kim and Lee (2021) Peer-reviewed ISIC 2016 residual con. boundary 84.33%* X - X X
journal PH? skip con. aware loss
Dai et al. (2022) Peer-reviewed ISIC2018 residual con. CE Dice 83.45% v Cropping, flipping X X
journal PH2 skip con. SoftDice rotation
dilated conv.
image
pyramid
attention
mod.
Bi et al. (2022) Peer-reviewed 1SIC2016 residual con. CE 83.70% v Cropping, flipping X X
journal ISIC2017 skip con.
PH2 attention
mod. feature
fusion
Lin et al. (2022) Peer-reviewed ISIC 2017 attention CE Jaccard 77.81%* X Flipping, rotation X X
conference ISIC 2018 mod. DS
Transformer
Wu et al. (2022b) Peer-reviewed PH? skip con. CE 70.0%* X - X X
conference Transformer

multi-scale

Valanarasu and Patel (2022) Peer-reviewed ISIC 2018 skip con. CE Dice 81.7% X - X v
conference
Basak et al. (2022) Peer-reviewed ISIC 2017 residual con. CE Jaccard 97.4% X - X v
journal PH? multi-scale DS
HAM10000 attention
mod.
Wu et al. (2022a) Peer-reviewed ISIC 2016 skip con. CE Dice 76.53% X Flipping, rotation X v
journal ISIC 2017 residual con. brightness change
ISIC 2018 attention contrast change in
PH2 mod. H, S,V
Transformer
Liu et al. (2022a) Peer-reviewed ISIC 2017 skip con. CE Dice 78.62% X Flipping, rotation X X
journal residual con.
dilated conv.
attention
mod.
Wang et al. (2022b) Peer-reviewed ISIC 2017 skip con. - 84.52% X Flipping, rotation X v
journal residual con.
Transformer
Zhang et al. (2022a) Peer-reviewed ISIC 2017 skip con. Dice Focal 74.54% X Flipping X X
conference feature fusion
Wang et al. (2022d) Peer-reviewed ISIC 2017 skip con. Dice 76.5% v Rotation, flipping X X
conference PH? residual con. color jittering
self-
supervised

(continued on next page)
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Table 3 (continued).
Dong et al. (2022) Peer-reviewed ISIC 2016 residual con. CE Dice 74.55% X - X X
journal ISIC 2017 skip con.
ISIC 2018 Transformer
feature fusion

Chen et al. (2022) Peer-reviewed ISIC 2017 skip con. CE 80.36% v Flipping, rotation X X
journal PH? attention affine trans.
mod. masking, mesh
recurrent net. distortion
Kaur et al. (2022b) Peer-reviewed ISIC 2016 dilated conv. CE 81.7% v Scaling, rotation X X
journal ISIC 2017 translation
ISIC 2018
PH?
Badshah and Ahmad (2022) Peer-reviewed ISIC 2018 residual con. - 94.5% X - X X
journal BConvLSTM
Alam et al. (2022) Peer-reviewed HAM10000 residual con. Dice 91.1% X - X v
journal separable
conv.
Yu et al. (2022) Peer-reviewed ISIC 2018 skip con. - 87.89% X - X X
journal attention
mod.

multi-scale

Jiang et al. (2022) Peer-reviewed ISIC 2017 skip con. CE Jaccard 80.5% X - X X
journal ISIC 2018 attention
mod.
ConvLSTM
Ramadan et al. (2022) Peer-reviewed ISIC 2018 skip con. CE Dice 91.4% X - X X
journal attention sens.-spec.
mod. loss
Zhang et al. (2022b) Peer-reviewed ISIC 2017 skip con. CE 73.89% X Scaling, flipping X X
journal ISIC 2018 dense con. contrastive color distortion
semi- loss
supervised
Tran and Pham (2022) Peer-reviewed ISIC 2017 skip con. Focal Tversky 79.2% X Rotation, zooming X X
journal PH? attention fuzzy loss flipping
mod.
Wang and Wang (2022) Peer-reviewed ISIC 2017 skip con. CE Jaccard 78.28% X Rotation, zooming X X
journal residual con. resizing, shifting
attention
mod.
Zhao et al. (2022b) Peer-reviewed ISIC 2017 skip con. self- CE Dice 67.08%* X - X X
conference supervised
Wang et al. (2022c) Peer-reviewed PH? few shot Dice 86.97%* X - X X
conference mask avg.
pooling
Wang et al. (2022a) Peer-reviewed ISIC 2017 residual con. CE Jaccard 78.76% X - X X
conference ISIC 2018 dilated conv.

multi-scale
feature fusion
Transformer

Liu et al. (2022b) Peer-reviewed ISIC 2017 skip con. CE 80.19% X - X X
conference ISIC 2018 dilated conv.
multi-scale
pyramid
pooling
Transformer

Gu et al. (2022) Peer-reviewed ISIC 2017 skip con. CE ¢, 80.53% X Scaling, rotation X X
journal global flipping
adaptive
pooling

(continued on next page)
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Table 3 (continued).
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Khan et al. (2022) Peer-reviewed ISIC 2017 residual con. CE 79.2% X - X X
journal PH? attention
mod.
ensemble
Alahmadi and Alghamdi (2022) Peer-reviewed ISIC 2017 skip con. CE Dice ¢, 82.78%* X - X X
journal ISIC 2018 feature fusion
PH? semi-
supervised
Transformer
Li et al. (2022) Peer-reviewed ISIC 2018 skip con. CE Dice 88.92% X Flipping, rotation X X
journal residual con.
dilated conv.
attention
mod.
pyramid
pooling
multi-scale
Kaur et al. (2022a) Peer-reviewed ISIC 2016 - Tversky 77.8% v Rotation, scaling X X
journal ISIC 2017
ISIC 2018
PH?

construct a weighted performance index, which is an arithmetic average
of six commonly used measures, namely SE, SP, PR, AC, F, and
(unit complement of) XOR. This scalar evaluation measure facilitates
comparisons among algorithms.

In a follow-up study, Garnavi and Aldeen (2011) parameterize the
weights of TP, FN, FP, and TN in their weighted performance index and
then use a constrained non-linear program to determine the optimal
weights. They conduct experiments with five segmentation algorithms
on 55 dermoscopic images. They conclude that the optimized weights
not only lead to automated algorithms that are more accurate against
manual segmentations, but also diminish the differences among those
algorithms.

We make the following key observations about the popular evalua-
tion metrics and how they have been used in the skin lesion segmenta-
tion literature:

* Historically, AC has been the most popular evaluation measure
owing to its simple and intuitive formulation. However, this mea-
sure tends to favor the majority class, leading to overly optimistic
performance estimates in class-imbalanced domains. This draw-
back prompted the development of more elaborate performance
evaluation measures, including GM, BA, and MCC.

SE and SP are especially popular in medical domains, tracing
their usage in serologic test reports in the early 1900s (Binney
et al., 2021). SE (aka True Positive Rate) quantifies the accu-
racy on the positive class, whereas SP (aka True Negative Rate)
quantifies the accuracy on the negative class. These measures
are generally used together because it is otherwise trivial to
maximize one at the expense of the other (an automated border
enclosing the corresponding manual border will attain a perfect
SE, whereas in the opposite case, we will have a perfect SP).
Unlike AC, they are suitable for class-imbalanced domains. BA
and GM combine these measures into a single evaluation measure
through arithmetic and geometric averaging, respectively. Unlike
AC, these composite measures are suitable for class-imbalanced
domains (Luque et al., 2020).

PR is the proportion of examples assigned to the positive class
that actually belongs to the positive class. RE is equivalent to
SE. PR and RE are typically used in information retrieval appli-
cations, where the focus is solely on relevant documents (posi-
tive class). F combines these measures into a single evaluation
measure through harmonic averaging. This composite measure,
however, is unsuitable for class-imbalanced domains (Zou et al.,
2004; Chicco and Jurman, 2020; Luque et al., 2020).

28

MCC is equivalent to the phi coefficient, which is simply the
Pearson correlation coefficient applied to binary data (Chicco and
Jurman, 2020). MCC values fall within the range of [-1, 1] with
—1 and 1 indicating perfect misclassification and perfect classifi-
cation, respectively, while 0 indicating a classification no better
than random (Matthews, 1975). Although it is biased to a certain
extent (Luque et al., 2020; Zhu, 2020), this measure appears to be
suitable for class-imbalanced domains (Boughorbel et al., 2017;
Chicco and Jurman, 2020; Luque et al., 2020).

J (aka Intersection over Union Jaccard, 1912) and F (aka Dice co-
efficient aka Sgrensen—Dice coefficient Dice, 1945; Sgrensen, 1948)
are highly popular in medical image segmentation (Crum et al.,
2006). These measures are monotonically related as follows: J =
F/2 — F) and F = 2J/(1 + J). Thus, it makes little sense
to use them together. There are two major differences between
these measures: (i) (1 — J) is a proper distance metric, whereas
(1 — F) is not (it violates the triangle inequality). (ii) It can be
shown (Zijdenbos et al., 1994) that if TN is sufficiently large
compared to TP, FN, and FP, which is common in skin lesion
segmentation, F becomes equivalent to Cohen’s kappa (Cohen,
1960), which is a chance-corrected measure of inter-observer
agreement.

Among the seven composite evaluation measures given above,
AC, GM, BA, and MCC are symmetric, that is, they are invariant
to class swapping, while F, J, and XOR are asymmetric.

XOR is similar to False Negative Rate, that is, the unit complement
of SE, with the exception that XOR has an extra additive TN
term in its numerator. While XOR values are guaranteed to be
nonnegative, they do not have a fixed upper bound, which makes
aggregations of this measure difficult. XOR is also biased against
small lesions (Celebi et al., 2009¢c). Nevertheless, owing to its in-
tuitive formulation, XOR was popular in skin lesion segmentation
until about 2015 (Celebi et al., 2015b).

The 2016 and 2017 ISIC Challenges (Gutman et al., 2016; Codella
et al,, 2018) adopted five measures: AC, SE, SP, F, and J,
with the participants ranked based on the last measure. The
2018 ISIC Challenge (Codella et al., 2019) featured a thresholded
Jaccard index, which returns the same value as the original J
if the value is greater than or equal to a predefined threshold
and zero otherwise. Essentially, this modified index considers
automated segmentations yielding J values below the threshold
as complete failures. The challenge organizers set the threshold
equal to 0.65 based on an earlier study (Codella et al., 2017) that
determined the average pairwise J similarities among the manual
segmentations outlined by three expert dermatologists. Since the



Z. Mirikharaji et al.

majority of papers in this survey (168 out of 177 papers) use the
ISIC datasets (Fig. 3), we list the J for all the papers in Table 3
wherever it has been reported in the corresponding papers. For
papers that did not report J and instead reported F, we list the
computed J based on F and denote it with an asterisk.

Some of the aforementioned measures (i.e., GM and BA) have not
been used in a skin lesion segmentation study yet.

The evaluation measures discussed above are all region-based and
thus fairly insensitive to border irregularities (Lee et al., 2003),
i.e., indentations, and protrusions along the border. Boundary-
based evaluation measures (Taha and Hanbury, 2015) have not
been used in the skin lesion segmentation literature much except
for the symmetric Hausdorff metric (Silveira et al., 2009), which
is known to be sensitive to noise (Huttenlocher et al., 1993) and
biased in favor of small lesions (Bogo et al., 2015).

5. Discussion and future research

In this paper, we presented an overview of DL-based skin lesion
segmentation algorithms. A lot of work has been done in this field since
the first application of CNNs on these images in 2015 (Codella et al.,
2015). In fact, the number of skin lesion segmentation papers published
over the past 8 years (2015-2022) is more than thrice those published
over the previous 17 years (1998-2014) (Celebi et al., 2015b).

However, despite the large body of work, skin lesion segmentation
remains an open problem, as evidenced by the ISIC 2018 Skin Lesion
Segmentation Live Leaderboard (ISIC, 2018). The live leaderboard has
been open and accepting submissions since 2018, and even after the
permitted usage of external data, the best thresholded Jaccard index
(the metric used to rank submissions) is 83.6%. Additionally, the
release of the HAM10000 lesion segmentations (Tschandl et al., 2020;
ViDIR Dataverse, 2020) in 2020 shows that progressively larger skin
lesion segmentation datasets continue to be released. We believe that
the following aspects of skin lesion segmentation via deep learning are
worthy of future work:

+ Mobile dermoscopic image analysis: With the availability of vari-
ous inexpensive dermoscopes designed for smartphones, mobile
dermoscopic image analysis is of great interest worldwide, es-
pecially in regions where access to dermatologists is limited.
Typical DL-based image segmentation algorithms have millions
of weights. In addition, classical CNN architectures are known
to exhibit difficulty dealing with certain image distortions such
as noise and blur (Dodge and Karam, 2016), and DL-based skin
lesion diagnosis models have been demonstrated to be susceptible
to similar artifacts: various kinds of noise and blur, brightness and
contrast changes, dark corners (Maron et al., 2021b), bubbles,
rulers, ink markings, etc. (Katsch et al., 2022). Therefore, the
current dermoscopic image segmentation algorithms may not be
ideal for execution on typically resource-constrained mobile and
edge devices, needed for patient privacy so that uploading skin
images to remote servers is avoided. Leaner DL architectures,
e.g., MobileNet (Howard et al., 2019), ShuffleNet (Zhang et al.,
2018), EfficientNet (Tan and Le, 2019), MnasNet (Tan et al.,
2019a), and UNeXt (Valanarasu and Patel, 2022), should be
investigated in addition to the robustness of such architectures
with respect to image noise and blur.

Datasets: To train more accurate and robust deep neural seg-
mentation architectures, we need larger, more diverse, and more
representative skin lesion datasets with multiple manual segmen-
tations per image. Additionally, as mentioned in Section 2.1,
several skin lesion image classification datasets do not have the
corresponding lesion mask annotations, and given their popular-
ity in skin image analysis tasks, they may be good targets for man-
ual delineations. For example, the PAD-UFES-20 dataset (Pacheco
et al., 2020) consists of clinical images of skin lesions captured
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using smartphones, and obtaining ground-truth segmentations on
this dataset would help advance skin image analysis on mobile
devices. Additionally, a recent study conducted by Daneshjou
et al. (2021a) found that as little as 10% of the Al-based studies
for dermatological diagnosis included skin tone information for
at least one dataset used, and that several studies included little
to no images of darker skin tones, underlining the need to curate
datasets with diverse skin tones.

Collecting segmentation annotations: At the time of this writing,
the ISIC Archive contains over 71,000 publicly available images.
Considering that the largest public dermoscopic image set con-
tained a little over 1000 images about six years ago, we have
come a long way. The more pressing problem now is the lack
of manual segmentations for most of these images. Since manual
segmentation by medical experts is laborious and costly, crowd-
sourcing techniques (Kovashka et al., 2016) could be explored to
collect annotations from non-experts. Experts could then revise
these initial annotations, or methods that tackle the problem of
annotation noise (Mirikharaji et al., 2019; Karimi et al., 2020; Li
et al., 2021a) could be explored. Note that the utility of crowd-
sourcing in medical image annotation has been demonstrated in
multiple studies (Foncubierta-Rodriguez and Muller, 2012; Gurari
et al., 2015; Sharma et al., 2017; Goel et al., 2020). Additionally,
keeping in mind the time-consuming nature of manual supervised
annotation, an alternative is to use weakly-supervised annotation,
e.g., bounding-box annotations (Dai et al., 2015; Papandreou
et al., 2015), which are much less time-consuming to collect. For
example, for several large skin lesion image datasets that do not
have any lesion mask annotations (see Section 2.1), bounding-box
lesion annotations can be obtained more easily than dense pixel-
level segmentation annotations. In addition, weakly-supervised
annotation (Bearman et al., 2016; Tajbakhsh et al., 2020; Roth
et al., 2021; En and Guo, 2022) is more amenable to crowdsourc-
ing (Maier-Hein et al., 2014; Rajchl et al., 2016; Papadopoulos
et al., 2017; Lin et al., 2019), especially for non-experts.
Handling multiple annotations per image: If the skin lesion im-
age dataset at hand contains multiple manual segmentations per
image, one should consider either using an algorithm such as
STAPLE (Warfield et al., 2004) for fusing the manual segmen-
tations (see Section 4), or relying on learning-based approaches,
either through variants of STAPLE adapted for DL-based seg-
mentation (Kats et al.,, 2019; Zhang et al., 2020b), or other
methods (Mirikharaji et al., 2021; Lemay et al., 2022). Such a
fusion algorithm can also be used to build an ensemble of multiple
automated segmentations.

Supervised segmentation evaluation measures: Supervised seg-
mentation evaluation measures popular in the skin image analysis
literature (see Section 4.3) are often region-based, pair-counting
measures. Other region-based measures, such as information-
theoretic measures (e.g., mutual information, variation of infor-
mation, etc.) as well as boundary-based measures e.g., Hausdorff
distance (Taha and Hanbury, 2015) should be explored as well.
Unsupervised segmentation and unsupervised segmentation eval-
uation: Current DL-based skin lesion segmentation algorithms are
mostly based on supervised learning, as shown in a supervision-
level breakdown of the surveyed works (Fig. 5), meaning that
these algorithms require manual segmentations for training seg-
mentation prediction models. Nearly all of these segmentation
studies employ supervised segmentation evaluation, meaning that
they also require manual segmentations for testing. Due to the
scarcity of annotated skin lesion images, it may be beneficial to
investigate unsupervised DL (Ji et al., 2019) as well as unsuper-
vised segmentation evaluation (Chabrier et al., 2006; Zhang et al.,
2008).
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Fig. 10. Number of skin lesion images with ground-truth segmentation maps per year categorized based on modality. It is evident that while the number of dermoscopic skin
lesion images has been constantly on the rise, the number of clinical images has remained unchanged for the past several years.

+ Systematic evaluations: Systematic evaluations that have been
performed for skin lesion classification (Valle et al., 2020; Bis-
soto et al., 2021; Perez et al., 2018) are, so far, nonexistent in
the skin lesion segmentation literature. For example, statistical
significance analysis are conducted on the results of a few prior
studies in skin lesion segmentation, e.g., Fortina et al. (2012).
Fusion of hand-crafted and deep features: Can we integrate the
deep features extracted by DL models and hand-crafted features
synergistically? For example, exploration of shape and appear-
ance priors of skin lesions that may be beneficial to incorporate,
via loss terms (Nosrati and Hamarneh, 2016; El Jurdi et al.,
2021; Ma et al., 2021), in deep learning models for skin lesion
segmentation, similar to star-shape (Mirikharaji and Hamarneh,
2018) and boundary priors (Wang et al., 2021a).

Loss of spatial resolution: The use of repeated subsampling in
CNNs leads to coarse segmentations. Various approaches have
been proposed to minimize the loss of spatial resolution, including
fractionally-strided convolution (or deconvolution) (Long et al.,
2015), atrous (or dilated) convolution (Chen et al., 2017a), and
conditional random fields (Krahenbuhl and Koltun, 2011). More
research needs to be conducted to determine appropriate strate-
gies for skin lesion segmentation that effectively minimize or
avoid the loss of spatial resolution.

Hyperparameter tuning: Compared to traditional machine learn-
ing classifiers (e.g., nearest neighbors, decision trees, and support
vector machines), deep neural networks have a large number
of hyperparameters related to their architecture, optimization,
and regularization. An average CNN classifier has about a dozen
or more hyperparameters (Bengio, 2012) and tuning these hy-
perparameters systematically is a laborious undertaking. Neural
architecture search is an active area of research (Elsken et al.,
2019), and some of these model selection approaches have al-
ready been applied to semantic segmentation (Liu et al., 2019a)
and medical image segmentation (Weng et al., 2019).
Reproducibility of results: Kapoor and Narayanan (2022) define
research in ML-based science to be reproducible if the associated
datasets and the code are publicly available and if there are no
problems with the data analysis, where problems include the
lack of well-defined training and testing partitions of the dataset,
leakage across dataset partitions, features selection using the
entire dataset instead of only the training partition, etc. Since
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several skin lesion segmentation datasets come with standardized
partitions (Table 1), sharing of the code can lead to more repro-
ducible research (Colliot et al., 2022), with the added benefit
to researchers who release their code to be cited significantly
more (Vandewalle, 2012). In our analysis, we found that only
38 of the 177 surveyed papers (21.47%) had publicly accessible
code (Table 3), a proportion similar to a smaller-scale analysis
by Renard et al. (2020) for medical image segmentation. Another
potential assessment of a method’s generalization performance is
its evaluation on a common held-out test set, where the ground
truth segmentation masks are private, and users submit their test
predictions to receive a performance assessment. For example,
the ISIC 2018 dataset’s test partition is available through a live
leaderboard (ISIC, 2018), but it is rarely used. We found that out
of 71 papers published in 2021 and 2022 included in this survey,
36 papers reported results on the ISIC 2018 dataset, but only 1
paper (Saini et al., 2021) used the online submission platform for
evaluation.

Research on clinical images: Another limitation is the limited
number of benchmark datasets of clinical skin lesion images
with expert pixel-level annotations. Fig. 10 shows that while
the number of dermoscopic image datasets with ground-truth
segmentation masks has been increasing over the last few years,
only a few datasets with clinical images are available. In contrast
to dermoscopic images requiring a special tool that is not always
utilized even by dermatologists (Engasser and Warshaw, 2010),
clinical images captured by digital cameras or smartphones have
the advantage of easy accessibility, which can be utilized to
evaluate the priority of patients by their lesion severity level,
i.e., triage patients. As shown in Fig. 3 and Table 3, most of the
deep skin lesion segmentation models are trained and evaluated
on dermoscopic images, primarily because of the lack of large-
scale clinical skin lesion image segmentation datasets (Table 1),
leaving the need to develop automated tools for non-specialists
unmet.

Research on total body images: While there has been some re-
search towards detecting and tracking skin lesions over time in
2D wide-field images (Mirzaalian et al., 2016; Li et al., 2017;
Korotkov et al., 2019; Soenksen et al., 2021; Huang et al., 2022)
and in 3D total body images (Bogo et al., 2014; Zhao et al., 2022a;
Ahmedt-Aristizabal et al., 2023), simultaneous segmentation of



Z. Mirikharaji et al.

skin lesions from total body images (Sinha et al., 2023) would
help with early detection of melanoma (Halpern, 2003; Hornung
et al., 2021), thus improving patient outcomes.

Effect on downstream tasks: End-to-end systems have been pro-
posed for skin images analysis tasks that directly learn the final
tasks (e.g., predicting the diagnosis Kawahara et al., 2019 or
the clinical management decisions Abhishek et al., 2021 of skin
lesions), and these approaches present a number of advantages
such as computational efficiency and ease of optimization. On
the other hand, skin lesion diagnosis pipelines have been shown
to benefit from the incorporation of prior knowledge, specifi-
cally lesion segmentation masks (Yan et al., 2019). Therefore,
it is worth investigating how lesion segmentation, often an in-
termediate step in the skin image analysis pipeline, affects the
downstream dermatological tasks.

From binary to multi-class segmentation: While the existing work
in skin lesion segmentation is mainly binary segmentation, fu-
ture work may explore multi-class settings. For example, auto-
mated detection and delineation of clinical dermoscopic features
(e.g., globules, streaks, pigment networks) within a skin lesion
may lead to superior classification performance. Further, der-
moscopic feature extraction, a task in the ISIC 2016 (Gutman
et al.,, 2016) and 2017 (Codella et al., 2018) challenges, can
be formulated as a multi-class segmentation problem (Kawahara
and Hamarneh, 2018). The multiclass formulation can then be
addressed by DL models, and can be used either as an interme-
diate step for improving skin lesion diagnosis or used directly
in diagnosis models for regularizing attention maps (Yan et al.,
2019). Similarly, multi-class segmentation scenarios may also
include multiple skin pathologies on one subject, especially in
images with large fields of view, or segmentation of the skin, the
lesion(s), and the background, especially in in-the-wild images
with diverse backgrounds, such as those in the Fitzpatrickl7k
dataset (Groh et al., 2021).

Transferability of models: As the majority of skin lesion datasets
are from fair-skinned patients, the generalizability of deep models
to populations with diverse skin complexions is questionable.
With the emergence of dermatological datasets with diverse skin
tones (Groh et al., 2021; Daneshjou et al., 2021b) and methods
for diagnosing pathologies fairly (Bevan and Atapour-Abarghouei,
2022; Wu et al., 2022¢; Pakzad et al., 2023; Du et al., 2023), it
is important to assess the transferability of DL-based skin lesion
segmentation models to datasets with diverse skin tones.
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